On strongly partial-quasi k-metric spaces

Yaoqiang Wu ${ }^{\text {a }}$
${ }^{a}$ School of Sciences and Arts, Suqian University, Suqian, 223800, China

Abstract

In this paper, we introduce the concepts of partial-quasi k-metric spaces and strongly partialquasi k-metric spaces, and their relationship to k-metric spaces and partial-quasi metric spaces are studied. Furthermore, we obtain some results on fixed point theorems in strongly partial-quasi k-metric spaces.

1. Introduction and preliminaries

Since Wilson introduced the notion of quasi-metric spaces in 1931 [1], several generalizations of metric spaces were studied by topological researchers [2-22]. For instance, Bakbtin introduced the notion of bmetric spaces in 1989 [2] (see also Czerwik in 1993 [3]). From a different point of view, Matthews gave the concept of the partial metric spaces in 1994 [4]. As a generalization of Matthews, Heckmann defined the concept of weak partial metric spaces in 1999 [5]. Later, Künzi et al and Karapinar studied another two variants of partial metric spaces, namely partial-quasi metric spaces in 2006 [6] and quasi-partial metric spaces in 2013 [7], respectively. In the past years, Shukla introduced the notion of partial b-metric spaces in 2013 [8], which combines the b-metric space with partial metric space. Further, Gupta introduced the notion of quasi-partial b-metric spaces and studied some fixed point theorems on these spaces in 2015 [9].

In addition, the term "b-metric" has no justification for the letter " b " and says nothing about the constant " k " laid in the basis of the definition of such "metrics". In this paper, we continue to generalize the concept of k -metric and partial-quasi metrics by introducing the partial-quasi k-metric. Also we give some fixed point theorems in these spaces.

First, we recall some basic notions and results that will be used in the following sections (see more details in [4-13]).

Throughout this paper, the letters $\mathbb{R}, \mathbb{R}^{+}, \mathbb{N}^{+}$always denote the set of real numbers, of all positive real numbers and of positive integers, respectively.

Definition 1.1. [1] A quasi-metric d is a function $d: X \times X \rightarrow[0,+\infty)$ satisfying the following conditions: $\forall x, y, z \in X$,
(M1) $x=y \Leftrightarrow d(x, y)=0$;
(M2) $d(x, z) \leq d(x, y)+d(y, z)$.

[^0]A quasi-metric d is called a metric if it also satisfies
(M3) $d(x, y)=d(y, x)$.
A (quasi-)metric space is a pair (X, d) such that d is a (quasi-)metric on X.

Definition 1.2. A partial-quasi k-metric is function $p_{k}: X \times X \rightarrow[0,+\infty)$ satisfying the following conditions: $\forall x, y, z \in X$,
(PK1) $x=y \Leftrightarrow p_{k}(x, x)=p_{k}(x, y)$ and $p_{k}(y, y)=p_{k}(y, x)$;
(PK2) $p_{k}(x, x) \leq p_{k}(x, y) \wedge p_{k}(y, x) ;$
(PK3) $p_{k}(x, z) \leq k\left[p_{k}(x, y)+p_{k}(y, z)\right]-p_{k}(y, y)$.
A partial-quasi k-metric is called a partial k -metric if it also satisfies
(PK4) $p_{k}(x, y)=p_{k}(y, x)$.
Particularly, a partial(-quasi) 1-metric (i.e. $k=1$) is called partial(-quasi) metric[6].
Remark 1.3. (1) A partial(-quasi) metric p on X is a (quasi-)metric if and only if $p(x, x)=0$ for all $x \in X$ [4].
(2) A partial(-quasi) k-metric p_{k} on X is called a (quasi-) k-metric if $p_{k}(x, x)=0$ for all $x \in X$ [2].

Next, we give an example of quasi-partial k-metrics, which is not a partial quasi-metric.
Example 1.4. Let $X=[0,+\infty)$ and define $p_{k}: X \times X \rightarrow[0,+\infty)$ by

$$
p_{k}(x, y)=|x-y|^{3}+1
$$

for all $x, y \in X$. It is not difficult to prove that $\left(X, p_{k}\right)$ is a partial-quasi k-metric space with $k=4$. But it is not a partial-quasi metric space. To show this, let $x=1, y=2$ and $z=4$. Then $p_{k}(x, z)=28$, it holds that $p_{k}(x, y)=2$, $p_{k}(y, z)=9$ and $p_{k}(y, y)=1$, which implies that

$$
p_{k}(x, z)>p_{k}(x, y)+p_{k}(y, z)-p_{k}(y, y) .
$$

Hence, p_{k} does not satisfy the condition (PK3) with $k=1$.
The following example shows that a partial-quasi k-metric may not be a partial k-metric.
Example 1.5. Let $X=[0,+\infty)$ and define $p_{k}: X \times X \rightarrow[0,+\infty)$. Set $p_{k}(x, y)=|x-y|+x$. Since p_{k} does not satisfy the condition (PK4), it is not a partial k-metric (hence not a k-metric).

Next, we verify the conditions (PK1)-(PK3) one by one.
(PK1): Suppose $p_{k}(x, x)=p_{k}(x, y)$ and $p_{k}(y, y)=p_{k}(y, x)$. Then $x=|x-y|+x$ and $y=|y-x|+y$, which implies $|x-y|=0$, so $x=y$.
(PK2): For any $x, y \in X$, since $p_{k}(x, x)=x$ and $p_{k}(x, y)=|x-y|+x$, it holds that $p_{k}(x, x) \leq p_{k}(x, y)$. In addition, since $x=|x-y+y| \leq|x-y|+y$, it holds that $p_{k}(x, x) \leq p_{k}(y, x)$.
(PK3): For each $x, y, z \in X$, we have

$$
\begin{aligned}
p_{k}(x, z) & =|x-y+y-z|+x \\
& \leq(|x-y|+x)+(|y-z|+y)-y \\
& =p_{k}(x, y)+p_{k}(y, z)-p_{k}(y, y) .
\end{aligned}
$$

Hence, $\left(X, p_{k}\right)$ is a partial-quasi k-metric space with $k=1$.

2. The relations among partial-quasi k-metrics, partial quasi-metrics and k-metrics

Proposition 2.1. Let X be a nonempty set, p a partial-quasi metric and d_{k} a quasi- k-metric with coefficient $k \geq 1$ on X. Then the function $p_{k}: X \times X \rightarrow[0,+\infty)$ defined by

$$
\forall x, y \in X, \quad p_{k}(x, y)=p(x, y)+d_{k}(x, y)
$$

Then p_{k} is a partial-quasi k-metric on X.
Proof. It is trivial to prove that p_{k} satisfied (PK1) and (PK2). Next, we verify condition (PK3).
Let $x, y, z \in X$. Since p is a partial-quasi metric, it follows that $p(x, z) \leq p(x, y)+p(y, z)-p(y, y)$. Moreover, since d_{k} is a k-metric, we have that $d_{k}(x, z) \leq k\left[d_{k}(x, y)+d_{k}(y, z)\right]$. Thus

$$
\begin{aligned}
& p_{k}(x, z) \\
= & p(x, z)+d_{k}(x, z) \\
\leq & {[p(x, y)+p(y, z)-p(y, y)]+k\left[d_{k}(x, y)+d_{k}(y, z)\right] } \\
\leq & k\left[p(x, y)+p(y, z)+d_{k}(x, y)+d_{k}(y, z)\right]-p(y, y) \\
= & k\left[\left(p(x, y)+d_{k}(x, y)\right)+\left(p(y, z)+d_{k}(y, z)\right)\right]-\left[\left(p(y, y)+d_{k}(y, y)\right]\right. \\
= & k\left[p_{k}(x, y)+p_{k}(y, z)\right]-p_{k}(y, y)
\end{aligned}
$$

completing the proof.
From the above Proposition, one can obtain partial-quasi k-metric by adding a partial-quasi metric and aquasi-k-metric. An example is shown as follows.

Example 2.2. Let $X=\mathbb{R}$ and define a function d_{k} and p on X as follows: $\forall x, y \in X$,

$$
d_{k}(x, y)=|x-y|^{3} \text { and } p(x, y)=|x-y|+1
$$

respectively. Then it is trivial to check that d_{k} is a k-quasi-metric and p is a partial metric. Therefore, by Proposition 2.1, $p_{k}: X \times X \rightarrow[0,+\infty)$ defined by

$$
p_{k}(x, y)=|x-y|^{3}+|x-y|+1
$$

is a partial-quasi k-metric.
Since Künzi, Pajoohesh and Schellekens investigated the concept of a partial quasi-metric and some of its applications by dropping the symmetry condition in the definition of a partial metric given by Matthews, roughly speaking a partial quasi metric is a partial metric with does not satisfy the symmetry property. On the other hand, Mustafa, Roshan, Parvaneh and Kadelburg modified the condition $\left(P_{b 4}\right)$ in the definition of a partial- b metric given by Shukla, and introduced another variant concept of a partial- b metric. In the following definition, we modify Definition 1.2 in order to obtain that each strongly partial-quasi k-metric p_{k}^{s} generates a k-metric.

Definition 2.3. A strongly partial-quasi k-metric is a function $p_{k}^{s}: X \times X \rightarrow[0,+\infty)$ satisfying the following conditions: for some number $k \geq 1, \forall x, y, z \in X$,

$$
\begin{array}{ll}
\text { (SPK1) } & p_{k}^{s}(x, x)=p_{k}^{s}(x, y)=p_{k}^{s}(y, y) \Leftrightarrow x=y \\
\text { (SPK2) } & p_{k}^{s}(x, x) \leq p_{k}^{s}(x, y) \wedge p_{k}^{s}(y, x) \\
\text { (SPK3) } & p_{k}^{s}(x, z) \leq k\left[p_{k}^{s}(x, y)+p_{k}^{s}(y, z)\right]-\frac{k-1}{2}\left[p_{k}^{s}(x, x)+p_{k}^{s}(z, z)\right]-k p_{k}^{s}(y, y)
\end{array}
$$

A strongly partial-quasi k-metric space is a pair $\left(X, p_{k}^{s}\right)$ such that p_{k}^{s} is a strongly partial-quasi k-metric on X, the number k is called the coefficient of $\left(X, p_{k}^{s}\right)$.

Remark 2.4. (1) By Definition 2.3, every strongly partial-quasi k-metric space with coefficient $k=1$ is a partial-quasi metric space;
(2) Every strongly partial-quasi k-metric space is a partial-quasi k-metric space. Indeed, we have

$$
\begin{aligned}
p_{k}^{s}(x, z) & \leq k\left[p_{k}^{s}(x, y)+p_{k}^{s}(y, z)\right]-\frac{k-1}{2}\left[p_{k}^{s}(x, x)+p_{k}^{s}(z, z)\right]-k p_{k}^{s}(y, y) \\
& \leq k\left[p_{k}^{s}(x, y)+p_{k}^{s}(y, z)\right]-p_{k}^{s}(y, y)
\end{aligned}
$$

But we can show the reverse may not be true in the following:
Let $X=X_{1} \cup X_{2}$, where $X_{1}=(-\infty, 0)$ and $X_{2}=(0,+\infty)$. We define $p_{k}: X \times X \rightarrow[0,+\infty)$ as follows:

$$
p_{k}(x, y)= \begin{cases}1, & x=y \\ 2 q, & x, y \in X_{1} \\ \frac{3}{2}, & \text { otherwise }\end{cases}
$$

for all $x, y \in X$, where $q>1$.
It is trivial to verify that $\left(X, p_{k}\right)$ is a partial-quasi k-metric space with coefficient $k=q$.
Indeed, let $x=-1, z=-2$ and $y=1$. We have $p_{k}(-1,-2)=2 q, p_{k}(-1,1)=p_{k}(1,-2)=\frac{3}{2}$, and $p_{k}(-1,-1)=p_{k}(1,1)=p_{k}(-2,-2)=1$. It follows that $p_{k}(-1,-2)>q\left[p_{k}(-1,1)+p_{k}(1,-2)\right]-\frac{q-1}{2}\left[p_{k}(-1,-1)+\right.$ $\left.p_{k}(-2,-2)\right]-q p_{k}(1,1)$ for all $q>1$. Hence, it is not a strongly partial-quasi k-metric.

Example 2.5. Let $X=[0,+\infty)$, and define a function $p_{k}^{s}: X \times X \rightarrow[0,+\infty)$ by

$$
p_{k}^{s}(x, y)=|x-y|^{3}+3
$$

for all $x, y \in X$. Then $\left(X, p_{k}^{s}\right)$ is a strongly partial-quasi k-metric with coefficient $k=4$.
In fact, it is trivial that p_{k}^{s} satisfies (SPK1) and (SPK2). Condition (SPK3) can be obtained by

$$
\begin{aligned}
p_{k}^{s}(x, z) & \leq 2^{3-1}\left[|x-y|^{3}+|y-z|^{3}\right]+3 \\
& =4[(|x-y|+3)+(|y-z|+3)]-21 \\
& =4\left[p_{k}^{s}(x, y)+p_{k}^{s}(y, z)\right]-21 \\
& =4\left[p_{k}^{s}(x, y)+p_{k}^{s}(y, z)\right]-\frac{4-1}{2}\left[p_{k}^{s}(x, x)+p_{k}^{s}(z, z)\right]-4 p_{k}^{s}(y, y)
\end{aligned}
$$

completing the proof.
Proposition 2.6. Let $\left(X, p_{k}^{s}\right)$ be a strongly partial-quasi k-metric. The following statements hold.
(1) If $p_{k}^{s}(x, y)=0$, then $x=y$.
(2) The set of all p_{k}^{s}-balls $\mathbb{B}_{p_{k}^{s}}(x, r)$ in $\left(X, p_{k}^{s}\right)$ forms a base for a topology, denoted by $\mathcal{T}\left(p_{k}^{s}\right)$, where $\mathbb{B}_{p_{k}^{s}}(x, r)=$ $\left\{y \in X: p_{k}^{s}(x, y)<p_{k}^{s}(x, x)+r\right\}$ for any $x \in X$ and $r>0$.
(3) For any $x, y \in X$, define

$$
\hat{p}_{k}^{s}(x, y)=p_{k}^{s}(x, y)+p_{k}^{s}(y, x)-p_{k}^{s}(x, x)-p_{k}^{s}(y, y)
$$

Then \hat{p}_{k}^{s} is a k-metric.
Proof. (1) Suppose $p_{k}^{s}(x, y)=0$. Since $p_{k}^{s}(x, x) \leq p_{k}^{s}(x, y)=0$ and $p_{k}^{s}(y, y) \leq p_{k}^{s}(x, y)=0$ by (SPK2), we have that $p_{k}^{s}(x, x)=p_{k}^{s}(y, y)=0$. From (SPK1), it follows that $x=y$.
(2) It is trivial by Theorem 3.3 in [4].
(3) We show that \hat{p}_{k}^{s} satisfies the rules (M1), (M3) and (PK3) one by one.

First, suppose $\hat{p}_{k}^{s}(x, y)=0$. Then $p_{k}^{s}(x, y)+p_{k}^{s}(y, x)=p_{k}^{s}(x, x)+p_{k}^{s}(y, y)$. Furthermore, $p_{k}^{s}(x, x) \leq p_{k}^{s}(y, x)$ by (SPK2). Then we have that

$$
p_{k}^{s}(x, y)+p_{k}^{s}(x, x) \leq p_{k}^{s}(x, y)+p_{k}^{s}(y, x)=p_{k}^{s}(x, x)+p_{k}^{s}(y, y)
$$

which implies that $p_{k}^{s}(x, y) \leq p_{k}^{s}(y, y)$. Thus we have $p_{k}^{s}(x, y)=p_{k}^{s}(y, y)$. Similarly, $p_{k}^{s}(x, y)=p_{k}^{s}(x, x)$. Hence, $p_{k}^{s}(x, y)=p^{s}(y, y)=p_{k}^{s}(x, x)$, which implies $x=y$ by (SPK1).
(M3) is trivial.
(PK3): For any $x, y, z \in X$, we have

$$
\begin{aligned}
& \hat{p}_{k}^{s}(x, z) \\
= & p_{k}^{s}(x, z)+p_{k}^{s}(z, x)-p_{k}^{s}(x, x)-p_{k}^{s}(z, z) \\
\leq & k\left[p_{k}^{s}(x, y)+p_{k}^{s}(y, z)\right]-\frac{k-1}{2}\left[p_{k}^{s}(x, x)+p_{k}^{s}(z, z)\right]-k p_{k}^{s}(y, y)+k\left[p_{k}^{s}(z, y)+p_{k}^{s}(y, x)\right] \\
- & \frac{k-1}{2}\left[p_{k}^{s}(z, z)+p_{k}^{s}(x, x)\right]-k p_{k}^{s}(y, y)-p_{k}^{s}(x, x)-p_{k}^{s}(z, z) \\
= & k\left[p_{k}^{s}(x, y)+p_{k}^{s}(y, x)-p_{k}^{s}(x, x)-p_{k}^{s}(y, y)\right]+k\left[p_{k}^{s}(y, z)+p_{k}^{s}(z, y)-p_{k}^{s}(y, y)-p_{k}^{s}(z, z)\right] \\
= & k\left[\hat{p}_{k}^{s}(x, y)+\hat{p}_{k}^{s}(y, z)\right] .
\end{aligned}
$$

Therefore, \hat{p}_{k}^{s} is a k-metric.

3. Fixed point theorem on strongly partial-quasi k-metric spaces

In this section we give some fixed point results on strongly partial-quasi k-metric spaces. We begin by giving some basic notions that will be used in the following.

Definition 3.1. Let $\left(X, p_{k}^{s}\right)$ be a strongly partial-quasi k-metric space and $\left\{x_{n}\right\}$ a sequence in X.
(1) A sequence $\left\{x_{n}\right\}$ converges to a point $x \in X$ if and only if $p_{k}^{s}(x, x)=\lim _{n \rightarrow+\infty} p_{k}^{s}\left(x, x_{n}\right)$;
(2) A sequence $\left\{x_{n}\right\}$ is called a Cauchy sequence if $\lim _{n, m \rightarrow+\infty} p_{k}^{s}\left(x_{n}, x_{m}\right)$ exists and is finite;
(3) $\left(X, p_{k}^{s}\right)$ is said to be complete if every Cauchy sequence $\left\{x_{n}\right\}$ in X converges to a point $x \in X$ such that $\lim _{n, m \rightarrow+\infty} p_{k}^{s}\left(x_{n}, x_{m}\right)=\lim _{n \rightarrow+\infty} p_{k}^{s}\left(x_{n}, x\right)=p_{k}^{s}(x, x)$.

The limit of convergent sequence $\left\{x_{n}\right\}$ in a strongly partial-quasi k-metric space may not be unique, as shown in the following example.

Example 3.2. Let $X=[0,+\infty)$ and define a function $p_{k}^{s}: X \times X \rightarrow[0,+\infty)$ by

$$
p_{k}^{s}(x, y)=x^{2} \vee y^{2}+3
$$

for all $x, y \in X$. It is not difficult to prove that $\left(X, p_{k}^{s}\right)$ is a strongly partial-quasi k-metric with coefficient $k=3$. Given a sequence $\left\{x_{n}\right\}$, where $x_{n}=1$ for all $n \in \mathbb{N}^{+}$. For all $x \geq 1$, we have that $p_{k}^{s}\left(x_{n}, x\right)=x^{2}+3$ and $p_{k}^{s}(x, x)=x^{2}+3$, which implies that $\lim _{n \rightarrow+\infty} p_{k}^{s}\left(x_{n}, x\right)=p_{k}^{s}(x, x)$.

Lemma 3.3. Let $\left(X, p_{k}^{s}\right)$ be a strongly partial-quasi k-metric space, $\left\{x_{n}\right\}$ a sequence in X and $\left(X, \hat{p}_{k}^{s}\right)$ the corresponding k-metric space defined in Proposition 2.6, i.e., where $\hat{p}_{k}^{s}(x, y)=p_{k}^{s}(x, y)+p_{k}^{s}(y, x)-p_{k}^{s}(x, x)-p_{k}^{s}(y, y)$. Then the following statements hold.
(1) A sequence is a Cauchy sequence in $\left(X, p_{k}^{s}\right)$ if and only if it is a Cauchy sequence in $\left(X, \hat{p}_{k}^{s}\right)$.
(2) $\left(X, p_{k}^{s}\right)$ is complete if and only if $\left(X, \hat{p}_{k}^{s}\right)$ is complete.

Furthermore, $\lim _{n \rightarrow+\infty} \hat{p}_{k}^{s}\left(x_{n}, x\right)=0$ if and only if $p_{k}^{s}(x, x)=\lim _{n \rightarrow+\infty} p_{k}^{s}\left(x_{n}, x\right)=\lim _{n, m \rightarrow+\infty} p_{k}^{s}\left(x_{n}, x_{m}\right)$.

Proof. $(1)(\Rightarrow)$ Let $\left\{x_{n}\right\}$ be a Cauchy sequence in $\left(X, p_{k}^{s}\right)$. There exists $a \in[0,+\infty)$ such that $\lim _{n, m \rightarrow+\infty} p_{k}^{s}\left(x_{n}, x_{m}\right)=$ a. Then for any $\varepsilon>0$, there exists $n_{0} \in \mathbb{N}^{+}$such that

$$
\left|p_{k}^{s}\left(x_{n}, x_{m}\right)-a\right|<\varepsilon / 4, \forall n, m>n_{0}
$$

Then we have that

$$
\begin{aligned}
& \left|\hat{p}_{k}^{s}\left(x_{n}, x_{m}\right)\right| \\
= & \left|p_{k}^{s}\left(x_{n}, x_{m}\right)+p_{k}^{s}\left(x_{m}, x_{n}\right)-p_{k}^{s}\left(x_{n}, x_{n}\right)-p_{k}^{s}\left(x_{m}, x_{m}\right)\right| \\
= & \left|\left(p_{k}^{s}\left(x_{n}, x_{m}\right)-a\right)+\left(p_{k}^{s}\left(x_{m}, x_{n}\right)-a\right)-\left(p_{k}^{s}\left(x_{n}, x_{n}\right)-a\right)-\left(p_{k}^{s}\left(x_{m}, x_{m}\right)-a\right)\right| \\
\leq & \left|p_{k}^{s}\left(x_{n}, x_{m}\right)-a\right|+\left|p_{k}^{s}\left(x_{m}, x_{n}\right)-a\right|+\left|p_{k}^{s}\left(x_{n}, x_{n}\right)-a\right|+\left|p_{k}^{s}\left(x_{m}, x_{m}\right)-a\right| \\
< & \frac{\varepsilon}{4}+\frac{\varepsilon}{4}+\frac{\varepsilon}{4}+\frac{\varepsilon}{4}=\varepsilon .
\end{aligned}
$$

This implies that $\left\{x_{n}\right\}$ is a Cauchy sequence in $\left(X, \hat{p}_{k}^{s}\right)$.
(\Leftarrow) Suppose $\left\{x_{n}\right\}$ is a Cauchy sequence in $\left(X, \hat{p}_{k}^{s}\right)$ and let $\varepsilon>0$. Then there exists $n_{\varepsilon} \in \mathbb{N}^{+}$such that

$$
\hat{p}_{k}^{s}\left(x_{n}, x_{m}\right)<\frac{\varepsilon}{2}, \forall n, m \geq n_{\varepsilon} .
$$

Set $\varepsilon=1$. Then there exists $n_{0} \in \mathbb{N}^{+}$such that

$$
\hat{p}_{k}^{s}\left(x_{n}, x_{m}\right)<\frac{1}{2}, \forall n, m \geq n_{0} .
$$

Step 1: Since $\hat{p}_{k}^{s}(x, y)=p_{k}^{s}(x, y)+p_{k}^{s}(y, x)-p_{k}^{s}(x, x)-p_{k}^{s}(y, y)$, we have that

$$
\begin{aligned}
& p_{k}^{s}(x, y)-p_{k}^{s}(y, y) \\
= & \hat{p}_{k}^{s}(x, y)-\left[p_{k}^{s}(y, x)-p_{k}^{s}(x, x)\right] \\
\leq & \hat{p}_{k}^{s}(x, y)
\end{aligned}
$$

which shows that $p_{k}^{s}(x, y) \leq \hat{p}_{k}^{s}(x, y)+p_{k}^{s}(y, y)$ for all $x, y \in X$. Now we can deduce that $p_{k}^{s}\left(x_{n}, x_{n_{0}}\right) \leq$ $\hat{p}_{k}^{s}\left(x_{n}, x_{n_{0}}\right)+p_{k}^{s}\left(x_{n_{0}}, x_{n_{0}}\right)$. From (SPK2), it follows that

$$
\begin{aligned}
p_{k}^{s}\left(x_{n}, x_{n}\right) & \leq p_{k}^{s}\left(x_{n}, x_{n_{0}}\right) \\
& \leq \hat{p}_{k}^{s}\left(x_{n}, x_{n_{0}}\right)+p_{k}^{s}\left(x_{n_{0}}, x_{n_{0}}\right) \\
& <\frac{1}{2}+p_{k}^{s}\left(x_{n_{0}}, x_{n_{0}}\right)
\end{aligned}
$$

for all $n \geq n_{0}$, which implies that the sequence $\left\{p_{k}^{s}\left(x_{n}, x_{n}\right)\right\}$ is bounded in \mathbb{R}. Hence the sequence $\left\{p_{k}^{s}\left(x_{n}, x_{n}\right)\right\}$ exists a subsequence $\left\{p_{k}^{s}\left(x_{n_{k}}, x_{n_{k}}\right)\right\}$ that is convergent and we denote $\lim _{n_{k} \rightarrow+\infty} p_{k}^{s}\left(x_{n_{k}}, x_{n_{k}}\right)=a$.

Step 2: By step 1, we have

$$
p_{k}^{s}\left(x_{n}, x_{n}\right)-p_{k}^{s}\left(x_{m}, x_{m}\right) \leq p_{k}^{s}\left(x_{n}, x_{m}\right)-p_{k}^{s}\left(x_{m}, x_{m}\right) \leq \hat{p}_{k}^{s}\left(x_{n}, x_{m}\right)
$$

and $\lim _{n \rightarrow+\infty} p_{k}^{s}\left(x_{n}, x_{n}\right)=\lim _{m \rightarrow+\infty} p_{k}^{s}\left(x_{m}, x_{m}\right)=a$ for all $n, m \geq n_{0}$. Then there exists $n_{1} \geq n_{0}$ such that

$$
\left|p_{k}^{s}\left(x_{m}, x_{m}\right)-a\right|<\frac{\varepsilon}{2}, \forall n, m \geq n_{1} .
$$

Then for any $m, n \geq n_{1}$, we have that

$$
\begin{aligned}
\left|p_{k}^{s}\left(x_{n}, x_{m}\right)-a\right| & =\left|\left(p_{k}^{s}\left(x_{n}, x_{m}\right)-p_{k}^{s}\left(x_{m}, x_{m}\right)\right)+\left(p_{k}^{s}\left(x_{m}, x_{m}\right)-a\right)\right| \\
& \leq\left[p_{k}^{s}\left(x_{n}, x_{m}\right)-p_{k}^{s}\left(x_{m}, x_{m}\right)\right]+\left|p_{k}^{s}\left(x_{m}, x_{m}\right)-a\right| \\
& \leq \hat{p}_{k}^{s}\left(x_{n}, x_{m}\right)+\left|p_{k}^{s}\left(x_{m}, x_{m}\right)-a\right| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

From step 1 and step 2, we obtain that $\lim _{n, m \rightarrow+\infty} p_{k}^{s}\left(x_{n}, x_{m}\right)=a$, which implies that $\left\{x_{n}\right\}$ is a Cauchy sequence in (X, p_{k}^{s}).
$(2)(\Leftarrow)$ Let $\left\{x_{n}\right\}$ be a Cauchy sequence in $\left(X, p_{k}^{s}\right)$, it is clear that $\left\{x_{n}\right\}$ is a Cauchy sequence in $\left(X, \hat{p}_{k}^{s}\right)$ by Lemma 3.3(1). Since (X, \hat{p}_{k}^{s}) is complete, there exists $x \in X$ such that $\lim _{n \rightarrow+\infty} \hat{p}_{k}^{s}\left(x, x_{n}\right)=0$. This shows that $\left\{x_{n}\right\}$ is a convergent sequence in $\left(X, \hat{p}_{k}^{s}\right)$, and we have

$$
\lim _{n \rightarrow+\infty}\left[p_{k}^{s}\left(x, x_{n}\right)+p_{k}^{s}\left(x_{n}, x\right)-p_{k}^{s}(x, x)-p_{k}^{s}\left(x_{n}, x_{n}\right)\right]=0
$$

As

$$
p_{k}^{s}\left(x_{n}, x\right)-p_{k}^{s}(x, x) \leq \hat{p}_{k}^{s}\left(x_{n}, x\right)=\hat{p}_{k}^{s}\left(x, x_{n}\right)
$$

and

$$
p_{k}^{s}\left(x, x_{n}\right)-p_{k}^{s}\left(x_{n}, x_{n}\right) \leq \hat{p}_{k}^{s}\left(x, x_{n}\right)
$$

we have

$$
\lim _{n \rightarrow+\infty}\left[p_{k}^{s}\left(x_{n}, x\right)-p_{k}^{s}(x, x)\right]=0
$$

and

$$
\lim _{n \rightarrow+\infty}\left[p_{k}^{s}\left(x, x_{n}\right)-p_{k}^{s}\left(x_{n}, x_{n}\right)\right]=0
$$

Thus $p_{k}^{s}(x, x)=\lim _{n \rightarrow+\infty} p_{k}^{s}\left(x_{n}, x\right)=\lim _{n \rightarrow+\infty} p_{k}^{s}\left(x, x_{n}\right)=\lim _{n \rightarrow+\infty} p_{k}^{s}\left(x_{n}, x_{n}\right)$.
In addition, by (SPK3) we have

$$
p_{k}^{s}\left(x_{n}, x_{m}\right) \leq k\left[p_{k}^{s}\left(x_{n}, x\right)+p_{k}^{s}\left(x, x_{m}\right)\right]-\frac{k-1}{2}\left[p_{k}^{s}\left(x_{n}, x_{n}\right)+p_{k}^{s}\left(x_{m}, x_{m}\right)\right]-k p_{k}^{s}(x, x)
$$

Then

$$
\lim _{n, m \rightarrow+\infty} p_{k}^{s}\left(x_{n}, x_{m}\right) \leq p_{k}^{s}(x, x)
$$

Moreover $p_{k}^{s}\left(x_{n}, x_{n}\right) \leq p_{k}^{s}\left(x_{n}, x_{m}\right)$, thus we have

$$
p_{k}^{s}(x, x) \leq \lim _{n, m \rightarrow+\infty} p_{k}^{s}\left(x_{n}, x_{m}\right)
$$

Hence $\lim _{n, m \rightarrow+\infty} p_{k}^{s}\left(x_{n}, x_{m}\right)=p_{k}^{s}(x, x)$. This implies $\left(X, p_{k}^{s}\right)$ is complete.
(\Rightarrow) Let $\left\{x_{n}\right\}$ be a Cauchy sequence in $\left(X, \hat{p}_{k}^{s}\right)$. Then $\left\{x_{n}\right\}$ is a Cauchy sequence in (X, p_{k}^{s}) by Lemma 3.3(1). Since $\left(X, p_{k}^{s}\right)$ is complete, there exists $x \in X$ such that

$$
\lim _{n, m \rightarrow+\infty} p_{k}^{s}\left(x_{n}, x_{m}\right)=\lim _{n \rightarrow+\infty} p_{k}^{s}\left(x_{n}, x\right)=p_{k}^{s}(x, x)
$$

In addition, by (SPK2) we have $p_{k}^{s}\left(x_{n}, x_{n}\right)-p_{k}^{s}(x, x) \leq p_{k}^{s}\left(x_{n}, x_{m}\right)-p_{k}^{s}(x, x)$. which implies $\lim _{n \rightarrow+\infty} p_{k}^{s}\left(x_{n}, x_{n}\right)=$ $p_{k}^{s}(x, x)$. Moreover, by (SPK3) we have

$$
p_{k}^{s}\left(x_{n}, x\right) \leq k\left[p_{k}^{s}\left(x_{n}, x_{m}\right)+p_{k}^{s}\left(x_{m}, x\right)\right]-\frac{k-1}{2}\left[p_{k}^{s}\left(x_{n}, x_{n}+p_{k}^{s}(x, x)\right)\right]-k p_{k}^{s}\left(x_{m}, x_{m}\right),
$$

which implies $\lim _{n \rightarrow+\infty} p_{k}^{s}\left(x_{n}, x\right)=p_{k}^{s}(x, x)$. Since

$$
\hat{p}_{k}^{s}\left(x_{n}, x\right)=p_{k}^{s}\left(x_{n}, x\right)+p_{k}^{s}\left(x, x_{n}\right)-p_{k}^{s}\left(x_{n}, x_{n}\right)-p_{k}^{s}(x, x)
$$

we can deduce $\lim _{n \rightarrow+\infty} \hat{p}_{k}^{s}\left(x_{n}, x\right)=0$. Hence $\left(X, \hat{p}_{k}^{s}\right)$ is complete.
Finally, it is simple matter to check that $\lim _{n \rightarrow+\infty} \hat{p}_{k}^{s}\left(x_{n}, x\right)=0$ if and only if $p_{k}^{s}(x, x)=\lim _{n \rightarrow+\infty} p_{k}^{s}\left(x_{n}, x\right)=$ $\lim _{n, m \rightarrow+\infty} p_{k}^{s}\left(x_{n}, x_{m}\right)$.

Theorem 3.4. Let $\left(X, p_{k}^{s}\right)$ be complete strongly partial-quasi k-metric space with coefficient $k \geq 1$, and $T: X \rightarrow X$ a function satisfying $p_{k}^{s}(T x, T y) \leq \lambda p_{k}^{s}(x, y)$ for all $x, y \in X$, where $\lambda \in[0,1)$. Then T has a unique fixed point $x^{*} \in X$, and $p_{k}^{s}\left(x^{*}, x^{*}\right)=0$.

Proof. By assumption, we have $p_{k}^{s}(T x, T y) \leq \lambda p_{k}^{s}(x, y)$ for all $x, y \in X$, where $\lambda \in[0,1)$. Given $0<\varepsilon<1$. We can choose $n_{0} \in \mathbb{N}^{+}$such that $\lambda^{n_{0}}<\frac{(1+k) \varepsilon}{4 k}$, where $k \geq 1$. We define the sequence in the following way: $x_{0}=x$, and $x_{n+1}=F x_{n}=F^{n+1} x_{0}$ for all $n \in \mathbb{N}^{+}, x_{0} \in X$, where $F=T^{n_{0}}$. Then $p_{k}^{s}(F x, F y)=p_{k}^{s}\left(T^{n_{0}} x, T^{n_{0}} y\right) \leq \lambda^{n_{0}} p_{k}^{s}(x, y)$, which implies that $p_{k}^{s}\left(x_{n}, x_{n+1}\right)=p_{k}^{s}\left(F x_{n-1}, F x_{n}\right) \leq \lambda^{n_{0}} p_{k}^{s}\left(x_{n-1}, x_{n}\right)$. By repetition of this process, we have $p_{k}^{s}\left(x_{n}, x_{n+1}\right) \leq\left(\lambda^{n_{0}}\right)^{n} p_{k}^{s}\left(x_{0}, x_{1}\right)$, which implies $\lim _{n \rightarrow+\infty} p_{k}^{s}\left(x_{n}, x_{n+1}\right)=0$. Then for any $0<\varepsilon<\frac{2}{1+k}$, there exists $n_{1} \in \mathbb{N}^{+}$such that $p_{k}^{s}\left(x_{n}, x_{n+1}\right)<\frac{(1+k) \varepsilon}{4 k}$, where $n>n_{1} \geq n_{0}$. To prove the existence and uniqueness of the fixed point, we consider the following steps:

Step 1: We denote $\mathbb{B}_{p_{k}^{s}}(x, \delta)=\left\{y \in X: p_{k}^{s}(x, y) \leq p_{k}^{s}(x, x)+\delta\right\}$. It is obvious that $x_{r} \in \mathbb{B}_{p_{k}^{s}}\left(x_{r}, \frac{(1+k) \varepsilon}{2}\right)$ for all $k \geq 1$ and $0<\varepsilon<\frac{2}{1+k}$, where $r \in \mathbb{N}^{+}$. Then $\mathbb{B}_{p_{k}^{s}}\left(x_{r}, \frac{(1+k) \varepsilon}{2}\right) \neq \varnothing$. For each $z \in \mathbb{B}_{p_{k}^{s}}\left(x_{r}, \frac{(1+k) \varepsilon}{2}\right)$, we have

$$
p_{k}^{s}\left(F x_{r}, F z\right) \leq \lambda^{n_{0}} p_{k}^{s}\left(x_{r}, z\right) \leq \lambda^{n_{0}}\left[\frac{(1+k) \varepsilon}{2}+p_{k}^{s}\left(x_{r}, x_{r}\right)\right]
$$

In addition, $p_{k}^{s}\left(x_{r}, F x_{r}\right)=p_{k}^{s}\left(x_{r}, x_{r+1}\right)$ and

$$
\begin{aligned}
& p_{k}^{s}\left(x_{r}, F z\right) \\
\leq & k\left[p_{k}^{s}\left(x_{r}, F x_{r}\right)+p_{k}^{s}\left(F x_{r}, F z\right)\right]-\frac{k-1}{2}\left[p_{k}^{s}\left(x_{r}, x_{r}\right)+p_{k}^{s}(F z, F z)\right]-k p_{k}^{s}\left(F x_{r}, F x_{r}\right)
\end{aligned}
$$

by (SPK3). Then we have

$$
\begin{aligned}
& p_{k}^{s}\left(x_{r}, F z\right) \\
\leq & k\left[p_{k}^{s}\left(x_{r}, F x_{r}\right)+p_{k}^{s}\left(F x_{r}, F z\right)\right]-\frac{k-1}{2} p_{k}^{s}\left(x_{r}, x_{r}\right) \\
= & k\left[p_{k}^{s}\left(x_{r}, x_{r+1}\right)+p_{k}^{s}\left(F x_{r}, F z\right)\right]-\frac{k-1}{2} p_{k}^{s}\left(x_{r}, x_{r}\right) \\
\leq & k\left[\frac{(1+k) \varepsilon}{4 k}+\frac{(1+k) \varepsilon}{4 k}\left(\frac{(1+k) \varepsilon}{2}+p_{k}^{s}\left(x_{r}, x_{r}\right)\right)\right]-\frac{k-1}{2} p_{k}^{s}\left(x_{r}, x_{r}\right) \\
= & \frac{(1+k) \varepsilon}{4}\left(1+\frac{(1+k) \varepsilon}{2}\right)+\left(1-\frac{(1+k)(2-\varepsilon)}{4}\right) p_{k}^{s}\left(x_{r}, x_{r}\right) \\
< & \frac{(1+k) \varepsilon}{2}+p_{k}^{s}\left(x_{r}, x_{r}\right) .
\end{aligned}
$$

Thus $F z \in \mathbb{B}_{p_{k}^{s}}\left(x_{r}, \frac{(1+k) \varepsilon}{2}\right)$.
Step 2: From step 1, we have $F x_{r} \in \mathbb{B}_{p_{k}^{s}}\left(x_{r}, \frac{(1+k) \varepsilon}{2}\right)$ for all $n \in \mathbb{N}^{+}$. Then $F^{m} x_{r} \in \mathbb{B}_{p_{k}^{s}}\left(x_{r}, \frac{(1+k) \varepsilon}{2}\right)$ for all $m \in \mathbb{N}^{+}$. Namely, $x_{n} \in \mathbb{B}_{p_{k}^{s}}\left(x_{r}, \frac{(1+k) \varepsilon}{2}\right)$ for all $n \geq r$. Thus, for any $n, m \geq r$, we obtain that

$$
\begin{aligned}
& p_{k}^{s}\left(x_{n}, x_{m}\right) \\
< & \frac{(1+k) \varepsilon}{2}+p_{k}^{s}\left(x_{r}, x_{r}\right) \\
\leq & \frac{(1+k) \varepsilon}{2}+p_{k}^{s}\left(x_{r}, x_{r+1}\right) \\
\leq & \frac{(1+k)(2 k+1) \varepsilon}{4 k}
\end{aligned}
$$

This implies that $\left\{x_{n}\right\}$ is a Cauchy sequence and $\lim _{n, m \rightarrow+\infty} p_{k}^{s}\left(x_{n}, x_{m}\right)=0$. Since $\left(X, p_{k}^{s}\right)$ is complete, then there exists $x^{*} \in X$, such that

$$
\lim _{n \rightarrow+\infty} p_{k}^{s}\left(x_{n}, x^{*}\right)=\lim _{n \rightarrow+\infty} p_{k}^{s}\left(x^{*}, x_{n}\right)=p_{k}^{s}\left(x^{*}, x^{*}\right)=0
$$

Furthermore, we have

$$
\begin{aligned}
& p_{k}^{s}\left(x^{*}, T x^{*}\right) \\
& \leq k\left[p_{k}^{s}\left(x^{*}, x_{n+1}\right)+p_{k}^{s}\left(x_{n+1}, T x^{*}\right)\right]-\frac{k-1}{2}\left[p_{k}^{s}\left(x^{*}, x^{*}\right)+p_{k}^{s}\left(T x^{*}, T x^{*}\right)\right]-k p_{k}^{s}\left(x_{n+1}, x_{n+1}\right) \\
& \leq k\left[p_{k}^{s}\left(x^{*}, x_{n+1}\right)+p_{k}^{s}\left(x_{n+1}, T x^{*}\right)\right] \\
&= k p_{k}^{s}\left(x^{*}, x_{n+1}\right)+k p_{k}^{s}\left(x_{n+1}, T x^{*}\right) \\
& \leq k p_{k}^{s}\left(x^{*}, x_{n+1}\right)+\lambda k p_{k}^{s}\left(x_{n}, x^{*}\right) .
\end{aligned}
$$

This implies $p_{k}^{s}\left(x^{*}, T x^{*}\right)=0$. Thus $T x^{*}=x^{*}$ by Proposition 2.6(1).
Step 3: Suppose $x^{*} \neq y^{*}$, where $T y^{*}=y^{*}$. We have

$$
p_{k}^{s}\left(x^{*}, y^{*}\right)=p_{k}^{s}\left(T x^{*}, T y^{*}\right) \leq \lambda p_{k}^{s}\left(x^{*}, y^{*}\right)<p_{k}^{s}\left(x^{*}, y^{*}\right),
$$

which is a contradiction. Hence $x^{*}=y^{*}$.
Corollary 3.5. Let $\left(X, p_{k}^{s}\right)$ be a complete strongly partial-quasi k-metric space with coefficient $k \geq 1$, and let $T: X \rightarrow X$ be a function satisfying $p_{k}^{s}(T x, T y) \leq \varphi(t) p_{k}^{s}(x, y)$ for all $x, y \in X$, where $\varphi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is an increasing function such that $\lim _{n \rightarrow+\infty} \varphi^{n}(r)=0$ for some $r>0$. Then T has a unique fixed point $x^{*} \in X$, and $p_{k}^{s}\left(x^{*}, x^{*}\right)=0$.

Proof. It is similar to Theorem 3.4.

Conclusions

The purpose of this paper is to introduce a new notion of (strongly) partial-quasi k -metrics by omitting the condition $p(x, y)=p(y, x)$, whenever $x, y \in X$, which is another variant concept of partial-(quasi)-k metrics given by Künzi et al. and Mustafa et al., respectively. In Section 2, we show the relationships among partial-quasi k-metrics, partial quasi-metrics and k-metrics via several examples. Finally, we illustrate some fixed point theorems on strongly partial-quasi k-metric spaces.

Acknowledgment

The author is grateful to the referees for their valuable comments and suggestions on this paper.

References

[1] W. A. Wilson, On quasi-metric spaces, Amer. J. Math. 53 (1931), 675-684.
[2] I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst. 30 (1989), 26-37.
[3] S. Czerwik, Contraction mappings in b-matric spaces, Acta. Math. Inform. Univ. Ostraviensis 1 (1993), 5-11.
[4] S. G. Matthews, Partial metric topology, Ann. New York Acad. Sci. 728 (1994), 183-197.
[5] R. Heckmann, Approximation of metric spaces by partial metric spaces, Appl. Categ. Struct. 7 (1999), 71-83.
[6] H. P. Künzi, H. Pajoohesh, M. P. Schellekens, Partial quasi-metrics, Theoret. Comput. Sci. 365 (2006), 237-246.
[7] E. Karapinar, I. M. Erhan, A. Öztürk, Fixed point theorems on quasi-partial metric spaces, Math. Comput. Model. 57 (2013), $2442-2448$.
[8] S. Shukla, Partial b-matric spaces and fixed point theorems, Mediterr. J. Math. 11 (2014), 703-711.
[9] A. Gupta, Some coupled fixed point theorems on quasi-partial b-metric spaces, Int. J. Math. Anal. 9 (2015), 293-306.
[10] P. Waszkiewicz, The local triangle axiom in topology and domain theory, Appl. Gen. Topology 4 (2003), 47-70.
[11] Z. Mustafa, J. R. Roshan, V. Parvaneh, Z. Kadelburg, Some common fixed point results in ordered partial b-metric spaces, J. Inequal. Appl. 2013 (2013), 562.
[12] E. Karapinar, A note on common fixed point theorems in partial metric spaces, Miskolc Math. Notes 12 (2011), 185-191.
[13] M. A. Barakat, M. A. Ahmed, A. M. Zidan, Weak quasi-partial metric spaces and fixed point results, Int. J. Adv. Math. 2017 (2017), 123-136.
[14] E. Karapinar, A. Pitea, W. Shatanawi, Function weighted quasi-metric spaces and fixed point results, IEEE Access 7 (2019), 89026-89032.
[15] E. Karapinar, F. Khojasteh, D. Z. Mitrovic, V. Rakocevic, On surrounding quasi-contractions on non-triangular metric spaces, Open Mathematics 18 (2020), 1113-1121.
[16] B. Alqahtani, A. Fulga, E. Karapinar, Fixed point results on delta-symmetric quasi-metric space via simulation function with an application to Ulam stability, Mathematics 6 (2018), 208.
[17] A. Fulga, E. Karapinar, G. Petrusel, On hybrid contractions in the context of quasi-metric spaces, Mathematics 8 (2020), 675.
[18] E. Karapinar, A. Fulga, M. Rashid, L. Shahid, H. Aydi, Large contractions on quasi-metric spaces with an application to nonlinear fractional differential equations, Mathematics 7 (2019), 444.
[19] E. Karapinar, A. Fulga, On hybrid contractions via simulation function in the context of quasi-metric spaces, J. Nonlinear Covnex Analysis 2 (2020), 2115-2124.
[20] E. L. Ghasab, H. Majani, E. Karapinar, G. S. Rad, New fixed point results in \mathcal{F}-quasi-metric spaces and an application, Adv. Math. Phy. 2020 (2020), 9452350.
[21] C. Alegre, A. Fulga, E. Karapinar, P. A. Tirado, Discussion on p-geraghty contraction on mw-quasi-metric spaces, Mathematics 8 (2020), 1437.
[22] E. Karapinar, A. Pitea, On $\alpha-\psi$-Geraghty contraction type mappings on quasi-Branciari metric spaces, J. Nonlinear Convex Anal. 17 (2016), 1291-1301

[^0]: 2020 Mathematics Subject Classification. Primary 47H09; Secondary 54A05, 54H25.
 Keywords. k-metric; Partial-quasi metric; Partial-quasi k-metric; Strongly partial-quasi k-metric; Fixed point theorem.
 Received: 20 January 2022; Accepted: 17 April 2022
 Communicated by Erdal Karapinar
 Research supported by the Program through the Guiding Science and Technology of Suqian (Z2021131)
 Email address: 23036@squ.edu.cn (Yaoqiang Wu)

