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Abstract. In this paper we characterise the radical in a Banach algebraA in terms of the perturbation ideal
P(R) of a set R inA.

1. Preliminaries

In Zemánek’s proof of his well known characterisation of the radical in a Banach algebra [14–16], an
important tool was the use of Jacobson’s Density Theorem. Since Zemánek’s characterisation of the radical
in 1977, many authors [2–4] proved spectral characterisations of the radical by using analytic techniques,
avoiding representation theory altogether. In 1971 Lebow and Schechter, [7], characterised the radical in
a Banach algebra by proving that it is equal to the perturbation ideal of the group of invertible elements.
Their proof is short and it is an algebraic proof. In 2008 G.R. Allan, [1], characterized the radical by using
elementary arguments from complex analysis.
We are going to follow the same approach as Lebow and Schechter [7], and in section 4 characterise
the radical in terms of the perturbation ideal of lower semiregularities. In section 5 we characterise the
radical in terms of the perturbation ideal of upper semiregularities. Finally, in the last section of the paper,
we characterise the radical in terms of the perturbation ideal of sets which are neither lower nor upper
semiregularities. In sections 1, 2 and 3 we establish our notation and basic results which are relevant to our
proofs.

Let A be a complex Banach algebra with a unit element 1A and for any λ ∈ C \ {0}, simply write λ for
λ · 1A. We will denote byA−1 the group of all invertible elements inA whileA−1

l (A−1
r ) represents the set

of all left (right) invertible elements inA. Note thatA−1 = A−1
l ∩A

−1
r . The set

σ(x) = σ(x,A) = {λ ∈ C : λ − x < A−1
},

is the usual spectrum of x ∈ A. It is well known that σ(x) is non-empty and a compact subset of the complex
plane C. The spectral radius of x inA is defined by

r(x) = r(x,A) = sup{|λ| : λ ∈ σ(x,A)}.

If σ(a) = {0}, then a ∈ A is called a quasinilpotent element and the set of all quasinilpotent elements in the
Banach algebraA is denoted by QN(A). If K is a subset of topological space, then ∂K denotes the boundary
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Email addresses: heinrichr@uj.ac.za (Heinrich Raubenheimer), tshikhudo.lukoto@ul.ac.za (Tshikhudo Lukoto)



H. Raubenheimer, T. Lukoto / Filomat 37:5 (2023), 1449–1459 1450

of K. By ideal inA we mean a two-sided ideal. An ideal J is proper if J ⊊ A. A maximal left (right) ideal is a
proper left (right) ideal which is not contained in any proper left (right) ideal. The radical ofA, denoted by
Rad(A), is the intersection of all maximal ideals ofA. Hence Rad(A) is a two-sided ideal. It can be shown
that

Rad(A) = {x ∈ A : r(xz) = 0 for all z ∈ A}. (1)

It follows from (1) that the radical is contained in the set of quasinilpotent elements.
Our next result is the famous Zemánek’s characterisation of the radical in a Banach algebra. This result
plays a central role in this paper.

Theorem 1.1. ([3], Theorem 5.3.1) LetA be a Banach algebra. Then the following properties are equivalent:

(i) a ∈Rad(A),

(ii) σ(a + x) = σ(x), for all x ∈ A,

(iii) r(a + x) = 0, for all quasinilpotent elements x ∈ A,

(iv) r(a + x) = 0, for all quasinilpotent elements x in a neighbourhood of 0 inA,

(v) there exists C > 0 such that r(x) ≤ C∥x − a∥, for all x in a neighbourhood of a ∈ A.

Many of the new characterisations of the radical that we provide in Section 3 follow from the equivalence
(i)⇔(ii) or the equivalence (i)⇔(iii) in Theorem 1.1.

An element a ∈ A is called a left topological divisor of zero if

inf{∥ax∥ : x ∈ A, ∥x∥ = 1} = 0.

Similarly, a ∈ A is a right topological divisor of zero if

inf{∥xa∥ : x ∈ A, ∥x∥ = 1} = 0.

We define expA as the set
expA = {ex : x ∈ A},

and we let ExpA be the set

ExpA = {ea1 ea2 · · · ean : n ∈N, a1, a2, . . . , an ∈ A}.

