New characterizations of g-Drazin inverse in a Banach algebra

Huanyin Chen ${ }^{\text {a }}$, Marjan Sheibani Abdolyousefi ${ }^{\text {b,* }}$
${ }^{a}$ School of Mathematics, Hangzhou Normal University, Hangzhou, China
${ }^{b}$ Farzanegan Campus, Semnan University, Semnan, Iran

Abstract

In this paper, we present a new characterization of g-Drazin inverse in a Banach algebra. We prove that an element a in a Banach algebra has g-Drazin inverse if and only if there exists $x \in \mathcal{A}$ such that $a x=x a, a-a^{2} x \in \mathcal{A}^{q n i l}$. As an application, we obtain the sufficient and necessary conditions for the existence of the g-Drazin inverse for certain 2×2 anti-triangular matrices over a Banach algebra. These extend the results of Koliha (Glasgow Math. J., 38(1996), 367-381), Nicholson (Comm. Algebra, 27(1999), 3583-3592 and Zou et al. (Studia Scient. Math. Hungar., 54(2017), 489-508).

1. Introduction

Let \mathcal{A} be a complex Banach algebra with an identity 1. We define $a \in \mathcal{A}$ has g-Drazin inverse (i.e., generalized Drazin inverse) if there exists $b \in \mathcal{A}$ such that

$$
a b=b a, b=b a b, a-a^{2} b \in \mathcal{A} \text { is quasinilpotent. }
$$

Such b is unique, if exists, and denote it by a^{d}. If we replace quasinilpotent in the above definition with nilpotent, then b is called the Drazin inverse of a. Following Mosić ,see[15], an element $a \in \mathcal{A}$ has gs-Drazin inverse if there exists $b \in \mathcal{A}$ such that $b=b a b, b \in \operatorname{comm}(a)$ and $a-a b \in \mathcal{A}^{\text {qnil }}$. The g-Drazin inverse plays an important role in matrix and operator theory. Many authours have been studying this subject from different views (see [12,14] and [17]). In this paper we provide some new characterizations for the g-Drazin inverse of an element in a Banach algebra. In Section 2, we drop the regular condition for the g-Drazin invertibility of the definition. We then thereby prove that an element a in a Banach algebra \mathcal{A} has g-Drazin inverse if and only if there exist an idempotent e, a unit u and a quasinilpotent w which commute each other such that $a=e u+w$. This helps us to generalize [16, Theorem 3] and prove that an element $a \in \mathcal{A}$ has g-Drazin inverse if and only if there exists an idempotent $e \in \operatorname{comm}(a)$ such that eae $\in[e \mathcal{A} e]^{-1}$ and $(1-e) a(1-e) \in[(1-e) \mathcal{A}(1-e)]^{q n i l}$. It was firstly posed by Campbell that the solutions to singular systems of differential equations are determined by the g-Drazin invertibility of the 2×2 anti-triangular block matrix (see [2]). The g-Drazin inverse of such special matrices attracts many authors (see [3, 7, 10, 13] and [18]). In Section 3, we apply the results in section 2 for certain anti-triangular block matrices over a Banach algebra

[^0]and provide some necessary and sufficient conditions for such matrices to be g-Drazin invertible. These also extend [3, Theorem 4.1] and [19, Theorem 2.6] for the g-Drazin inverse.

Throughout the paper, we use \mathcal{A}^{-1} to denote the set of all units in \mathcal{A}. \mathcal{A}^{d} indicates the set of all g-Drazin invertible elements in \mathcal{A}. Let $a \in \mathcal{A}$. The commutant of $a \in \mathcal{A}$ is defined by $\operatorname{comm}(a)=\{x \in \mathcal{A} \mid x a=a x\}$. \mathbb{N} stands for the set of all natural numbers.

2. g-Drazin inverse

The aim of this section is to provide a new characterization of g-Drazin inverse in a Banach algebra. We shall prove that regular condition " $x=x a x$ " can be dropped from the definition of g-Drazin inverse. An element $a \in \mathcal{A}$ has strongly g-Drazin inverse if it is the sum of an idempotent and a quasinilpotent that commute (see [6]). We begin with a characterization of strongly Drazin inverse.

Lemma 2.1. Let $a \in \mathcal{A}$. Then the following are equivalent:
(1) $a \in \mathcal{A}$ has strongly g-Drazin inverse.
(2) $a-a^{2} \in \mathcal{A}^{\text {qnil }}$.

Proof. See [6, Lemma 2.2].
We come now to the demonstration for which this paper has been developed.
Theorem 2.2. Let $a \in \mathcal{A}$. Then the following are equivalent:
(1) $a \in \mathcal{A}^{d}$.
(2) There exists some $x \in \operatorname{comm(a)}$ such that $a-a^{2} x \in \mathcal{A}^{\text {qnil }}$.

Proof. (1) \Rightarrow (2) This is obvious by choosing $x=a^{d}$.
(2) \Rightarrow (1) By hypothesis, there exists some $x \in \operatorname{comm(a)}$ such that $a-a^{2} x \in \mathcal{A}^{\text {qnil }}$. Set $z=x a x$. Then $z \in \operatorname{comm}(a)$. As $\left(a-a^{2} x\right) \in \mathcal{A}^{q n i l}$ and $x \in \operatorname{comm}(a)$, we see that,

$$
\begin{aligned}
a-a^{2} z & =a-\operatorname{axaxa} \\
& =(1+a x)\left(a-a^{2} x\right) \\
& \in \mathcal{A}^{\text {qnil }}, \\
z-z^{2} a & =x a x-\operatorname{xaxaxax} \\
& =x\left(a-a^{2} x\right) x+\operatorname{xax}\left(a-a^{2} x\right) x \\
& \in \mathcal{A}^{\text {qnil }} . \\
a z- & (a z)^{2}=\left(a-a^{2} z\right) z \in \mathcal{A}^{\text {qnil }} .
\end{aligned}
$$

By Lemma 2.1, $a z$ is strongly g-Drazin invertible and so by [9, Theorem 3.2], we have an idempotent $e \in \operatorname{comm}^{2}(a z)$ such that $a z-e \in \mathcal{A}^{\text {qnil }}$. We easily check that

$$
(a+1-a z)(z+1-a z)=1+\left(a-a^{2} z\right)(1-z)+\left(z-z^{2} a\right)
$$

Hence,

$$
\begin{aligned}
a+1-e & =(a+1-a z)+(a z-e) \in \mathcal{A}^{-1} \text { and } \\
a(1-e) & =\left(a-a^{2} z\right)+a(a z-e) \in \mathcal{A}^{\text {quil }}
\end{aligned}
$$

Since $a \in \operatorname{comm}(a z)$, we have $e a=a e$. That is, $a \in \mathcal{A}$ is quasipolar. As every quasipolar element is g-Drazin invertible so, $a \in \mathcal{A}^{d}$, by [11, Theorem 4.2].

Corollary 2.3. Let $a \in \mathcal{A}$. Then the following are equivalent:
(1) $a \in \mathcal{A}^{d}$.
(2) There exists an invertible $u \in \operatorname{comm(a)}$ such that $a-a^{2} u \in \mathcal{A}^{\text {qnil }}$.
(3) au has strongly g-Drazin inverse for some invertible $u \in \operatorname{comm(a)}$.

Proof. (1) \Rightarrow (3) In view of [11, Theorem 4.2], there exists an idempotent $p \in \operatorname{comm}(a)$ such that $u:=a+p \in \mathcal{A}^{-1}$ and $a p \in \mathcal{A}^{\text {qnil }}$. Hence, $a p=a(u-a) \in \mathcal{A}^{\text {qnil }}$. Then $a-a^{2} u^{-1} \in \mathcal{A}^{\text {qnil }}$. Thus $a u^{-1}-\left[a u^{-1}\right]^{2} \in \mathcal{A}^{\text {qnil }}$. Therefore $a u$ has strongly g -Drazin inverse by Lemma 2.1.
(3) \Rightarrow (2) In light of Lemma 2.1, $a u-(a u)^{2} \in \mathcal{A}^{\text {qnil }}$ for some invertible $u \in \operatorname{comm}(a)$. Hence $a-a^{2} u \in \mathcal{A}^{\text {qnil }}$, as required.
$(2) \Rightarrow(1)$ This is obvious by Theorem 2.2.
We are now ready to extend [11, Theorem 4.2] as follows.
Corollary 2.4. Let $a \in \mathcal{A}$. Then the following are equivalent:
(1) $a \in \mathcal{A}^{d}$.
(2) There exists some $p \in \operatorname{comm}(a)$ such that $a+p \in \mathcal{A}^{-1}$ and $a p \in \mathcal{A}^{\text {qnil }}$.

Proof. $(1) \Rightarrow(2)$ This is clear by $[11$, Theorem 4.2].
(2) $\Rightarrow(1)$ Set $b=(a+p)^{-1}(1-p)$. Then $b \in \operatorname{comm}(a)$ and

$$
\begin{aligned}
a b & =a(a+p)^{-1}(1-p) \\
& =(a+p)(a+p)^{-1}(1-p)-p(a+p)^{-1}(1-p) \\
& =1-p-p(a+p)^{-1}(1-p) .
\end{aligned}
$$

In view of [19, Lemma 2.11], we have

$$
\begin{aligned}
a-a^{2} b & =a(1-a b) \\
& =a p\left[1+(a+p)^{-1}(1-p)\right] \\
& \in \mathcal{A}^{\text {qnil }}
\end{aligned}
$$

as $1-a b=p+p(a+p)^{-1}(1-p)$. This completes the proof by Theorem 2.2.
The next result generalizes [4, Proposition 13.1.18].
Theorem 2.5. Let $a \in \mathcal{A}$. Then the following are equivalent:
(1) $a \in \mathcal{A}^{d}$.
(2) There exist an idempotent e, a unit u and a quasinilpotent w which commute each other such that $a=e u+w$.

Proof. (1) \Rightarrow (2) By hypothesis, there exists a invertible $u \in \operatorname{comm}(a)$ such that $a-a^{2} u^{-1} \in \mathcal{A}^{\text {qnil }}$. Then $\left(u^{-1} a\right)^{2}-u^{-1} a \in \mathcal{A}^{\text {qnil }}$. In light of Lemma 2.1, $u^{-1} a$ has strongly g-Drazin inverse and so by [9, Theorem 3.2], there exists $e^{2}=e \in \operatorname{comm}^{2}\left(u^{-1} a\right)$ such that $w:=u^{-1} a-e \in \mathcal{A}^{\text {qnil }}$. Hence, $a=u e+u w$. Clearly, $e u=u e$ and $e a=a e ;$ hence, $u w=w u,(u e)(u w)=(u w)(u e)$ and $u w \in \mathcal{A}^{q n i l}$, as required.
(2) \Rightarrow (1) Write $a=u e+w$ for an idempotent e, an invertible u and a quasinilpotent w which commute each other. Then $\left(u^{-1} a\right)^{2}-u^{-1} a \in \mathcal{A}^{\text {qnil }}$. Then $a-a^{2} u^{-1} \in \mathcal{A}^{\text {qnil }}$, since $-u^{-1}\left(a-a^{2} u^{-1}\right) \in \mathcal{A}^{\text {qnil }}$.

Corollary 2.6. Let $a \in \mathcal{A}^{d}$. Then a is the sum of two units in \mathcal{A}.
Proof. Since $a \in \mathcal{A}^{d}$, it follows by [19, Theorem 3.11] that $\frac{a}{2} \in \mathcal{A}^{d}$. In view of Theorem 2.5, there exist an idempotent e, a unit u and a quasinilpotent w which commute each other such that $\frac{a}{2}=e u+w$. Hence, $a=2 e u+2 w=(2 e-1) u+u+2 w=(2 e-1) u+u\left(1+2 u^{-1} w\right)$. Since $(2 e-1)^{2}=1$ and $1+2 u^{-1} w \in \mathcal{A}^{-1}, a$ is the sum of two units, as asserted.

Theorem 2.7. Let $a \in \mathcal{A}$. Then the following are equivalent:
(1) $a \in \mathcal{A}^{d}$.
(2) There exist an idempotent $e \in \operatorname{comm}(a)$ such that eae $\in[e \mathcal{A l e}]^{-1},(1-e) a(1-e) \in[(1-e) \mathcal{A}(1-e)]^{\text {qnil }}$.

Proof. (1) \Rightarrow (2) By virtue of Theorem 2.5, there exist an idempotent e, a unit u and a quasinilpotent w which commute each other such that $a=e u+w$. Then $e a e=e u\left(1+u^{-1} w\right) \in[e \mathcal{A} e]^{-1}$. Moreover, we have $(1-e) a(1-e)=(1-e) w \in[(1-e) \mathcal{A}(1-e)]^{q^{n i l}}$, as desired.
$(2) \Rightarrow(1)$ Suppose there exists an idempotent $e \in \operatorname{comm}(a)$ such that eae $\in[e \mathcal{A} e]^{-1},(1-e) a(1-e) \in$ $[(1-e) \mathcal{A}(1-e)]^{\text {qnil }}$. Then $a=e a+(1-e) a=e[e a e+1-e]+(1-e) a$. In view of [19, Lemma 2.11], $(1-e) a \in \mathcal{A}^{\text {qnil }}$. Obviously, eae $+1-e \in \mathcal{A}^{-1}$. According to Theorem 2.5, a has g-Drazin inverse, as asserted.

Let $\alpha \in \mathcal{A}=\operatorname{End}(M)$. The submodule P of M is α-invariant provided that $\alpha(P) \subseteq P$ (see [16]). We now derive

Corollary 2.8. Let $\alpha \in \mathcal{A}=\operatorname{End}(M)$. Then the following are equivalent:
(1) $\alpha \in \mathcal{F}^{d}$.
(2) $M=P \oplus Q$, where P and Q are α-invariant, $\left.\alpha\right|_{P} \in[\operatorname{End}(P)]^{-1},\left.\alpha\right|_{Q} \in \operatorname{End}(Q)^{\text {qnil }}$. The corresponding PQPQ-decomposition looks like

$$
\begin{array}{cccccc}
M & = & P & \bigoplus & Q & \\
& \left.\alpha\right|_{P}=\text { unit } & \downarrow & & \downarrow & \left.\alpha\right|_{Q}=\text { quasinilpotent } \\
M & = & P & = & Q & .
\end{array}
$$

Proof. (1) \Rightarrow (2) In view of Theorem 2.7, there exist an idempotent $e \in \operatorname{comm}(\alpha)$ such that $e \alpha e \in[e \mathcal{A} e]^{-1},(1-$ $e) \alpha(1-e) \in[(1-e) \mathcal{A}(1-e)]^{\text {qnil }}$. Set $P=M e$ and $Q=M(1-e)$. Then $M=P \oplus Q$. As $e \in \operatorname{comm}(\alpha)$, we see that P and Q are α-invariant.

Write $(e \alpha e)^{-1}=e \beta e$. Then one easily checks that $\left[\left.\alpha\right|_{P}\right]^{-1}=\left.\beta\right|_{P}$. Let $\gamma \in \operatorname{End}(Q) \cap \operatorname{comm}\left(\left.\alpha\right|_{Q}\right)$. We will suffice to prove $1_{Q}-\left.\alpha\right|_{Q} \gamma \in[\operatorname{End}(P)]^{-1}$.

$$
\begin{array}{rll}
1_{Q}-\left.\alpha\right|_{Q} \gamma: & \rightarrow Q \\
p & \mapsto q-(q) \alpha \gamma .
\end{array}
$$

Define $\bar{\gamma}: M \rightarrow M$ given by $(p+q) \bar{\gamma}=(q) \gamma$ for any $p \in P, q \in Q$. Set $f=1-e$. If $(q)\left(1_{Q}-\left.\alpha\right|_{Q} \gamma\right)=0$, then $(q f)(f-(f \alpha) f \bar{\gamma} f)=0$. As $\alpha f \in(f \mathcal{A} f)^{q n i l}$, we get $q f=0$. This implies that $1_{Q}-\left.\alpha\right|_{Q} \in \operatorname{End}(Q)$ is an R-monomorphism. For any $q \in Q$. Choose $z=(q f)(f-(f \alpha) f \bar{\gamma} f)^{-1} \in Q$. Then $(z)\left(1_{Q}-\left.\alpha\right|_{Q} \gamma\right)=q$; hence, $1_{Q}-\left.\alpha\right|_{Q} \gamma \in \operatorname{End}(Q)$ is an \mathcal{A}-epimorphism. Thus $1_{Q}-\left.\alpha\right|_{Q} \gamma \in[\operatorname{End}(Q)]^{-1}$, and so $\left.\alpha\right|_{Q} \in \operatorname{End}(Q)^{\text {qnil }}$.
$(2) \Rightarrow(1)$ Let $e: M=P \oplus Q \rightarrow P$ be the projection on P. In view of [16, Lemma 2], $e^{2}=e \in \operatorname{comm}(\alpha)$. Moreover, $P=M e$ and $Q=M(1-e)$. Since $\left.\alpha\right|_{P} \in[\operatorname{End}(P)]^{-1}$, we see that eae $\in(e \mathcal{A} e)^{-1}$. It follows from $(1-e) \alpha(1-e) \in[(1-e) \mathcal{A}(1-e)]^{\text {qnil }}$ that $(1-e) \alpha(1-e) \in[(1-e) \mathcal{A}(1-e)]^{\text {qnil }}$. This completes the proof by Theorem 2.7.

3. Anti-triangular matrices

In this section we apply Theorem 2.2 to block matrices over a Banach algebra and present necessary and sufficient conditions for the existence of the g-Drazin inverse for a class of 2×2 anti-triangular block matrices. We now derive

Lemma 3.1. Let $M=\left(\begin{array}{ll}1 & 1 \\ a & 0\end{array}\right) \in M_{2}(\mathcal{A})$. Then
(1) For any $n \in \mathbb{N}, M^{n}=\left(\begin{array}{cc}U(n) & U(n-1) \\ U(n-1) a & U(n-2) a\end{array}\right)$, where $U(m)=\sum_{i=0}^{\left[\frac{m}{2}\right]}\binom{m-i}{i} a^{i}, m \geq 0 ; U(-1)=0$.
(2) $U(n)-U(n-1)=U(n-2)$ a for any $n \in \mathbb{N}$.

Proof. See [3, Proposition 3.1].

Lemma 3.2. Let $a \in \mathcal{A}$. Then the following are equivalent:
(1) $a \in \mathcal{A}^{d}$.
(2) $\left(\begin{array}{ll}1 & 1 \\ a & 0\end{array}\right) \in M_{2}(\mathcal{A})^{d}$.

Proof. (1) $\Rightarrow(2)$ As 1 and a are g-Drazin invertible then we obtain the result by [8, Lemma 2.2] and [5, Corollary 2.4].
$(2) \Rightarrow(1)$ Write $M^{d}=\left(\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right)$. Then $M M^{d}=M^{d} M$, and so

$$
\left(\begin{array}{ll}
1 & 1 \\
a & 0
\end{array}\right)\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right)=\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
a & 0
\end{array}\right)
$$

Then

$$
\left(\begin{array}{cc}
x_{11}+x_{21} & x_{12}+x_{22} \\
a x_{11} & a x_{12}
\end{array}\right)=\left(\begin{array}{cc}
x_{11}+x_{12} a & x_{11} \\
x_{21}+x_{22} a & x_{21}
\end{array}\right)
$$

Hence, we have

$$
\begin{gathered}
x_{11}+x_{21}=x_{11}+x_{12} a, \\
a x_{12}=x_{21} .
\end{gathered}
$$

Therefore $a x_{12}=x_{21}=x_{12} a$.
Write $\left(M^{2} M^{d}-M\right)^{n}=W_{n}=\left(\begin{array}{cc}\alpha_{n} & \beta_{n} \\ \gamma_{n} & \delta_{n}\end{array}\right)(n \in \mathbb{N})$. Since $M^{n+1} M^{d}-M^{n}=W_{n}$, we see that

$$
\lim _{n \rightarrow \infty}\left\|W_{n}\right\|^{\frac{1}{n}}=0
$$

and then

$$
\lim _{n \rightarrow \infty}\left\|\left(\begin{array}{cc}
0 & \beta_{n} \\
0 & 0
\end{array}\right)\right\|^{\frac{1}{n}}=\lim _{n \rightarrow \infty}\left\|\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) W_{n}\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\|^{\frac{1}{n}}=0
$$

This implies that

$$
\lim _{n \rightarrow \infty}\left\|\beta_{n}\right\|^{\frac{1}{n}}=0
$$

Likewise,

$$
\lim _{n \rightarrow \infty}\left\|\delta_{n}\right\|^{\frac{1}{n}}=0
$$

Clearly, we have

$$
\begin{aligned}
M^{n+1} M^{d} & =\left(\begin{array}{cc}
U(n+1) & U(n) \\
U(n) a & U(n-1) a
\end{array}\right)\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right) \\
& =M^{n}+W_{n} \\
& =\left(\begin{array}{cc}
U(n) & U(n-1) \\
U(n-1) a & U(n-2) a
\end{array}\right)+\left(\begin{array}{cc}
\alpha_{n} & \beta_{n} \\
\gamma_{n} & \delta_{n}
\end{array}\right) .
\end{aligned}
$$

Comparing two-sides of the preceding equality, we have

$$
\begin{align*}
U(n+1) x_{12}+U(n) x_{22} & =U(n-1)+v_{0}, v_{0}:=\beta_{n} \tag{i}\\
U(n) a x_{12}+U(n-1) a x_{22} & =U(n-2) a+v_{1}, v_{1}:=\delta_{n} \tag{ii}
\end{align*}
$$

Multiplying a from the left side of (i), we get

$$
\begin{equation*}
U(n+1) a x_{12}+U(n) a x_{22}=U(n-1) a+a \beta_{n} \tag{iii}
\end{equation*}
$$

In view of Lemma 3.1, $U(n+1)-U(n)=U(n-1) a, U(n)-U(n-1)=U(n-2) a, U(n-1)-U(n-2)=U(n-3) a$. By (iii) subtracted (ii), we derive

$$
\begin{equation*}
U(n-1) a^{2} x_{12}+U(n-2) a^{2} x_{22}=U(n-3) a^{2}+v_{2}, v_{2}:=a v_{0}-v_{1} \tag{iv}
\end{equation*}
$$

Moreover, by (iv) subtracted (ii), we have

$$
\begin{equation*}
U(n-2) a^{3} x_{12}+U(n-3) a^{3} x_{22}=U(n-4) a^{3}+v_{3}, v_{3}:=a v_{1}-v_{2} \tag{v}
\end{equation*}
$$

By iteration of this process, we have

$$
\begin{aligned}
& U(n-(n-2)) a^{n-1} x_{12}+U(n-(n-1)) a^{n-1} x_{22} \\
& =U(n-n) a^{n-1}+v_{n-1} ; \\
& v_{n-1}:=a v_{n-3}-v_{n-2} \\
& U(n-(n-1)) a^{n} x_{12}+U(n-n) a^{n} x_{22}=U(n-(n+1)) a^{n}+v_{n}, \\
& v_{n}:=a v_{n-2}-v_{n-1} .
\end{aligned}
$$

That is,

$$
\begin{aligned}
(1+a) a^{n-1} x_{12}+a^{n-1} x_{22} & =a^{n-1}+v_{n-1}, v_{n-1}:=a v_{n-3}-v_{n-2} ; \\
a^{n} x_{12}+a^{n} x_{22} & =v_{n}, v_{n}:=a v_{n-2}-v_{n-1} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
a^{n} & =a^{n} a^{n-1} \\
& =a\left[(1+a) a^{n-1} x_{12}+a^{n-1} x_{22}-v_{n-1}\right] \\
& =(1+a) a^{n} x_{12}+a^{n} x_{22}-a v_{n-1} \\
& =(1+a) a^{n} x_{12}+\left(v_{n}-a^{n} x_{12}\right)-a v_{n-1} \\
& =a^{n+1} x_{12}+v_{n}-a v_{n-1} .
\end{aligned}
$$

Hence,

$$
a^{n}-a^{n+1} x_{12}=v_{n}-a v_{n-1}
$$

By the preceding construction, we have a recurrence relations

$$
v_{0}=\beta_{n}, v_{1}=\delta_{n}, v_{n}=-v_{n-1}+a v_{n-2}
$$

Obviously,

$$
\left\|v_{2}\right\| \leq\left\|v_{1}\right\|+\|a\|\left\|v_{0}\right\| \leq(1+\|a\|)^{2}\left(\left\|v_{0}\right\|+\left\|v_{1}\right\|\right)
$$

By induction, we show that

$$
\begin{aligned}
& \left\|v_{n}\right\| \\
\leq & \left\|v_{n-1}\right\|+\|a\|\left\|v_{n-2}\right\| \\
\leq & (1+\|a\|)^{n-1}\left(\left\|v_{0}\right\|+\left\|v_{1}\right\|\right)+\|a\| \|(1+\|a\|)^{n-2}\left(\left\|v_{0}\right\|+\left\|v_{1}\right\|\right) \\
= & {\left[(1+\|a\|)^{n-1}+\|a\| \|(1+\|a\|)^{n-2}\right]\left(\left\|v_{0}\right\|+\left\|v_{1}\right\|\right) } \\
= & (1+\|a\|)^{n-2}(1+2\|a\| \|)\left(\left\|v_{0}\right\|+\left\|v_{1}\right\|\right) \\
\leq & (1+\|a\|)^{n}\left(\left\|v_{0}\right\|+\left\|v_{1}\right\|\right) .
\end{aligned}
$$

Likewise, we have

$$
\left\|v_{n-1}\right\| \leq(1+\|a\|)^{n-1}\left(\left\|v_{0}\right\|+\left\|v_{1}\right\|\right)
$$

Therefore we have

$$
\begin{aligned}
\left\|v_{n}-a v_{n-1}\right\| & \leq\left\|v_{n}\right\|+\|a\|\left\|v_{n-1}\right\| \\
& \leq\left[(1+\|a\|)^{n}+\|a\|(1+\|a\|)^{n-1}\right]\left(\left\|v_{0}\right\|+\left\|v_{1}\right\|\right) \\
& \leq(1+\|a\|)^{n+1}\left(\left\|v_{0}\right\|+\left\|v_{1}\right\|\right)
\end{aligned}
$$

Then we get

$$
\begin{aligned}
\left\|v_{n}-a v_{n-1}\right\|^{\frac{1}{n}} & \leq(1+\|a\|)^{\frac{n+1}{n}}\left(\left\|v_{0}\right\|+\left\|v_{1}\right\|\right)^{\frac{1}{n}} \\
& \leq(1+\|a\|)^{\frac{n+1}{n}}\left(\left\|\beta_{n}\right\|+\left\|\delta_{n}\right\|\right)^{\frac{1}{n}} \\
& \leq(1+\|a\|)^{1+\frac{1}{n}}\left(\left\|\beta_{n}\right\|^{\frac{1}{n}}+\left\|\delta_{n}\right\|^{\frac{1}{n}}\right) .
\end{aligned}
$$

Thus,

$$
\lim _{n \rightarrow \infty}\left\|a^{n}-a^{n+1} x_{12}\right\|^{\frac{1}{n}}=0
$$

Since || $\left(a-a^{2} x_{12}\right)^{n}\|\leq\| a^{n}-a^{n+1} x_{12}| || | 1-a x_{12} \|^{n-1}$, we deduce that

$$
\lim _{n \rightarrow \infty}\left\|\left(a-a^{2} x_{12}\right)^{n}\right\|^{\frac{1}{n}}=0
$$

Therefore $a-a^{2} x_{12} \in \mathcal{A}^{q n i l}$. In light of Theorem 2.2, $a \in \mathcal{A}^{d}$, as asserted.

We are ready to extend [18, Theorem 2.6] for the g-Drazin inverse.
Theorem 3.3. Let $M=\left(\begin{array}{ll}a & b \\ c & 0\end{array}\right) \in M_{2}(\mathcal{A})$. If $a^{2}=a \in \mathcal{A}$ and $a b=b$, then the following are equivalent:
(1) $M \in M_{2}(\mathcal{A})^{d}$.
(2) $b c \in \mathcal{A}^{d}$.

Proof. (1) \Rightarrow (2) One easily checks that

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
c & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & c
\end{array}\right)\left(\begin{array}{ll}
a & b \\
1 & 0
\end{array}\right) \\
& \left(\begin{array}{cc}
a & b c \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & c
\end{array}\right)
\end{aligned}
$$

By using Cline's formula, $\left(\begin{array}{cc}a & b c \\ 1 & 0\end{array}\right)$ has g-Drazin inverse. Moreover, we have

$$
\begin{aligned}
& \left(\begin{array}{cc}
a & b c \\
1 & 0 \\
a & a \\
b c & 0
\end{array}\right)=\left(\begin{array}{cc}
a & a \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
1 & 0 \\
0 & b c
\end{array}\right)
\end{aligned}\left(\begin{array}{cc}
a & a \\
1 & 0
\end{array}\right), ~ \$
$$

By using Cline's formula again, $\left(\begin{array}{cc}a & a \\ b c & 0\end{array}\right)$ has g-Drazin inverse. Since

$$
\left(\begin{array}{cc}
1 & a \\
b c & 0
\end{array}\right)=\left(\begin{array}{cc}
1-a & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
a & a \\
b c & 0
\end{array}\right)
$$

it follows by [8, Theorem 2.2] that $\left(\begin{array}{cc}1 & a \\ b c & 0\end{array}\right)$ has g-Drazin inverse. Let $S=\left(\begin{array}{cc}1 & 1 \\ b c & 0\end{array}\right), T=\left(\begin{array}{cc}1 & 0 \\ 0 & a\end{array}\right)$. Then

$$
S T=\left(\begin{array}{cc}
1 & a \\
b c & 0
\end{array}\right), T S=\left(\begin{array}{cc}
1 & 1 \\
b c & 0
\end{array}\right)
$$

In view of Cline's formula, $\left(\begin{array}{cc}1 & 1 \\ b c & 0\end{array}\right)$ has g-Drazin inverse. In light of Lemma 3.2, $b c \in \mathcal{A}^{d}$, as asserted.
$(2) \Rightarrow(1)$ Since $b c=a b c \in \mathcal{A}^{d}$, it follows by Cline's formula that $b c a$ has g-Drazin inverse. In light of Lemma 3.2, $\left(\begin{array}{cc}1 & 1 \\ b c a & 0\end{array}\right)$ has g-Drazin inverse. As

$$
\left(\begin{array}{cc}
1 & 1 \\
b c a & 0
\end{array}\right)\left(\begin{array}{cc}
a & 0 \\
0 & a
\end{array}\right)=\left(\begin{array}{cc}
a & 0 \\
0 & a
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
b c a & 0
\end{array}\right)
$$

it follows by [11, Theorem 5.5] that $\left(\begin{array}{cc}a & a \\ b c a & 0\end{array}\right)$ has g-Drazin inverse. Since

$$
\left(\begin{array}{cc}
a & a \\
b c & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
b c(1-a) & 0
\end{array}\right)+\left(\begin{array}{cc}
a & a \\
b c a & 0
\end{array}\right)
$$

it follows by [8, Theorem 2.2] that $\left(\begin{array}{cc}a & a \\ b c & 0\end{array}\right)$ has g-Drazin inverse. We easily check that

$$
\begin{aligned}
& \left(\begin{array}{cc}
a & a \\
b c & 0
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & b c
\end{array}\right)\left(\begin{array}{cc}
a & a \\
1 & 0 \\
a & b c \\
1 & 0
\end{array}\right) \\
& \left(\begin{array}{cc}
a & a \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & b c
\end{array}\right) .
\end{aligned}
$$

In view of Cline's formula, $\left(\begin{array}{cc}a & b c \\ 1 & 0\end{array}\right)$ has g-Drazin inverse. Furthermore, we have

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
c & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & c
\end{array}\right)\left(\begin{array}{ll}
a & b \\
1 & 0
\end{array}\right) \\
& \left(\begin{array}{cc}
a & b c \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & c
\end{array}\right)
\end{aligned}
$$

By using Cline's formula again, we conclude that M has g-Drazin inverse.
Corollary 3.4. Let $M=\left(\begin{array}{ll}a & a \\ b & 0\end{array}\right) \in M_{2}(\mathcal{A})$. If $a^{2}=a \in \mathcal{A}$, then the following are equivalent:
(1) $M \in M_{2}(\mathcal{A})^{d}$.
(2) $a b \in \mathcal{A}^{d}$.

Proof. This is obvious by Theorem 3.3.

Lemma 3.5. Let $M=\left(\begin{array}{ll}a & b \\ c & 0\end{array}\right) \in M_{2}(\mathcal{A})$. If $a \in \mathcal{A}^{d}, c a a^{d}=c$ and $a^{d} b c=b c a^{d}$, then the following are equivalent:
(1) $M \in M_{2}(\mathcal{A})^{d}$.
(2) $b c \in \mathcal{A}^{d}$.

Proof. (2) \Rightarrow (1) Since $a^{d} b c=b c a^{d}$, it follows by [11, Theorem 5.5] that $\left(a^{d}\right)^{2} b c \in \mathcal{A}^{d}$. In view of Lemma 3.2,

$$
\left(\begin{array}{cc}
1 & 1 \\
\left(a^{d}\right)^{2} b c & 0
\end{array}\right) \in M_{2}(\mathcal{A})^{d}
$$

We easily check that

$$
\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
\left(a^{d}\right)^{2} b c & 0
\end{array}\right)=\left(\begin{array}{cc}
1 & 1 \\
\left(a^{d}\right)^{2} b c & 0
\end{array}\right)\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right)
$$

we see that

$$
\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
\left(a^{d}\right)^{2} b c & 0
\end{array}\right) \in M_{2}(\mathcal{A})^{d}
$$

This shows that

$$
\left(\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
c a^{d} & 0
\end{array}\right) \in M_{2}(\mathcal{A})^{d} .
$$

By using Cline's formula,

$$
M=\left(\begin{array}{cc}
1 & 1 \\
c a^{d} & 0
\end{array}\right)\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right) \in M_{2}(\mathcal{F})^{d}
$$

$(1) \Rightarrow(2)$ Since M has g-Drazin inverse, we prove that

$$
\left(\begin{array}{ll}
a & 1 \\
c & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & b
\end{array}\right) \in M_{2}(\mathcal{A})^{d} .
$$

By Cline's formula,

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & b
\end{array}\right)\left(\begin{array}{ll}
a & 1 \\
c & 0
\end{array}\right) \in M_{2}(\mathcal{A})^{d}
$$

That is,

$$
\left(\begin{array}{cc}
a & 1 \\
b c & 0
\end{array}\right) \in M_{2}(\mathcal{A})^{d}
$$

Since $a^{d}(b c)=(b c) a^{d}$, by virtue of [19, Theorem 3.1], we have

$$
\left(\begin{array}{cc}
a^{d} a & a^{d} \\
a^{d} b c & 0
\end{array}\right)=\left(\begin{array}{cc}
a^{d} & 0 \\
0 & a^{d}
\end{array}\right)\left(\begin{array}{cc}
a & 1 \\
b c & 0
\end{array}\right) \in M_{2}(\mathcal{A})^{d}
$$

By using Cline's formula,

$$
\left(\begin{array}{cc}
a^{d} a & a a^{d} \\
\left(a^{d}\right)^{2} b c & 0
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & a^{d}
\end{array}\right)\left(\begin{array}{cc}
a^{d} a & a^{d} \\
a^{d} b c & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & a
\end{array}\right) \in M_{2}(\mathcal{A})^{d} .
$$

One easily checks that

$$
\left(\begin{array}{cc}
1 & 1 \\
\left(a^{d}\right)^{2} b c & 0
\end{array}\right)=\left(\begin{array}{cc}
a^{\pi} & a^{\pi} \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
a a^{d} & a a^{d} \\
\left(a^{d}\right)^{2} b c & 0
\end{array}\right) .
$$

Hence,

$$
\left(\begin{array}{cc}
1 & 1 \\
\left(a^{d}\right)^{2} b c & 0
\end{array}\right) \in M_{2}(\mathcal{A})^{d}
$$

In light of Lemma 3.2, $\left(a^{d}\right)^{2} b c \in \mathcal{A}^{d}$. Since $a\left(a^{d}\right)^{2} b c=\left(a^{d}\right)^{2} b c a$, we see that $a^{2}\left(a^{d}\right)^{2} b c=\left(a^{d}\right)^{2} b c a^{2}$. In view of [19, Theorem 3.1],

$$
b c=b c\left(a^{d}\right)^{2} a^{2}=\left(a^{d}\right)^{2} b c a^{2} \in \mathcal{A}^{d}
$$

as asserted.
The following result is a generalization of [3, Theorem 4.1] for the g-Drazin inverse.
Theorem 3.6. Let $M=\left(\begin{array}{ll}a & b \\ c & 0\end{array}\right) \in M_{2}(\mathcal{A})$. If $a \in \mathcal{A}^{d}, b c a^{\pi}=0$ and $a^{d} b c=b c a^{d}$, then the following are equivalent:
(1) $M \in M_{2}(\mathcal{A})^{d}$.
(2) $b c \in \mathcal{A}^{d}$.

Proof. (2) \Rightarrow (1) Let $c^{\prime}=c a a^{d}$. Since $b c a^{\pi}=0$, we have $b c=b c a a^{d}$. We see that

$$
M=P+Q, P=\left(\begin{array}{cc}
a & b \\
c^{\prime} & 0
\end{array}\right), Q=\left(\begin{array}{cc}
0 & 0 \\
c a^{\pi} & 0
\end{array}\right) .
$$

Clearly, $P Q=0$ and $Q^{2}=0$. Since $c^{\prime} a^{\pi}=0, a^{d} b c^{\prime}=b c^{\prime} a^{d}$ and $b c^{\prime}=b c \in \mathcal{A}^{d}$, it follows by Lemma 3.5 that P has g-Drazin inverse. In light of [8, Theorem 2.2], M has g-Drazin inverse, as required.
$(1) \Rightarrow(2)$ One easily checks that

$$
\left(\begin{array}{cc}
a & b \\
c^{\prime} & 0
\end{array}\right)=M+N, N=\left(\begin{array}{cc}
0 & 0 \\
c a^{\pi} & 0
\end{array}\right) .
$$

Clearly, $M N=0$ and $N^{2}=0$. In view of [8, Theorem 2.2], $\left(\begin{array}{cc}a & b \\ c^{\prime} & 0\end{array}\right)$ has g-Drazin inverse. Moreover, $c^{\prime} a^{\pi}=0, a^{d} b c^{\prime}=b c^{\prime} a^{d}$ and $b c^{\prime}=b c \in \mathcal{A}^{d}$. According to Lemma 3.5, $b c=b c^{\prime}$ has g-Drazin inverse, as asserted.

Corollary 3.7. Let $M=\left(\begin{array}{ll}a & b \\ c & 0\end{array}\right) \in M_{2}(\mathcal{A})$. If $a \in \mathcal{A}^{d}, a^{\pi} b c=0$ and $a b c=b c a$, then the following are equivalent:
(1) $M \in M_{2}(\mathcal{A})^{d}$.
(2) $b c \in \mathcal{A}^{d}$.

Proof. Since $a(b c)=(b c) a$ and a has g-Drazin inverse, by [11, Theorem 4.4], $a^{d}(b c)=(b c) a^{d}$, and so $0=a^{\pi} b c=$ $\left(1-a a^{d}\right) b c=b c\left(1-a a^{d}\right)=b c a^{\pi}$. The corollary is therefore established by Theorem 3.6.

Acknowledgement

The authors would like to thank the referees for their careful reading of the paper and the valuable comments which greatly improved the presentation of this article.

References

[1] C. Bu; K. Zhang and J. Zhao, Representation of the Drazin inverse on solution of a class singular differential equations, Linear Multilinear Algebra, 59(2011), 863-877.
[2] S.L. Campbell, The Drazin inverse and systems of second order linear differential equations, Linear Multilinear Algebra, 14(1983), 195-198.
[3] N. Castro-González and E. Dopazo, Representations of the Drazin inverse for a class of block matrices, Linear Algebra Appl., 400(2005), 253-269.
[4] H. Chen, Rings Related Stable Range Conditions, Series in Algebra 11, World Scientific, Hackensack, NJ, 2011.
[5] H. Chen and M. Sheibani, The g- Drazin invertibility in a Banach algebra, arXiv: 2203.07568v1 [math.RA] 15 Mar 2022.
[6] H. Chen and M. Sheibani, Generalized Hirano inverses in Banach algebras, Filomat, 33(2019), 6239-6249.
[7] D.S. Cvetković-Ilić, Some results on the (2,2,0) Drazin inverse problem, Linear Algebra Appl., 438(2013), 4726-4741.
[8] D. Djordjević and Y. Wei, Additive results for the generalized Drazin inverse, J. Austral. Math. Soc., 73(2002), 115-125.
[9] O. Gurgun, Properties of generalized strongly Drazin invertible elements in general rings, J. Algebra Appl., 161750207 (2017) [13 pages], Doi: 10.1142/S0219498817502073.
[10] J. Huang; Y. Shi and A. Chen, Additive results of the Drazin inverse of anti-triangular operator matrices based on resolvent expansions, Applied Math. Comput., 242(2014), 196-201.
[11] J.J. Koliha, A generalized Drazin inverse, Glasgow Math. J., 38(1996), 367-381.
[12] Y. Liao, J. Chen and J. Cui, Cline's formula for the generalized Drazin inverse, Bull. Malays. Math. Sci. Soc., 37(2014), 37-42.
[13] X. Liu and H. Yang, Further results on the group inverses and Drazin inverses of anti-triangular block matrices, Applied Math. Comput., 218(2012), 8978-8986.
[14] D. Mosić, A note on Cline's formula for the generalized Drazin inverse, Linear \& Multilinear Algebra, 63(2014), 1106-1110.
[15] D. Mosić, Reverse order laws for the generalized strongly Drazin inverses, Appl. Math. Comp., 284(2016), 37-46.
[16] W.K. Nicholson, Strongly clean rings and Fitting's lemma, Comm. Algebra, 27(1999), 3583-3592.
[17] D. Zhang and D. Mosić, Explicit formulae for the generalized Drazin inverse of block matrices over a Banach algebra, Filomat, 32(2018), 5907-5917.
[18] H. Zou; J. Chen and D. Mosic, The Drazin invertibility of an anti-triangular matrix over a ring, Studia Scient. Math. Hungar., 54(2017), 489-508.
[19] H. Zou; D. Mosic and J. Chen, Generalized Drazin invertibility of the product and sum of two elements in a Banach algebra and its applications, Turk. J. Math., 41(2017), 548-563.

[^0]: 2020 Mathematics Subject Classification. 15A09, 32A65.
 Keywords. g-Drazin inverse; Anti-triangular matrix; Banach algebra.
 Received: 30 September 2021; Accepted: 11 January 2023
 Communicated by Dijana Mosić
 Research supported by the Natural Science Foundation of Zhejiang Province, China (No. LY17A010018).

 * Corresponding author: Marjan Sheibani Abdolyousefi

 Email addresses: huanyinchen@aliyun.com (Huanyin Chen), m. sheibani@semnan.ac.ir (Marjan Sheibani Abdolyousefi)

