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Abstract. Künzi and Yilzid introduced the concept of convexity structures in the sense of Takahashi in
quasi-pseudometric spaces [7]. In this article, we continue the study of this theory, introducing the concept
of W-convexity for real-valued pair of functions defined on an asymmetrically normed real vector space.
Moreover, we show that all minimal pairs of functions defined on an asymmetrically normed real vector
space equipped with a convex structure which is W-convex whenever W is translation-invariant.

1. Introduction

Künzi and Yildiz in [7] initiated the study on convex structures in the sense of Takahashi in T0-quasi-
metric spaces. They considered a T0-quasi-metric space (X, q) equipped with a Takahashi convexity structure
(briefly TCS). They defined a Takahashi convex structure W on a T0-quasi-metric space (X, q) as a map from
X × X × [0, 1] to X (that is, W(x, y, λ) is defined for all (x, y, λ) ∈ X × X × [0, 1]) satisfying the following
conditions:

q(v,W(x, y, λ)) ≤ λq(v, x) + (1 − λ)q(v, y) (1)

and

qt(v,W(x, y, λ)) ≤ λqt(v, x) + (1 − λ)qt(v, y) (2)

whenever v ∈ X.

In [12], Takahashi introduced the concept of convexity structure on a metric space. He called a metric space
equipped with a convexity structure as a convex metric space. Furthermore, he studied properties of these
spaces and formulated some fixed point theorems for maps which do not increase distances, the so-called
nonexpansive maps, on convex metric spaces. We point out that many authors studied the convex metric
spaces in Takahashi sense (see [1, 11, 13]).

In [3], Conradie et al. presented an explicit description of the algebraic and vector lattice operations on
the Isbell-convex hull of an asymmetrically normed real vector space. Let us mention that earlier on before
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[3], Olela Otafudu in [9] studied further properties of the Isbell-convex hull of an asymmetrically normed
real vector space and he obtained for instance that any member of the Isbell-convex hull is convex as a pair
of positive real valued and convex functions.

In this article, we introduce the concept of W-convex (or convex with respect to W) function pair on
an asymmetrically normed real vector space equipped with a Takahashi convexity structure W. We prove
for instance that a minimal function pair on an asymmetrically normed real vector space equipped with a
Takahashi convexity structure W is convex with respect to W (or W-convex) whenever W is a translation-
invariant (see Definition 3.5 (a)) and satisfies the homogeneity condition (see Definition 3.5 (b)). In addition,
we prove that the Chebychev center of a nonempty doubly closed convex bounded subset of a convex
T0-quasi-metric space is doubly closed convex bounded subset too under some conditions. Moreover,
we generalize some well-known fixed point theorems due to Takahashi for nonexpansive maps in convex
T0-quasi-metric spaces.

2. Preliminaries

This section recalls the most important definitions and preliminary results that we shall use in this paper.

Definition 2.1. Let X be a set and let q : X×X→ [0,∞) be a function mapping into the set [0,∞) of the nonnegative
reals. Then, q is called a quasi-pseudometric on X if

(a) q(x, x) = 0 whenever x ∈ X,
(b) q(x, z) ≤ q(x, y) + q(y, z) whenever x, y, z ∈ X.
We shall say that q is a T0-quasi-metric provided that q satisfies the following condition: for each x, y ∈ X,
q(x, y) = 0 = q(y, x) implies that x = y.

For any quasi-pseudometric q on a set X, we define an other quasi-pseudometric qt by qt(x, y) = q(y, x)
whenever x, y ∈ X. We shall call qt the conjugate quasi-pseudometric or dual-pseudometric of q. As usual, a quasi-
pseudometric q on X such that q = qt is called a pseudometric. Note that for any (T0-)quasi-pseudometric q,
we can associate the (pseudo) metric qs of q defined by qs = max{q, qt

} = q ∨ qt.

For a, b ∈ R we shall put a−̇b = max{a − b, 0}. If we equip R with u(a, b) = a−̇b, then (R,u) is a T0-quasi-
metric space that we call the standard T0-quasi-metric of R. Note that the metric us of u is the usual metric
on R where us(a, b) = |a − b|whenever a, b ∈ R.

For a given quasi-pseudometric space (X, q), the set Bq(x, ϵ) = {y ∈ X : q(x, y) < ϵ}with ϵ > 0 and x ∈ X is
called an open ϵ-ball at x. The collection of all open balls yields a base for a topology τ(q) and the topology
τ(q) is called the topology induced by q on X. Similarly the set Cq(x, ϵ) = {y ∈ X : q(x, y) ≤ ϵ} where ϵ > 0 and
x ∈ X is called an ϵ-closed ball at x. Note that Cq(x, ϵ) is τ(qt)-closed, but not τ(q)-closed in general.

Furthermore, suppose that (X, q) is a T0-quasi-metric space. For any nonempty bounded subset A of X,
we set

rx(A)q := sup{q(x, y) : y ∈ A} where x ∈ X

and
rx(A)q−1 := sup{q(y, x) : y ∈ A} where x ∈ X.

Furthermore, we define rx(A) by rx(A) := rx(A)q ∨ rx(A)q−1 where x ∈ X and

r(A) := inf{rx(A) : x ∈ A}.