ExpA is the component of the invertible elements containing 1A and it is an open and closed normal
subgroup ofA−1 generated by ea for all a ∈ A.
In the middle 1990’s and the early 2000’s Kordula, Mbekhta and Müller defined the notions of regularity
and semiregularity in Banach algebras, [6] and [11, sections 6 and 23], to facilitate an axiomatic approach
to spectral theory in Banach algebras. Since we are going to employ these notions in sections 3, 4 and 5, we
define them here.

Definition 1.2. ([11], Definition 6.1) Let A be a Banach algebra. A non-empty subset R of A is called a
regularity if it satisfies the following conditions:

(i) if a ∈ A and n ∈N, then a ∈ R⇔ an
∈ R;

(ii) if a, b, c, d are mutually commuting elements ofA and ac + bd = 1A, then

ab ∈ R⇔ a ∈ R and b ∈ R.

In many cases it is possible to verify the axioms of a regularity by using the following criterion:
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Theorem 1.3. ([11], Theorem 6.4) Let R be a non-empty subset of a Banach algebraA satisfying

ab ∈ R⇔ a ∈ R and b ∈ R (P1)

for all commuting elements a, b ∈ A. Then R is a regularity.

One can divide the definition of a regularity into two parts:

Definition 1.4. ([11], Definition 23.1) Let A be a Banach algebra. A non-empty subset R of A is called a
lower semiregularity if

(i) a ∈ A, n ∈N, an
∈ R⇒ a ∈ R,

(ii) a, b, c, d are mutually commuting elements ofA satisfying ac + bd = 1A, and ab ∈ R, then a, b ∈ R.

Remark 1.5. ([11], Remark 23.3) Let R be a non-empty subset of a Banach algebraA satisfying

a, b ∈ A, ab = ba, ab ∈ R⇒ a ∈ R and b ∈ R. (P1′)

Then clearly R is a lower semiregularity.

Definition 1.6. ([11], Definition 23.10) LetA be a Banach algebra. A non-empty subset R ofA is called an
upper semiregularity if

(i) a ∈ R, n ∈N⇒ an
∈ R,

(ii) a, b, c, d are mutually commuting elements ofA satisfying ac + bd = 1A, and a, b ∈ R, then ab ∈ R,

(iii) R contains a neighbourhood of the unit element 1A.

Remark 1.7. A semigroup containing a neighborhood of the unit element ofA is an upper semiregularity
because it already satisfies conditions (i) and (ii) of Definition 1.6.

We can deduce that R is a regularity if and only if it is both a lower semiregularity and an upper semiregu-
larity.

IfA is a Banach algebra and S ⊆ A, then one can define in a natural way a spectrum relative to S for any
a ∈ A by

σS(a) = {λ ∈ C : λ − a < S}.

IfS is a regularity or a semiregularity, then σS(a) has interesting properties, see ([11], Theorem 6.7, Theorem
23.4 and Theorem 23.18).

2. Perturbation Classes

In this section, we mention results on perturbation of a set due to Lebow and Schechter ([7]). These
results will be used in subsequent sections.

Definition 2.1. Let X be a complex Banach space, and let S be a subset of X. The perturbation of S, denoted
by P(S), is the set of all x ∈ X such x + s ∈ S for all s ∈ S, i.e.,

P(S) = {x ∈ X : x + s ∈ S for all s ∈ S}.

We say P(S) is the set of elements of X that perturb S into itself. We shall throughout assume

αS ⊆ S (2)

for each α ∈ C \ {0}. Although in general P(S) is not an ideal, we will call P(S) the perturbation ideal of S.
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Remark 2.2. Let S be a subset of a Banach space X. If 0 ∈ S, then P(S) ⊆ S: Let 0 ∈ S. If x ∈ P(S), then
x + a ∈ S for every a ∈ S. Since 0 ∈ S, it then follows that x ∈ S. Hence P(S) ⊆ S.

Lemma 2.3. ([7], Lemma 2.1) Let X be a Banach space with S ⊆ X. If S satisfies (2), then P(S) is a linear
subspace of X. If, in addition, S is an open subset of X, then P(S) is closed.

