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Visualization of spheres in the generalized Hahn space
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Abstract. We introduce the generalized Hahn space hd(p), which is not normable, and show that it is a totally
paranormed space. We develop the parametric representation of parts of spheres in three–dimensional
space endowed with the relative paranorm of hd(p) and solve the visibility and contour problems for these
spheres. Also we apply our own software in line graphics to visualize the shapes of parts of these spheres.
Finally we demonstrate the effects of the change of the parameters d and p on the shape of the spheres.

1. Introduction and Background

Visualization is widely used in teaching and research as useful tools for better understanding mathe-
matical concepts and results. It is also frequently applied in natural and engineering sciences.

Here we use our own software in line graphics to visualize the geometry of linear metric spaces that
have recently been used and studied in functional analysis and operator theory. This goal is achieved by
graphically representing spheres in the metric of the studied spaces.

We introduce the generalized Hahn space hd(p), prove that it is a linear metric space with respect to its
natural total paranorm, and solve the visibility and contour problems for the visualization of spheres or
their parts in hd(p).

Finally we demonstrate the influence of the change of the parameters p and d on the shapes of the
spheres in hd(p).

We use the standard notations ω for the set of all complex sequences x = (xk)∞k=1, and c0 for the set of all
sequences in ω that converge to zero.

The Hahn space h was originally introduced and studied by Hahn in 1922 [5] in connection with the
theory of singular integrals, and later generalized to hd by Goes [4] for sequences d = (dk)∞k=1 of positive
reals, where

hd = {x ∈ ω :
∞∑

k=1

dk|∆xk| < ∞} ∩ c0,

and ∆xk = xk − xk+1 for all k. In the special cases, where dk = k or dk = 1 for all k, the generalized Hahn
space reduces to the original Hahn space h or the classical space bv0 (see, for instance, [18, Definition
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Figure 1: Left: Sphere in the original Hahn space. Right: Sphere in the bv0 space

7.3.3]), respectively (Figure1). It was shown in [13, Proposition 2.1] that if the sequence d is increasing
and unbounded, then hd is a BK space with AK (see, for instance, [12, Definitions 9.2.1 and 9.2.12] for the
concepts of BK space and AK).

Matrix transformations and bounded and compact operators on the Hahn space have recently been
studied in various papers, for instance in [1, 2, 7, 9, 10, 13–16]. A survey of recent results can also be found
in [6].

We generalize the definition of the space hd.
Let (pk)∞k=1 be a sequence of positive real numbers and d = (dk)∞k=1 be an increasing unbounded sequence of
positive real numbers. We write [8]

c0(p) =
{
x = (xk)∞k=1 ∈ ω : lim

k→∞
|xk|

pk = 0
}
,

and define the set

hd(p) =

x = (xk)∞k=1 ∈ ω :
∞∑

k=1

dk |∆xk|
pk < ∞

 ∩ c0(p).

If dk = k for all k, then we write h(p) = hd(p).

2. The Generalized Paranormed Hahn Space

Throughout, let (pk)∞k=1 be a sequence of positive real numbers and d = (dk)∞k=1 be an increasing unbounded
sequence of positive reals. In this section, we show that the space hd(p) is a totally paranormed space, if the
sequence p is bounded.

We recall the concept of a paranorm (see, for instance, [17, Definition 4.2.1]).

Definition 2.1. Let X be a linear space.
A function 1 : X→ R is called a paranorm, if

1(0) = 0, (P.1)
1(x) ≥ 0 for all x ∈ X, (P.2)
1(−x) = 1(x) for all x ∈ X, (P.3)
1(x + y) ≤ 1(x) + 1(y) for all x, y ∈ X (triangle inequality) (P.4)
if (λn) is a sequence of scalars with λn → λ (n→ ∞) and (xn) is a
sequence of vectors with 1(xn−x)→ 0 (n→∞) then it follows that
1(λnxn − λx)→ 0 (n→∞) (continuity of multiplication by scalars).

(P.5)
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If 1 is a paranorm on X, then (X, 1), or X for short, is called a paranormed space. A paranorm 1 for which
1(x) = 0 implies x = 0 is called total.

Remark 2.2. If 1 is a total paranorm for a linear space X, then it is easy to see that d(x, y) = 1(x− y) (x, y ∈ X) defines
a metric on X, which is translation invariant, thus every totally paranormed space is a translation invariant linear
space. The converse statement is also true. The metric of any linear metric space is given by some total paranorm [17,
Theorem 10.4.2].

The following holds.

Proposition 2.3. If the sequence p = (pk)∞k=1 is bounded, then (hd(p), 1(p)) is a totally paranormed space with

1(p)(x) =

 ∞∑
k=1

dk |∆xk|
pk


1/M

(x ∈ hd(p)),

where M = max{1, supk pk}.

Proof. (i) First we show that hd(p) is a linear space.
We write αk = pk/M and δk = d1/pk

k for all k.
Let x, y ∈ hd(p). Then x, y ∈ c0(p) and so, since αk ≤ 1 for all k

|xk + yk|
αk ≤ |xk|

αk + |yk|
αk → 0 (k→∞),

hence x + y ∈ c0(p). Also we get applying Minkowski’s inequality ∞∑
k=1

dk

∣∣∣∆(x + y)k

∣∣∣pk


1/M

=

 ∞∑
k=1

(∣∣∣δk∆xk + δk∆yk

∣∣∣αk
)M


1/M

≤

 ∞∑
k=1

|δk∆xk|
αkM


1/M

+

 ∞∑
k=1

∣∣∣δk∆yk

∣∣∣αkM


1/M

=

 ∞∑
k=1

dk|∆xk|
pk


1/M

+

 ∞∑
k=1

dk|∆yk|
pk


1/M

< ∞. (1)

Thus we have shown that x, y ∈ hd(p) implies x + y ∈ hd(p).
Now we assume x ∈ hd(p) and λ ∈ C. We put Λ = max{1, |λ|M} and obtain from x ∈ c0(p)

|λxk|
pk ≤ Λ|xk|

pk → 0 (k→∞)

that λx ∈ c0(p), and also

∞∑
k=1

dk |λ∆xk|
pk ≤ Λ

∞∑
k=1

dk |∆xk|
pk < ∞,

hence λx ∈ hd(p). This completes Part (i) of the proof.
(ii) Now we show that 1(p) is a total paranorm on hd(p).
We write 1 = 1(p), for short.
Obviously 1 : hd(p)→ R satisfies the conditions in (P.1), (P.2) and (P.3), and by (1) also the condition in (P.4)
of Definition 2.1.
To show the condition in (P.5) of Definition 2.1 we assume that (λn)∞n=1 is a sequence of scalars with λn → λ

(n→∞) and (x(n))∞n=1 is a sequence of elements x(n) = (x(n)
k )∞k=1 in hd(p) with 1(x(n)

−x)→ 0 (n→∞). It follows
that

1
(
λnx(n)

− λx
)
= S1;n + S2;n + S3;n, (2)
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where

S1;n = 1
(
(λn − λ)(x(n)

− x)
)
, S2;n = 1

(
λ(x(n)

− x)
)

and S3;n = 1 ((λn − λ)x) .

First, λn → λ (n→∞) implies |λn − λ| ≤ 1 for all sufficiently large n, hence

S1;n ≤ 1
(
x(n)
− x

)
→ 0 (n→∞).

We also have

S2;n ≤ Λ1
(
x(n)
− x

)
→ 0 (n→∞).

Finally, to show S3;n → 0 (n→∞), let ε > 0 be given. Then there exists k0 ∈N such that ∞∑
k=k0+1

dk|∆xk|
pk


1/M

<
ε
2
.

Now we choose n0 ∈N such that

|λn − λ| ≤ 1 and max
1≤k≤k0

|λn − λ|
pk ≤

(
ε

21(x) + 1

)M

for all n ≥ n0.

Since 1/M ≤ 1, we obtain for all n ≥ n0

S3;n =

 ∞∑
k=1

|λn − λ|
pk dk|∆xk|

pk


1/M

≤

 k0∑
k=1

|λn − λ|
pk dk|∆xk|

pk


1/M

+

 ∞∑
k=k0+1

|λn − λ|
pk dk|∆xk|

pk


1/M

≤
ε

21(x) + 1
·

 ∞∑
k=1

dk|∆xk|
pk


1/M

+

 ∞∑
k=k0+1

dk|∆xk|
pk


1/M

<
ε
2
+
ε
2
= ε.

Hence we also have S3;n → 0 (n→∞) and consequently the condition in (P.5) of Definition 2.1 is satisfied.

Remark 2.4. Only dk > 0 for all k is needed in the proof of Proposition 2.3.

The following example shows that hd(p) may not be a linear space if the sequence p is unbounded.

Example 2.5. If the sequence p is unbounded and increasing, then the set h(p) is not a linear space.

