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Abstract. In this paper, we prove the boundedness of generalized fractional integral operators Iρ in the
vanishing generalized weighted Morrey-type spaces, such as vanishing generalized weighted local Morrey
spaces and vanishing generalized weighted global Morrey spaces by using weighted Lp estimates over
balls.

In more detail, we obtain the Spanne-type boundedness of the generalized fractional integral operators
Iρ in the vanishing generalized weighted local Morrey spaces with wq

∈ A1+ q
p′

for 1 < p < q < ∞, and from

the vanishing generalized weighted local Morrey spaces to the vanishing generalized weighted weak local
Morrey spaces with w ∈ A1,q for p = 1, 1 < q < ∞. We also prove the Adams-type boundedness of the
generalized fractional integral operators Iρ in the vanishing generalized weighted global Morrey spaces
with w ∈ Ap,q for 1 < p < q < ∞ and from the vanishing generalized weighted global Morrey spaces to the
vanishing generalized weighted weak global Morrey spaces with w ∈ A1,q for p = 1, 1 < q < ∞. The our all
weight functions belong to Muckenhoupt-Weeden classes Ap,q.

1. Introduction

The classical Morrey spaces Lp,λ(Rn) defined by Morrey in [25] to study the local behavior of solutions to
second order elliptic PDEs. Morrey spaces have important applications to potential theory, function spaces
and applied mathematics, for instance see the papers [1, 23, 34].

The boundedness of some important classical operators on the weighted Lebesgue spaces Lp(Rn,w)
were obtained by Muckenhoupt [27], Mukenhoupt and Wheeden [26], and Coifman and Fefferman [5].

Weighted Morrey spaces Lp,κ(Rn,w) were defined by Komori and Shirai in [17]. They studied the
boundedness of the classical operators of harmonic analysis such as Hardy-Littlewood maximal operator,
Calderon-Zygmund operator, fractional integral operator in these spaces. These results were extended to
several other spaces (see [13, 20] for examples). Weighted inequalities for fractional operators have good
applications to potential theory and quantum mechanics.

Firstly, Vitanza in [37] defined the vanishing Morrey space VMp,λ(Rn) of the classical Morrey spaces
Lp,λ(Rn) and applied in this study to get a regularity result for elliptic PDEs. Later in [38], Vitanza proved
an existence theorem for a Dirichlet problem, under weaker conditions than those introduced by Miranda
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in [24], and a W3,2 regularity result assuming that the partial derivatives of the coefficients of the highest
and lower order terms belong to vanishing Morrey spaces depending on the dimension. Also Ragusa
[31] obtained a sufficient condition for commutators of fractional integral operators to belong to vanishing
Morrey spacesVMp,λ(Rn). A deep research on commutator operators in vanishing Morrey spaces can be
seen in [30].

The vanishing generalized global Morrey space VMp,φ(Rn) and vanishing generalized local Morrey
spaceVM{x0}

p,φ (Rn) were introduced by Samko in [35, 36]. The boundedness of the multi-dimensional Hardy
type operators, maximal, potential and singular operators in these spaces were proved in [35, 36]. Guliyev
et al. proved the commutators of Riesz potential in the vanishing generalized weighted Morrey spaces with
variable exponent in [15].

Let f ∈ Lloc
1 (Rn). The generalized fractional integral operator Iρ is defined by

Iρ f (x) =
∫
Rn

ρ(|x − y|)
|x − y|n

f (y)dy,

where ρ : (0,∞) → (0,∞) is a positive and measurable function. If ρ(t) ≡ tα, then Iα ≡ Itα is the Riesz
potential operator.

The generalized fractional integral operator Iρ was initilally investigated in [7, 16, 28]. Nakai [28]
introduced the the generalized Morrey spaces Mp,φ(Rn) and proved the boundedness of the generalized
fractional integral operator Iρ in these spaces. Recently, many authors have been culminating important
observations about the operator Iρ especially in connection with Morrey-type spaces (see [6, 9, 14, 19–
21, 32, 33]). But, the boundedness of generalized fractional integral operators Iρ in the vanishing generalized
weighted Morrey-type spaces, such as vanishing generalized weighted local Morrey spacesVM{x0}

p,φ (Rn,wp)
and vanishing generalized weighted global Morrey spacesVM

p,φ
1
p
(Rn,w) have not been studied, yet.

Guliyev [12] proved the Spanne and Adams types boundedness of Riesz potential operator Iα from the
spaces Mp,φ1 (Rn) to Mq,φ2 (Rn) without any assumption on monotonicity of φ1, φ2.

In this present paper, by using the method given by Guliyev in [12], we obtain the Spanne-type bound-
edness of the generalized fractional integral operators Iρ from the vanishing generalized weighted local
Morrey spacesVM{x0}

p,φ1
(Rn,wp) to another oneVM{x0}

q,φ2
(Rn,wq) with wq

∈ A1+ q
p′

for 1 < p < q < ∞, and from

the vanishing generalized weighted local Morrey spaces VM{x0}

1,φ1
to the vanishing generalized weighted

weak local Morrey spaces VWM{x0}
q,φ2

(Rn,wq) with w ∈ A1,q for p = 1, 1 < q < ∞. We also prove the
Adams-type boundedness of the generalized fractional integral operators Iρ from the vanishing general-
ized weighted global Morrey spacesVM

p,φ
1
p
(Rn,w) toVM

q,φ
1
q
(Rn,w) with w ∈ Ap,q for 1 < p < q < ∞ and

from the vanishing generalized weighted global Morrey spacesVM1,φ(Rn,w) to the vanishing generalized
weighted weak global Morrey spacesVWM

q,φ
1
q
(Rn,w) with w ∈ A1,q for p = 1, 1 < q < ∞. The all weight

functions belong to Muckenhoupt-Weeden class Ap,q.
Throughout the paper we use the letter C for a positive constant, independent of appropriate parameters

and not necessary the same at each occurrence. By A ≲ B we mean that A ≤ CB with some positive constant
C.

2. Preliminaries

For x ∈ Rn and r > 0, we denote by B(x, r) ⊂ Rn the open ball centered at x of radius r. Let |B(x, r)|
be the Lebesgue measure of ball B(x, r) and Rn be the n-dimensional Euclidean space. A weight function
is a locally integrable function on Rn which takes values in (0,∞) almost everywhere. For a weight w
and a measurable set E, we define w(E) =

∫
E w(x)dx, in the special case of w ≡ 1 we get w(E) = |E|. The

characteristic function of E by χE. If w is a weight function, for all f ∈ Lloc
1 (Rn) and 1 ≤ p < ∞ we denote by
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Lloc
p (Rn,w) the weighted Lebesgue space defined by the norm

∥ fχB(x,r)∥Lp(Rn,w) =

(∫
B(x,r)
| f (x)|pw(x)dx

) 1
p

< ∞.

We recall that a weight function w belongs to the Muckenhoupt-Wheeden classes Ap,q (see [26]) for
1 < p < q < ∞, if

sup
B

(
1
|B|

∫
B

w(x)qdx
) 1

q
(

1
|B|

∫
B

w(x)−p′dx
) 1

p′

≤ C

and, if p = 1, w is in the A1,q with 1 < q < ∞ then

sup
B

(
1
|B|

∫
B

w(x)qdx
) 1

q
(
ess supx∈B

1
w(x)

)
≤ C,

where C > 0 and the supremum is taken with respect to all balls B.

Lemma 2.1. [8, 10] If w ∈ Ap,q with 1 < p < q < ∞, then the following statements are true.
(i) wq

∈ Ar with r = 1 + q
p′ .

(ii) w−p′
∈ Ar′ with r′ = 1 + p

q′ .
(iii) wp

∈ As with s = 1 + p
q′ .

(iv) w−q′
∈ As′ with s′ = 1 + q′

p .

For convenience, we use the following definition of generalized weighted global Morrey spaces.

Definition 2.2. ([4]). Let 1 ≤ p < ∞, w be a weight function on Rn and φ(x, r) be a positive measurable function
on Rn

× (0,∞). We denote by Mp,φ(Rn,w) the generalized weighted global Morrey space, the space of all functions
f ∈ Lloc

p (Rn,w) with finite norm

∥ f ∥Mp,φ(Rn,w) = sup
x∈Rn,r>0

φ(x, r)−1w(B(x, r))−
1
p ∥ f ∥Lp(B(x,r),w).

Also by WMp,φ(Rn,w) we denote the generalized weighted weak global Morrey space of all functions f ∈WLloc
p (Rn,w)

for which
∥ f ∥WMp,φ(Rn,w) = sup

x∈Rn,r>0
φ(x, r)−1w(B(x, r))−

1
p ∥ f ∥WLp(B(x,r),w),

where WLp(B(x, r),w) denotes the weighted weak Lp space of measurable functions f for which

∥ f ∥WLp(B(x,r),w) = sup
t>0

∫
{y∈B(x,r):| f (y)|>t}

w(y)dy


1
p

.

Definition 2.3. ([4]). Let 1 ≤ p < ∞, w be a weight function onRn and φ(x, r) be a positive measurable function on
Rn
× (0,∞). For any fixed x0 ∈ Rn we denote by M{x0}

p,φ (Rn,w) the generalized weighted local Morrey space, the space
of all functions f ∈ Lloc

p (Rn,w) with finite norm

∥ f ∥M{x0 }
p,φ (Rn,w)

= ∥ f (x0 + ·)∥Mp,φ(Rn,w).

Also by WM{x0}
p,φ (Rn,w) we denote the weak generalized weighted local Morrey space of all functions f ∈WLloc

p (Rn,w)
for which

∥ f ∥WM{x0 }
p,φ (Rn,w)

= ∥ f (x0 + ·)∥WMp,φ(Rn,w) < ∞.
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Since the generalized weighted local Morrey space M{x0}
p,φ (Rn,w) is an expansion of the generalized

weighted global Morrey space Mp,φ(Rn,w) then we have the following embeddings between in these
spaces:

Mp,φ(Rn) ⊂M{x0}
p,φ (Rn), ∥ f ∥M{x0}

p,φ (Rn)
≤ ∥ f ∥Mp,φ(Rn),

WMp,φ(Rn) ⊂WM{x0}
p,φ (Rn), ∥ f ∥WM{x0 }

p,φ (Rn)
≤ ∥ f ∥WMp,φ(Rn).

Definition 2.4. ([35]). Let 1 ≤ p < ∞, w be a weight function on Rn and φ(x, r) be a positive measurable function
on Rn

× (0,∞). The vanishing generalized weighted global Morrey space VMp,φ(Rn,w) is defined as the space of
functions f ∈Mp,φ(Rn,w) such that

lim
r→0

sup
x∈Rn

w(B(x, r))−
1
p

φ(x, r)
∥ f ∥Lp(B(x,r),w) = 0.

The vanishing generalized weighted weak global Morrey spaceVWMp,φ(Rn,w) is defined as the space of functions
f ∈WMp,φ(Rn,w) such that

lim
r→0

sup
x∈Rn

w(B(x, r))−
1
p

φ(x, r)
∥ f ∥WLp(B(x,r),w) = 0.

Everywhere in the sequel we assume that

lim
r→0

1
infx∈Rn φ(x, r)

= 0 and sup
0<r<∞

1
infx∈Rn φ(x, r)

< ∞, (2.1)

which makes the spacesVMp,φ(Rn,w) and VWMp,φ(Rn,w) non-trivial, because bounded functions with
compact support belong to this space. If the function φ satisfies the assumptions in (2.1) then we say that
φ belongs to the classMglob.

The spacesVMp,φ(Rn,w) andVWMp,φ(Rn,w) are Banach spaces with respect to the norm

∥ f ∥VMp,φ(Rn,w) ≡ ∥ f ∥Mp,φ(Rn,w) = sup
x∈Rn,r>0

φ(x, r)−1w(B(x, r))−
1
p ∥ f ∥Lp(B(x,r),w),

∥ f ∥VWMp,φ(Rn,w) ≡ ∥ f ∥WMp,φ(Rn,w)

= sup
x∈Rn,r>0

φ(x, r)−1w(B(x, r))−
1
p ∥ f ∥WLp(B(x,r),w),

respectively.
Extending the definition of vanishing generalized weighted global Morrey spaces to the case of weighted

local Morrey spaces, we introduce the following definition.

Definition 2.5. Let 1 ≤ p < ∞, w be a weight function on Rn and φ(x, r) be a positive measurable function on
Rn
× (0,∞). For any fixed x0 ∈ Rn, the vanishing generalized weighted local Morrey spaceVM{x0}

p,φ (Rn,w) and its
weak versionVWM{x0}

p,φ (Rn,w) are defined as the spaces of functions f ∈M{x0}
p,φ (Rn,w) and f ∈WM{x0}

p,φ (Rn,w) such
that

lim
r→0

w(B(x0, r))−
1
p

φ(x0, r)
∥ f ∥Lp(B(x0,r),w) = 0,

lim
r→0

w(B(x0, r))−
1
p

φ(x0, r)
∥ f ∥WLp(B(x0,r),w) = 0,

respectively.
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Theorem 2.6. (Spanne, but published by Peetre, [29]). Let 0 < α < n, 1 < p < n
α , 0 < λ < n − αp. Moreover, let

1
p −

1
q =

α
n and λp =

µ
q . Then for p > 1, the Riesz potential operator Iα is bounded from Lp,λ(Rn) to Lq,µ(Rn) and for

p = 1, Iα is bounded from L1,λ(Rn) to WLq,µ(Rn).

In particular, the following statement containing Theorem 2.6.

Theorem 2.7. ([2, 3]) Let 1 ≤ p < q < ∞, 0 < λ, µ < n and 0 < α = n−λ
p −

n−µ
q <

n
p . Then, for p > 1, the operator

Iα is bounded from Lp,λ(Rn) to Lq,µ(Rn), and, for p = 1, Iα is bounded from L1,λ(Rn) to WLq,µ(Rn).

The following theorem which is the Spanne-type results for the boundedness of the operator Iρ on the
generalized local Morrey spaces M{x0}

p,φ (Rn).

Theorem 2.8. (Spanne-type result, [14]). Let x0 ∈ Rn, 1 ≤ p < ∞, the function ρ satisfy the conditions (3.1)-(3.2)
and (3.3). Let also (φ1, φ2) satisfy the conditions

ess inf
t<s<∞

φ1(x0, s)s
n
p ≤ Cφ2

(
x0,

t
2

)
t

n
q ,

∫
∞

r

(
ess inf

t<s<∞
φ1(x0, s)s

n
p
)ρ(t)

t
n
p

dt
t
≤ Cφ2(x0, r),

where C does not depend on x0 and r. Then the operator Iρ is bounded from M{x0}
p,φ1

(Rn) to M{x0}
q,φ2

(Rn) for p > 1 and
from M{x0}

1,φ1
(Rn) to WM{x0}

q,φ2
(Rn) for p = 1. Moreover, for p > 1

∥Iρ f ∥M{x0}
q,φ2

(Rn)
≤ C∥ f ∥M{x0 }

p,φ1
(Rn)
,

and for p = 1

∥Iρ f ∥WM{x0 }
q,φ2

(Rn)
≤ C∥ f ∥M{x0 }

1,φ1
(Rn)
.

The followings are sufficient conditions for the non-triviality of the spacesVM{x0}
p,φ (Rn,w) andVWM{x0}

p,φ (Rn,w):

lim
r→0

1
φ(x0, r)

= 0 and sup
r>0

1
φ(x0, r)

< ∞, (2.2)

since bounded functions with compact support belong to these spaces, (see [36]).
Let φ(x, r) be a positive measurable function on Rn

× (0,∞). If the function φ satisfies the assumptions
in (2.2) then we say that φ belongs to the classMloc.

Under the suitable conditions, the spacesVM{x0}
p,φ (Rn,w) and VWM{x0}

p,φ (Rn,w) are closed subspaces of the
Banach spaces M{x0}

p,φ (Rn,w) and WM{x0}
p,φ (Rn,w), respectively, which may be shown by standard means.

We will also use the following notation

Ap,φ,w( f ; x0, r) := φ(x0, r)−1w(B(x0, r))−
1
p ∥ f ∥Lp(B(x0,r),w)

and
AW

p,φ,w( f ; x0, r) := φ(x0, r)−1w(B(x0, r))−
1
p ∥ f ∥WLp(B(x0,r),w)

for brevity, so that

VM
{x0}
p,φ,w(Rn) =

{
f ∈M{x0}

p,φ (Rn,w) : lim
r→0
Ap,φ,w( f ; x0, r) = 0

}
and similarly we will use for the spaceVWM{x0}

p,φ (Rn,w).
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3. Spanne-type result for the operators Iρ on the vanishing generalized weighted local Morrey spaces
VM

{x0}

p,φ(Rn,wp)

In this section, we show the Spanne-type boundedness of the generalized fractional integral operators
Iρ in the vanishing generalized weighted local Morrey spacesVM{x0}

p,φ (Rn,wp).
In the following theorem Spanne studied boundedness of the Riesz potential operator Iα in the Morrey

spaces Lp,λ(Rn).
In order to achieve our purpose, we assume that∫

∞

1

ρ(t)
tn

dt
t
< ∞, (3.1)

so that the generalized fractional integrals Iρ f are well defined, at least for characteristic functions 1/|x|2n of
complementary balls:

f (x) =
χRn\B(0,1)(x)
|x|2n .

In addition, we will assume that ρ satisfies the growth condition: there exist constants C > 0 and 0 < 2k1 <
k2 < ∞ such that

sup
r<s≤2r

ρ(s)
sn ≤ C

∫ k2r

k1r

ρ(t)
tn

dt
t
, r > 0. (3.2)

This condition is weaker than the usual doubling condition for the function ρ(t)
tn : there exists a constant

C > 0 such that
1
C
ρ(t)
tn ≤

ρ(r)
rn ≤ C

ρ(t)
tn ,

whenever r and t satisfy r, t > 0 and 1
2 ≤

r
t ≤ 2.

The following two lemmas are our basic tools to prove our main results.

Lemma 3.1. ([21]). Let 1 ≤ p < q < ∞,wq
∈ A1+ q

p′
, the function ρ satisfies the conditions (3.1)- (3.2), and

f ∈ Lloc
1 (Rn,w).

(i) If 1 < p < q < ∞ then there exist C > 0 for all r > 0 such that the inequality

ρ(r) ≤ Cr
n
p−

n
q (3.3)

is sufficient condition for the boundedness of generalized fractional integral operator Iρ from Lp(Rn,wp) to Lq(Rn,wq).
(ii) If p = 1, 1 < q < ∞ then there exist C > 0 for all r > 0 such that the inequality

ρ(r) ≤ Crn− n
q (3.4)

is sufficient condition for the boundedness of generalized fractional integral operator Iρ from L1(Rn,w) to WLq(Rn,wq),
where the constant C does not depend on f .

The following lemma is strong and weak weighted local Lp-estimates for the operator Iρ.

Lemma 3.2. ([22]). Let fixed x0 ∈ Rn, and 1 ≤ p < q < ∞, wq
∈ A1+ q

p′
and ρ(t) satisfy the conditions (3.1) and

(3.2).
(i) If 1 < p < q < ∞ and the condition (3.3) is fulfill, then the inequality

∥Iρ fχB(x0,r)∥Lq(Rn,wq) ≲ ∥ fχB(x0,2r)∥Lp(Rn,wp)

+ (wq(B(x0, r)))
1
q

∫
∞

2r
∥ fχB(x0,t)∥Lp(Rn,wp) (wq(B(x0, t)))

−
1
q
ρ(t)
tn

dt
t

(3.5)
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holds for the ball B(x0, r) and for all f ∈ Lloc
p (Rn,wp) and,

(ii) if p = 1, 1 < q < ∞ and the condition (3.4) is fulfill, then the inequality

∥Iρ fχB(x0,r)∥WLq(Rn,wq) ≲ ∥ fχB(x0,2r)∥L1(Rn,w)

+ (wq(B(x0, r)))
1
q

∫
∞

2r
∥ fχB(x0,t)∥L1(Rn,w) (wq(B(x0, t)))

−
1
q
ρ(t)
tn

dt
t

(3.6)

hold for the ball B(x0, r) and for all f ∈ Lloc
1 (Rn,w).

The following theorem which is an extension theorem of Theorem 2.8 containing Theorem 2.6 and
Theorem 2.7, is one of our main results in which we generalize the Spanne-type boundedness of the
operator Iρ in vanishing generalized weighted local Morrey spacesVM{x0}

p,φ (Rn,wp).

Theorem 3.3. Let x0 ∈ Rn, 1 ≤ p < q < ∞, wq
∈ A1+ q

p′
, φ1, φ2,∈ Mloc and the function ρ satisfy the conditions

(3.1), (3.2), (3.3) and (3.4). Let also φ1, φ2 satisfy the conditions

ess inf
r<s<∞

φ1(x0, s) (wp(B(x0, s)))
1
p ≤ Cφ2

(
x0,

r
2

)
(wq(B(x0, r)))

1
q , (3.7)

∫
∞

r

ess inf
t<s<∞

φ1(x0, s)(wp(B(x0, s)))
1
pρ(t)

(wq(B(x0, t)))
1
q t

n
p

dt
t
≤ Cφ2(x0, r), (3.8)

where C does not depend on x0 and r. Then the operator Iρ is bounded from vanishing generalized weighted local
Morrey spacesVM{x0}

p,φ1
(Rn,wp) toVM{x0}

q,φ2
(Rn,wq) for p > 1 and from the spaceVM{x0}

1,φ1
(Rn,w) to the weak space

VWM
{x0}
q,φ2

(Rn,wq) for p = 1. Additionally the following norm inequalities, for p > 1

∥Iρ f ∥
VM

{x0 }
q,φ2

(Rn,wq)
≲ ∥ f ∥

VM
{x0}
p,φ1

(Rn,wp)
,

and for p = 1

∥Iρ f ∥
VWM

{x0 }
q,φ2

(Rn,wq)
≲ ∥ f ∥

VM
{x0 }
1,φ1

(Rn,w)

hold.

Proof. Since the norm inequalities are provided in the Theorem 2.8, then we only have to prove the under-
mentioneds:

lim
r→0
Ap,φ1,wp ( f ; x0, r) = 0 =⇒ lim

r→0
Aq,φ2,wq (Mρ f ; x0, r) = 0, (3.9)

and

lim
r→0
AW

1,φ1,w( f ; x0, r) = 0 =⇒ lim
r→0
AW

q,φ2,wq (Mρ f ; x0, r) = 0, (3.10)

To control (3.9), i.e., to prove that

(wq(B(x0, r)))−
1
q ∥Iρ f ∥Lq(B(x0,r),wq)

φ2(x0, r)
< ε for infinitesimal r,

we use the inequality (4.1) where we split the right-hand side:

(wq(B(x0, r)))−
1
q ∥Iρ f ∥Lq(B(x0,r),wq)

φ2(x0, r)
≲ I(x0, r) + Jδ0 (x0, r) + Kδ0 (x0, r), (3.11)
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with δ0 > 0 and r < δ0,where

I(x0, r) :=
(wq(B(x0, r)))−

1
q ∥ f ∥Lp(B(x0,2r),wp)

φ2(x0, r)
,

Jδ0 (x0, r) :=
1

φ2(x0, r)

 sup
r<t<δ0

∥ f ∥Lp(B(x0,t),wp)
ρ(t)

(wp(B(x0, t)))
1
p


and

Kδ0 (x0, r) :=
1

φ2(x, r)

sup
t>δ0

∥ f ∥Lp(B(x0,t),wp)
ρ(t)

(wp(B(x0, t)))
1
p

 .
For the first expression from (3.15) we have

I(x0, r) ≲
r−

n
p ∥ f ∥Lp(B(x0,r))

φ1(x0, r)
.

By conjecture we get H(x0, r) < ε3 for infinitesimal r.
We use the fact that f ∈ VM{x0}

p,φ1
(Rn,wp) and choose any fixed δ0 > 0, in order to guarantee its finite in

the limiting case, such that
t−

n
p ∥ f ∥Lp(B(x0,t))

φ1(x0, t)
<
ε

3C
, t ≤ δ0,

where C is constant from (3.11) and (3.16), which satisfies the calculation of the second expression uniform
in r ∈ (0, δ0) :

Jδ0 (x0, r) <
ε

3C
, 0 < r < δ0.

For the third expression, we have

Kδ0 (x0, r) ≤ Cδ0

∥ f ∥M{x0 }
p,φ1

(Rn,wp)

φ2(x0, r)
,

where
Cδ0 = sup

t>δ0

φ1(x0, t)ρ(t).

Let’s point out Cδ0 < ∞ follows from (3.16). Then, by (2.2) we choose infinitesimal r such that

1
φ2(x0, r)

≤
ε

3Cδ0∥ f ∥M{x0 }
p,φ1

(Rn,wp)

,

which completes the estimation of the third expression and the proof. The proof of (3.10) is, step by step,
the same as in the proof of (3.9) by using (4.2).

In the Theorem 3.3, in the special case of the weight function for w ≡ 1 we get the following which was
proved in ([18], Theorem 3.4, p. 284).

Corollary 3.4. Let x0 ∈ Rn, 1 ≤ p < q < ∞, φ1, φ2 ∈Mloc and the function ρ satisfy the conditions (3.1)-(3.4). Let
also φ1, φ2 satisfy the conditions

φ1(x0, r)r
n
p ≤ Cφ2

(
x0,

r
2

)
r

n
q , (3.12)
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∞

r
φ1(x0, t)ρ(t)

dt
t
≤ Cφ2(x0, r), (3.13)

where C does not depend on x0 and r. Then the operator Iρ is bounded from vanishing generalized local Morrey
spacesVM{x0}

p,φ1
(Rn) toVM{x0}

q,φ2
(Rn) for p > 1 and from the vanishing spaceVM{x0}

1,φ1
(Rn) to the vanishing weak space

VWM
{x0}
q,φ2

(Rn) for p = 1.

Also, from the Theorem 3.3 for w ≡ 1, if the constant cδ exists as follows then we get the following.

Corollary 3.5. Let 1 ≤ p < q < ∞, φ ∈ Mglob and the function ρ satisfy the conditions (3.1)-(3.4). Let also φ1, φ2
satisfy the conditions for every δ > 0

cδ =
∫
∞

δ
sup
x∈Rn
φ1(x, t)ρ(t)

dt
t
< ∞, (3.14)

and

φ1(x, r)r
n
p ≤ Cφ2

(
x,

r
2

)
r

n
q , (3.15)

∫
∞

r
φ1(x, t)ρ(t)

dt
t
≤ Cφ2(x, r), (3.16)

where C does not depend on x and r. Then the operator Iρ is bounded from vanishing generalized global Morrey
spacesVMp,φ1 (Rn) toVMq,φ2 (Rn) for p > 1 and from the vanishing spaceVM1,φ1 (Rn) to the vanishing weak space
VWMq,φ2 (Rn) for p = 1.

4. Adams-type result for the operators Iρ on the vanishing generalized weighted global Morrey spaces
VMp,φ(Rn,w)

It is well-known that for f ∈ Lloc
1 (Rn), the Hardy-Littlewood maximal function M f of f is defined by

M f (x) = sup
r>0

1
|B(x, r)|

∫
B(x,r)
| f (y)|dy, x ∈ Rn.

The following lemma is weighted local strong and weak Lp-estimates for the operator Iρ which is our
main tool to prove our main results.

Lemma 4.1. [22] Let 1 ≤ p < q < ∞, w ∈ Ap,q and ρ(t) satisfy the conditions (3.1)-(3.2).
(i) If the condition (3.3) is fulfill, then the inequality

∥Iρ fχB(x,r)∥Lq(Rn,w) ≲ ∥ fχB(x,2r)∥Lp(Rn,w)

+ (w(B(x, r)))
1
q

∫
∞

2r
∥ fχB(x,t)∥Lp(Rn,w) (w(B(x, r)))−

1
q
ρ(t)
tn+1 dt (4.1)

holds for the ball B(x, r) and for all f ∈ Lloc
p (Rn,w).

(ii) If the condition (3.3) is fulfill, then for p = 1 the inequality

∥Iρ fχB(x,r)∥WLq(Rn,w) ≲ ∥ fχB(x,2r)∥L1(Rn,w)

+ (w(B(x, r)))
1
q

∫
∞

2r
∥ fχB(x,t)∥L1(Rn,w) (w(B(x, t)))−

1
q
ρ(t)
tn+1 dt (4.2)

holds for the ball B(x, r) and for all f ∈ Lloc
1 (Rn,w).
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The following is an Adams-type result for generalized fractional integral operator Iρ in generalized
Morrey spaces.

Theorem 4.2. (Adams-type result, [14]). Let 1 ≤ p < ∞, q > p, ρ(t) satisfy the conditions (3.1)-(3.4). Let also
φ(x, t) satisfy the conditions

sup
r<t<∞

φ(x, t) ≤ Cφ(x, r), (4.3)

and ∫
∞

r
φ(x, t)

1
p
ρ(t)

t
dt ≤ Cρ(r)−

p
q−p , (4.4)

where C does not depend on x ∈ Rn and r > 0. Then the operator Iρ is bounded from generalized Morrey spaces
M

p,φ
1
p
(Rn) to M

q,φ
1
q
(Rn) for p > 1 and from the space M1,φ(Rn) to the weak space WM

q,φ
1
q
(Rn) for p = 1.

In Theorem 4.2, if we take ρ(t) = tα, then we get Adams type result on generalized Morrey spaces proved
in [11] (Theorem 5.7, p. 182) and if we take ρ(t) = tα and φ(x, t) = tλ−n, 0 < λ < n, then we get Adams’s
result in [1].

The following theorem is the second main result of our paper in which we prove the Adams-type
boundedness of the operator Iρ in vanishing generalized weighted global Morrey spacesVMp,φ(Rn,w).

Let 1 ≤ p < q < ∞, φ ∈Mglob, ρ(t) satisfy the conditions (3.1)-(3.4). Let also φ(x, t) satisfy the conditions

sup
r<t<∞

φ(x, t) ≤ Cφ(x, r), (4.5)

mδ = sup
δ<t<∞

sup
x∈Rn
φ(x, t) < ∞, (4.6)

and ∫
∞

r
φ(x, t)

1
p
ρ(t)

t
dt ≤ Cρ(r)−

p
q−p , (4.7)

where C does not depend on x ∈ Rn and r > 0. Then the operator Iρ is bounded from vanishing generalized
weighted global Morrey spaces VM

p,φ
1
p
(Rn,w) to VM

q,φ
1
q
(Rn,w) for p > 1 and from the vanishing space

VM1,φ(Rn,w) to the vanishing weak space VWM
q,φ

1
q
(Rn,w) for p = 1. Additionally the following norm

inequalities, for p > 1

∥Iρ f ∥VM
q,φ

1
q

(Rn,w) ≲ ∥ f ∥VM
p,φ

1
p

(Rn,w),

and for p = 1

∥Iρ f ∥VWM
q,φ

1
q

(Rn,w) ≲ ∥ f ∥VM1,φ(Rn,w)

hold.

Proof. Since the norm inequalities are provided in the Theorem 2.8, then we only have to prove the under-
mentioneds:

If lim
r→0

sup
x∈Rn
Ap,φ1/p,w( f ; x, r) = 0, then lim

r→0
sup
x∈Rn
Aq,φ1/q,w(Iρ f ; x, r) = 0, (4.8)
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and

if lim
r→0
AW

1,φ,w( f ; x, r) = 0, then lim
r→0
AW

q,φ1/q,w(Iρ f ; x, r) = 0. (4.9)

Under the conditions (3.2), (4.5) and (4.7) we know that (see [14]) for all x ∈ Rn

|Iρ f (x)| ≤ C(M f (x))
p
q ∥ f ∥

1− p
q

M
p,φ

1
p

. (4.10)

To test (4.8), i.e. to prove that

sup
x∈Rn

w(B(x, r))−
1
q ∥Iρ f ∥Lq(B(x,r))

φ(x, r)1/q < ε for infinitesimal r,

we use the expressions (4.1) and (4.10) where we split the right-hand side:

w(B(x, r))−
1
q ∥Iρ f ∥Lq(B(x,r),w)

φ(x, r)1/q ≤ C
(
Jδ0 (x, r) + Kδ0 (x, r)

)
, (4.11)

with δ0 > 0 and r < δ0,where

Jδ0 (x, r) :=
1

φ(x, r)1/q sup
r<t<δ0

t−
n
q ∥ f ∥p/qLp(B(x,t),w)

and

Kδ0 (x, r) :=
1

φ(x, r)1/q sup
t>δ0

w(B(x, t))−
1
q ∥ f ∥p/qLp(B(x,t),w).

We use the fact that f ∈ VMp,φ1/p (Rn,w) and choose any fixed δ0 > 0 such that

sup
x∈Rn

w(B(x, t))−
1
q ∥ f ∥Lp(B(x,t),w)

φ(x, t)1/p <
(
ε

2Cp/q2

)q/p
, t ≤ δ0,

where C is constants from (4.5) and (4.11), which satisfies the estimate of the second expression uniform in
r ∈ (0, δ0) :

sup
x∈Rn

CJδ0 (x, r) <
ε
2
, 0 < r < δ0.

For the second term, we have

Kδ0 (x, r) ≤
m1/q
δ0
∥ f ∥p/qMp,φ1/p (Rn,w)

φ(x, r)1/q ,

where mδ0 is the constant from (4.5) with δ = δ0. Then, by (2.1) we choose small r such that

sup
x∈Rn

1
φ(x, r)

≤

 ε

2m1/q
δ0
∥ f ∥p/qMp,φ1/p (Rn,w)


q

,

which completes the estimation of the second expression and the proof. The proof of (4.9) is, step by step,
the same as in the proof of (4.8).



A. Kucukaslan / Filomat 37:6 (2023), 1893–1905 1904

References

[1] D.R. Adams, A note on Riesz potentials, Duke Math. 42, (1975), 765-778.
[2] V. Burenkov, V.S. Guliyev, Necessary and sufficient conditions for the boundedness of the Riesz operator in local Morrey-type spaces,

Potential Anal., 30 (3) (2009), 211-249.
[3] V. Burenkov, H.V. Guliyev, V.S. Guliyev, Necessary and sufficient conditions for boundedness of the fractional maximal operator in the

local Morrey-type spaces, J. Comput. Appl. Math., 208 (1) (2007), 280-301.
[4] N.A. Bokayev, V. Burenkov, D.T. Matin, On precompactness of a set in general local and global Morrey-type spaces, Eurasian Math. J., 8

(3) (2017), 109-115.
[5] R.R. Coifman, C. Fefferman,, Weighted norm inequalities for maximal functions and singular integrals, Tamkang J. Math., Studia Math.,

51 (1974), 241-250.
[6] A. Eridani, On the boundedness of a generalized fractional integral on generalized Morrey spaces, Tamkang J. Math., 33 (4) (2002),

335-340.
[7] A.D. Gadjiev, On generalized potential-type integral operators, Dedicated to Roman Taberski on the occasion of his 70th birthday.

Funct. Approx. Comment. Math. 25 (1997), 37-44.
[8] J. Garcia-Cuerva, J.L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math., 16, Amsterdam,

1985.
[9] C.S. Goodrich, M. A. Ragusa, A. Scapellato, Partial regularity of solutions to p(x)-Laplacian PDEs with discontinuous coefficients,

J. Differ. Equ., 268 (9) (2020), 5440-5468.
[10] L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Inc. Upper Saddle River, New Jersey, 2004.
[11] V.S. Guliyev, P.S. Shukurov, On the boundedness of the fractional maximal operator, Riesz potential and their commutators in generalized

Morrey spaces, Advances in Harmonic Analysis and Operator Theory, Series: Operator Theory: Advances and Applications, 229
(2013), 175-199.

[12] V.S. Guliyev, Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces, J. Inequal. Appl., Art. ID
503948, 20 pp. (2009).

[13] V.S. Guliyev, Generalized weighted Morrey spaces and higher order commutators of sublinear operators, Eurasian Math. J., 3 (3) (2012),
33-61.

[14] V.S. Guliyev, A.F. Ismayilova, A. Kucukaslan, A. Serbetci, Generalized fractional integral operators on generalized local Morrey spaces,
Journal of Function Spaces, Volume 2015, Article ID 594323, 8 pages.

[15] V.S. Guliyev, J.J. Hasanov, X.A. Badalov, Commutators of Riesz potential in the vanishing generalized weighted Morrey spaces with
variable exponent, Math. Inequal. Appl., 22 (1) (2019), 331-351.

[16] V.S. Guliyev, R.Ch. Mustafaev, On generalized fractional integrals, Trans. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 21 (4) (2001),
Math. Mech., 63-71, 237.

[17] T.Y. Komori, S. Shirai, Weighted Morrey spaces and a singular integral operator, Math. Nachr., 282 (2) (2009), 219-231.
[18] A. Kucukaslan, S.G. Hasanov, C. Aykol, Generalized fractional integral operators on vanishing generalized local Morrey spaces, Int. J. of

Math. Anal., 11 (6) (2017), 277–291.
[19] A. Kucukaslan, V.S. Guliyev, A. Serbetci, Generalized fractional maximal operators on generalized local Morrey spaces, Commun. Fac.

Sci. Univ. Ank. Ser. A1. Math. Stat., 69 (1) (2020), 73-87.
[20] A. Kucukaslan, Equivalence of norms of the generalized fractional fractional integral operator and the generalized fractional maximal

operator on generalized weighted Morrey spaces, Ann. Funct. Anal. 11 (2020) pp. 1007-1026.
[21] A. Kucukaslan, Two-type estimates for the boundedness of generalized fractional maximal operators on generalized weighted local Morrey

spaces, Turk. J. Math. Comput. Sci., 12 (1) (2020), pp. 57-66.
[22] A. Kucukaslan, Two-type estimates for the boundedness of generalized Riesz potential operator in the generalized weighted local Morrey

spaces, Euro-Tbilisi Math. J., 14 (4) (2021), 111-134. DOI: 10.3251/asetmj/1932200817.
[23] A.L. Mazzucato, Besov-Morrey spaces: function space theory and applications to non-linear PDE, Trans. Amer. Math. Soc., 355 (4)

(2003), 1297-1364, DOI 10.1090/S0002-9947-02-03214-2.
[24] C. Miranda, Sulle equazioni ellittiche del secondo ordine di tipo non variazionale, a coefficienti discontinui, Ann. Math. Pura E Appl. 63

(4) (1963), 353-386.
[25] C.B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1938), 126-166.
[26] B. Muckenhoupt, R. Wheeden, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972),

261-274.
[27] B. Muckenhoupt, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc., 192 (1974), 207-226.
[28] E. Nakai, On generalized fractional integrals, Taiwanese J. Math. 5 (2001), 587-602.
[29] J. Peetre, On the theory of Lp,λ, J. Funct. Anal., 4 (1969) 71-87.
[30] L.E. Persson, M.A. Ragusa, N. Samko, P. Wall, Commutators of Hardy operators in vanishing Morrey spaces, AIP Conf. Proc. 1493,

859 (2012).
[31] M.A. Ragusa, Commutators of fractional integral operators on vanishing-Morrey spaces, J. Global Optim. 40 1-3, (2008), 361-368.
[32] M.A. Ragusa, On weak solutions of ultraparabolic equations, Nonlinear Analysis: Theory, Methods and Applications 47 (1),

503-511, (2001).
[33] A. Scapellato, A modified Spanne-Peetre inequality on Mixed Morrey spaces, Bulletin of the Malaysian Mathematical Sciences

Society, 43 (6) (2020), 4197-4206.
[34] A. Ruiz, L. Vega, Unique continuation for Schrödinger operators with potentials in the Morrey class, Publ. Math., 35 (2) (1991), 291-298,

Conference of Mathematical Analysis (El Escorial, 1989).
[35] N. Samko, Weighted Hardy operators in the local generalized vanishing Morrey spaces Positivity (2013) 17:683706 DOI 10.1007/s11117-

012-0199-z.



A. Kucukaslan / Filomat 37:6 (2023), 1893–1905 1905

[36] N. Samko, Maximal, Potential and Singular Operators in Vanishing Generalized Morrey Spaces, J. Global Optim. (2014).
[37] C. Vitanza, Functions with vanishing Morrey norm and elliptic partial differential equations, Proceedings of Methods of Real Analysis

and Partial Differential Equations, Capri, Springer (1990), 147-150.
[38] C. Vitanza, Regularity results for a class of elliptic equations with coefficients in Morrey spaces, Ricerche di Matematica 42 (2) (1993),

265-281.