Lemma 2.4. ([7], Lemma 2.2) Let X be a Banach space and let S1, S2 be subsets of X which satisfy (2).
Assume that S1 is open, that S1 ⊆ S2 and that ∂S1 ∩ S2 = ∅. Then P(S2) ⊆ P(S1).

Lemma 2.5. ([7], Lemma 2.3) LetA be a Banach algebra and S ⊆ A. IfA−1
S ⊆ S, then P(S) is a left ideal.

If SA−1
⊆ S then P(S) is a right ideal.

By the Lemmas above we have the following results.

Theorem 2.6. ([7], Theorem 2.4) LetA be a Banach algebra. If S is an open subset ofAwhich satisfies

A
−1
S ⊆ S, SA−1

⊆ S,

then P(S) is a closed two-sided ideal.

One of the reasons that we are interested in the perturbation ideal P(S) of a subset S of a Banach algebra
A is the following:

Proposition 2.7. LetA be a Banach algebra and let S ⊆ A satisfy αS ⊆ S for all 0 , α ∈ C. Then a ∈ P(S) if
and only if σS(x + a) = σS(x) for all x ∈ A.

Proof. Suppose a ∈ P(S) and x ∈ A. If λ ∈ σS(x + a), then

λ − (x + a) = (λ − x) − a < S
⇔ λ − x < S since −a ∈ P(S), Lemma 2.3.
⇔ λ ∈ σS(x).

Hence σS(x + a) = σS(x). Conversely, suppose σS(x + a) = σS(x) for all x ∈ A. In particular, if y ∈ S, then
by (2), −y = 0 − y ∈ S. In view of our assumption, 0 < σS(y) = σS(y + a). Hence, 0 − (y + a) = −(y + a) ∈ S.
Again by (2), y + a ∈ S. Since y was an arbitrary element of S, it then follows that a ∈ P(S).

Proposition 2.8. Let A be a Banach algebra and let S ⊆ A satisfy αS ⊆ S for all 0 , α ∈ C. Then
σS(αx) = ασS(x) for all x ∈ A.

Proof. Let x ∈ A and λ ∈ σS(αx). Then λ − αx < S. By (2), λα − x < S. This implies λα ∈ σS(x) and so
λ ∈ ασS(x). We have shown that σS(αx) ⊆ ασS(x). The inclusion ασS(x) ⊆ σS(αx) follows similarly.

Our next result gives information on the perturbation ideal of a set and its complement.

Proposition 2.9. LetA be a Banach algebra and suppose R ⊆ A andA \ R are closed under multiplication
by nonzero scalars. Then

P(R) = P(A \ R).

Proof. Let a ∈ P(R) and let y ∈ A \ R. Since R is closed under scalar multiplication, it then follows by
Lemma 2.3 that P(R) is a linear subspace and so −a ∈ P(R). If a + y ∈ R, then −a + (a + y) = y ∈ R, which is
a contradiction. Hence a + y ∈ A \ R, and since y is an arbitrary element inA \ R, we get that a ∈ P(A \ R).
Hence P(R) ⊆ P(A \ R). The inclusion P(A \ R) ⊆ P(R) can be proved similarly.

In Section 6 we will provide applications of the above Proposition.
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3. Perturbation Ideals of Regularities

In this section, we are going to investigate the perturbation ideals of some well known regularities.
Recall that if R is a regularity in a Banach algebraA, then A−1

⊆ R ([11], Proposition 6.2 (ii)).

IfA is a Banach algebra, then the following subsets ofA are regularities because they satisfy condition (P1)
in Theorem 1.3:

(i) R1 = A;

(ii) R2 = A
−1;

(iii) R3 = A
−1
l and R4 = A

−1
r ;

(iv) R5 = Hl the set of all elements in A that are not left topological divisors of zero and R6 = Hr, the set
of all elements inA that are not right topological divisors of zero.

If A is a Banach algebra and R1 = A, then a + R1 ⊆ R1 for all a ∈ A. Hence, P(R1) = A, i.e., A is the
perturbation ideal ofA.

The equivalence (i)⇔(ii) in Theorem 1.1 together with Proposition 2.7 is

Theorem 3.1. ([7], Theorem 2.5) LetA be a Banach algebra. Then

P(A−1) = Rad(A).