We call
diam(A) = sup{q(x, y) : x ∈ A, y ∈ A}

the diameter of A. The set C(A) := {x ∈ A : rx(A) = r(A)} is called the Chebychev center of A (see [5]). For more
details about properties of rx(A), r(A) and diam(A) we refer the reader to [10].
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Remark 2.2. Note that for a given T0-quasi-metric space (X, q) and a bounded subset A of X, the values of diam(A),
rx(A) and r(A) do not change whenever are defined for the symmetrize space (X, qs) instead of (X, q). Moreover, the
Chebychev center of the symmetrize metric space (X, qs) is the same of the Chebychev center of (X, q).

The following example can be compared to [7, Example 8].

Example 2.3. Let (X, q) be a T0-quasi-metric space. For any x, y ∈ X with x , y and q(x, y) + q(y, x) , 0, the
function uq(x,y),q(y,x) : R ×R→ R defined by

uq(x,y),q(y,x)(λ, λ
′

) =
{

(λ − λ
′

)q(x, y) if λ ≥ λ
′

(λ
′

− λ)q(y, x) if λ < λ
′

is a T0-quasi-metric.

Remark 2.4. For any T0-quasi-metric (X, q), if q(x, y) = 1 and q(y, x) = 0 whenever x, y ∈ X, then the T0-quasi-
metric uq(x,y),q(y,x) is the standard T0-quasi-metric u on R defined earlier on.

Consider a T0-quasi-metric space (X, q). LetP0(X) be the set of all nonempty subsets of X. We recall that
for any given P ∈ P0(X), q(P, x) = inf{q(p, x) : p ∈ P} and q(x,P) = inf{q(x, p) : p ∈ P} for all x ∈ X.

For any P,Q ∈ P0(X), the so-called Hausdorff (-Bourbaki) quasi-pseudometric qH on P0(X) is defined by

qH(P,Q) = sup
t∈Q

q(P, t) ∨ sup
p∈P

q(p,Q).

It is well-known that qH is an extended (if qH may attain the value ∞, then the triangle inequality is
interpreted in the obvious way) T0-quasi-metric if we restrict the set P0(X) to the nonempty subsets of P of
X which satisfy P = clτ(q)P ∩ clq−1 P (see [2, 8]).

Definition 2.5. ([7, Definition 7]) Let (X, q) be a T0-quasi-metric space. For any subset P of X, we call clτ(q)P∩clq−1 P
the double closure of P. Moreover, if P = clτ(q)P ∩ clq−1 P, we say that P is doubly closed.

Let X be a real vector space. A function ∥.| : X −→ [0,∞) is called an asymmetric seminorm on X if for
any x, y ∈ X and t ∈ [0,∞) we have:

(a) ∥tx| = t∥x|;

(b) ∥x + y| ≤ ∥x| + ∥y|.

If moreover we have

(c) ∥x| = ∥ − x| = 0 if and only if x = 0,

then ∥.| is called an asymmetric norm, and the pair (X, ∥.|) is called an asymmetrically normed space.
If ∥.| is an asymmetric norm on X, then the function |.∥ : X −→ [0,∞) defined by

|x∥ = ∥ − x|

for any x ∈ X is an asymmetric norm on X and it is called the conjugate norm of ∥.|.
Moreover, the function ∥.∥ defined by

∥x∥ = max{∥x|, |x∥}

for any x ∈ X is a norm on X and it is called the symmetrisation of ∥.|. It is easy to see that any asymmetric
norm ∥.| on X induces a T0-quasi-metric q∥.| defined by

q∥.|(x, y) = ∥x − y|

for any x ∈ X.
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3. Convex structure in quasi-pseudometric space

In the follow-up, we use the terminology of [7].

Definition 3.1. Let (X, q) be a quasi-pseudometric space. We say that (X, q) has a Takahashi convex structure (or
convex structure) if there exists a mapping W : X × X × [0, 1]→ X satisfying for all x, y ∈ X and λ ∈ [0, 1],

q(z,W(x, y, λ)) ≤ λq(z, x) + (1 − λ)q(z, y);

and
q(W(x, y, λ), z) ≤ λq(x, z) + (1 − λ)q(y, z)

whenever z ∈ X.
If W is a convex structure on a quasi-pseudometric space (X, q), then we call the triple (X, q,W) a convex

quasi-pseudometric space.

Example 3.2. ([7, Example 4]) Let R be the set of real number equipped with the standard T0-quasi-metric space
u(x, y) = x−̇y = max{0, x − y}, whenever x, y ∈ R. If we define W(x, y, λ) = λx + (1 − λ)y, then (R,u,W) is a
convex quasi-metric space. Indeed, if z, x, y ∈ R and λ ∈ [0, 1], we have

u(z,W(x, y, λ)) = max{0, z + λz − λz − λx − (1 − λ)y}

which implies that
u(z,W(x, y, λ)) ≤ max{0, λ(z − x)} +max{0, (1 − λ)(z − y)}.

Moreover
u(z,W(x, y, λ)) ≤ λu(z, x) + (1 − λ)u(z, y).

Similarly, one has
u(W(x, y, λ), z) ≤ λu(x, z) + (1 − λ)u(y, z).

Proposition 3.3. (a) If (X, q,W) is a convex quasi-pseudometric space, then (X, qt,W) is a convex quasi-pseudometric
space too.

(b) If (X, q,W) is a convex quasi-pseudometric space, then (X, qs,W) is a convex metric space.

Proof. (a) The statement immediately follows from definition.

