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Abstract. Based on countably irreducible version of Topological Rudin’s Lemma, we give some charac-
terizations of c-sober spaces and ω∗-well-filtered spaces. In particular, we prove that a topological space
is c-sober iff its Smyth power space is c-sober and a c-sober space is an ω∗-well-filtered space. We also
show that a locally compact ω∗-well-filtered P-space is c-sober and a T0 space X is c-sober iff the one-point
compactification of X is c-sober.

1. Introduction

In non-Hausdorff topology and domain theory, the d-spaces, sober spaces and well-filtered spaces form
three of the most important class (see [1, 3–6, 9–18]). In the past few years, the research on sober spaces
and well-filtered spaces has got some breakthrough progress (see [14]). In order to study some aspects
of well-filtered spaces concerning various countability properties, Xu, Shen, Xi and Zhao introduced two
new types of spaces – ω-well-filtered spaces and ω∗-well-filtered spaces ([10, 11]), both of which generalize
well-filtered spaces, and the authors obtained many interesting results. For instance, a first countable T0
space X is sober iff X is an ω-well-filtered d-space; every first-countable ω∗-well-filtered d-space is sober.

In the past two decades, some variants, or more specifically, generalizations, of sobriety such as bounded
sobriety and k-bounded sobriety are introduced and studied. In [15], we introduced the concept of countably
sober (c-sober for short) spaces to give some characterizations of countably approximating lattices [7] from
topology structure perpective. In such spaces, every countably irreducible closed set is the closure of a
unique singleton, where a set is countably irreducible simply means it cannot be covered by countably
many closed sets unless one of the closed already covers it. C-sober spaces enjoy many pleasing properties
similar to sober spaces (see [15, 16]). In [16], we established the dual equivalent between the category
of complete lattices ordered generated by their countably prime elements and the category of c-sober P-
spaces, where a P-space is a space in which the countable intersection of open sets is open [2, 8].

In this paper, We further study the properties of ω∗-well-filtered spaces and c-sober spaces. It is well-
known that every sober space is a well-filtered space, and a locally compact well-filtered space is sober.
Recently, Lawson and Xi [6], Xu, Shen et al. [9, 10] proved every core compact well-filtered space is sober,
giving a positive answer to Jia-Jung problem. It is a natural question whether there are some links between
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c-sober spaces and ω∗-well-filtered spaces. Following Xu, Shen, Xi and Zhao’s methods [9–11, 13], we give
some new characterizations of c-sober spaces and ω∗-well-filtered spaces. We obtain countably irreducible
version of Topological Rudin’s Lemma, and prove that a topological space is c-sober iff its Smyth power
space is c-sober and a c-sober space is an ω∗-well-filtered space. We also show that a locally compact
ω∗-well-filtered P-space is c-sober and a topological space X is c-sober iff the one-point compactification of
X is c-sober.

2. Preliminary

We refer to [1] for the standard definitions and notations of order theory and domain theory, and to [3]
for the topology.

For a poset P and A ⊆ P, let ↓ A = {x ∈ P : x ≤ a for some a ∈ A} and ↑ A = {x ∈ P : x ≥ a for some a ∈ A}.
For x ∈ P, we write ↓ x for ↓ {x} and ↑ x for ↑ {x}. Define A↑ = {x ∈ P : x is an upper bound of A in P}. A
subset A is called a lower set (resp., an upper set) if A =↓ A (resp., A =↑ A). For a nonempty set B of P, let
max(B) = {b ∈ B : b is a maximal element of B} and min(B) = {b ∈ B : b is a minimal element of B}. For a set
X, |X|will denote the cardinality of X. LetN denote the set of all natural numbers with the usual order and
ω = |N|.