The proof of Theorem 3.1 by Lebow and Schechter ([7]) is an algebraic proof. Their proof is short and neat.
Later, Aupetit and Zemánek ([3], Theorem 5.3.1) proved a stronger result (See Proposition 2.7). However,
the proof of Theorem 5.3.1 in [3] is more involved and the proof uses arguments of representation theory. It
can be shown that the representation theory arguments can be replaced by arguments involving the theory
of subharmonic functions.

Proposition 3.2. ([6], Proposition 1.3) Let R be a regularity in a Banach algebra A. If a, b ∈ A, ab = ba and
a ∈ A−1 then

ab ∈ R⇔ a ∈ R and b ∈ R.

Note that if R is a regularity in a Banach algebraA and α ∈ C \ {0}, it then follows from Proposition 3.2 that
αR ⊆ R.
We are now ready to prove one of the main results in this section.

Theorem 3.3. LetA be a Banach algebra and R a regularity with ∂A−1
∩ R = ∅. Then

P(R) ⊆ Rad(A).

Proof. First we note thatA−1 is an open subset ofA with αA−1
⊆ A

−1 for all nonzero scalars α. In view of
A
−1
⊆ R and αR ⊆ R for all nonzero scalars α, our assumption ∂A−1

∩ R = ∅ together with Lemma 2.4 and
Theorem 3.1 gives P(R) ⊆ P(A−1) = Rad(A).

We now provide applications of Theorem 3.3.

Proposition 3.4. LetA be a Banach algebra. Then

P(Ri) ⊆ Rad(A)

for i = 3, 4, 5, 6.
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Proof. Since the regularities Ri (i = 3, 4, 5, 6) satisfy ∂A−1
∩ Ri = ∅, see ([11], Theorem 1.14), it follows from

Theorem 3.3 that P(Ri) ⊆ Rad(A).

For the regularities R3 and R4, we have

Theorem 3.5. ([7], Theorem 2.6) LetA be a Banach algebra. Then

P(Ri) = Rad(A)

for i = 3, 4.

4. Perturbation Ideals of Lower Semiregularities

In this section we investigate perturbation ideals of lower semiregularities.

If R is a lower semiregularity in a Banach algebraA, then it is well known thatA−1
⊆ R ([11], Lemma 23.2). If

one can prove that ∂A−1
∩R = ∅, then one can employ Lemma 2.4 to conclude thatP(R) ⊆ P(A−1) = Rad(A).

This is the case for our first result: If R = R7 = A
−1
l ∪A

−1
r , then R is a lower semiregularity because it satisfies

the (P1′) condition.

Theorem 4.1. LetA be a Banach algebra. Then

P(A−1
l ∪A

−1
r ) = Rad(A).

Proof. We first note thatA−1 is open inA andA−1
⊆ A

−1
l ∪A

−1
r .Now we show that ∂A−1

∩ (A−1
l ∪A

−1
r ) = ∅.

Assume ∂A−1
∩ (A−1

l ∪A
−1
r ) , ∅. So there exists a ∈ ∂A−1

∩ (A−1
l ∪A

−1
r ) and hence a ∈ A−1

l ∪A
−1
r . Suppose

a ∈ A−1
l , then by ([11], Theorem 1.14 (i)), a is not a left topological divisor of zero. Similarly if a ∈ A−1

r ,
then a is not a right topological divisor of zero. Since a ∈ ∂A−1, by ([11], Theorem 1.14 (iv)), a is both a
left and a right topological divisor of zero, which is a contradiction. So ∂A−1

∩ (A−1
l ∪ A

−1
r ) = ∅. Since

bothA−1 andA−1
l ∪A

−1
r satisfy (2), it follows from Lemma 2.4 that P(A−1

l ∪A
−1
r ) ⊆ P(A−1). To prove the

inclusion P(A−1) ⊆ P(A−1
l ∪ A

−1
r ), let x ∈ P(A−1) and a ∈ A−1

l ∪ A
−1
r . If a ∈ A−1

l , then by Theorem 3.5,
x+ a ∈ A−1

l ⊆ A
−1
l ∪A

−1
r . Similarly, if a ∈ A−1

r , then x+ a ∈ A−1
r ⊆ A

−1
l ∪A

−1
r . If we combine our arguments,

we get P(A−1) ⊆ P(A−1
l ∪A

−1
r ), and hence P(A−1

l ∪A
−1
r ) = P(A−1)=Rad(A).

