Filomat 37:6 (2023), 1989–1996 https://doi.org/10.2298/FIL2306989Y

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On *c*-sober spaces and ω^* -well-filtered spaces

Jinbo Yang^a, Yun Luo^a, Zixuan Ye^a

^a Jiangxi Provincial Center for Applied Mathematics, and School of Mathematics and Statistics, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China

Abstract. Based on countably irreducible version of Topological Rudin's Lemma, we give some characterizations of *c*-sober spaces and ω^* -well-filtered spaces. In particular, we prove that a topological space is *c*-sober iff its Smyth power space is *c*-sober and a *c*-sober space is an ω^* -well-filtered space. We also show that a locally compact ω^* -well-filtered *P*-space is *c*-sober and a *T*₀ space *X* is *c*-sober iff the one-point compactification of *X* is *c*-sober.

1. Introduction

In non-Hausdorff topology and domain theory, the *d*-spaces, sober spaces and well-filtered spaces form three of the most important class (see [1, 3–6, 9–18]). In the past few years, the research on sober spaces and well-filtered spaces has got some breakthrough progress (see [14]). In order to study some aspects of well-filtered spaces concerning various countability properties, Xu, Shen, Xi and Zhao introduced two new types of spaces – ω -well-filtered spaces and ω^* -well-filtered spaces ([10, 11]), both of which generalize well-filtered spaces, and the authors obtained many interesting results. For instance, a first countable T_0 space X is sober iff X is an ω -well-filtered *d*-space; every first-countable ω^* -well-filtered *d*-space is sober.

In the past two decades, some variants, or more specifically, generalizations, of sobriety such as bounded sobriety and *k*-bounded sobriety are introduced and studied. In [15], we introduced the concept of countably sober (*c*-sober for short) spaces to give some characterizations of countably approximating lattices [7] from topology structure perpective. In such spaces, every countably irreducible closed set is the closure of a unique singleton, where a set is countably irreducible simply means it cannot be covered by countably many closed sets unless one of the closed already covers it. *C*-sober spaces enjoy many pleasing properties similar to sober spaces (see [15, 16]). In [16], we established the dual equivalent between the category of complete lattices ordered generated by their countably prime elements and the category of *c*-sober *P*-spaces, where a *P*-space is a space in which the countable intersection of open sets is open [2, 8].

In this paper, We further study the properties of ω^* -well-filtered spaces and *c*-sober spaces. It is wellknown that every sober space is a well-filtered space, and a locally compact well-filtered space is sober. Recently, Lawson and Xi [6], Xu, Shen et al. [9, 10] proved every core compact well-filtered space is sober, giving a positive answer to Jia-Jung problem. It is a natural question whether there are some links between

Received: 13 October 2021; Accepted: 20 December 2021

²⁰²⁰ Mathematics Subject Classification. Primary 54B20; Secondary 54A25, 54D30, 06F30, 06B35

Keywords. c-sober space; ω^* -well-filtered space; Smyth power space; One-point compactification.

Communicated by Santi Spadaro

Research supported by the NSF of China (12071188, 11361028, 11671008) and Science and Technology Project from Jiangxi Education Department (GJJ150344)

Email addresses: jbyang73@163.com (Jinbo Yang), luoyun1213@163.com (Yun Luo), yezi4728@163.com (Zixuan Ye)

c-sober spaces and ω^* -well-filtered spaces. Following Xu, Shen, Xi and Zhao's methods [9–11, 13], we give some new characterizations of *c*-sober spaces and ω^* -well-filtered spaces. We obtain countably irreducible version of Topological Rudin's Lemma, and prove that a topological space is *c*-sober iff its Smyth power space is *c*-sober and a *c*-sober space is an ω^* -well-filtered space. We also show that a locally compact ω^* -well-filtered *P*-space is *c*-sober and a topological space *X* is *c*-sober iff the one-point compactification of *X* is *c*-sober.

2. Preliminary

We refer to [1] for the standard definitions and notations of order theory and domain theory, and to [3] for the topology.

For a poset *P* and $A \subseteq P$, let $\downarrow A = \{x \in P : x \le a \text{ for some } a \in A\}$ and $\uparrow A = \{x \in P : x \ge a \text{ for some } a \in A\}$. For $x \in P$, we write $\downarrow x$ for $\downarrow \{x\}$ and $\uparrow x$ for $\uparrow \{x\}$. Define $A^{\uparrow} = \{x \in P : x \text{ is an upper bound of } A \text{ in } P\}$. A subset *A* is called a *lower set* (resp., an *upper set*) if $A = \downarrow A$ (resp., $A = \uparrow A$). For a nonempty set *B* of *P*, let $max(B) = \{b \in B : b \text{ is a maximal element of } B\}$ and $min(B) = \{b \in B : b \text{ is a minimal element of } B\}$. For a set *X*, |X| will denote the cardinality of *X*. Let \mathbb{N} denote the set of all natural numbers with the usual order and $\omega = |\mathbb{N}|$.

A nonempty subset *D* of a poset *P* is *directed* (resp., *countably directed*) if every nonempty finite (resp., countable) subset of *D* have an upper bound in *D*. A subset $I \subseteq P$ is called an *ideal* of *P* if *I* is a directed lower set. Dually, we define the notion of *filters*. A poset *P* is called a *directed complete poset* (resp., *countably directed complete poset*), or *dcpo* (resp., *cdcpo*) for short, if for any directed (countably directed) subset $D \subseteq P$, $\bigvee D$ exists in *P*. In [11], *cdcpo* is written as ω^* -*dcpo*.

For a T_0 space X and $A \subseteq X$, the closure of A in X is denoted by $cl_X A$ or simply by A if there no confusion. We use \leq_X to repsent the *specialization order* on X, that is, $x \leq_X y$ iff $x \in \overline{\{y\}}$. In the following, when a T_0 space X is considered as a poset, the order always refers to the specialization order if no other explanation. Let O(X) (resp., C(X)) be the set of all open subsets (resp., closed subsets) of X.