A nonempty subset D of a poset P is directed (resp., countably directed) if every nonempty finite (resp.,
countable) subset of D have an upper bound in D. A subset I ⊆ P is called an ideal of P if I is a directed
lower set. Dually, we define the notion of filters. A poset P is called a directed complete poset (resp., countably
directed complete poset), or dcpo (resp., cdcpo) for short, if for any directed (countably directed) subset D ⊆ P,∨

D exists in P. In [11], cdcpo is written as ω∗-dcpo.
For a T0 space X and A ⊆ X, the closure of A in X is denoted by clXA or simply by A if there no confusion.

We use ≤X to repsent the specialization order on X, that is, x ≤X y iff x ∈ {y}. In the following, when a T0 space
X is considered as a poset, the order always refers to the specialization order if no other explanation. Let
O(X) (resp., C(X)) be the set of all open subsets (resp., closed subsets) of X.

A nonempty subset A of X is irreducible if for any F1,F2 ∈ C(X), A ⊆ F1 ∪ F2 implies A ⊆ F1 or A ⊆ F2. A
space X is called sober, if for every irreducible closed set F, there is a unique point a ∈ X such that F = {a}.
We denote the set of all irreducible (resp., irreducible closed) subsets of space X by Irr(X) (resp., Irrc(X)).

Definition 2.1. ([15, 16]) Let X be a topological space and F ⊆ X.
(1) F is called countably irreducible if F is nonempty and if for any countable family {Bi : i ∈N} ⊆ C(X), F ⊆

⋃
i∈N Bi

implies that F ⊆ Bi for some i ∈N.
(2) X is called a countably sober space, or c-sober space for short, if for every countably irreducible closed set F, there
exists a unique a ∈ X such that F = {a}.

We denote the set of all countably irreducible (resp., irreducible closed) subsets of space X by CIrr(X)
(resp., CIrrc(X)). Since CIrrc(X) ⊆ Irrc(X), sober spaces are c-sober spaces and the converse is not true. Let X
be an infinite countable set endowed with cofinite topology. Then X is a c-sober but not a sober space.

Lemma 2.2. Let X and Y be two spaces.
(1) If A is a countably directed subset of X, then A ∈ CIrr(X).
(2) If A ∈ CIrr(X), then clXA ∈ CIrrc(X).
(3) If Y is a subspace of X and A ⊆ Y, then A ∈ CIrr(Y) iff A ∈ CIrr(X).
(4) If f : X→ Y is continuous and A ∈ CIrr(X), then f (A) ∈ CIrr(Y).

Remark 2.3. Let X be an uncountably infinite set endowed with the co-countable topology (the empty set and the
complements of countable subsets of X are open). Let A be a countably infinite subset of X. Then clXA = X ∈ CIrrc(X)
but A < CIrr(X).

For any topological space X, G ⊆ 2X, let ^GA = {G ∈ G : G ∩ A , ∅} and □GA = {G ∈ G : G ⊆ A}. The
symbols ^GA and □GA will be simply written as ^A and □A respectively, if there is no ambiguous. The
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lower Vietoris topology on G is the topology that has {^GU : U ∈ O(X)} as a subbase, and the resulting space
is denoted by PH(G). The upper Vietoris topology on G is the topology that has {□GU : U ∈ O(X)} as a base,
and the resulting space is denoted by PS(G).

A subset A of a space X is called saturated if A equals the intersection of all open sets containing it
(equivalently, A is an upper set in the specialization order). We shall use K(X) to denote the set of all
nonempty compact saturated subsets of X and endow it with the Smyth preorder, that is, for K1,K2 ∈ K(X),
K1 ⊑ K2 iff K2 ⊆ K1. X is called well-filtered if it is T0, and for any open set U and filtered family K ⊆ K(X),⋂
K ⊆ U implies K ⊆ U for some K ∈ K . The space PS(K(X)), denoted shortly by PS(X), is called the

Smyth power space or upper space of X. It is easy to verify that the specialization order on PS(X) is the Smyth
order (that is, ≤PS(X)=⊑). The canonical mapping ξX(= x 7→↑ x) : X → PS(X), is an order and topological
embedding.

Remark 2.4. ([9, 13]) Let X be a T0 space andA ⊆ K(X). Then
⋂
A =

⋂
clPS(X)A.