LetA be a Banach algebra. Define the set

R = R8 = A \QN(A) = {x ∈ A : r(x) > 0}.

Proposition 4.2. LetA be a Banach algebra and R = A \QN(A). Then R is a lower semiregularity.

Proof. To prove that R is a lower semiregularity, we are going to verify condition (P1′), see Remark 1.5. Let
a, b ∈ A, with ab = ba and suppose ab ∈ R. Then

0 < r(ab) ≤ r(a)r(b).

This implies that r(a) > 0 and r(b) > 0. Hence, a, b ∈ R, i.e., R is a lower semiregularity.

We have proved above that R8 is a lower semiregularity. In view of ([11], Lemma 23.2) this means that
A
−1
⊆ R8. However, for the semiregularity R8 one can prove directly that A−1

⊆ R8: If a ∈ A−1, then
0 < σ(a). Since σ(a) is a non-empty compact subset of C, it follows that r(a) > 0.

Remark 4.3. LetA be a Banach algebra and let R = A \QN(A). Then

αR ⊆ R for every α ∈ C \ {0}.
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Proof. Let αa ∈ αR where a ∈ R and α ∈ C \ {0}. Now r(αa) = |α|r(a) > 0 and hence αa ∈ R. Therefore
αR ⊆ R for every α ∈ C \ {0}.

A key step in the proof of our next result is the equivalence (i)⇔(iii) in Theorem 1.1.

Theorem 4.4. LetA be a Banach algebra and R = A \QN(A). Then

P(R) = Rad(A).

Proof. Let a ∈ QN(A) and α ∈ C \ {0}. Then r(αa) = |α| · 0 = 0. Hence, QN(A) is closed under multiplication
by nonzero scalars. by Remark 4.3 R is also closed under multiplication by nonzero scalars. In view of the
equivalence (i)⇔(iii) in Theorem 1.1 and Proposition 2.9 we get P(R) = P(QN(A)) = Rad(A).

5. Perturbation Ideals of Upper Semiregularities

In this section, our focus is to characterise the radical inA in terms of the perturbation ideals of upper
semiregularities.
Let R = R9 =ExpA, which is the connected component ofA−1 containing 1A. It is also called the principal
component ofA−1 ([3], Theorem 3.3.7). Since R is an open semigroup containing the identity ofA, it is an
upper semiregularity, see Remark 1.7. The spectrum associated with ExpA is

ε(x) = ε(x,A) = {λ ∈ C : λ − x < ExpA}, x ∈ A.

It is called the exponential spectrum of x ∈ A. This spectrum is well known in spectral theory of Banach
algebras. For basic properties of this spectrum see [5].

Remark 5.1. IfA is a Banach algebra, thenA = ExpA+ExpA.

Proof. To prove the nontrivial containment, let a ∈ A. Choose λ ∈ C with |λ| large enough. Then a =
λ − (λ − a) = λ · 1A − (λ − a). If |λ| is large enough, then σ(λ − a) does not separate 0 from infinity. Hence,
by ([3], Theorem 3.3.6), λ − a ∈ expA ⊆ ExpA. Since the complex exponential function is onto, there exists
α ∈ Cwith λ = eα, and so λ · 1A = eα·1A ∈ expA ⊆ ExpA. We have shown thatA ⊆ ExpA+ExpA.

Theorem 5.2. LetA be a Banach algebra. Then

P(ExpA) = Rad(A).

Proof. Let a ∈ Rad(A) and x ∈ ExpA. Then x + a = x(1A + x−1a). Now by the Spectral Mapping Theorem
([11], Theorem 1.34) and the fact that the radical is contained in the set of quasinilpotent elements, it then
follows that σ(1A + x−1a) = {1}. This spectrum does not separate 0 from infinity. Hence by Theorem 3.3.6
in [3], 1A + x−1a = ey

∈ expA for some y ∈ A. If x ∈ ExpA, then x + a = x(1A + x−1a) ∈ ExpA, and so
a ∈ P(ExpA). Conversely, let a ∈ P(ExpA) and x ∈ A. Now sinceA = ExpA + ExpA,we get that

1A − xa = 1A − (x1 + x2)a where x1, x2 ∈ ExpA,
= 1A − x1a − x2a
= x1(x−1

1 − a) − x2a

= x2(x−1
2 x1(x−1

1 − a) − a).

Since ExpA is closed under multiplication, and since −a ∈ P(ExpA) we get x2(x−1
2 x1(x−1

1 − a) − a) ∈
ExpA ⊆ A−1.

Hence, 1A − xa ⊆ A−1 and so a ∈Rad(A), see ([3], Theorem 3.1.3). This completes the proof.
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Let R = A−1
∪ ∂A−1. Since 1A ∈ A−1

⊆ R, it follows that R contains a neighbourhood of the identity. In
view of R being closed under multiplication, we get from Remark 1.7 that R is an upper semiregularity.
Note that R = A−1 (the closure of a set is the union of the set with its boundary).

Theorem 5.3. LetA be a Banach algebra and let R = A−1. Then P(R) is an ideal and

Rad(A) ⊆ P(R) ⊆ A−1.

Proof. Let x ∈Rad(A) and let a ∈ R. If a ∈ A−1, then by Theorem 3.1, x + a ∈ A−1
⊆ A

−1
∪ ∂A−1. If

a ∈ ∂A−1, then x+ a ∈ ∂A−1
⊆ A

−1
∪ ∂A−1, see Corollary 6.3. By combining these arguments, it follows that

Rad(A) ⊆ P(R). Now if 0 , α ∈ C, then α∂A−1
⊆ ∂A−1, see the comment which follows the proof of Lemma

2.6 in [8]. Since αA−1
⊆ A

−1, it follows that αR ⊆ R. From this we then use Lemma 2.3 to deduce that P(R)
is a linear subspace. Since A−1

A
−1
⊆ A

−1 and by Lemma 2.6 in [8], it becomes clear that A−1R ⊆ R and
RA−1

⊆ R. By Lemma 2.5, P(R) is an ideal. Since 0 ∈ A−1, it follows from Remark 2.2 that P(R) ⊆ A−1.

Our next result hints that it is not true in Theorem 5.3 that Rad(A) = P(R).

Corollary 5.4. LetA be a Banach algebra and R = A−1. Then

1A − ba ∈ R

for all b ∈ A and a ∈ P(R).

Proof. Let a ∈ P(R) and b ∈ A. Since 1A − ba = 1A − r with r ∈ P(R), because P(R) is an ideal, we get that
1A − ba = 1A − r = s with s ∈ R because r ∈ P(R).

6. Perturbation Ideals of other Spectra

In this section we characterise the radical in terms of the perturbation ideal of sets which are neither
regularities nor semiregularities.

LetA be a Banach algebra and R = A \ ∂A−1. Since ∂A−1 is a closed set, R is an open set withA−1
⊆ R. In

the usual way, the set R gives rise to a spectrum

σR(x) = {λ ∈ C : λ − x ∈ ∂A−1
}

for all x ∈ A. In the literature this spectrum is known as the boundary spectrum, (see [8] and [9]). Although
the set R that generates the boundary spectrum σR is neither an upper nor a lower semiregularity (see [12],
Example 1.1, 1.2 and [13]), our interest in the boundary spectrum is to determine the perturbation ideal of
the set R.

Remark 6.1. LetA be a Banach algebra and let set R = A \ ∂A−1. Then

αR ⊆ R for every α ∈ C \ {0}.

Proof. Let αa ∈ αR where a ∈ R and α ∈ C \ {0}. If a is invertible, then αa is invertible and so αa ∈ R. If a is
not invertible, then αa is also not invertible and it is easy to see that αa < ∂A−1. Hence, αa ∈ R.

Our next result is one of the main theorems in this section. A key step in the proof of this result is the
equivalence (i)⇔(ii) in Theorem 1.1 and Proposition 2.9.

Theorem 6.2. LetA be a Banach algebra and let R = A \ ∂A−1. Then

P(R) = Rad(A).
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Proof. We first note that bothA−1 and R are open sets inA with A−1
⊆ R. Also, bothA−1 and R are closed

under scalar multiplication, see Remark 6.1. Since ∂A−1
∩ R = ∅, it follows from Lemma 2.4 and Theorem

3.1 that P(R) ⊆ P(A−1) = Rad(A).We claim that Rad(A) ⊆ P(R): Let r ∈ Rad(A) and x ∈ R. If x ∈ A−1, then
in view of Theorem 3.1, r + x ∈ A−1

⊆ R. If x ∈ R and x < A−1, then r + x < ∂A−1: If r + x ∈ ∂A−1, then there
is a sequence (yn) inA−1 with yn → r + x. Hence yn − r→ x and (yn − r) is a sequence inA−1, by Theorem
3.1. Hence, x ∈ ∂A−1 which is a contradiction. Consequently, r + x ∈ R and so r ∈ P(R). If we combine our
arguments we get P(R) = Rad(A).

Let A be a Banach algebra and let R = ∂A−1. The set R is neither an upper nor a lower semiregularity
since 1A < R. However in view of Proposition 2.9 and Theorem 6.2 we have

Corollary 6.3. LetA be a Banach algebra and let R = ∂A−1. Then

P(R) = Rad(A).

Proof. If 0 , α ∈ C, then αR ⊆ R (see the comment which follows after the proof of Lemma 2.6 in [8]). In
view of Proposition 2.9 and Theorem 6.2, our result is proved.

In our next results, we will investigate the perturbation ideals of the components ofA−1 different from ExpA.

Since ExpA is a normal subgroup of the set of invertible elements A−1, the quotient group A−1/ExpA is
the set of cosets

A
−1/ExpA = {a · ExpA : a ∈ A−1

}.

All the components ofA−1 can be represented by cosets a · ExpAwhere a ∈ A−1. In particular if a ∈ ExpA,
we obtain the principal component of A−1. Let Aγ represent any other component of A−1 different from
ExpA, i.e.,Aγ = a ·ExpA for a ∈ A−1

\ExpA. For any a ∈ A−1
\ExpA,Aγ = a ·ExpA is an open and closed

connected subset of A−1. Note that the components of A−1 are disjoint. We note that R = Aγ is neither a
lower nor an upper semiregularity since 1A < Aγ. Since αExpA ⊆ ExpA for each α ∈ C \ {0}, it follows
easily that αAγ ⊆ Aγ for all α ∈ C \ {0}.

Proposition 6.4. LetA be a Banach algebra and letAγ be any component ofA−1. Then

A = Aγ +Aγ.

Proof. Let Aγ be a component of A−1 different from ExpA. Suppose Aγ takes the form Aγ = a · ExpA
with a ∈ A−1

\ExpA. Since Aγ ⊆ A and since A is closed under addition, Aγ + Aγ ⊆ A. Let x ∈ A.
Since ε(a−1x) is a compact subset of C (see [5], Theorem 1), it is possible to choose λ ∈ C \ {0} such that
λ < ε(a−1x), i.e., λ − a−1x ∈ ExpA. Then, x = λa − (λa − x) = λa − a(λ − a−1x). From the arguments above we
get x ∈ Aγ +Aγ.

Theorem 6.5. LetA be a Banach algebra and letAγ be any component ofA−1. Then

P(Aγ) = Rad(A).

Proof. IfAγ is the principal component ofA−1, then we have proved in Theorem 5.2 that P(Aγ) = Rad(A).
Let r ∈ Rad(A) and az ∈ Aγ = a · ExpA with z ∈ ExpA and a ∈ A−1

\ExpA. Then r + az = a(a−1r + z)
and since a−1r ∈ Rad(A) and z ∈ ExpA, it follows from Theorem 5.2 that a−1r + z ∈ ExpA. Hence,
r + az ∈ a · ExpA = Aγ and so r ∈ P(Aγ). Hence, Rad(A) ⊆ P(Aγ). To prove that P(Aγ) ⊆ Rad(A), let
x ∈ P(Aγ). If az ∈ Aγ = a · ExpA with z ∈ ExpA, then a−1x + z = a−1(x + az). Since x ∈ P(Aγ) and az ∈ Aγ,
x + az = ab for some b ∈ ExpA. Hence, a−1x + z = a−1

· ab = b ∈ ExpA. By Theorem 5.2, a−1x ∈ Rad(A) and
so x ∈ Rad(A) because Rad(A) is an ideal. If we combine our arguments we get P(Aγ) = Rad(A).
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In the first part of the proof of Theorem 6.5 we proved that Rad(A) ⊆ P(Aγ). One can also prove this by
employing Lemma 2.4.

LetA be a Banach algebra and let R = QN(A). Note that R is neither an upper nor a lower semiregularity
sinceA−1

∩QN(A) = ∅. However, we have

Corollary 6.6. LetA be a Banach algebra and let R = QN(A). Then

P(R) = Rad(A).

Proof. If 0 , α ∈ C, then αR ⊆ R because if a ∈ R, then r(αa) = |α|r(a) = |α| · 0 = 0. In view of Proposition 2.9
and Theorem 4.4, our result is proved.

We now investigate the perturbation ideal of expA. The corresponding spectrum of expA is

e(x) = e(x,A) = {λ ∈ C : λ − x < expA}, x ∈ A.

This spectrum is compact (see [10], Theorem 3.2). Since expA ⊆ ExpA ⊆ A−1, we get the following
inclusions,

σ(x) ⊆ ε(x) ⊆ e(x),

thus also showing that e(x) is nonempty. IfA is commutative, then ε(x) = e(x).

Remark 6.7. If A is a Banach algebra, then A = expA+expA. For a proof of this statement, see the proof
of the Remark 5.1.

Although expA contains a neighbourhood of the identity it is not an upper semiregularity because it is not
closed under multiplication. It is also not a lower semiregularity becauseA−1 ⊈ expA.

Proposition 6.8. LetA be a Banach algebra. Then

Rad(A) + expA ⊆ ExpA.

Proof. Let a ∈ Rad(A) and ex
∈ expA. Then ex + a = ex(1A + e−xa). Since e−xa ∈ Rad(A), it follows from the

Spectral Mapping Theorem that

σ(1A + e−xa) = 1 + σ(e−xa) = 1 + {0} = {1}.

Since the spectrum of 1A + e−xa does not separate 0 from infinity, 1A + e−xa = ey
∈ expA for some y ∈ A, see

([3], Theorem 3.3.6). It then follows that ex(1A + a−1x) = exey
∈ ExpA. This completes the proof.

From this last proof, it is worth mentioning that exey
∈ expA only if x and y commute, which in general is

not the case.

Proposition 6.9. LetA be a Banach algebra. If a ∈ P(expA), then

1A − expA · a ⊆ ExpA.

Proof. Let a ∈ P(expA) and ex
∈ expA. Then

1A − exa = ex(e−x
− a)

= exey, for some y ∈ A and since a ∈ P(expA),
∈ ExpA.
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From this last proof, if we replace ex by b ∈ A and using the fact thatA = expA+expA, we get

1A − ba = 1A − (ec + ed)a, for some c, d ∈ A;
= 1A − eca − eda.

It follows from Proposition 6.8 and Proposition 6.9 that the relationship between Rad(A) and P(expA) is
not clear.

It is worth noting that since αexpA ⊆ expA, by Lemma 2.3, P(expA) is a subspace but P(expA) is not an
ideal: If P(expA) is an ideal, then for a ∈ P(expA), exeya ∈ P(expA) for x, y ∈ A. Now, since 1A ∈ expA,
it then follows that exeya + 1A ∈ expA. But exeya + 1A = ex(eya + e−x). Now, since eya ∈ P(expA), it then
follows that eya + e−x

∈ expA. Hence ex(eya + e−x) ∈ ExpA. In general ex(eya + e−x) < expA, which leads to a
contradiction.

Lastly, we look at the following complements, C1 = A \ A
−1, C2 = A \ A

−1
l , C3 = A \ A

−1
r , C4 = A \ Hl,

C5 = A \Hr, C6 = A \A
−1
l ∪A

−1
r , C7 = A \ ExpA and C8 = A \Aγ. One is able to deduce that Ci is closed

under nonzero scalar multiplication for each i = 1, 2, . . . , 8. It then follows by Proposition 2.9 that

Corollary 6.10. LetA be a Banach algebra. Then

P(Ci) = Rad(A) for each i = 1, 2, 3, 6, 7, 8;

and
P(Ci) ⊆ Rad(A) for each i = 4, 5.
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