A nonempty subset *A* of *X* is *irreducible* if for any $F_1, F_2 \in C(X)$, $A \subseteq F_1 \cup F_2$ implies $A \subseteq F_1$ or $A \subseteq F_2$. A space *X* is called *sober*, if for every irreducible closed set *F*, there is a unique point $a \in X$ such that $F = \overline{\{a\}}$. We denote the set of all irreducible (resp., irreducible closed) subsets of space *X* by Irr(*X*) (resp., Irr_c(*X*)).

Definition 2.1. ([15, 16]) *Let* X *be a topological space and* $F \subseteq X$.

(1) *F* is called countably irreducible if *F* is nonempty and if for any countable family $\{B_i : i \in \mathbb{N}\} \subseteq C(X), F \subseteq \bigcup_{i \in \mathbb{N}} B_i$ implies that $F \subseteq B_i$ for some $i \in \mathbb{N}$.

(2) *X* is called a countably sober space, or *c*-sober space for short, if for every countably irreducible closed set *F*, there exists a unique $a \in X$ such that $F = \overline{\{a\}}$.

We denote the set of all countably irreducible (resp., irreducible closed) subsets of space X by Clrr(X) (resp., $Clrr_c(X)$). Since $Clrr_c(X) \subseteq lrr_c(X)$, sober spaces are *c*-sober spaces and the converse is not true. Let X be an infinite countable set endowed with cofinite topology. Then X is a *c*-sober but not a sober space.

Lemma 2.2. Let X and Y be two spaces.

(1) If A is a countably directed subset of X, then $A \in Clrr(X)$.

(2) If $A \in \operatorname{CIrr}(X)$, then $\operatorname{cl}_X A \in \operatorname{CIrr}_c(X)$.

(3) If Y is a subspace of X and $A \subseteq Y$, then $A \in Clrr(Y)$ iff $A \in Clrr(X)$.

(4) If $f : X \to Y$ is continuous and $A \in Clrr(X)$, then $f(A) \in Clrr(Y)$.

Remark 2.3. Let X be an uncountably infinite set endowed with the co-countable topology (the empty set and the complements of countable subsets of X are open). Let A be a countably infinite subset of X. Then $cl_X A = X \in Clrr_c(X)$ but $A \notin Clrr(X)$.

For any topological space $X, \mathcal{G} \subseteq 2^X$, let $\diamond_{\mathcal{G}} A = \{G \in \mathcal{G} : G \cap A \neq \emptyset\}$ and $\Box_{\mathcal{G}} A = \{G \in \mathcal{G} : G \subseteq A\}$. The symbols $\diamond_{\mathcal{G}} A$ and $\Box_{\mathcal{G}} A$ will be simply written as $\diamond A$ and $\Box A$ respectively, if there is no ambiguous. The

lower Vietoris topology on G is the topology that has $\{\diamond_G U : U \in O(X)\}$ as a subbase, and the resulting space is denoted by $P_H(G)$. The *upper Vietoris topology* on G is the topology that has $\{\Box_G U : U \in O(X)\}$ as a base, and the resulting space is denoted by $P_S(G)$.

A subset *A* of a space *X* is called saturated if *A* equals the intersection of all open sets containing it (equivalently, *A* is an upper set in the specialization order). We shall use K(X) to denote the set of all nonempty compact saturated subsets of *X* and endow it with the *Smyth preorder*, that is, for $K_1, K_2 \in K(X)$, $K_1 \sqsubseteq K_2$ iff $K_2 \subseteq K_1$. *X* is called well-filtered if it is T_0 , and for any open set *U* and filtered family $\mathcal{K} \subseteq K(X)$, $\bigcap \mathcal{K} \subseteq U$ implies $K \subseteq U$ for some $K \in \mathcal{K}$. The space $P_S(K(X))$, denoted shortly by $P_S(X)$, is called the *Smyth power space* or *upper space* of *X*. It is easy to verify that the specialization order on $P_S(X)$ is the Smyth order (that is, $\leq_{P_S(X)} = \sqsubseteq$). The canonical mapping $\xi_X(=x \mapsto \uparrow x) : X \to P_S(X)$, is an order and topological embedding.

Remark 2.4. ([9, 13]) Let X be a T_0 space and $\mathcal{A} \subseteq \mathsf{K}(X)$. Then $\bigcap \mathcal{A} = \bigcap \operatorname{cl}_{P_S(X)} \mathcal{A}$.

The proof of the following proposition is similar to that of [1, Exercise V-4.4], and we omit it.

Proposition 2.5. Let X be a T_0 space. Then

(1) $P_H(\mathsf{CIrr}_c(X))$ is a c-sober space.

(2) The mapping $\eta_X : X \to P_H(Clrr_c(X))$ given by $\eta_X(x) = \{x\}$, is an order and topological embedding. (3) If Y is a c-sober space and $f : X \to Y$ is a continuous mapping, then there exists a unique continuous mapping

 $f^*: P_H(\mathsf{CIrr}_c(X)) \to Y$ such that $f^* \circ \eta_X = f$.

We call the space $P_H(Clrr_c(X))$, shortly denoted X^{cs} , with the mapping η_X the *c*-sobrification of X.

Rudin's Lemma plays a crucial role in domain theory (see [1, 3, 4, 9–14, 14]). In 2013, Heckmann and Keimel [4] established the following topological variant of Rudin's Lemma.

Lemma 2.6. (Topological Rudin's Lemma) Let X be a topological space and \mathcal{A} an irreducible subset of the Smyth power space $P_S(X)$. Then every closed set $C \subseteq X$ that meets all members of \mathcal{A} contains a minimal irreducible closed subset A that meets all members of \mathcal{A} .

In [10] and [11], Xu, Shen, Xi and Zhao introduced the following two kinds of countable version of well-filtered spaces.

Definition 2.7. ([10]) A T_0 space X is called ω -well-filtered, if for any countable filtered family $\{K_i : i < \omega\} \subseteq K(X)$ and $U \in O(X)$, it holds that

$$\bigcap_{i<\omega}K_i\subseteq U\Rightarrow \exists i_0<\omega, K_{i_0}\subseteq U.$$

Let *X* be a set and $\mathcal{A} \subseteq 2^X$. \mathcal{A} is called a countably filtered family if \mathcal{A} is a countably directed subset of the poset $(2^X, \supseteq)$, which means for any countable subfamily $\mathcal{F} \subseteq \mathcal{A}$, there exists an $A \in \mathcal{A}$ such that $A \subseteq B$ for each $B \in \mathcal{F}$.

Definition 2.8. ([11]) A T_0 space X is called ω^* -well-filtered, if for any countably filtered family $\{K_i : i \in I\} \subseteq K(X)$ and $U \in O(X)$, it satisfies that

$$\bigcap_{i\in I} K_i \subseteq U \Rightarrow \exists i_0 \in I, K_{i_0} \subseteq U.$$

3. *C*-sober spaces

In this section, we formulate and prove some equational characterizations of *c*-sober spaces. First of all, we give countably irreducible version of Topological Rudin's Lemma, which plays a vital role in characterizing *c*-sober spaces and ω^* -well-filtered spaces.

Lemma 3.1. Let X be a topological space and \mathcal{A} a countably irreducible subset of the Smyth power space $P_{S}(X)$. Then every closed set $C \subseteq X$ that meets all members of \mathcal{A} contains a minimal countably irreducible closed subset A that meets all members of \mathcal{A} .

Proof. Let $C = \{B \subseteq C : B \text{ is closed and } B \cap A \neq \emptyset \text{ for each } A \in \mathcal{A}\}$. Then $C \in C \neq \emptyset$. Since all members of $\mathcal A$ are compact, *C* is closed under filtered intersection. By the order-dual of Zorn's Lemma, *C* contains a minimal element A. Now we show that A is countably irreducible.

Let $A \subseteq \bigcup_{i \in \mathbb{N}} B_i$, where $\{B_i : i \in \mathbb{N}\} \subseteq C(X)$. Then $A = \bigcup_{i \in \mathbb{N}} (A \cap B_i)$. For any $K \in \mathcal{A}$, since $K \cap A \neq \emptyset$, there is some $i \in \mathbb{N}$ such that $K \cap A \cap B_i \neq \emptyset$, and whence $K \in \Diamond(A \cap B_i)$. Thus $\mathcal{A} \subseteq \bigcup_{i \in \mathbb{N}} \Diamond(A \cap B_i)$. Since \mathcal{A} is a countably irreducible subsets of the space $P_S(X)$ and the sets $\diamond(A \cap B_i)$ are closed in $P_S(X)$, $\mathcal{A} \subseteq \diamond(A \cap B_i)$ for some $j \in \mathbb{N}$. Thus $A \cap B_j \in C$. By minimality of A in C, $A = A \cap B_j \subseteq B_j$. Therefore A is countably irreducible.

Corollary 3.2. Let X be a T_0 space. If $\mathcal{A} \in \mathsf{Clrr}_c(P_S(X))$, then there exists a family $\{A_i : i \in I\}$ of minimal countably *irreducible closed sets such that* $\mathcal{A} = \bigcap_{i \in I} \Diamond A_i$.

Proposition 3.3. For a T₀ space X, the following conditions are equivalent:

- (1) *X* is a *c*-sober space.

- (1) X is a c-sover space. (2) For any $A \in \operatorname{Clrr}(X), \overline{A} \cap \bigcap_{a \in A} \uparrow a \neq \emptyset$. (3) For any $A \in \operatorname{Clrr}_{c}(X), A \cap \bigcap_{a \in A} \uparrow a \neq \emptyset$. (4) For any $A \in \operatorname{Clrr}(X)$ and $U \in O(X), \bigcap_{a \in A} \uparrow a \subseteq U$ implies $\uparrow a \subseteq U$ for some $a \in A$. (5) For any $A \in \operatorname{Clrr}_{c}(X)$ and $U \in O(X), \bigcap_{a \in A} \uparrow a \subseteq U$ implies $\uparrow a \subseteq U$ for some $a \in A$.

Proof. The proof is similar to that of [9, Proposition 5.7]. \Box

Theorem 3.4. For a T_0 space X, the following conditions are equivalent:

- (1) X is a c-sober space.
- (2) For any $\mathcal{A} \in \mathsf{Clrr}(P_S(X))$ and $U \in O(X)$, $\bigcap \mathcal{A} \subseteq U$ implies $K \subseteq U$ for some $K \in \mathcal{A}$.
- (3) For any $\mathcal{A} \in \mathsf{CIrr}_c(P_S(X))$ and $U \in O(X)$, $\bigcap \mathcal{A} \subseteq U$ implies $K \subseteq U$ for some $K \in \mathcal{A}$.
- (4) $P_S(X)$ is a c-sober space.

Proof. (1) \Rightarrow (2): Let $\mathcal{A} \in \mathsf{Clrr}(P_S(X))$ and $U \in O(X)$ with $\bigcap \mathcal{A} \subseteq U$. If $K \not\subseteq U$ for all $K \in \mathcal{A}$, then $K \cap (X \setminus U) \neq \emptyset$. By Lemma 3.1, there exists a minimal countably irreducible closed set $A \subseteq X \setminus U$ such that A meets all members of \mathcal{A} . Since X is c-sober, there exists an $a \in X$ such that $A = \overline{\{a\}}$. It follows from $A \subseteq X \setminus U$ that $a \notin U$. On the other hand, since $K \cap A = K \cap \{a\} \neq \emptyset$ for all $K \in \mathcal{A}, a \in K$, and whence $a \in \bigcap \mathcal{A} \subseteq U$, this is a contradiction.