The proof of the following proposition is similar to that of [1, Exercise V-4.4], and we omit it.

Proposition 2.5. Let X be a T0 space. Then
(1) PH(CIrrc(X)) is a c-sober space.
(2) The mapping ηX : X→ PH(CIrrc(X)) given by ηX(x) = {x}, is an order and topological embedding.
(3) If Y is a c-sober space and f : X→ Y is a continuous mapping, then there exists a unique continuous mapping

f ∗ : PH(CIrrc(X))→ Y such that f ∗ ◦ ηX = f .

We call the space PH(CIrrc(X)), shortly denoted Xcs, with the mapping ηX the c-sobrification of X.
Rudin’s Lemma plays a crucial role in domain theory (see [1, 3, 4, 9–14, 14]). In 2013, Heckmann and

Keimel [4] established the following topological variant of Rudin’s Lemma.

Lemma 2.6. (Topological Rudin’s Lemma) Let X be a topological space andA an irreducible subset of the Smyth
power space PS(X). Then every closed set C ⊆ X that meets all members ofA contains a minimal irreducible closed
subset A that meets all members ofA.

In [10] and [11], Xu, Shen, Xi and Zhao introduced the following two kinds of countable version of
well-filtered spaces.

Definition 2.7. ([10]) A T0 space X is called ω-well-filtered, if for any countable filtered family {Ki : i < ω} ⊆ K(X)
and U ∈ O(X), it holds that ⋂

i<ω

Ki ⊆ U⇒ ∃i0 < ω,Ki0 ⊆ U.

Let X be a set andA ⊆ 2X. A is called a countably filtered family ifA is a countably directed subset of
the poset (2X,⊇), which means for any countable subfamily F ⊆ A, there exists an A ∈ A such that A ⊆ B
for each B ∈ F .

Definition 2.8. ([11]) A T0 space X is called ω∗-well-filtered, if for any countably filtered family {Ki : i ∈ I} ⊆ K(X)
and U ∈ O(X), it satisfies that ⋂

i∈I

Ki ⊆ U⇒ ∃i0 ∈ I,Ki0 ⊆ U.

3. C-sober spaces

In this section, we formulate and prove some equational characterizations of c-sober spaces. First
of all, we give countably irreducible version of Topological Rudin’s Lemma, which plays a vital role in
characterzing c-sober spaces and ω∗-well-filtered spaces.
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Lemma 3.1. Let X be a topological space and A a countably irreducible subset of the Smyth power space PS(X).
Then every closed set C ⊆ X that meets all members of A contains a minimal countably irreducible closed subset A
that meets all members ofA.

Proof. Let C = {B ⊆ C : B is closed and B ∩ A , ∅ for each A ∈ A}. Then C ∈ C , ∅. Since all members of
A are compact, C is closed under filtered intersection. By the order-dual of Zorn’s Lemma, C contains a
minimal element A. Now we show that A is countably irreducible.

Let A ⊆
⋃

i∈N Bi, where {Bi : i ∈N} ⊆ C(X). Then A =
⋃

i∈N(A∩Bi). For any K ∈ A, since K∩A , ∅, there
is some i ∈ N such that K ∩ A ∩ Bi , ∅, and whence K ∈ ^(A ∩ Bi). ThusA ⊆

⋃
i∈N^(A ∩ Bi). SinceA is a

countably irreducible subsets of the space PS(X) and the sets ^(A ∩ Bi) are closed in PS(X), A ⊆ ^(A ∩ B j)
for some j ∈ N. Thus A ∩ B j ∈ C. By minimality of A in C, A = A ∩ B j ⊆ B j. Therefore A is countably
irreducible.

Corollary 3.2. Let X be a T0 space. IfA ∈ CIrrc(PS(X)), then there exists a family {Ai : i ∈ I} of minimal countably
irreducible closed sets such thatA =

⋂
i∈I ^Ai.

Proposition 3.3. For a T0 space X, the following conditions are equivalent:
(1) X is a c-sober space.
(2) For any A ∈ CIrr(X), A ∩

⋂
a∈A
↑ a , ∅.

(3) For any A ∈ CIrrc(X), A ∩
⋂
a∈A
↑ a , ∅.

(4) For any A ∈ CIrr(X) and U ∈ O(X),
⋂
a∈A
↑ a ⊆ U implies ↑ a ⊆ U for some a ∈ A.

(5) For any A ∈ CIrrc(X) and U ∈ O(X),
⋂
a∈A
↑ a ⊆ U implies ↑ a ⊆ U for some a ∈ A.

Proof. The proof is similar to that of [9, Proposition 5.7].

Theorem 3.4. For a T0 space X, the following conditions are equivalent:
(1) X is a c-sober space.
(2) For anyA ∈ CIrr(PS(X)) and U ∈ O(X),

⋂
A ⊆ U implies K ⊆ U for some K ∈ A.

(3) For anyA ∈ CIrrc(PS(X)) and U ∈ O(X),
⋂
A ⊆ U implies K ⊆ U for some K ∈ A.

(4) PS(X) is a c-sober space.

Proof. (1) ⇒ (2): Let A ∈ CIrr(PS(X)) and U ∈ O(X) with
⋂
A ⊆ U. If K ⊈ U for all K ∈ A, then

K∩ (X \U) , ∅. By Lemma 3.1, there exists a minimal countably irreducible closed set A ⊆ X \U such that A
meets all members ofA. Since X is c-sober, there exists an a ∈ X such that A = {a}. It follows from A ⊆ X \U
that a < U. On the other hand, since K ∩A = K ∩ {a} , ∅ for all K ∈ A, a ∈ K , and whence a ∈

⋂
A ⊆ U, this

is a contradiction.
(2)⇒ (3): Trivial.
(3) ⇒ (4): Suppose A ∈ CIrrc(PS(X)) and let H =

⋂
A. By condition (3), H , ∅. Now we prove the

following:
(i) H ∈ K(X).
Let {Ui : i ∈ I} ⊆ O(X) be a directed family with

⋂
A = H ⊆

⋃
i∈I Ui. By condition (3), there exists some

K ∈ A such that K ⊆
⋃

i∈I Ui. Since K is compact, there is an i ∈ I such that K ⊆ Ui. Thus H =
⋂
A ⊆ Ui.

(ii)A = clPS(X){H}.
SinceA = clPS(X)A, we need only to prove thatA∩□U , ∅ if and only if {H} ∩□U , ∅ for any U ∈ O(X).

In fact,
A∩ □U , ∅ ⇔ ∃ K ∈ A such that K ⊆ U

⇔
⋂
A = H ⊆ U (By condition (3))

⇔ {H} ∩ □U , ∅.

(4) ⇒ (1): For any A ∈ CIrrc(X) and U ∈ O(X) with
⋂

a∈A ↑ a ⊆ U. Then ξX(A) ∈ CIrr(PS(X)). If
K ∈
⋂

a∈A ↑K(X) ξX(a), then K ⊆↑ a for all a ∈ A, and whence K ⊆
⋂

a∈A ↑ a ⊆ U. Thus
⋂

a∈A ↑K(X) ξX(a) ⊆ □U.
Since PS(X) is sober, by the equivalence of (1) and (4) in Proposition 3.3, there exists some a ∈ A such that
↑K(X) ξX(a) ⊆ □U. Hence a ∈ U. By Proposition 3.3 again, X is c-sober.



J. Yang et al. / Filomat 37:6 (2023), 1989–1996 1993

Theorem 3.5. Let X be a T0 space. Then the following conditions are equivalent:
(1) X is c-sober.
(2) For every continuous mapping f : X → Y from X to a T0 space Y and any A ∈ CIrr(PS(X)), ↑ f (

⋂
A) =⋂

K∈A ↑ f (K).
(3) For every continuous mapping f : X → Y from X to a T0 space Y and any A ∈ CIrrc(PS(X)), ↑ f (

⋂
A) =⋂

K∈A ↑ f (K).
(4) For every continuous mapping f : X→ Y from X to a c-sober space Y and anyA ∈ CIrr(PS(X)), ↑ f (

⋂
A) =⋂

K∈A ↑ f (K).
(5) For every continuous mapping f : X → Y from X to a c-sober space Y and any A ∈ CIrrc(PS(X)),

↑ f (
⋂
A) =

⋂
K∈A ↑ f (K).

Proof. (1)⇒ (2): It need only to check
⋂

K∈A ↑ f (K) ⊆↑ f (
⋂
A). Let y ∈

⋂
K∈A ↑ f (K). Then for each K ∈ A,

f (K) ∩ {y} , ∅, equivalently, K ∩ f−1({y}) , ∅. Since X is c-sober, we can show f−1({y}) ∩
⋂
A , ∅. In fact,

if f−1({y}) ∩
⋂
A = ∅, then

⋂
A ⊆ X \ f−1({y}). By Theorem 3.4, K ⊆ X \ f−1({y}) for some K ∈ A. Thus

K ∩ f−1({y}) = ∅, a contradiction.
(2)⇒ (3)⇒ (5), (2)⇒ (4)⇒ (5): Trivial.
(5)⇒ (1): Let ηX : X→ Xcs(= PH(CIrrc(X))) be the topological embedding from X into its c-sobrification

and ξX : X → PS(X) the canonical topological embedding from X into the Smyth power space of X. Let
A ∈ CIrrc(X). Then clPS(X)ξX(A) = ^K(X)A ∈ CIrrc(PS(X)). Thus

↑CIrrc(X) ηX(
⋂
ξX(A)) = ↑CIrrc(X) ηX(

⋂
clPS(X)ξX(A)) (By Remark 2.4)

= ↑CIrrc(X) ηX(
⋂
^K(X)A)

=
⋂

K∈^K(X)A ↑CIrrc(X) ηX(K) (By condition (5))

Since ↑CIrrc(X) ηX(
⋂
ξX(A)) =↑CIrrc(X) ηX(A↑) and

⋂
K∈^K(X)A ↑CIrrc(X) ηX(K) =↑CIrrc(X) A, A ∈↑CIrrc(X) A =↑CIrrc(X)

ηX(A↑). Therefore, there is some x ∈ A↑ such that {x} ⊆ A, and consequently, A = {x}. Thus X is c-sober.

Theorem 3.6. The following conditions are equivalent for a T0 space X:
(1) X is c-sober.
(2) For any (A,K) ∈ CIrrc(X) × K(X), ^K(X)A is an ideal of (K(X),⊑), max(A) , ∅ and ↓ (A ∩ K) ∈ C(X).

Proof. (1)⇒ (2): Suppose that X is c-sober and (A,K) ∈ CIrrc(X)×K(X). Then there exists an x ∈ X such that
A = {x}, and hence max(A) = {x} , ∅. Note that ^K(X)A = {K ∈ K(X) : K∩ ↓ x , ∅} = {K ∈ K(X) :↑ x ⊆ K} =
{K ∈ K(X) : K ⊑↑ x} =↓K(X)↑ x,^K(X)A is an ideal of (K(X),⊑). Now we show that ↓ (A∩K) =↓ (↓ x∩A) ∈ C(X).
If ↓ x ∩ K = ∅, that is, x < K, then ↓ (↓ x ∩ K) = ∅; if x ∈ K, then ↓ (↓ x ∩ K) =↓ x ∈ C(X).

(2) ⇒ (1): Let A ∈ CIrr(PS(X)) and U ∈ O(X) with
⋂
A ⊆ U. If K ⊈ U for each K ∈ A, then by Lemma

3.1, X \ U contains a minimal countably irreducible closed subset A with A ⊆ ^K(X)A. For any K ∈ A,
we can show that ↓ (A ∩ K) meets all members of A. In fact, let K′ ∈ A, then there exists a K′′ ∈ ^K(X)A
such that K′′ ⊆ K ∩ K′ since ^K(X)A is directed. Thus ∅ , K′′ ∩ A ⊆ K ∩ K′ ∩ A ⊆↓ (K ∩ A) ∩ K′. Note that
↓ (A∩K) ∈ C(X) by condition (2), it follows from the minimality of A that ↓ (A∩K) = A for all K ∈ A. Select
an x ∈ max(A). Then x ∈↓ (A ∩ K) for each K ∈ A, and consequently, there exists an ak ∈ A ∩ K such that
x ≤ ak. Then x = ak since x ∈ max(A). Therefore x ∈

⋂
A ⊆ U ⊆ X \ A, a contradiction. By Theorem 3.4, X is

c-sober.

Let X be topological space, set X∗ = X∪{∞}with the topology whose members are the open subsets of X
and all subsets U of X∗ such that X∗ \U is a closed compact subset of X. The space X∗ is called the one-point
compactification [3] of X. It is well-known the following properties hold:

(i) C(X∗) = {C ∪ {∞} : C ∈ C(X)} ∪ {E ⊆ X : X is closed and compact in (X,O(X))}.
(ii) X∗ is a T0 space if and only if X is a T0 space.

Theorem 3.7. Let X be a topological space. Then the following conditions are equivalent:
(1) X is a c-sober space.
(2) The space X∗, which is the one-point compactification of X, is a c-sober space.
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Proof. (1)⇒ (2): Suppose A ∈ CIrrc(X∗). We now distinguish the following three cases:
Case 1. ∞ < A. Then A is a closed compact subset of X. It is easy to show that A ∈ CIrrc(X). In fact, for

any {Ci : i ∈ N} ⊆ C(X), if A ⊆
⋃

i∈N Ci, then A =
⋃

i∈N(A ∩ Ci). Note that A ∩ Ci is a closed and compact
subset of X, A ∩ Ci ∈ C(X∗) for every i ∈N. It follows from A ∈ CIrrc(X∗) that there exists an i ∈N such that
A ⊆ A ∩ Ci ⊆ Ci. Thus A ∈ CIrrc(X). Since X is a c-sober space, there is an x ∈ X such that A = clX{x}. Since
∞ ∈ X∗ \ A ∈ O(X∗) and x < X∗ \ A,∞ < clX∗ {x}. Therefore, A = clX{x} = (clX∗ {x}) ∩ X = clX∗ {x}.

Case 2. A = {∞}. Trivial.
Case 3. A = A1 ∪ {∞}, where A1 is a nonempty closed subset of X. Since A ∈ CIrrc(X∗), A1 is not a

compact subset of X. Now we prove that A1 ∈ CIrrc(X). For any {Ci : i ∈ N} ⊆ C(X), if A1 ⊆
⋃

i∈N Ci, then
A ⊆
⋃

i∈N(Ci ∪ {∞}). Note that Ci ∪ {∞} ∈ C(X∗) for each i ∈ N and A ∈ CIrrc(X∗), there exists an i ∈ N such
that A = A1 ∪ {∞} ⊆ Ci ∪ {∞}. Then A1 ⊆ Ci, proving that A1 ∈ CIrrc(X). Since X is a c-sober space, there
exists an x ∈ X such that A1 = clX{x}. Hence A = clX{x} ∪ {∞} = ((clX∗ {x}) ∩ X) ∪ {∞} = clX∗ {x} ∪ {∞}. Now
we show that∞ ∈ clX∗ {x}. We only need to prove that x < E for any closed compact subset E of X. Suppose
there exists a closed compact subset E of X such that x ∈ E, then A1 = clX{x} ⊆ E. Thus A1 is a compact
subset of X. This is a contradiction.

(2)⇒ (1): Suppose A ∈ CIrrc(X). Then clX∗A ∈ CIrrc(X∗). Since X∗ is a c-sober space, there exists an x ∈ X∗

such that clX∗A = clX∗ {x}. It is obvious that x , ∞. Thus A = clXA = (clX∗A) ∩ X = (clX∗ {x}) ∩ X = clX{x}.
Therefore X is a c-sober space.

4. ω∗-well-filtered spaces

In this section, we formulate some characterizations of ω∗-well-filtered spaces and establish some con-
nections between c-sober spaces and ω∗-well-filtered spaces.

Theorem 4.1. Let X be a T0 space. Consider the following conditions:
(1) X is c-sober.
(2) X is ω∗-well-filtered.
Then (1)⇒ (2), and if X is a locally compact P-space, then (1) and (2) are equivalent.

Proof. (1) ⇒ (2): Suppose that {Ki : i ∈ I} ⊆ K(X) is a countably filtered family, U ∈ O(X), and
⋂

i∈I Ki ⊆ U.
Then {Ki : i ∈ I} is countably directed in poset (K(X),≤PS(X)), and whence {Ki : i ∈ I} ∈ CIrr(PS(X)). By
Theorem 3.4, there exists an i ∈ I such that Ki ⊆ U. Thus X is ω∗-well-filtered.

(2) ⇒ (1): Suppose X is a locally compact ω∗-well-filtered P-space and A ∈ CIrrc(X). Let KA = {K ∈
K(X) : A ∩ intK , ∅}. Select an a ∈ A. Since X is locally compact, there exists K ∈ K(X) such that a ∈ intK.
Then a ∈ A ∩ intK, and whence K ∈ KA , ∅. We claim that KA is countably filtered. Let {Ki : i ∈ N} ⊆ KA.
Then for each i ∈ N, A ∩ intKi , ∅. Since A ∈ CIrrc(X), A ∩

⋂
i∈N intKi , ∅. Select an x ∈ A ∩

⋂
i∈N intKi.

Since X is a P-space,
⋂

i∈N intKi ∈ O(X). By the local compactness of X, there is a K∗ ∈ K(X) such that
x ∈ intK∗ ⊆ K∗ ⊆

⋂
i∈N intKi, and whence K∗ ∈ KA and K∗ ⊆

⋂
i∈N Ki. ThereforeKA is countably filtered.

Note that A∩K , ∅ for each K ∈ KA and A ∈ C(X), we have
⋂

K∈KA
(K∩A) , ∅ since X is anω∗-well-filtered

space. Let a ∈
⋂

K∈KA
(K ∩ A). Then {a} =↓ a ⊆ A. If there is an x ∈ A\ ↓ a, then x ∈ X\ ↓ a. Since X is locally

compact, there exists a K ∈ K(X) such that x ∈ intK ⊆ K ⊆ X\ ↓ a. Thus K ∈ KA and a < K, a contradiction.
Therefore A = {a}.

Example 4.2. (1) Let X be a countably infinite set and Xco f the space equipped with the co-finite topology. Then Xco f
is a locally compact c-sober space, but Xco f is not a well-filtered space.

(2) Let X be a uncountable set and Xcoc the space equipped with the co-countable topology. Then Xcoc is a
well-filtered P-space, and hence an ω∗-well-filtered space, but Xcoc is not a c-sober space.

Theorem 4.3. For a T0 topological space X, the following conditions are equivalent:
(1) X is ω∗-well-filtered.
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(2) For every continuous mapping f : X → Y from X to a T0 space and a countably filtered family K ⊆ K(X),
↑ f (
⋂
K ) =

⋂
K∈K ↑ f (K).

(3) For every continuous mapping f : X→ Y from X to a c-sober space and a countably filtered familyK ⊆ K(X),
↑ f (
⋂
K ) =

⋂
K∈K ↑ f (K).

Proof. (1)⇒ (2): LetK ⊆ K(X) be a countably filtered family. It need only to check
⋂

K∈K ↑ f (K) ⊆↑ f (
⋂
K ).

Let y ∈
⋂

K∈K ↑ f (K). Then for each K ∈ K , {y} ∩ f (K) , ∅, that is, K ∩ f−1({y}) , ∅. We can show that
f−1({y})∩

⋂
K , ∅. In fact, suppose f−1({y})∩

⋂
K = ∅, then

⋂
K ⊆ X \ f−1({y}). Since X is ω∗-well-filtered,

there exists some K ∈ K such that K ⊆ X \ f−1({y}), a contradiction. Thus {y} ∩ f (
⋂
K ) , ∅. Therefore

y ∈↑ f (
⋂
K ), and consequently

⋂
K∈K ↑ f (K) ⊆↑ f (

⋂
K ).

(2)⇒ (3): Trivial.
(3)⇒ (1): Let ηX : X→ Xcs(= PH(CIrrc(X))) be the topological embedding from X into its c-sobrification.

Suppose that K ⊆ K(X) is countably filtered, U ∈ O(X), and
⋂
K ⊆ U. If K ⊈ U for all K ∈ K , then by

Lemma 3.1, X \U contains a minimal countably irreducible closed subset A that still meets all members of
K . By condition (3),

⋂
K∈K ↑CIrrc(X) ηX(K) =↑CIrrc(X) ηX(

⋂
K ) ⊆↑CIrrc(X) ηX(U) = ^CIrrc(X)U. For every K ∈ K ,

since A ∩ K , ∅, A ∈↑CIrrc(X) ηX(K). Thus A ∈
⋂

K∈K ↑CIrrc(X) ηX(K) = ^CIrrc(X)U, and this means A ∩ U , ∅, a
contradiction. Therefore X is ω∗-well-filtered.

Lemma 4.4. ([1]) For a nonempty family {Ki : i ∈ I} ⊆ K(X),
∨

i∈I Ki exists in K(X) iff
⋂

i∈I Ki ∈ K(X). In this case∨
i∈I Ki =

⋂
i∈I Ki.

Theorem 4.5. For a T0 topological space X, the following conditions are equivalent:
(1) X is an ω∗-well-filtered space.
(2) K(X) is a cdcpo, and ↑ (A ∩

⋂
K ) =

⋂
K∈K ↑ (A ∩ K) for any countably filtered family K ⊆ K(X) and

A ∈ C(X).
(3) K(X) is a cdcpo, and ↑ (A ∩

⋂
K ) =

⋂
K∈K ↑ (A ∩ K) for any countably filtered family K ⊆ K(X) and

A ∈ CIrrc(X).

Proof. (1) ⇒ (2): Suppose {Ki : i ∈ I} ⊆ K(X) is countably directed, then
⋂

i∈I Ki ∈ K(X) since X is an
ω∗-well-filtered space. Thus

∨
K(X){Ki : i ∈ I} =

⋂
{Ki : i ∈ I}, and whence K(X) is a cdcpo. SupposeK ⊆ K(X)

is a countably filtered family and A ∈ C(X). It need only to check
⋂

K∈K ↑ (A ∩ K) ⊆↑ (A ∩
⋂
K ). Let

x ∈
⋂

K∈K ↑ (A∩ K). Then for each K ∈ K , ↓ x∩A∩ K , ∅. It follows from the ω∗-well-filteredness of X that⋂
K∈K (↓ x ∩ A ∩ K) , ∅. Thus x ∈

⋂
K∈K ↑ (A ∩ K). Therefore

⋂
K∈K ↑ (A ∩ K) ⊆↑ (A ∩

⋂
K ).

(2)⇒ (3): Trivial.
(3) ⇒ (1): Suppose that K ⊆ K(X) is countably filtered, U ∈ O(X) and

⋂
K ⊆ U. If K ⊈ U for

every K ∈ K , then by Lemma 3.1, X \ U contains a minimal countably irreducible closed subset A that
still meets all members of K . Let K ∗ = {↑ (K ∩ A) : K ∈ K}. Then K ∗ ