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Abstract. In this paper, we present a new characterization of g-Drazin inverse in a Banach algebra. We
prove that an element a in a Banach algebra has g-Drazin inverse if and only if there exists x ∈ A such that
ax = xa, a− a2x ∈ Aqnil.As an application, we obtain the sufficient and necessary conditions for the existence
of the g-Drazin inverse for certain 2 × 2 anti-triangular matrices over a Banach algebra. These extend the
results of Koliha (Glasgow Math. J., 38(1996), 367–381), Nicholson (Comm. Algebra, 27(1999), 3583–3592
and Zou et al. (Studia Scient. Math. Hungar., 54(2017), 489–508).

1. Introduction

Let A be a complex Banach algebra with an identity 1. We define a ∈ A has g-Drazin inverse (i.e.,
generalized Drazin inverse) if there exists b ∈ A such that

ab = ba, b = bab, a − a2b ∈ A is quasinilpotent.

Such b is unique, if exists, and denote it by ad. If we replace quasinilpotent in the above definition with
nilpotent, then b is called the Drazin inverse of a. Following Mosić ,see[15], an element a ∈ A has gs-Drazin
inverse if there exists b ∈ A such that b = bab, b ∈ comm(a) and a − ab ∈ Aqnil. The g-Drazin inverse plays
an important role in matrix and operator theory. Many authours have been studying this subject from
different views (see [12, 14] and [17]). In this paper we provide some new characterizations for the g-Drazin
inverse of an element in a Banach algebra. In Section 2, we drop the regular condition for the g-Drazin
invertibility of the definition. We then thereby prove that an element a in a Banach algebraA has g-Drazin
inverse if and only if there exist an idempotent e, a unit u and a quasinilpotent w which commute each
other such that a = eu + w. This helps us to generalize [16, Theorem 3] and prove that an element a ∈ A
has g-Drazin inverse if and only if there exists an idempotent e ∈ comm(a) such that eae ∈ [eAe]−1 and
(1− e)a(1− e) ∈ [(1− e)A(1− e)]qnil. It was firstly posed by Campbell that the solutions to singular systems of
differential equations are determined by the g-Drazin invertibility of the 2 × 2 anti-triangular block matrix
(see [2]). The g-Drazin inverse of such special matrices attracts many authors (see [3, 7, 10, 13] and [18]). In
Section 3, we apply the results in section 2 for certain anti-triangular block matrices over a Banach algebra
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and provide some necessary and sufficient conditions for such matrices to be g-Drazin invertible. These
also extend [3, Theorem 4.1] and [19, Theorem 2.6] for the g-Drazin inverse.

Throughout the paper, we useA−1 to denote the set of all units inA. Ad indicates the set of all g-Drazin
invertible elements inA. Let a ∈ A. The commutant of a ∈ A is defined by comm(a) = {x ∈ A | xa = ax}. N
stands for the set of all natural numbers.

2. g-Drazin inverse

The aim of this section is to provide a new characterization of g-Drazin inverse in a Banach algebra. We
shall prove that regular condition ”x = xax” can be dropped from the definition of g-Drazin inverse. An
element a ∈ A has strongly g-Drazin inverse if it is the sum of an idempotent and a quasinilpotent that
commute (see [6]). We begin with a characterization of strongly Drazin inverse.

Lemma 2.1. Let a ∈ A. Then the following are equivalent:

(1) a ∈ A has strongly g-Drazin inverse.
(2) a − a2

∈ A
qnil.

Proof. See [6, Lemma 2.2].

We come now to the demonstration for which this paper has been developed.

Theorem 2.2. Let a ∈ A. Then the following are equivalent:

(1) a ∈ Ad.
(2) There exists some x ∈ comm(a) such that a − a2x ∈ Aqnil.

Proof. (1)⇒ (2) This is obvious by choosing x = ad.
(2) ⇒ (1) By hypothesis, there exists some x ∈ comm(a) such that a − a2x ∈ Aqnil. Set z = xax. Then

z ∈ comm(a). As (a − a2x) ∈ Aqnil and x ∈ comm(a),we see that,

a − a2z = a − axaxa
= (1 + ax)(a − a2x)
∈ A

qnil,
z − z2a = xax − xaxaxax

= x(a − a2x)x + xax(a − a2x)x
∈ A

qnil.

az − (az)2 = (a − a2z)z ∈ Aqnil.

By Lemma 2.1, az is strongly g-Drazin invertible and so by [9, Theorem 3.2], we have an idempotent
e ∈ comm2(az) such that az − e ∈ Aqnil. We easily check that

(a + 1 − az)(z + 1 − az) = 1 + (a − a2z)(1 − z) + (z − z2a).

Hence,
a + 1 − e = (a + 1 − az) + (az − e) ∈ A−1 and ,
a(1 − e) = (a − a2z) + a(az − e) ∈ Aqnil.

Since a ∈ comm(az), we have ea = ae. That is, a ∈ A is quasipolar. As every quasipolar element is g-Drazin
invertible so, a ∈ Ad, by [11, Theorem 4.2].

Corollary 2.3. Let a ∈ A. Then the following are equivalent:

(1) a ∈ Ad.
(2) There exists an invertible u ∈ comm(a) such that a − a2u ∈ Aqnil.
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(3) au has strongly g-Drazin inverse for some invertible u ∈ comm(a).

Proof. (1)⇒ (3) In view of [11, Theorem 4.2], there exists an idempotent p ∈ comm(a) such that u := a+p ∈ A−1

and ap ∈ Aqnil. Hence, ap = a(u − a) ∈ Aqnil. Then a − a2u−1
∈ A

qnil. Thus au−1
− [au−1]2

∈ A
qnil. Therefore au

has strongly g-Drazin inverse by Lemma 2.1.
(3)⇒ (2) In light of Lemma 2.1, au− (au)2

∈ A
qnil for some invertible u ∈ comm(a). Hence a− a2u ∈ Aqnil,

as required.
(2)⇒ (1) This is obvious by Theorem 2.2.

We are now ready to extend [11, Theorem 4.2] as follows.

Corollary 2.4. Let a ∈ A. Then the following are equivalent:

(1) a ∈ Ad.
(2) There exists some p ∈ comm(a) such that a + p ∈ A−1 and ap ∈ Aqnil.

Proof. (1)⇒ (2) This is clear by [11, Theorem 4.2].
(2)⇒ (1) Set b = (a + p)−1(1 − p). Then b ∈ comm(a) and

ab = a(a + p)−1(1 − p)
= (a + p)(a + p)−1(1 − p) − p(a + p)−1(1 − p)
= 1 − p − p(a + p)−1(1 − p).

In view of [19, Lemma 2.11], we have

a − a2b = a(1 − ab)
= ap[1 + (a + p)−1(1 − p)]
∈ A

qnil
,

as 1 − ab = p + p(a + p)−1(1 − p). This completes the proof by Theorem 2.2.

The next result generalizes [4, Proposition 13.1.18].

Theorem 2.5. Let a ∈ A. Then the following are equivalent:

(1) a ∈ Ad.
(2) There exist an idempotent e, a unit u and a quasinilpotent w which commute each other such that a = eu + w.

Proof. (1) ⇒ (2) By hypothesis, there exists a invertible u ∈ comm(a) such that a − a2u−1
∈ A

qnil. Then
(u−1a)2

− u−1a ∈ Aqnil. In light of Lemma 2.1, u−1a has strongly g-Drazin inverse and so by [9, Theorem 3.2],
there exists e2 = e ∈ comm2(u−1a) such that w := u−1a − e ∈ Aqnil. Hence, a = ue + uw. Clearly, eu = ue and
ea = ae; hence, uw = wu, (ue)(uw) = (uw)(ue) and uw ∈ Aqnil, as required.

(2) ⇒ (1) Write a = ue + w for an idempotent e, an invertible u and a quasinilpotent w which commute
each other. Then (u−1a)2

− u−1a ∈ Aqnil. Then a − a2u−1
∈ A

qnil, since −u−1(a − a2u−1) ∈ Aqnil.

Corollary 2.6. Let a ∈ Ad. Then a is the sum of two units inA.

Proof. Since a ∈ Ad, it follows by [19, Theorem 3.11] that a
2 ∈ A

d. In view of Theorem 2.5, there exist an
idempotent e, a unit u and a quasinilpotent w which commute each other such that a

2 = eu + w. Hence,
a = 2eu + 2w = (2e − 1)u + u + 2w = (2e − 1)u + u(1 + 2u−1w). Since (2e − 1)2 = 1 and 1 + 2u−1w ∈ A−1, a is the
sum of two units, as asserted.

Theorem 2.7. Let a ∈ A. Then the following are equivalent:

(1) a ∈ Ad.
(2) There exist an idempotent e ∈ comm(a) such that eae ∈ [eAe]−1, (1 − e)a(1 − e) ∈ [(1 − e)A(1 − e)]qnil.
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Proof. (1) ⇒ (2) By virtue of Theorem 2.5, there exist an idempotent e, a unit u and a quasinilpotent w
which commute each other such that a = eu + w. Then eae = eu(1 + u−1w) ∈ [eAe]−1. Moreover, we have
(1 − e)a(1 − e) = (1 − e)w ∈ [(1 − e)A(1 − e)]qnil, as desired.

(2) ⇒ (1) Suppose there exists an idempotent e ∈ comm(a) such that eae ∈ [eAe]−1, (1 − e)a(1 − e) ∈
[(1− e)A(1− e)]qnil. Then a = ea+ (1− e)a = e[eae+1− e]+ (1− e)a. In view of [19, Lemma 2.11], (1− e)a ∈ Aqnil.
Obviously, eae + 1 − e ∈ A−1. According to Theorem 2.5, a has g-Drazin inverse, as asserted.

Let α ∈ A = End(M). The submodule P of M is α-invariant provided that α(P) ⊆ P (see [16]). We now
derive

Corollary 2.8. Let α ∈ A = End(M). Then the following are equivalent:

(1) α ∈ Ad.
(2) M = P ⊕ Q, where P and Q are α-invariant, α|P ∈ [End(P)]−1, α|Q ∈ End(Q)qnil. The corresponding

PQPQ-decomposition looks like

M = P
⊕

Q
α |P= unit ↓ ↓ α |Q= quasinilpotent

M = P
⊕

Q .

Proof. (1)⇒ (2) In view of Theorem 2.7, there exist an idempotent e ∈ comm(α) such that eαe ∈ [eAe]−1, (1 −
e)α(1 − e) ∈ [(1 − e)A(1 − e)]qnil. Set P =Me and Q =M(1 − e). Then M = P ⊕Q. As e ∈ comm(α), we see that
P and Q are α-invariant.

Write (eαe)−1 = eβe. Then one easily checks that [α|P]−1 = β|P. Let γ ∈ End(Q) ∩ comm(α|Q). We will
suffice to prove 1Q − α|Qγ ∈ [End(P)]−1.

1Q − α|Qγ : Q → Q
p 7→ q − (q)αγ.

Define γ : M → M given by (p + q)γ = (q)γ for any p ∈ P, q ∈ Q. Set f = 1 − e. If (q)
(
1Q − α|Qγ

)
= 0,

then (q f )
(

f − ( fα) fγ f
)
= 0. As α f ∈

(
fA f

)qnil
, we get q f = 0. This implies that 1Q − α|Q ∈ End(Q) is an

R-monomorphism. For any q ∈ Q. Choose z = (q f )
(

f − ( fα) fγ f
)−1
∈ Q. Then (z)

(
1Q − α|Qγ

)
= q; hence,

1Q − α|Qγ ∈ End(Q) is anA-epimorphism. Thus 1Q − α|Qγ ∈ [End(Q)]−1, and so α|Q ∈ End(Q)qnil.
(2) ⇒ (1) Let e : M = P ⊕ Q → P be the projection on P. In view of [16, Lemma 2], e2 = e ∈ comm(α).

Moreover, P = Me and Q = M(1 − e). Since α|P ∈ [End(P)]−1, we see that eαe ∈ (eAe)−1. It follows from
(1 − e)α(1 − e) ∈ [(1 − e)A(1 − e)]qnil that (1 − e)α(1 − e) ∈ [(1 − e)A(1 − e)]qnil. This completes the proof by
Theorem 2.7.

3. Anti-triangular matrices

In this section we apply Theorem 2.2 to block matrices over a Banach algebra and present necessary
and sufficient conditions for the existence of the g-Drazin inverse for a class of 2 × 2 anti-triangular block
matrices. We now derive

Lemma 3.1. Let M =
(

1 1
a 0

)
∈M2(A). Then

(1) For any n ∈N, Mn =

(
U(n) U(n − 1)

U(n − 1)a U(n − 2)a

)
, where U(m) =

[ m
2 ]∑

i=0

(
m − i

i

)
ai,m ≥ 0; U(−1) = 0.

(2) U(n) −U(n − 1) = U(n − 2)a for any n ∈N.

Proof. See [3, Proposition 3.1].
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Lemma 3.2. Let a ∈ A. Then the following are equivalent:

(1) a ∈ Ad.

(2)
(

1 1
a 0

)
∈M2(A)d.

Proof. (1) ⇒ (2) As 1 and a are g-Drazin invertible then we obtain the result by [8, Lemma 2.2] and [5,
Corollary 2.4].

(2)⇒ (1) Write Md =

(
x11 x12
x21 x22

)
. Then MMd =MdM, and so

(
1 1
a 0

) (
x11 x12
x21 x22

)
=

(
x11 x12
x21 x22

) (
1 1
a 0

)
.

Then (
x11 + x21 x12 + x22

ax11 ax12

)
=

(
x11 + x12a x11
x21 + x22a x21

)
.

Hence, we have
x11 + x21 = x11 + x12a,

ax12 = x21.

Therefore ax12 = x21 = x12a.

Write (M2Md
−M)n =Wn =

(
αn βn
γn δn

)
(n ∈N). Since Mn+1Md

−Mn =Wn, we see that

lim
n→∞

∥Wn ∥
1
n= 0,

and then

lim
n→∞

∥

(
0 βn
0 0

)
∥

1
n= lim

n→∞
∥

(
1 0
0 0

)
Wn

(
0 0
0 1

)
∥

1
n= 0.

This implies that

lim
n→∞

∥ βn ∥
1
n= 0.

Likewise,
lim
n→∞

∥ δn ∥
1
n= 0.

Clearly, we have

Mn+1Md =

(
U(n + 1) U(n)

U(n)a U(n − 1)a

) (
x11 x12
x21 x22

)
= Mn +Wn

=

(
U(n) U(n − 1)

U(n − 1)a U(n − 2)a

)
+

(
αn βn
γn δn

)
.

Comparing two-sides of the preceding equality, we have

U(n + 1)x12 +U(n)x22 = U(n − 1) + v0, v0 := βn (i)
U(n)ax12 +U(n − 1)ax22 = U(n − 2)a + v1, v1 := δn (ii)

Multiplying a from the left side of (i), we get

U(n + 1)ax12 +U(n)ax22 = U(n − 1)a + aβn (iii)
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In view of Lemma 3.1, U(n+1)−U(n) = U(n−1)a,U(n)−U(n−1) = U(n−2)a,U(n−1)−U(n−2) = U(n−3)a.
By (iii) subtracted (ii), we derive

U(n − 1)a2x12 +U(n − 2)a2x22 = U(n − 3)a2 + v2, v2 := av0 − v1 (iv)

Moreover, by (iv) subtracted (ii), we have

U(n − 2)a3x12 +U(n − 3)a3x22 = U(n − 4)a3 + v3, v3 := av1 − v2 (v)

By iteration of this process, we have

U(n − (n − 2))an−1x12 +U(n − (n − 1))an−1x22
= U(n − n)an−1 + vn−1;
vn−1 := avn−3 − vn−2,
U(n − (n − 1))anx12 +U(n − n)anx22 = U(n − (n + 1))an + vn,
vn := avn−2 − vn−1.

That is,
(1 + a)an−1x12 + an−1x22 = an−1 + vn−1, vn−1 := avn−3 − vn−2;

anx12 + anx22 = vn, vn := avn−2 − vn−1.

Therefore
an = anan−1

= a[(1 + a)an−1x12 + an−1x22 − vn−1]
= (1 + a)anx12 + anx22 − avn−1
= (1 + a)anx12 + (vn − anx12) − avn−1
= an+1x12 + vn − avn−1.

Hence,
an
− an+1x12 = vn − avn−1.

By the preceding construction, we have a recurrence relations

v0 = βn, v1 = δn, vn = −vn−1 + avn−2.

Obviously,
∥ v2 ∥≤∥ v1 ∥ + ∥ a ∥∥ v0 ∥≤ (1+ ∥ a ∥)2(∥ v0 ∥ + ∥ v1 ∥).

By induction, we show that

∥ vn ∥

≤ ∥ vn−1 ∥ + ∥ a ∥∥ vn−2 ∥

≤ (1+ ∥ a ∥)n−1(∥ v0 ∥ + ∥ v1 ∥)+ ∥ a ∥∥ (1+ ∥ a ∥)n−2(∥ v0 ∥ + ∥ v1 ∥)
= [(1+ ∥ a ∥)n−1+ ∥ a ∥∥ (1+ ∥ a ∥)n−2](∥ v0 ∥ + ∥ v1 ∥)
= (1+ ∥ a ∥)n−2(1 + 2 ∥ a ∥∥)(∥ v0 ∥ + ∥ v1 ∥)
≤ (1+ ∥ a ∥)n(∥ v0 ∥ + ∥ v1 ∥).

Likewise, we have
∥ vn−1 ∥≤ (1+ ∥ a ∥)n−1(∥ v0 ∥ + ∥ v1 ∥).

Therefore we have

∥ vn − avn−1 ∥ ≤ ∥ vn ∥ + ∥ a ∥∥ vn−1 ∥

≤ [(1+ ∥ a ∥)n+ ∥ a ∥ (1+ ∥ a ∥)n−1](∥ v0 ∥ + ∥ v1 ∥)
≤ (1+ ∥ a ∥)n+1(∥ v0 ∥ + ∥ v1 ∥).
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Then we get
∥ vn − avn−1 ∥

1
n ≤ (1+ ∥ a ∥)

n+1
n (∥ v0 ∥ + ∥ v1 ∥)

1
n

≤ (1+ ∥ a ∥)
n+1

n (∥ βn ∥ + ∥ δn ∥)
1
n

≤ (1+ ∥ a ∥)1+ 1
n (∥ βn ∥

1
n + ∥ δn ∥

1
n ).

Thus,
lim
n→∞

∥ an
− an+1x12 ∥

1
n= 0.

Since ∥ (a − a2x12)n
∥≤∥ an

− an+1x12 ∥∥ 1 − ax12 ∥
n−1,we deduce that

lim
n→∞

∥ (a − a2x12)n
∥

1
n= 0.

Therefore a − a2x12 ∈ A
qnil. In light of Theorem 2.2, a ∈ Ad, as asserted.

We are ready to extend [18, Theorem 2.6] for the g-Drazin inverse.

Theorem 3.3. Let M =
(

a b
c 0

)
∈M2(A). If a2 = a ∈ A and ab = b, then the following are equivalent:

(1) M ∈M2(A)d.
(2) bc ∈ Ad.

Proof. (1)⇒ (2) One easily checks that(
a b
c 0

)
=

(
1 0
0 c

) (
a b
1 0

)
,(

a bc
1 0

)
=

(
a b
1 0

) (
1 0
0 c

)
.

By using Cline’s formula,
(

a bc
1 0

)
has g-Drazin inverse. Moreover, we have

(
a bc
1 0

)
=

(
a a
1 0

) (
1 0
0 bc

)
,(

a a
bc 0

)
=

(
1 0
0 bc

) (
a a
1 0

)
.

By using Cline’s formula again,
(

a a
bc 0

)
has g-Drazin inverse. Since

(
1 a
bc 0

)
=

(
1 − a 0

0 0

)
+

(
a a
bc 0

)
,

it follows by [8, Theorem 2.2] that
(

1 a
bc 0

)
has g-Drazin inverse. Let S =

(
1 1
bc 0

)
,T =

(
1 0
0 a

)
. Then

ST =
(

1 a
bc 0

)
,TS =

(
1 1
bc 0

)
.

In view of Cline’s formula,
(

1 1
bc 0

)
has g-Drazin inverse. In light of Lemma 3.2, bc ∈ Ad, as asserted.
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(2) ⇒ (1) Since bc = abc ∈ Ad, it follows by Cline’s formula that bca has g-Drazin inverse. In light of

Lemma 3.2,
(

1 1
bca 0

)
has g-Drazin inverse. As

(
1 1

bca 0

) (
a 0
0 a

)
=

(
a 0
0 a

) (
1 1

bca 0

)
,

it follows by [11, Theorem 5.5] that
(

a a
bca 0

)
has g-Drazin inverse. Since

(
a a
bc 0

)
=

(
0 0

bc(1 − a) 0

)
+

(
a a

bca 0

)
,

it follows by [8, Theorem 2.2] that
(

a a
bc 0

)
has g-Drazin inverse. We easily check that

(
a a
bc 0

)
=

(
1 0
0 bc

) (
a a
1 0

)
,(

a bc
1 0

)
=

(
a a
1 0

) (
1 0
0 bc

)
.

In view of Cline’s formula,
(

a bc
1 0

)
has g-Drazin inverse. Furthermore, we have

(
a b
c 0

)
=

(
1 0
0 c

) (
a b
1 0

)
,(

a bc
1 0

)
=

(
a b
1 0

) (
1 0
0 c

)
.

By using Cline’s formula again, we conclude that M has g-Drazin inverse.

Corollary 3.4. Let M =
(

a a
b 0

)
∈M2(A). If a2 = a ∈ A, then the following are equivalent:

(1) M ∈M2(A)d.
(2) ab ∈ Ad.

Proof. This is obvious by Theorem 3.3.

Lemma 3.5. Let M =
(

a b
c 0

)
∈M2(A). If a ∈ Ad, caad = c and adbc = bcad, then the following are equivalent:

(1) M ∈M2(A)d.
(2) bc ∈ Ad.

Proof. (2)⇒ (1) Since adbc = bcad, it follows by [11, Theorem 5.5] that (ad)2bc ∈ Ad. In view of Lemma 3.2,(
1 1

(ad)2bc 0

)
∈M2(A)d.

We easily check that (
a 0
0 a

) (
1 1

(ad)2bc 0

)
=

(
1 1

(ad)2bc 0

) (
a 0
0 a

)
,
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we see that (
a 0
0 a

) (
1 1

(ad)2bc 0

)
∈M2(A)d.

This shows that (
a 0
0 b

) (
1 1

cad 0

)
∈M2(A)d.

By using Cline’s formula,

M =
(

1 1
cad 0

) (
a 0
0 b

)
∈M2(A)d.

(1)⇒ (2) Since M has g-Drazin inverse, we prove that(
a 1
c 0

) (
1 0
0 b

)
∈M2(A)d.

By Cline’s formula, (
1 0
0 b

) (
a 1
c 0

)
∈M2(A)d.

That is, (
a 1
bc 0

)
∈M2(A)d.

Since ad(bc) = (bc)ad, by virtue of [19, Theorem 3.1], we have(
ada ad

adbc 0

)
=

(
ad 0
0 ad

) (
a 1
bc 0

)
∈M2(A)d.

By using Cline’s formula,(
ada aad

(ad)2bc 0

)
=

(
1 0
0 ad

) (
ada ad

adbc 0

) (
1 0
0 a

)
∈M2(A)d.

One easily checks that (
1 1

(ad)2bc 0

)
=

(
aπ aπ

0 0

)
+

(
aad aad

(ad)2bc 0

)
.

Hence, (
1 1

(ad)2bc 0

)
∈M2(A)d.

In light of Lemma 3.2, (ad)2bc ∈ Ad. Since a(ad)2bc = (ad)2bca, we see that a2(ad)2bc = (ad)2bca2. In view of [19,
Theorem 3.1],

bc = bc(ad)2a2 = (ad)2bca2
∈ A

d,

as asserted.

The following result is a generalization of [3, Theorem 4.1] for the g-Drazin inverse.

Theorem 3.6. Let M =
(

a b
c 0

)
∈M2(A). If a ∈ Ad, bcaπ = 0 and adbc = bcad, then the following are equivalent:

(1) M ∈M2(A)d.
(2) bc ∈ Ad.
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Proof. (2)⇒ (1) Let c′ = caad. Since bcaπ = 0, we have bc = bcaad. We see that

M = P +Q,P =
(

a b
c′ 0

)
,Q =

(
0 0

caπ 0

)
.

Clearly, PQ = 0 and Q2 = 0. Since c′aπ = 0, adbc′ = bc′ad and bc′ = bc ∈ Ad, it follows by Lemma 3.5 that P
has g-Drazin inverse. In light of [8, Theorem 2.2], M has g-Drazin inverse, as required.

(1)⇒ (2) One easily checks that (
a b
c′ 0

)
=M +N,N =

(
0 0

caπ 0

)
.

Clearly, MN = 0 and N2 = 0. In view of [8, Theorem 2.2],
(

a b
c′ 0

)
has g-Drazin inverse. Moreover,

c′aπ = 0, adbc′ = bc′ad and bc′ = bc ∈ Ad. According to Lemma 3.5, bc = bc′ has g-Drazin inverse, as
asserted.

Corollary 3.7. Let M =
(

a b
c 0

)
∈M2(A). If a ∈ Ad, aπbc = 0 and abc = bca, then the following are equivalent:

(1) M ∈M2(A)d.
(2) bc ∈ Ad.

Proof. Since a(bc) = (bc)a and a has g-Drazin inverse, by [11, Theorem 4.4], ad(bc) = (bc)ad, and so 0 = aπbc =
(1 − aad)bc = bc(1 − aad) = bcaπ. The corollary is therefore established by Theorem 3.6.
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