 $(2) \Rightarrow (3)$: Trivial.

(3) \Rightarrow (4): Suppose $\mathcal{A} \in \mathsf{CIrr}_c(P_S(X))$ and let $H = \bigcap \mathcal{A}$. By condition (3), $H \neq \emptyset$. Now we prove the following:

(i) $H \in \mathsf{K}(X)$.

Let $\{U_i : i \in I\} \subseteq O(X)$ be a directed family with $\bigcap \mathcal{A} = H \subseteq \bigcup_{i \in I} U_i$. By condition (3), there exists some $K \in \mathcal{A}$ such that $K \subseteq \bigcup_{i \in I} U_i$. Since K is compact, there is an $i \in I$ such that $K \subseteq U_i$. Thus $H = \bigcap \mathcal{A} \subseteq U_i$. (ii) $\mathcal{A} = \operatorname{cl}_{P_S(X)}\{H\}.$

Since $\mathcal{A} = cl_{P_{\mathcal{C}}(X)}\mathcal{A}$, we need only to prove that $\mathcal{A} \cap \Box U \neq \emptyset$ if and only if $\{H\} \cap \Box U \neq \emptyset$ for any $U \in O(X)$. In fact,

> $\mathcal{A} \cap \Box U \neq \emptyset \quad \Leftrightarrow \quad \exists K \in \mathcal{A} \text{ such that } K \subseteq U$ $\Leftrightarrow \cap \mathcal{A} = H \subseteq U \quad (By \text{ condition (3)})$ $\Leftrightarrow \{H\} \cap \Box U \neq \emptyset.$

(4) \Rightarrow (1): For any $A \in \operatorname{Clrr}_{c}(X)$ and $U \in O(X)$ with $\bigcap_{a \in A} \uparrow a \subseteq U$. Then $\xi_{X}(A) \in \operatorname{Clrr}(P_{S}(X))$. If $K \in \bigcap_{a \in A} \uparrow_{\mathsf{K}(X)} \xi_X(a)$, then $K \subseteq \uparrow a$ for all $a \in A$, and whence $K \subseteq \bigcap_{a \in A} \uparrow a \subseteq U$. Thus $\bigcap_{a \in A} \uparrow_{\mathsf{K}(X)} \xi_X(a) \subseteq \Box U$. Since $P_S(X)$ is sober, by the equivalence of (1) and (4) in Proposition 3.3, there exists some $a \in A$ such that $\uparrow_{K(X)} \xi_X(a) \subseteq \Box U$. Hence $a \in U$. By Proposition 3.3 again, X is *c*-sober. \Box

Theorem 3.5. Let X be a T_0 space. Then the following conditions are equivalent: (1) X is c-sober.

(2) For every continuous mapping $f : X \to Y$ from X to a T_0 space Y and any $\mathcal{A} \in \mathsf{CIrr}(P_S(X)), \uparrow f(\cap \mathcal{A}) = \bigcap_{K \in \mathcal{A}} \uparrow f(K).$

(3) For every continuous mapping $f : X \to Y$ from X to a T_0 space Y and any $\mathcal{A} \in \mathsf{CIrr}_c(P_S(X)), \uparrow f(\cap \mathcal{A}) = \bigcap_{K \in \mathcal{A}} \uparrow f(K).$

(4) For every continuous mapping $f : X \to Y$ from X to a c-sober space Y and any $\mathcal{A} \in \mathsf{CIrr}(P_S(X)), \uparrow f(\cap \mathcal{A}) = \bigcap_{K \in \mathcal{A}} \uparrow f(K).$

(5) For every continuous mapping $f : X \to Y$ from X to a c-sober space Y and any $\mathcal{A} \in \mathsf{CIrr}_c(P_S(X))$, $\uparrow f(\cap \mathcal{A}) = \bigcap_{K \in \mathcal{A}} \uparrow f(K)$.

Proof. (1) \Rightarrow (2): It need only to check $\bigcap_{K \in \mathcal{A}} \uparrow f(K) \subseteq \uparrow f(\bigcap \mathcal{A})$. Let $y \in \bigcap_{K \in \mathcal{A}} \uparrow f(K)$. Then for each $K \in \mathcal{A}$, $f(K) \cap \overline{\{y\}} \neq \emptyset$, equivalently, $K \cap f^{-1}(\overline{\{y\}}) \neq \emptyset$. Since *X* is *c*-sober, we can show $f^{-1}(\overline{\{y\}}) \cap \bigcap \mathcal{A} \neq \emptyset$. In fact, if $f^{-1}(\overline{\{y\}}) \cap \bigcap \mathcal{A} = \emptyset$, then $\bigcap \mathcal{A} \subseteq X \setminus f^{-1}(\overline{\{y\}})$. By Theorem 3.4, $K \subseteq X \setminus f^{-1}(\overline{\{y\}})$ for some $K \in \mathcal{A}$. Thus $K \cap f^{-1}(\overline{\{y\}}) = \emptyset$, a contradiction.

 $(2) \Rightarrow (3) \Rightarrow (5), (2) \Rightarrow (4) \Rightarrow (5)$: Trivial.

 $(5) \Rightarrow (1)$: Let $\eta_X : X \to X^{cs} (= P_H(\mathsf{CIrr}_c(X)))$ be the topological embedding from X into its c-sobrification and $\xi_X : X \to P_S(X)$ the canonical topological embedding from X into the Smyth power space of X. Let $A \in \mathsf{CIrr}_c(X)$. Then $\mathrm{cl}_{P_S(X)}\xi_X(A) = \diamond_{\mathsf{K}(X)}A \in \mathsf{CIrr}_c(P_S(X))$. Thus

$$\uparrow_{\mathsf{CIrr}_{c}(X)} \eta_{X}(\bigcap \xi_{X}(A)) = \uparrow_{\mathsf{CIrr}_{c}(X)} \eta_{X}(\bigcap cl_{P_{S}(X)}\xi_{X}(A)) \quad (By \text{ Remark 2.4})$$

$$= \uparrow_{\mathsf{CIrr}_{c}(X)} \eta_{X}(\bigcap \diamondsuit_{\mathsf{K}(X)}A)$$

$$= \bigcap_{K \in \diamondsuit_{\mathsf{K}(X)}A} \uparrow_{\mathsf{CIrr}_{c}(X)} \eta_{X}(K) \quad (By \text{ condition (5)})$$

Since $\uparrow_{\mathsf{CIrr}_c(X)} \eta_X(\bigcap \xi_X(A)) = \uparrow_{\mathsf{CIrr}_c(X)} \eta_X(A^{\uparrow})$ and $\bigcap_{K \in \diamond_{\mathsf{K}(X)}A} \uparrow_{\mathsf{CIrr}_c(X)} \eta_X(K) = \uparrow_{\mathsf{CIrr}_c(X)} A, A \in \uparrow_{\mathsf{CIrr}_c(X)} A = \uparrow_{\mathsf{CIrr}_c(X)} \eta_X(A^{\uparrow})$. Therefore, there is some $x \in A^{\uparrow}$ such that $\overline{\{x\}} \subseteq A$, and consequently, $A = \overline{\{x\}}$. Thus X is c-sober. \Box

Theorem 3.6. *The following conditions are equivalent for a* T_0 *space X*:

(1) *X* is *c*-sober.

(2) For any $(A, K) \in \operatorname{Clrr}_{c}(X) \times \mathsf{K}(X)$, $\diamond_{\mathsf{K}(X)}A$ is an ideal of $(\mathsf{K}(X), \sqsubseteq)$, $max(A) \neq \emptyset$ and $\downarrow (A \cap K) \in C(X)$.

Proof. (1) \Rightarrow (2): Suppose that *X* is *c*-sober and $(A, K) \in \mathsf{CIrr}_c(X) \times \mathsf{K}(X)$. Then there exists an $x \in X$ such that $A = \overline{\{x\}}$, and hence $max(A) = \{x\} \neq \emptyset$. Note that $\diamond_{\mathsf{K}(X)}A = \{K \in \mathsf{K}(X) : K \cap \downarrow x \neq \emptyset\} = \{K \in \mathsf{K}(X) : \uparrow x \subseteq K\} = \{K \in \mathsf{K}(X) : K \sqsubseteq \uparrow x\} = \downarrow_{\mathsf{K}(X)} \uparrow x, \diamond_{\mathsf{K}(X)}A$ is an ideal of $(\mathsf{K}(X), \sqsubseteq)$. Now we show that $\downarrow (A \cap K) = \downarrow (\downarrow x \cap A) \in C(X)$. If $\downarrow x \cap K = \emptyset$, that is, $x \notin K$, then $\downarrow (\downarrow x \cap K) = \emptyset$; if $x \in K$, then $\downarrow (\downarrow x \cap K) = \downarrow x \in C(X)$.

(2) \Rightarrow (1): Let $\mathcal{A} \in \operatorname{Clrr}(P_S(X))$ and $U \in O(X)$ with $\bigcap \mathcal{A} \subseteq U$. If $K \nsubseteq U$ for each $K \in \mathcal{A}$, then by Lemma 3.1, $X \setminus U$ contains a minimal countably irreducible closed subset A with $\mathcal{A} \subseteq \diamond_{K(X)}A$. For any $K \in \mathcal{A}$, we can show that $\downarrow (A \cap K)$ meets all members of \mathcal{A} . In fact, let $K' \in \mathcal{A}$, then there exists a $K'' \in \diamond_{K(X)}A$ such that $K'' \subseteq K \cap K'$ since $\diamond_{K(X)}A$ is directed. Thus $\emptyset \neq K'' \cap A \subseteq K \cap K' \cap A \subseteq \downarrow (K \cap A) \cap K'$. Note that $\downarrow (A \cap K) \in C(X)$ by condition (2), it follows from the minimality of A that $\downarrow (A \cap K) = A$ for all $K \in \mathcal{A}$. Select an $x \in max(A)$. Then $x \in \downarrow (A \cap K)$ for each $K \in \mathcal{A}$, and consequently, there exists an $a_k \in A \cap K$ such that $x \leq a_k$. Then $x = a_k$ since $x \in max(A)$. Therefore $x \in \bigcap \mathcal{A} \subseteq U \subseteq X \setminus A$, a contradiction. By Theorem 3.4, X is c-sober. \Box

Let *X* be topological space, set $X^* = X \cup \{\infty\}$ with the topology whose members are the open subsets of *X* and all subsets *U* of X^* such that $X^* \setminus U$ is a closed compact subset of *X*. The space X^* is called the *one-point compactification* [3] of *X*. It is well-known the following properties hold:

(i) $C(X^*) = \{C \cup \{\infty\} : C \in C(X)\} \cup \{E \subseteq X : X \text{ is closed and compact in } (X, O(X))\}.$

(ii) X^* is a T_0 space if and only if X is a T_0 space.

Theorem 3.7. *Let* X *be a topological space. Then the following conditions are equivalent:*

(1) X is a c-sober space.

(2) The space X^* , which is the one-point compactification of X, is a c-sober space.

Proof. (1) \Rightarrow (2): Suppose $A \in Clrr_c(X^*)$. We now distinguish the following three cases:

Case 1. $\infty \notin A$. Then *A* is a closed compact subset of *X*. It is easy to show that $A \in \operatorname{Clrr}_c(X)$. In fact, for any $\{C_i : i \in \mathbb{N}\} \subseteq C(X)$, if $A \subseteq \bigcup_{i \in \mathbb{N}} C_i$, then $A = \bigcup_{i \in \mathbb{N}} (A \cap C_i)$. Note that $A \cap C_i$ is a closed and compact subset of $X, A \cap C_i \in C(X^*)$ for every $i \in \mathbb{N}$. It follows from $A \in \operatorname{Clrr}_c(X^*)$ that there exists an $i \in \mathbb{N}$ such that $A \subseteq A \cap C_i \subseteq C_i$. Thus $A \in \operatorname{Clrr}_c(X)$. Since *X* is a *c*-sober space, there is an $x \in X$ such that $A = \operatorname{cl}_X\{x\}$. Since $\infty \in X^* \setminus A \in O(X^*)$ and $x \notin X^* \setminus A, \infty \notin \operatorname{cl}_{X^*}\{x\}$. Therefore, $A = \operatorname{cl}_X\{x\} = (\operatorname{cl}_{X^*}\{x\}) \cap X = \operatorname{cl}_{X^*}\{x\}$.

Case 2. $A = \{\infty\}$. Trivial.

Case 3. $A = A_1 \cup \{\infty\}$, where A_1 is a nonempty closed subset of *X*. Since $A \in \text{Clrr}_c(X^*)$, A_1 is not a compact subset of *X*. Now we prove that $A_1 \in \text{Clrr}_c(X)$. For any $\{C_i : i \in \mathbb{N}\} \subseteq C(X)$, if $A_1 \subseteq \bigcup_{i \in \mathbb{N}} C_i$, then $A \subseteq \bigcup_{i \in \mathbb{N}} (C_i \cup \{\infty\})$. Note that $C_i \cup \{\infty\} \in C(X^*)$ for each $i \in \mathbb{N}$ and $A \in \text{Clrr}_c(X^*)$, there exists an $i \in \mathbb{N}$ such that $A = A_1 \cup \{\infty\} \subseteq C_i \cup \{\infty\}$. Then $A_1 \subseteq C_i$, proving that $A_1 \in \text{Clrr}_c(X)$. Since *X* is a *c*-sober space, there exists an $x \in X$ such that $A_1 = \operatorname{cl}_X\{x\}$. Hence $A = \operatorname{cl}_X\{x\} \cup \{\infty\} = ((\operatorname{cl}_{X^*}\{x\}) \cap X) \cup \{\infty\} = \operatorname{cl}_{X^*}\{x\} \cup \{\infty\}$. Now we show that $\infty \in \operatorname{cl}_{X^*}\{x\}$. We only need to prove that $x \notin E$ for any closed compact subset *E* of *X*. Suppose there exists a closed compact subset *E* of *X* such that $x \in E$, then $A_1 = \operatorname{cl}_X\{x\} \subseteq E$. Thus A_1 is a compact subset of *X*. This is a contradiction.

 $(2) \Rightarrow (1)$: Suppose $A \in \operatorname{Clrr}_c(X)$. Then $\operatorname{cl}_{X^*}A \in \operatorname{Clrr}_c(X^*)$. Since X^* is a *c*-sober space, there exists an $x \in X^*$ such that $\operatorname{cl}_{X^*}A = \operatorname{cl}_{X^*}\{x\}$. It is obvious that $x \neq \infty$. Thus $A = \operatorname{cl}_X A = (\operatorname{cl}_{X^*}A) \cap X = (\operatorname{cl}_{X^*}\{x\}) \cap X = \operatorname{cl}_X\{x\}$. Therefore *X* is a *c*-sober space.

4. ω^* -well-filtered spaces

In this section, we formulate some characterizations of ω^* -well-filtered spaces and establish some connections between *c*-sober spaces and ω^* -well-filtered spaces.

Theorem 4.1. Let X be a T₀ space. Consider the following conditions:

- (1) X is c-sober.
- (2) X is ω^* -well-filtered.

Then $(1) \Rightarrow (2)$, and if X is a locally compact P-space, then (1) and (2) are equivalent.

Proof. (1) \Rightarrow (2): Suppose that $\{K_i : i \in I\} \subseteq K(X)$ is a countably filtered family, $U \in O(X)$, and $\bigcap_{i \in I} K_i \subseteq U$. Then $\{K_i : i \in I\}$ is countably directed in poset $(K(X), \leq_{P_S(X)})$, and whence $\{K_i : i \in I\} \in Clrr(P_S(X))$. By Theorem 3.4, there exists an $i \in I$ such that $K_i \subseteq U$. Thus X is ω^* -well-filtered.

(2) \Rightarrow (1): Suppose *X* is a locally compact ω^* -well-filtered *P*-space and $A \in \operatorname{Clrr}_c(X)$. Let $\mathcal{K}_A = \{K \in \mathsf{K}(X) : A \cap \operatorname{int} K \neq \emptyset\}$. Select an $a \in A$. Since *X* is locally compact, there exists $K \in \mathsf{K}(X)$ such that $a \in \operatorname{int} K$. Then $a \in A \cap \operatorname{int} K$, and whence $K \in \mathcal{K}_A \neq \emptyset$. We claim that \mathcal{K}_A is countably filtered. Let $\{K_i : i \in \mathbb{N}\} \subseteq \mathcal{K}_A$. Then for each $i \in \mathbb{N}$, $A \cap \operatorname{int} K_i \neq \emptyset$. Since $A \in \operatorname{Clrr}_c(X)$, $A \cap \bigcap_{i \in \mathbb{N}} \operatorname{int} K_i \neq \emptyset$. Select an $x \in A \cap \bigcap_{i \in \mathbb{N}} \operatorname{int} K_i$. Since *X* is a *P*-space, $\bigcap_{i \in \mathbb{N}} \operatorname{int} K_i \in O(X)$. By the local compactness of *X*, there is a $K^* \in \mathsf{K}(X)$ such that $x \in \operatorname{int} K^* \subseteq K^* \subseteq \bigcap_{i \in \mathbb{N}} \operatorname{int} K_i$, and whence $K^* \in \mathcal{K}_A$ and $K^* \subseteq \bigcap_{i \in \mathbb{N}} K_i$. Therefore \mathcal{K}_A is countably filtered.

Note that $A \cap K \neq \emptyset$ for each $K \in \mathcal{K}_A$ and $A \in C(X)$, we have $\bigcap_{K \in \mathcal{K}_A} (K \cap A) \neq \emptyset$ since X is an ω^* -well-filtered space. Let $a \in \bigcap_{K \in \mathcal{K}_A} (K \cap A)$. Then $\overline{\{a\}} = \downarrow a \subseteq A$. If there is an $x \in A \setminus \downarrow a$, then $x \in X \setminus \downarrow a$. Since X is locally compact, there exists a $K \in K(X)$ such that $x \in intK \subseteq K \subseteq X \setminus \downarrow a$. Thus $K \in \mathcal{K}_A$ and $a \notin K$, a contradiction. Therefore $A = \overline{\{a\}}$. \Box

Example 4.2. (1) Let X be a countably infinite set and X_{cof} the space equipped with the co-finite topology. Then X_{cof} is a locally compact c-sober space, but X_{cof} is not a well-filtered space.

(2) Let X be a uncountable set and X_{coc} the space equipped with the co-countable topology. Then X_{coc} is a well-filtered P-space, and hence an ω^* -well-filtered space, but X_{coc} is not a c-sober space.

Theorem 4.3. For a T_0 topological space X, the following conditions are equivalent: (1) X is ω^* -well-filtered. (2) For every continuous mapping $f : X \to Y$ from X to a T_0 space and a countably filtered family $\mathcal{K} \subseteq \mathsf{K}(X)$, $\uparrow f(\cap \mathcal{K}) = \bigcap_{K \in \mathcal{K}} \uparrow f(K)$.

(3) For every continuous mapping $f : X \to Y$ from X to a c-sober space and a countably filtered family $\mathcal{K} \subseteq \mathsf{K}(X)$, $\uparrow f(\cap \mathcal{K}) = \bigcap_{K \in \mathcal{K}} \uparrow f(K)$.

Proof. (1) \Rightarrow (2): Let $\mathcal{K} \subseteq \mathsf{K}(X)$ be a countably filtered family. It need only to check $\bigcap_{K \in \mathcal{K}} \uparrow f(K) \subseteq \uparrow f(\bigcap \mathcal{K})$. Let $\underline{y} \in \bigcap_{K \in \mathcal{K}} \uparrow f(K)$. Then for each $K \in \mathcal{K}$, $\overline{\{y\}} \cap f(K) \neq \emptyset$, that is, $K \cap f^{-1}(\overline{\{y\}}) \neq \emptyset$. We can show that $f^{-1}(\overline{\{y\}}) \cap \bigcap \mathcal{K} \neq \emptyset$. In fact, suppose $f^{-1}(\overline{\{y\}}) \cap \bigcap \mathcal{K} = \emptyset$, then $\bigcap \mathcal{K} \subseteq X \setminus f^{-1}(\overline{\{y\}})$. Since X is ω^* -well-filtered, there exists some $K \in \mathcal{K}$ such that $K \subseteq X \setminus f^{-1}(\overline{\{y\}})$, a contradiction. Thus $\overline{\{y\}} \cap f(\bigcap \mathcal{K}) \neq \emptyset$. Therefore $y \in \uparrow f(\bigcap \mathcal{K})$, and consequently $\bigcap_{K \in \mathcal{K}} \uparrow f(K) \subseteq \uparrow f(\bigcap \mathcal{K})$.

(2) \Rightarrow (3): Trivial.

(3) \Rightarrow (1): Let $\eta_X : X \to X^{cs} (= P_H(\mathsf{CIrr}_c(X)))$ be the topological embedding from *X* into its *c*-sobrification. Suppose that $\mathcal{K} \subseteq \mathsf{K}(X)$ is countably filtered, $U \in O(X)$, and $\bigcap \mathcal{K} \subseteq U$. If $K \not\subseteq U$ for all $K \in \mathcal{K}$, then by Lemma 3.1, $X \setminus U$ contains a minimal countably irreducible closed subset *A* that still meets all members of \mathcal{K} . By condition (3), $\bigcap_{K \in \mathcal{K}} \uparrow_{\mathsf{CIrr}_c(X)} \eta_X(K) = \uparrow_{\mathsf{CIrr}_c(X)} \eta_X(G) \subseteq \uparrow_{\mathsf{CIrr}_c(X)} \eta_X(U) = \diamond_{\mathsf{CIrr}_c(X)} U$. For every $K \in \mathcal{K}$, since $A \cap K \neq \emptyset$, $A \in \uparrow_{\mathsf{CIrr}_c(X)} \eta_X(K)$. Thus $A \in \bigcap_{K \in \mathcal{K}} \uparrow_{\mathsf{CIrr}_c(X)} \eta_X(K) = \diamond_{\mathsf{CIrr}_c(X)} U$, and this means $A \cap U \neq \emptyset$, a contradiction. Therefore *X* is ω^* -well-filtered. \Box

Lemma 4.4. ([1]) For a nonempty family $\{K_i : i \in I\} \subseteq K(X), \bigvee_{i \in I} K_i \text{ exists in } K(X) \text{ iff } \bigcap_{i \in I} K_i \in K(X).$ In this case $\bigvee_{i \in I} K_i = \bigcap_{i \in I} K_i$.

Theorem 4.5. For a T₀ topological space X, the following conditions are equivalent:

(1) X is an ω^* -well-filtered space.

(2) $\mathsf{K}(X)$ is a cdcpo, and $\uparrow (A \cap \cap \mathcal{K}) = \bigcap_{K \in \mathcal{K}} \uparrow (A \cap K)$ for any countably filtered family $\mathcal{K} \subseteq \mathsf{K}(X)$ and $A \in \mathcal{C}(X)$.

(3) $\mathsf{K}(X)$ is a cdcpo, and $\uparrow (A \cap \cap \mathcal{K}) = \bigcap_{K \in \mathcal{K}} \uparrow (A \cap K)$ for any countably filtered family $\mathcal{K} \subseteq \mathsf{K}(X)$ and $A \in \mathsf{CIrr}_c(X)$.

Proof. (1) ⇒ (2): Suppose { $K_i : i \in I$ } ⊆ K(X) is countably directed, then $\bigcap_{i \in I} K_i \in K(X)$ since X is an ω^* -well-filtered space. Thus $\bigvee_{K(X)} \{K_i : i \in I\} = \bigcap \{K_i : i \in I\}$, and whence K(X) is a cdcpo. Suppose $\mathcal{K} \subseteq K(X)$ is a countably filtered family and $A \in C(X)$. It need only to check $\bigcap_{K \in \mathcal{K}} \uparrow (A \cap K) \subseteq \uparrow (A \cap \bigcap \mathcal{K})$. Let $x \in \bigcap_{K \in \mathcal{K}} \uparrow (A \cap K)$. Then for each $K \in \mathcal{K}, \downarrow x \cap A \cap K \neq \emptyset$. It follows from the ω^* -well-filteredness of X that $\bigcap_{K \in \mathcal{K}} (\downarrow x \cap A \cap K) \neq \emptyset$. Thus $x \in \bigcap_{K \in \mathcal{K}} \uparrow (A \cap K)$. Therefore $\bigcap_{K \in \mathcal{K}} \uparrow (A \cap K) \subseteq \uparrow (A \cap \bigcap \mathcal{K})$.

 $(2) \Rightarrow (3)$: Trivial.

(3) \Rightarrow (1): Suppose that $\mathcal{K} \subseteq \mathsf{K}(X)$ is countably filtered, $U \in O(X)$ and $\bigcap \mathcal{K} \subseteq U$. If $K \not\subseteq U$ for every $K \in \mathcal{K}$, then by Lemma 3.1, $X \setminus U$ contains a minimal countably irreducible closed subset A that still meets all members of \mathcal{K} . Let $\mathcal{K}^* = \{\uparrow (K \cap A) : K \in \mathcal{K}\}$. Then $\mathcal{K}^* \subseteq \mathsf{K}(X)$ and \mathcal{K}^* is countably filtered. Since $\mathsf{K}(X)$ is a cdcpo, by Lemma 4.4, $\emptyset \neq \bigcap \mathcal{K}^* = \bigcap_{K \in \mathcal{K}} \uparrow (K \cap A) \in \mathsf{K}(X)$. By condition (3), $\uparrow (A \cap \bigcap \mathcal{K}) = \bigcap_{K \in \mathcal{K}} (\uparrow A \cap K) \neq \emptyset$. On the other hand, $\uparrow (A \cap \bigcap \mathcal{K}) \subseteq \uparrow (A \cap U) = \emptyset$ since $A \subseteq X \setminus U$, a contradiction. Therefore X is an ω^* -well-filtered space. \Box

Acknowledgement. We thank the referees for carefully checking the original manuscript and providing us with valuable suggestions for improvement.

References

- G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, D.S. Scott, *Continuous Lattices and Domains*, Encyclopedia of Mathematics and Its Applications, vol. 93, Cambridge University Press, 2003.
- [2] L. Gillman, M. Jerrison, *Rings of continuous functions*, Graduate Texts in Mathmatics, pp. 62-65. D. Van Nostrand Publ. Co. New York, 1976.
- [3] J. Goubault-Larrecq, Non-Hausdorff Topology and Domain Theory, New Mathematical Monographs, vol. 22, Cambridge University Press, 2013.
- [4] R. Heckmann, K. Keimel, Quasicontinuous domains and the Smyth powerdomain, Electron. Notes Theor. Comput. Sci. 298(2013)215– 232.

- [5] K.H. Hofmann, J.D. Lawson, The spetral theory of distributive continuous lattices, Trans. Amer. Math. Soc. 246(1978), 285-310.
- [6] J. Lawson, G. Wu, X. Xi, Well-filtered spaces, compactness, and the lower topology, Houston J. Math. 46(1)(2020)283–294.
- [7] S.O. Lee, On countably approximating lattices, J. Korean Math. Soc. 25(1988)11-23.
- [8] W.W. McGovern, Free topologcial groups of weak P-spaces, Topol. Appl. 112(2001)175–180.
- [9] X. Xu, C. Shen, X. Xi and Zhao, On T₀ spaces determined by well-filtered spaces, Topol. Appl. 282(2020)107323.
- [10] X. Xu, C. Shen, X. Xi and Zhao, *First-countability*, ω-well-filtered spaces and reflections, Topol. Appl. 279(2020)107255.
 [11] X. Xu, C. Shen, X. Xi and Zhao, *First-countability*, ω-Rudin spaces and well-filtered determined spaces, Topol. Appl. 300(2021)107775.
- [12] X. Xu, X. Xi, D. Zhao, A complete Heyting algebra whose Scott topology is not sober, Fundam. Math. 252(2021)315–233.
- [13] X. Xu, D. Zhao, On topological Rudin's lemma, well-filtered spaces and sober spaces, Topol. Appl. 272(2020)107080.
- [14] X. Xu, D. Zhao, Some open problems on well-filtered spaces and sober spaces, Topol. Appl. 301(2021)107540.
- [15] J. Yang, J. Shi, Countably sober spaces, Electron. Notes in Theor. Comput. Sci. 333(2017) 143–151.
- [16] J. Yang, X. Xi, Which distributive lattices are lattices of open sets of P-spaces? Order. 38(3)391-399.
- [17] D. Zhao, T. Fan, Dcpo-completion of posets, Theor. Comp. Sci. 411(2010)2167-2173.
- [18] D. Zhao, W. Ho, On topologies defined by irreducible sets, J. Log. Algebraic Methods Program. 84(1)(2015)185-195.