(b) Suppose that (X, q,W) is a convex quasi-pseudometric space. Then for all z, x, y ∈ X and λ ∈ [0, 1],
we have

q(z,W(x, y, λ)) ≤ λq(z, x) + (1 − λ)q(z, y) (3)

and

q(W(x, y, λ), z) ≤ λq(x, z) + (1 − λ)q(y, z). (4)

Since λq(z, x) ≤ λqs(z, x) and (1 − λ)q(z, y) ≤ (1 − λ)qs(z, y), then we have

λq(z, x) + (1 − λ)q(z, y) ≤ λqs(z, x) + (1 − λ)qs(z, y). (5)

By analogous arguments, we have

λq(x, z) + (1 − λ)q(y, z) ≤ λqs(z, x) + (1 − λ)qs(z, y). (6)

So, by combining inequalities (3) and (4) we obtain

qs(z,W(x, y, λ)) ≤ max{λq(z, x) + (1 − λ)q(z, y), λq(x, z) + (1 − λ)q(y, z)}.
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Therefore, from inequalities (5) and (6) we conclude that

qs(z,W(x, y, λ)) ≤ λqs(z, x) + (1 − λ)qs(z, y).

Thus, (X, qs,W) is a convex metric space. □

In the following, we prove that if W is a convex structure on the metric space (X, qs) of a T0-quasi-metric
space (X, q), it does not imply that W is the convex structure on the T0-quasi-metric space (X, q).

Remark 3.4. (compare [7, Example 6]) Note that the converse of Proposition 3.3(b) is not true.
Proof. Indeed, we equip X = [0, 1] × [− 1

4 ,
1
4 ] with the T0-quasi-metric q∥.| induced by the asymmetric norm

∥x| = max{∥x1
|, ∥x2
|} whenever x = (x1, x2) ∈ R2. Note that the norm of ∥.| is denoted by ∥.∥. Let us consider

x1 = (0, 0), y1 = (1, 0) ∈ X. Let a convex structure T(x, y, λ) = λx + (1 − λ)y whenever x, y ∈ X and λ ∈ [0, 1]. At
the point (x, y, λ) ∈ X × X × [0, 1], we define

W(x, y, λ) =
{

( 1
2 ,−

1
4 ) if (x, y, λ) = (x1, y1, 1

2 )
T(x, y, λ) if (x, y, λ) , (x1, y1, 1

2 ).

We have that W is a convex structure on (X, qs
∥.|

). We have to check only that W is a convex structure on (X, qs
∥.|

) at the
point (x, y, λ): Let z = (z1, z2) ∈ X. We have z1

∈ [0, 1] and thus 1
2 =

1
2 (∥z1

− 0∥+ ∥z1
− 1∥) ≤ 1

2∥z− x1
∥+ 1

2∥z− y1
∥.

Moreover, we have that ∥z −W(x1, y1, 1
2 )∥ ≤ 1

2 . Hence W is a convex structure on (X, qs
∥.|

).
Furthermore, W is not a convex structure on (X, q∥.|) since at z = ( 1

2 ,
1
4 ), we have that 1

2∥z−x1
|+ 1

2∥z−y1
| = 1

2 .
1
2+

1
2 .

1
4 =

3
8

but ∥z −W(x1, y1, 1
2 )| = 1

2 . Hence ∥z −W(x1, y1, 1
2 )| > 1

2∥z − x1
| + 1

2∥z − y1
|. Therefore, W is not a convex structure

on (X, q∥.|).

In the light of [7, Remark 7] we have the following definitions.

Definition 3.5. Let (X, q,W) be an asymmetrically real normed vector space.

(a) The convex structure W is called translation-invariant if W satisfies the condition

W(x + z, y + z, λ) =W(x, y, λ) + z

for all x, y, z ∈ X and λ ∈ [0, 1].

(b) We say that the convex structure W satisfies the homogeneity condition if for any α ∈ R we have

W(αx, αy, λ) = αW(x, y, λ)

for any x, y ∈ X and λ ∈ [0, 1].

It is easy to see that the convex structure in Example 3.2 is translation-invariant and satisfies the homo-
geneity condition.

The following useful observation is not new and it can be found in [7, Remark 5] and [13, Proposition
1.2].

Remark 3.6. For any convex T0-quasi-metric space (X, q,W), the following are true:

(1) For any x ∈ X and λ ∈ [0, 1],we have W(x, x, λ) = x.

(2) For any x, y ∈ X, it follows that W(y, x, 0) = x and W(y, x, 1) = y.

Proposition 3.7. (compare [12, Proposition 3]) If (X, q,W) is a convex T0-quasi-metric space, then W(x, y, λ) ∈
⟨x, y⟩q = {z ∈ X : q(x, y) = q(x, z) + q(z, y)} whenever x, y ∈ X.
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Proof. Since W is a convex structure on (X, q), for any x, y ∈ X and λ ∈ [0, 1], we have W(x, y, λ) ∈ X.
Then from triangle inequality of q, we have

q(x, y) ≤ q(x,W(x, y, λ)) + q(W(x, y, λ), y).

Furthermore,
q(x, y) ≤ λq(x, x) + (1 − λ)q(x, y) + λq(x, y) + (1 − λ)q(y, y).

It follows that

q(x, y) ≤ q(x,W(x, y, λ)) + q(W(x, y, λ), y) ≤ (1 − λ)q(x, y) + λq(x, y) = q(x, y).