Proof. We assume that supk pk = ∞. Then we can choose a sequence (k(i))∞i=1 of integers such that k(i) > i+ 1
and k(i + 1) − k(i) > 2 for all i. We define the sequence x = (xk)∞k=1 by

xk =


1
2

(
1

k(i)

)1/pk(i)−1

(k = k(i))

0 (k , k(i))
(i = 1, 2, . . . ).

Then it follows that
∞∑

k=1

k|∆xk|
pk =

∞∑
i=1

k(i) − 1
2pk(i)−1

1
k(i)
+

∞∑
i=1

k(i)1−pk(i)/pk(i)−1

2pk(i)
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≤

∞∑
i=1

1
2i +

∞∑
i=1

1
2i+1
< ∞,

and, for all k,

0 ≤ |xk|
pk ≤

(1
2

)pk(i) 1
k(i)
→ 0 (i→∞),

that is, x ∈ h(p), but

∞∑
k=1

k|2∆xk|
pk ≥

∞∑
i=1

k(i) − 1
k(i)

=

∞∑
i=1

(
1 −

1
k(i)

)
= ∞,

since 1/k(i)→ 0 as i→∞, and so 2x < h(p).

3. Visibility and Contour

Let k1, k2 and k3 be distinct positive integers, and the orthogonal projection pr : ω → V3 be defined by
pr(x) = {xk1 , xk2 , xk3 } for all sequences x = (xk)∞k=1 ∈ ω.

In this section, we consider the visualization of the projections pr of parts of spheres in the space hd(p) on
three–dimensional vector space V3 equipped with the restriction 1(p)

∣∣∣
V3 of the paranorm 1(p) on V3. Since

we use line graphics, perhaps the greatest challenge is solving the visibility problem; we also have to solve
the contour (or silhouette) problem.

First we solve the visibility problem.
We use central projection in V3 and check the visibility of any point on a given surface analytically. This
means we have to compute the intersections of straight lines with the surface.

To contract notation, we always write 1, 2 and 3 for the indices k1, k2 and k3 in the computations below.
So let dk and pk (k = 1, 2, 3) be given positive real numbers, M = max{1, p1, p2, p3},

1(p)

∣∣∣
V3 (x⃗) = (d1|x1 − x2|

p1 + d2|x2 − x3|
p2 + |x3|

p3 )1/M

for all x⃗ = {x1, x2, x3} ∈ V3, and

Sr(0) = {x⃗ ∈ V3 : 1(p)

∣∣∣
V3 (x⃗) = r}

denote the sphere of radius r > 0 centred at the origin. We note that we only need to consider spheres
centered at the origin for the solution of the visibility problem, since 1(p) is translation invariant by Remark
2.2.

Furthermore, let x⃗(u1,u2) ((u1,u2) ∈ R = I1 × I2 ⊂ (−π/2, π/2) × (0, 2π)) be a parametric representation of
the part S of the sphere Sr(0) in (V3, 1(p)

∣∣∣
V3 ) to be visualized (Figure 2), q⃗ = {q1, q2, q3}, v⃗ = {v1, v2, v3} ∈ V3

and L be the straight line through the point Q with position vector q⃗ in the direction of the vector v⃗, that is,
L has a parametric representation

z⃗(t) = q⃗ + tv⃗ (t ∈ R).

We have to find the intersection L ∩ S, that is, the values of t, u1 and u2 for which

x⃗ = x⃗(u1,u2) = q⃗ + tv⃗ for x⃗(u1,u2) ∈ S. (3)

First we establish a parametric representation for S. We put for (u1,u2) ∈ R

y1(u1,u2) = rM/p1 sgn(cos u2) (cos u1| cos u2|)
2/p1 , (4)

y2(u1,u2) = rM/p2 sgn(sin u2) (cos u1| sin u2|)
2/p2 (5)
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Figure 2: Part of a sphere for d1 = 1, d2 = 2, d3 = 3, p1 = 0.8, p2 = 1, p3 = 1.2.

and

y3(u1,u2) = rM/p3 sgn(sin u1) |sin u1|
2/p3 . (6)

Finally, we write δk = d1/pk

k for k = 1, 2, 3, use the transformation formulae
y1 = δ1(x1 − x2)
y2 = δ2(x2 − x3)
y3 = δ3x3

 and


x1 = y1/δ1 + y2/δ2 + y3/δ3
x2 = y2/δ2 + y3/δ3
x3 = y3/δ3

 , (7)

and obtain

(
1(p)(x)

)M
= d1|x1 − x2|

p1 + d2|x2 − x3|
p2 + d3|x3|

p3 =

3∑
k=1

|yk|
pk = rM. (8)

Thus a parametric representation S is given by

x⃗(u1,u2) = y⃗(u1,u2) ((u1,u2) ∈ R),

where the vectors x⃗ and y⃗ are related by the transformation formulae (7) above.
Now the identity in (3) yields xk − (qk + tvk) = 0 for k = 1, 2, 3, and in particular

v3t = x3 − q3.

Case 1. v3 , 0.
Then we have

t = t(u1) =
x3 − q3

v3
=

y3/δ3 − q3

v3
=

(1/δ3)rM/p3 sgn(sin u1)| sin u1|
2/p3 − q3

v3
, (9)

and (3) yields

x1 − x2 = (q1 − q2) + t(v1 − v2),
x2 − x3 = (q2 − q3) + t(v2 − v3),

x3 = q3 + tv3.
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Thus using the transformation formulae above and (8) we have to find the zeros u0
1 ∈ I1 of the function f ,

where

f (u1) = d1

∣∣∣(q1 − q2) + t(v1 − v2)
∣∣∣p1
+ d2

∣∣∣(q2 − q3) + t(v2 − v3)
∣∣∣p2
+ d3

∣∣∣q3 + tv3

∣∣∣p3
− rM (10)

with t = t(u1) in (9). We use the numerical methods described in detail in [11, Section 6.1]. In almost all
cases, however, we apply the bisection method, since it is the fastest one of the implemented methods.
We write t0 = t(u0

1). Then

δ1

(
x1(u0

1,u2) − x2(u0
1,u2)

)
= y1(u0

1,u2) = rM/p1 sgn(cos u2)
(
cos u0

1| cos u2|
)2/p1

= δ1
(
(q1 − q2) + t0(v1 − v2)

)
implies∣∣∣y1(u0

1,u2)
∣∣∣p1
= rM

(
cos u0

1 cos u2

)2
= d1

∣∣∣(q1 − q2) + t0(v1 − v2)
∣∣∣p1
,

and hence

cos u2 = ±
1

cos u0
1

√
d1

rM ·
∣∣∣(q1 − q2) + t0(v1 − v2)

∣∣∣p1/2
. (11)

Similarly we obtain

sin u2 = ±
1

cos u0
1

√
d2

rM ·
∣∣∣(q2 − q3) + t0(v2 − v3)

∣∣∣p2/2
. (12)

Finally, we determine the values of u0
2 ∈ I2 from (11) and (12) (if they exist), and are able to compute the

possible intersections L ∩ S.
Let C denote the centre of projection. Now a point Q = (q1, q2, q3) ∈ S with position vector q⃗ is invisible

(with respect to S) if, for v⃗ =
−→

QC, there exist a zero u0
1 ∈ I1 of the function f in (10) with corresponding

t0 = t(u0
1) > 0 from (9) and u0

2 ∈ I2 from (11) and (12).
Case 2. v3 = 0.

Now we have to find the zeros u0
1 ∈ I1 of the function f with

f (u1) = x3 − q3 =
y3

δ3
− q3 =

rM/p3

δ3
sgn(sin u1)| sin u1|

2/p3 − q3,

that is,

sgn(sin u1)| sin u1|
2/p3 =

q3δ3

rM/p3
.

If sgn(sin u1) ,sgn(q3), then there exists no zero u1 of f (u1). Otherwise we obtain

| sin u1|
2 =

(
|q3|δ3

)p3

rM ,

hence

sin u1 = ±

√
|q3|

p3 d3

rM ,

which yields

u0
1 = ± sin−1


√
|q3|

p3 d3

rM

,
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if |q3|
p3 d3 ≤ rM, which is the case if P ∈ S for u0

1 ∈ I1.
Furthermore, we must find the zeros t0 = t(u0

1) of

1(t) = d1|(q1 − q2) + t(v1 − v2)|p1 + d2|(q2 − q3) + t(v2 − v3)|p2 + d3|q3|
p3 − rM.

Now the transformation formulae

δ1

(
x1(u0

1,u2) − x2(u0
1,u2)

)
= y1(u0

1,u2) = rM/p1 sgn(cos u2)
(
cos u0

1| cos u2|
)2/p1

and

δ2

(
x2(u0

1,u2) − x3(u0
1,u2)

)
= y2(u0

1,u2) = rM/p2 sgn(sin u2)
(
cos u0

1| sin u2|
)2/p2

yield

d1|(q1 − q2) + t0(v − v2)|p1 = rM cos2 u0
1 cos2 u2,

hence again (11), and similarly (12).
Now the invisibility of a point Q ∈ S is determined by the same argument as in Case 1.

Now we consider the contour problem. Let P with the position vector x⃗(u1,u2) be a point of any surface
S, and

n⃗(u1,u2) = x⃗1(u1,u2) × x⃗2(u1,u2)

be the (unnormed) surface normal vector to S at P, where

x⃗k(u1,u2) =
∂x⃗
∂uk

(u1,u2) for k = 1, 2.

Then we say that P is a contour point of S, if

−→

PC • n⃗(u1,u2) = 0; (13)

the set of all contour points is referred to as the contour (or silhouette) of S.
Now let S be a part of the sphere Sr(0) in hd(p). We put

ρk =
2rM/pk

pk
and βk =

2
pk
− 1 for k = 1, 2, 3

s2 =sgn(sin u2) and c2 =sgn(cos u2). Then we obtain for u1 , 0 and u2 , π/2, π, 3π/2

∂y1

∂u1
(u1,u2) = −c2ρ1 sin u1(cos u1)β1 | cos u2|

β1+1,

∂y2

∂u1
(u1,u2) = −s2ρ2 sin u1(cos u1)β2 | sin u2|

β2+1,

∂y3

∂u1
(u1,u2) = ρ3 cos u1| sin u1|

β3 ,

∂y1

∂u2
(u1,u2) = −ρ1 sin u2(cos u1)β1+1

| cos u2|
β1 ,

∂y2

∂u2
(u1,u2) = ρ2 cos u2(cos u1)β2+1

| sin u2|
β2 ,
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Figure 3: A screenshot for visualization of the sphere in Figure 2 and the implementation of (4) – (7)

and (∂y3/∂u2)(u1,u2) = 0. Using the transformation formulae (7) we obtain x⃗1(u1,u2) and x⃗2(u1,u2).
If c⃗ denotes the position vector of the centre of projection, then the contour points are given by the zeros in
the domain R of S of the function

Φ(u1,u2) =
(
c⃗ − x⃗(u1,u2)

)
• (x⃗1(u1,u2) × x⃗2(u1,u2)).

For this we use the numerical method to determine the zeros of a real–valued function of two real variables
on a rectangle, described in detail in [3].

The described procedure is implemented in our software package MV-Graphics. The basics of the
software are described in [11]. It contains 135MB, and the unit UHahn developed for the visualization of
spheres in the Hahn space parts of which are described in this paper consists of 1755 lines of programming
code. The unit UHahn contains, among other things, the classes HahnNorm3DT for the definition of the
spheres in Hahn space, HahnNorm3DUiT for parameter lines on them and HahnNorm3DCT for its contour.
A screenshot for the visualization of the sphere on the Figure 2 and an implementation of the method
HahnNorm3DT.ParToSur f for a given parameter point Q with the resulting three-dimensional point P is
given in Figure 3.

A part of the implementation of the visibility procedure described here is

M := MAX(MAX(1,exponent1),MAX(exponent2,exponent3));

Vis := TRUE; LnIS := PrRay;

LinearCombinationVt3D(1,-1,P,Centre,P);

LinearCombinationVt3D(1,-1,LnIS.O,Centre,LnIS.O);

SpecialCase := Null(LnIS.U.Z,Eps15);

FOR N := 1 TO NOfIntv DO BEGIN

I1D[1].X := I1[1].X+ (N-1)/NOfIntv*(I1[2].X-I1[1].X);

I1D[2].X := I1[1].X+ N/NOfIntv*(I1[2].X-I1[1].X);

FindZerosOfF (I1D, Zero,NoZero);
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Figure 4: Influence of the parameters dk

IF (NoZero > 0) THEN BEGIN

Szero := SIN(Zero);

Rho3 := POWER (Radius, M/exponent3) / POWER(D3,1/exponent3);

TT := Rho3 * SGN(Szero) * POWER(ABS(Szero), 2/exponent3) ;

IF NOT SpecialCase THEN TIS := (TT-LnIS.O.Z)/LnIS.U.Z ELSE TIS := 200;

IF (TIS > Eps3/DiamWI3D) THEN BEGIN

Q.U1 := Zero;

Czero := COS(Zero);

COSU2 := SQRT(D1) * SGN(LnIS.O.X-LnIS.O.Y + TIS*(LnIS.U.X-LnIS.U.Y))*

POWER(ABS(LnIS.O.X-LnIS.O.Y + TIS*(LnIS.U.X-LnIS.U.Y)), exponent1/2) / CZero / POWER(Radius,M/2);

SINU2 := SQRT(D2) * SGN(LnIS.O.Y-LnIS.O.Z + TIS*(LnIS.U.Y-LnIS.U.Z))*

POWER(ABS(LnIS.O.Y-LnIS.O.Z + TIS*(LnIS.U.Y-LnIS.U.Z)), exponent2/2) / CZero / POWER(Radius,M/2);

COSSINToAngle (COSu2,SINu2, Q.U2);

IF (Q.U2 < 0) THEN Q.U2 := Q.U2+2*PI;

IF InIntervalPar (IU1U2,Q) THEN

BEGIN Vis := FALSE; EXIT; END;

END;

END;

END;

4. Influence of Parameters in the Shape of Spheres in hd(p)

We illustrate the influence of each parameter on the shape of the sphere.
Figure 4 illustrates the influence of the parameters dk. We display the unit spheres with the exponents

p1 = p2 = p3 = 1. Left: d1 = 1, d2 = 1, d3 = 3. Middle: d1 = 2, d2 = 3, d3 = 5. Right: d1 = 0.5, d2 = 1.5, d3 = 2.
Varying the exponents pk results in a change of the shape of the spheres. We start with the unit sphere

in the original Hahn space h, where d1 = 1, d2 = 2, d3 = 3.
First we consider spheres with equal exponents. Figures 5 and 6 show the unit sphere in the generalized

Hahn space h(p) with the parameters p = pk for k = 1, 2, 3, where p = 0.8, 1.3, 2 and 4.
If the exponents are different, the shape of the sphere is more interesting. On the left in Figure 7, the

exponents are p1 = 2, p2 = 4, p3 = 1. In the middle, they are p1 = 0.8, p2 = 1, p3 = 1.2. In the right they are
p1 = 2.5, p2 = 0.8, p3 = 1.5. Figure 2 is part of the sphere in the middle.

We can also change the parameters dk and the exponents pk at the same time. Figure 8 shows unit
spheres in the generalized Hahn space hd(p). On the left the parameters are p1 = 0.5, p2 = 0.8, p3 = 1.5 and
d1 = 1, d2 = 1, d3 = 3. Notice that the parameters dk are the same as those on the left in Figure 4. On the
right in Figure 8, the parameters are p1 = 0.8, p2 = 1, p3 = 1.2 and d1 = 0.5, d2 = 2, d3 = 4. The values of pk
are the same as in the middle of Figure 7.

It is also interesting to consider cases where the values of dk for k = 1, 2, 3 are not increasing, since the
change of a finite number of terms in the sequence d does not affect the paranorm property of 1(p). In Figure
9, the exponents are p1 = 2.5, p2 = 0.8, p3 = 1.5, as in right of Figure 7. On the left in Figure 9, the parameters
dk are increasing, d1 = 1, d2 = 3, d3 = 10. On the right, they are not monotone, d1 = 10, d2 = 1, d3 = 3.
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Figure 5: Exponents pk are equal. Left: pk = 0.8. Right: pk = 1.3

Figure 6: Exponents pk are equal. Left: pk = 2. Right: pk = 4

Figure 7: Exponents pk are different

Figure 8: Different parameters dk and exponents pk
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Figure 9: Left: parameters dk are increasing. Right: parameters dk are not increasing.

Figure 10: Spheres of radii 1, 1.2 and 1.4.

Finally, we demonstrate the influence of the radius. In Figure 10, we chose the parameters d1 = 0.5,
d2 = 1, d3 = 1.5 and for the exponents p1 = 1.5, p2 = 0.7, p3 = 2.5. The radii vary from left to right with the
values 1, 1.2 and 1.4 and the centres are on the y–axis at the values 0, 3 and 8. We observe that not only the
size is increasing but also it stretches out differently in different dimensions due to the exponents.
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[16] O. Tuǧ, V. Rakočević, and E. Malkowsky. Domain of generalized difference operator ∆3

i of order three on hahn sequence space h
and matrix transformation. Linear Multilinear Algebra, 196(3):519–551, 2021.

[17] A. Wilansky. Functional Analysis. Blaisdell Publishing Company, New York, Toronto, London, 1964.
[18] A. Wilansky. Summability through Functional Analysis, volume 85. North–Holland, Amsterdam, 1984. Mathematical Studies.