Hence
q(x, y) = q(x,W(x, y, λ)) + q(W(x, y, λ), y).

Therefore, the assertion is proved. □

Definition 3.8. Let (X, q,W) be a convex quasi-pseudometric space. For any x, y ∈ X, the setS[x, y] := {W(x, y, λ) :
λ ∈ [0, 1]} is called quasi-metric segment with endpoints x, y.

Remark 3.9. If (X, q,W) is a convex T0-quasi-metric space, then for any x, y ∈ X with x , y, the quasi-metric
interval ⟨x, y⟩q contains S[x, y]. If x = y, then the quasi-metric interval which is a singleton coincides with the
quasi-metric segment.

The following definition was introduced in [7] and it can be compared with [13, Definition 1.3].

Definition 3.10. (compare [7, Definition 3]) Let (X, q,W) be a convex T0-quasi-metric space. We say that W is a
unique convex structure on (X, q) if for any w ∈ X for which there exists (x, y, λ) ∈ X × X × [0, 1] with

q(z,w) ≤ λq(z, x) + (1 − λ)q(z, y)

and
q(w, z) ≤ λq(x, z) + (1 − λ)q(y, z)

whenever z ∈ X, w =W(x, y, λ).

Remark 3.11. The uniqueness of a W convex structure on T0-quasi-metric space (X, q) means really that W is unique
convex structure on (X, q). Since for any T0-quasi-metric space (X, q), if W is a unique convex structure on (X, qs),
then W is a unique convex structure on (X, q) (see Proposition 3.3(b)). The uniqueness of the convex structure W on
a T0-quasi-metric space has connections with the concept of strict convexity (see [7, 13]).

For more details about the concept of strict convexity in T0-quasi-metric spaces, we refer the reader to [7].

The proof of the following important lemma can be found in [7].

Lemma 3.12. Let W be the unique convex structure on a T0-quasi-metric space (X, q). Then

W(W(x, y, λ), y, λ
′

) =W(x, y, λλ
′

)

whenever x, y ∈ X and λ, λ′ ∈ [0, 1].

Proposition 3.13. If W is the unique convex structure on a T0-quasi-metric space (X, q), then the map ψ :
(S[x, y], q) → ([0, q(x, y)],uq(x,y)q(y,x)) defined by ψ(W(x, y, λ)) = λq(x, y) whenever x, y ∈ X with x , y and
λ ∈ [0, 1] is an isometry embedding of S[x, y] into [0, q(x, y)].
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Proof. We first observe that for any x, y ∈ X and λ ∈ [0, 1], we have that

q(W(x, y, λ), x) = (1 − λ)q(y, x) and q(y,W(x, y, λ) = λq(y, x) (7)

and

q(x,W(x, y, λ)) = (1 − λ)q(x, y) and q(W(x, y, λ), y) = λq(x, y). (8)

To prove that ψ is an isometry, we need to prove that for any λ, λ
′

∈ [0, 1],

uq(x,y)q(y,x)(ψ(W(x, y, λ)), ψ(W(x, y, λ
′

))) = q(W(x, y, λ),W(x, y, λ
′

))

whenever x, y ∈ X.
We have two cases to prove since the case where λ = λ

′

is obvious.
Case 1. If λ < λ

′

, then we have

q(W(x, y, λ),W(x, y, λ
′

)) = q(W(x, y, λ
′

λ/λ
′

),W(x, y, λ
′

)).

Moreover, from Remark 3.12, it follows that

q(W(x, y, λ),W(x, y, λ
′

)) = q(W(W(x, y, λ
′

), y, λ/λ
′

),W(x, y, λ
′

)).

Thus from (7), we have

q(W(x, y, λ),W(x, y, λ
′

)) = (1 − λ/λ
′

)q(y,W(x, y, λ
′

)) = (1 − λ/λ
′

)λ
′

q(y, x).

So
q(W(x, y, λ),W(x, y, λ

′

)) = (λ
′

− λ)q(y, x) = uq(x,y)q(y,x)(ψ(W(x, y, λ)), ψ(W(x, y, λ
′

))).

Case 2. If λ > λ
′

, then
q(W(x, y, λ),W(x, y, λ

′

)) = q(W(x, y, λ),W(x, y, λλ
′

/λ)).

By similar arguments, as Case 1, and by using again Lemma 3.12 and (8) we have

q(W(x, y, λ),W(x, y, λ
′

)) = (λ
′

− λ)q(y, x) = uq(x,y)q(y,x)(ψ(W(x, y, λ)), ψ(W(x, y, λ
′

))).

□
The next result can be compared to [13, Remark 1.6] for corresponding metric result.

Remark 3.14. Let (X, q) be a T0-quasi-metric space. If q(x, y) = 1 and q(y, x) = 0 whenever x, y ∈ X, then S[x, y] is
homeomorphic to [0, 1]. Since the function h(λ) = W(x, y, λ) whenever λ ∈ [0, 1] is an isometry embedding of [0, 1]
into X|S[x,y] (see [7, Proposition 4]).

4. Some fixed point theorems

The following can be compared with definition [12, p.143]

Definition 4.1. Let (X, q,W) be a convex quasi-pseudometric space and C ⊆ X. We say that C is W-convex if
W(x, y, λ) ∈ C whenever x, y ∈ C and λ ∈ [0, 1].

Note that for any convex quasi-pseudometric space (X, q,W), X is W-convex and any W-convex subset C
of (X, q) is naturally a convex quasi-pseudometric, where the convex quasi-metric structure on C is just the
restriction of W to C × C × [0, 1].
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Lemma 4.2. ([7, Proposition 5]) If (X, q,W) is a convex quasi-pseudometric space, then whenever x, y ∈ X and
r, s ≥ 0, the closed balls Cq(x, r), Cq−1 (x, s) and the open balls Bq(x, r), Bq−1 (x, s) in X are W-convex subsets of X.
Moreover Cq(x, r) ∩ Cq−1 (y, s) and Bq(x, r) ∩ Bq−1 (y, s) are W-convex subsets of X.

Remark 4.3. (compare [12, Proposition 1]) Consider a convex quasi-pseudometric space (X, q,W) and a collection
(Ci)i∈I of W-convex subsets of X. It can easily be proved that

⋂
i∈I

Ci is also a W-convex subset of X.

Let (X, q,W) be a convex T0-quasi-metric space. We denote by CB0(X) the collection of bounded W-
convex elements ofP0(X) and denote byDCB0(X) the set of all nonempty doubly closed W-convex bounded
subsets of X.

Remark 4.4. ([7, p.15]) It is true that if P,B ∈ P0(X) are bounded, then qH(P,Q) is finite. Furthermore, if
P ∈ CB0(X), then clτ(q)P ∩ clq−1 P ∈ CB0(X).

Definition 4.5. A convex quasi-pseudometric space (X, q,W) is said to have a property (H) if any family {Ci}∈I (I
is assumed totally ordered) of nonempty doubly closed W-convex bounded subsets of X such that C j ⊆ Ci with i ≤ j
has nonempty intersection.

Remark 4.6. If a convex quasi-pseudometric space (X, q,W) satisfies the property (H), then (X, qs,W) satisfies the
property (C) in the sense of Takahashi.

Indeed, if a subset A of X is doubly closed then A is τ(qs)-closed. Obviously, if A is q-bounded, then A is
qs-bounded too. Therefore, any nonempty family of doubly closed W-convex bounded subsets of X is a nonempty
family of τ(qs)-closed W-convex and qs-bounded.

Proposition 4.7. If (X, q,W) is a convex T0-quasi-metric space which has the property (H) and A ⊆ X, then the
Chebychev center C(A) ∈ DCB0(X).

Proof. Let x ∈ X and n ∈N. Consider An(x), a subset of A, defined by

An(x) :=
{

y ∈ A : q(x, y) ≤ r(A) +
1
n

and q(y, x) ≤ r(A) +
1
n

}
.

Then

Cn =
⋂
x∈X

An(x) =
⋂
x∈X

[
Cq

(
x, r(A) +

1
n

)
∩ Cq−1

(
x, r(A) +

1
n

)]
=
⋂
x∈X

Cqs

(
x, r(A) +

1
n

)
.

Let z, t ∈ Cn. Then for any x ∈ X, we have

qs(x, t) ≤ r(A) +
1
n

and

qs(x, z) ≤ r(A) +
1
n
.

It follows that

q(t, z) ≤ q(t, x) + q(x, z) ≤ qs(x, t) + qs(x, z) ≤ 2r(A) +
2
n
.

So Cn is bounded whenever n ∈N.
We need to prove that Cn is doubly closed and W-convex whenever n ∈ N. Indeed we have Cn ⊆

clτ(q)Cn ∩ clτ(q−1)Cn.
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Let y ∈ clτ(q)Cn ∩ clτ(q−1)Cn. Then we have

x ∈ Bq

(
y, r(A) +

1
n

)
∩ Cn

and
x′ ∈ Bq−1

(
y, r(A) +

1
n

)
∩ Cn.

Since x ∈ Cn and q(y, x) < r(A) + 1
n it follows that

y ∈ Bq

(
x, r(A) +

1
n

)
⊆ Cq

(
x, r(A) +

1
n

)
.

Thus
y ∈
⋂
x∈X

Cq

(
x, r(A) +

1
n

)
.

By similar arguments we have

y ∈
⋂
x∈X

Cq−1

(
x, r(A) +

1
n

)
.

Therefore
y ∈
⋂
x∈X

Cq

(
x, r(A) +

1
n

)
∩ Cq−1

(
x, r(A) +

1
n

)
.

Hence
y ∈
⋂
x∈X

Cqs

(
x, r(A) +

1
n

)
= Cn.

One sees that {Cn}n∈N is a sequence of subsets of X such that Cn+1 ⊆ Cn and Cn is W-convex as intersection
of W-convex subsets of X. So Cn ∈ DCB0(X) whenever n ∈N.
Furthermore, since (X, q,W) has property (H), it follows that

⋂
∞

n=1 Cn , ∅. Observe that

C(A) =
∞⋂

n=1

Cn.

Therefore, C(A) is a doubly closed W-convex bounded subset of X. □

In [10], the concept of normal structure has been introduced for q-admissible subsets of a T0-quasi-metric
space. In the following we extend this concept in the context of convex quasi-metric spaces.

Definition 4.8. (compare [10, Definition 3.2]) A convex T0-quasi-metric space (X, q,W) is said to have a normal
structure if any doubly closed W-convex bounded subset A of X, we have r(A) < diam(A) and diam(A) > 0.

In the next result, we prove the existence of a fixed point for a self-map on a nonempty doubly closed
W-convex bounded subset with the normal structure.

Theorem 4.9. (compare [12, Theorem 1] Let (X, q,W) be a convex T0-quasi-metric space and K be a nonempty doubly
closed W-convex bounded subset of X with the normal structure. If T : (K, q) → (K, q) is a nonexpansive map, then
T has a fixed point in K.

Proof. Let us consider a set Γ defined by

Γ = {D ∈ DCB0(X) such that T : (D, q)→ (D, q) nonexpansive map}.

It follows that Γ , ∅ since K ∈ Γ. We partially order Γ by A ≤ B if and only if A ⊆ B whenever A,B ∈ Γ.
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Observe that if C = {Cα}α∈Λ is a chain in Γ, then
⋂
α∈Λ Cα ∈ Γ. Moreover whenever α ∈ Γ,

⋂
α∈Λ Cα ⊆ Cα,

hence Γ is bounded below by
⋂
α∈Λ Cα. By Zorn’s lemma it follows that Γ has a minimal element. Let A be

the minimal element of Γ. Then A , ∅ and T : (A, q)→ (A, q) is a nonexpansive map.

We need to show that A consists of a single point. Therefore, that single point will be the fixed point.
Indeed, let x ∈ C(A) = {x ∈ A : rx(A) = r(A)}. Then by nonexpansiveness of T, we have

q(T(x),T(y)) ≤ q(x, y) ≤ r(A)

and
q(T(y),T(x)) ≤ q(y, x) ≤ r(A)

whenever y ∈ A.
It implies that T(y) ∈ Cqs (T(x), r(A)). Thus T(A) ⊆ Cqs (T(x), r(A)). Furthermore, for x ∈ A, rT(x)(A) ≤

rx(A) = r(A) and r(A) ≤ rT(x)(A) since T(x) ∈ A. We have rT(x)(A) = r(A). So T(x) ∈ C(A) whenever x ∈ A.
Hence T : C(A) → C(A) is a nonexpansive map and by Proposition 4.7, we have that C(A) ∈ DCB0(X).
Furthermore C(A) ∈ Γ. We claim that diam(A) = 0. Suppose that diam(A) > 0, then since X has a normal
structure, it implies that r(A) < diam(A). Let z,w ∈ C(A), then

q(z,w) ≤ rz(A)q ≤ rz(A) = r(A)

and
q(w, z) ≤ rz(A)q−1 ≤ rz(A) = r(A).

Hence diam(C(A)) = sup{q(z,w) : z,w ∈ C(A)} ≤ r(A) < diam(A). It follows that C(A) is a proper subset of A
and it contradicts the minimality of A. Hence diam(A) = 0. □

Remark 4.10. Note that Theorem 4.9 can be proved by using [12] and Remark 4.6. Indeed if K is a nonempty doubly
closed W-convex bounded subset of X, then by Remark 4.6 we have that K is τ(qs)-closed and W-convex qs-bounded
subset of X. Furthermore, since T : (K, q)→ (K, q) is a nonexpansive map. We have

q(T(x),T(y)) ≤ q(x, y) whenever x, y ∈ K.

Then
q(T(y),T(x)) ≤ q(y, x) whenever x, y ∈ K.

Hence
qs(T(x),T(y)) ≤ qs(x, y) whenever x, y ∈ K.

Thus T : (K, qs) → (K, qs) is a nonexpansive map and K is τ(qs)-closed and W-convex qs-bounded subset of X with
normal structure. Therefore by [12, Theorem 1] T has a fixed point in K.

The following result extends [12, Theorem 2].

Theorem 4.11. Let W be the unique convex structure on a T0-quasi-metric space (X, q) with the property (H). If
K is a nonempty doubly closed convex bounded subset of X with the normal structure, then any commuting family

{Ti : i = 1, · · · ,n} of nonexpansive self-maps on (K, q) has a nonempty common fixed point set (i.e.
n⋂

i=1

Fix(Ti) , ∅),

where Fix(Ti) denotes the set of fixed points of Ti, that is Fix(Ti) = {x ∈ K : Ti(x) = x}.

Proof. Observe that if W is the unique convex structure on (X, q), then W = W|K is a unique convex
structure on (K, q). Suppose T : (K, q) → (K, q) is a nonexpansive maps. Then by Theorem 4.9 there exists
x ∈ K such that T(x) = x. Hence Fix(T) = {x ∈ K : T(x) = x} , ∅ and doubly closed and bounded. For any
x, y ∈ Fix(T), we have that W(x, y, λ) ∈ K since K is convex subset of X. Furthermore, let z ∈ K. Then

q(T(z),T(W(x, y, λ))) ≤ q(z,W(x, y, λ) ≤ λq(z, y) + (1 − λ)q(z, y)
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and
q(T(W(x, y, λ),T(z)) ≤= q(W(x, y, λ), z) ≤ λq(x, z) + (1 − λ)q(y, z).

So by uniqueness of W we have T(W(x, y, λ)) =W(x, y, λ) whenever x, y ∈ Fix(T). Hence W(x, y, λ) ∈ Fix(T)
and therefore Fix(T) is a W-convex subset of X.

Consider T1 and T2 two nonexpansive self-maps on (K, q) such that T2(T1) = T1(T2). We have to show
that T2(Fix(T1)) ⊆ Fix(T1). Let x ∈ Fix(T1). Then T1(x) = x and T2(x) = T2(T1(x)) = T1(T2(x)). Hence
T2(x) ∈ Fix(T1).

Furthermore, we have that T2 : Fix(T1) → Fix(T1) has a fixed point by Theorem 4.9 since Fix(T1) is a
nonempty doubly closed convex bounded subset of (K, q). Let us say y is the fixed point of T2. Then y is a
fixed point T1 too.
Then by induction on the family {Ti : i = 1, · · · ,n} of nonexpansive self-maps on (K, q), the set of common

fixed point
n⋂

i=1

Fix(Ti) , ∅. □

5. W-convex function pairs and Isbell-hull

In this section, we need first to know some facts of algebraic operations on the Isbell-convex hull of an
asymmetrically normed real vector space. For more details about algebraic operations on the Isbell-convex
hull we refer the reader to [3].

Let (X, ∥.|) be an asymmetrically normed real vector space and let a pair of functions f = ( f1, f2), where
f j : X→ −[0,∞) for j = 1, 2. The pair of functions f = ( f1, f2) is called ample on X if ∥x− y| ≤ f2(x)+ f1(y) for
all x, y ∈ X. Moreover, the pair of function f = ( f1, f2) is called minimal if for any ample pair of functions
1 = (11, 12) on X such that 11(x) ≤ f1(x) and 12(x) ≤ f2(x) for all x ∈ X, then 11 = f1 and 12 = f2. The set of
all minimal pairs of functions on X is denoted by E(X, ∥.|) and it is called the Isbell-hull of (X, ∥.|). Note that
the Isbell-hull of an asymmetrically normed real vector space is 1-injective and Isbell-convex in the sense
of [4]. If f = ( f1, f2) ∈ E(X, ∥.|), then it is well-known that for any x ∈ X,

f1(x) = sup
z∈X

u[∥x − z| − f2(z)]

and
f2(x) = sup

z∈X
u[∥z − x| − f1(z)].

For any z ∈ X, the pair of function fz = (∥x − z|, ∥z − x|) is minimal.
For t ∈ R and f ∈ E(X, ∥.|), the pair of functions f t = ( f t

1, f t
2) defined by

f t
1(x) =


t f1(t−1x) if t > 0
∥x| if t = 0
|t| f2(t−1x) if t < 0

and

f t
2(x) =


t f2(t−1x) if t > 0
∥x| if t = 0
|t| f1(t−1x) if t < 0

is minimal. Then the scalar multiplication on E(X, ∥.|) is defined by t f := f t for all t ∈ R and f ∈ E(X, ∥.|).
Furthermore, for any f = ( f1, f2), 1 = (11, 12) ∈ E(X, ∥.|), the addition ⊕ on E(X, ∥.|) is defined by f ⊕ 1 =

(( f ⊕ 1)1, ( f ⊕ 1)2) where,
( f ⊕ 1)1(x) = sup

z∈X
u[ f1(x − z) − 12(z)]
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and
( f ⊕ 1)2(x) = sup

z∈X
u[ f2(x − z) − 12(z)].

Definition 5.1. Let (X, ∥.|) be an asymmetrically normed real vector space. We say that (X, ∥.|,W) is convex
asymmetrically normed real vector space, if W is convex structure on the quasi-metric space (X, q∥.|).

Definition 5.2. (compare [1, Definition 2]) Let (X, ∥.|,W) be a convex asymmetrically normed real vector space. We
call a pair of functions f = ( f1, f2) on X W-convex if for any x, y ∈ X and λ ∈ [0, 1],

f j(W(x, y, λ)) ≤ λ f j(x) + (1 − λ) f j(y) for j = 1, 2.

Example 5.3. Let (X, ∥.|,W) be a convex asymmetrically normed real vector space. For any z ∈ X, the pair of
functions fz = (∥x − z|, ∥z − x|) is W-convex.

Indeed, for any x, y ∈ X and λ ∈ [0,∞], we have

( fz)1(W(x, y, λ)) = ∥W(x, y, λ) − z∥
≤ λ∥x − z| + (1 − λ)∥y − z| by definition of W
= λ( fz)1(x) + (1 − λ)( fz)1(y).

By similar arguments one has

( fz)2(W(x, y, λ)) ≤ λ( fz)2(x) + (1 − λ)( fz)2(y).

Thus fz is W-convex. □

Proposition 5.4. Suppose that (X, ∥.|,W) is a convex asymmetrically normed real vector space. For all t ∈ R and
f = ( f1, f2) ∈ E(X, ∥.|),

(1) the pair of functions f = ( f1, f2) is W-convex whenever W is translation-invariant.

(2) the pair of functions t f = ((t f )1, (t f )2) is W-convex whenever W satisfies the homogeneity condition.

Proof. Suppose that W is translation-invariant and W satisfies the homogeneity condition. Let x, y ∈ X
and λ ∈ [0, 1].

(1) Let f = ( f1, f2) be a minimal pair of functions on X. To show that f = ( f1, f2) is W-convex, we only
need to show that f2 satisfies the inequality:

f2(W(x, y, λ)) ≤ λ f2(x) + (1 − λ) f2(y) (9)

and the proof for f1 will follow analogously.
Suppose that f2 does not satisfy the inequality (9). Then there exists x0, y0 ∈ X and α ∈ [0, 1] such that

α f2(x0) + (1 − α) f2(y0) < f2(W(x0, y0, α)). (10)

Then we set

12(z) =
{

f2(z) if z ∈ X
f2(x0) + (1 − α) f2(y0) if z =W(x0, y0, α).

It follows clearly that ( f1, 12) < ( f1, f2). Consider a point x ∈ X with x ,W(x0, y0, α). Then we have

∥W(x0, y0, α) − x| = ∥W(x − x0, y − y0, α)| by the invariant transitivity of W
≤ α∥x0 − x| + (1 − α)∥y0 − y| by definition of W.
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Thus

∥W(x0, y0, α) − x| ≤ α∥x0 − x| + (1 − α)∥y0 − y|. (11)

But

∥x0 − x| ≤ f2(x0) + f1(x) and ∥y0 − x| ≤ f2(y0) + f1(x). (12)

Combining (11) and (12), it follows that

∥W(x0, y0, α) − x| ≤ α[ f2(x0) + f1(x)] + (1 − α)[ f2(y0) + f1(x)]
= α f2(x0) + (1 − α) f2(y0) + f1(x)
= 12(z0) + f1(x)

whenever z0 =W(x0, y0, α) and x ∈ X. Hence the pair of functions ( f1, 12) is ample and f = ( f1, f2) < ( f1, 12).
This is a contradiction with regards to the minimality of ( f1, f2). Therefore,

f2(W(x, y, λ)) ≤ λ f2(x) + (1 − λ) f2(y) for all x, y ∈ X and λ ∈ [0, 1].

(2) Let t ∈ R. To show that t f is W-convex, we have to show that for j = 1, 2 the function (t f ) j satisfies
the inequality

(t f ) j(W(x, y, λ)) ≤ λ(t f ) j(x) + (1 − λ)(t f ) j(y).

We only prove for j = 1 and the proof for j = 2 will follow by duality.
For t > 0 we have

(t f )1(W(x, y, λ)) = f t
1(W(x, y, λ)) = t f1(t−1W(x, y, λ)) by the definition of λ f

= t f t
1(W(t−1x, t−1y, λ)) by the homogeneity of W

≤ t[λ f1(t−1x) + (1 − λ) f1(t−1y)] from (1) above
= λ(t f )1(x) + (1 − λ)(t f )1(y).

For t = 0 we have

(t f )1(W(x, y, λ)) = f t
1(W(x, y, λ)) = ∥W(x, y, λ)| by the definition of λ f

≤ λ∥x| + (1 − λ)∥y|
= λ(t f )1(x) + (1 − λ)(t f )1(y).

For t < 0, it is easy to see from the definition of t f and the homogeneity of W that we have

(t f )1(W(x, y, λ)) = |t| f1(t−1W(x, y, λ))
≤ (t f )1(x) + (1 − λ)(t f )1(y).

Thus t f is W-convex pair of functions. □

Proposition 5.5. Suppose that (X, ∥.|,W) is a convex asymmetrically normed real vector space. If W is translation-
invariant, then the pair of functions f ⊕1 = (( f ⊕1)1, ( f ⊕1)2) is W-convex for all f = ( f1, f2), 1 = (11, 12) ∈ E(X, ∥.|).

Proof. We know that

( f ⊕ 1)1(x) = sup
z∈X

u[ f1(x − z) − 12(z)] and ( f ⊕ 1)2(x) = sup
z∈X

u[ f2(x − z) − 12(z)].

For all x, y ∈ X and λ ∈ [0, 1], we have to prove that

( f ⊕ 1)1(W(x, y, λ)) ≤ λ( f ⊕ 1)1(x) + (1 − λ)( f ⊕ 1)1(y)
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and
( f ⊕ 1)2(W(x, y, λ)) ≤ λ( f ⊕ 1)2(x) + (1 − λ)( f ⊕ 1)2(y).

Indeed, let x, y ∈ X and λ ∈ [0, 1]. Then by the invariant transivity of W we have for some z ∈ X,

f1(W(x, y, λ) − z) − 12(z) = f1(W(x − z, y − z, λ)) − 12(z)
≤ λ f1(x − z) + (1 − λ) f1(y − z) − 12(z)
= λ[ f1(x − z) − 12(z)] + (1 − λ)[ f1(y − z) − 12(z)].

Thus for some z ∈ X,

f1(W(x, y, λ) − z) − 12(z) ≤ λu( f1(x − z) − 12(z)) + (1 − λ)u( f1(y − z) − 12(z)).

It follows that

f1(W(x, y, λ) − z) − 12(z) ≤ λ sup
z∈X

u( f1(x − z) − 12(z)) + (1 − λ) sup
z∈X

u( f1(y − z) − 12(z)).

Hence,
sup
z∈X

u( f1(W(x, y, λ) − z) − 12(z)) ≤ λ( f ⊕ 1)1(x) + (1 − λ)( f ⊕ 1)1(y).

Therefore,
( f ⊕ 1)1(W(x, y, λ)) ≤ λ( f ⊕ 1)1(x) + (1 − λ)( f ⊕ 1)1(y).

One proves that
( f ⊕ 1)2(W(x, y, λ)) ≤ λ( f ⊕ 1)2(x) + (1 − λ)( f ⊕ 1)2(y)

by similar arguments. □
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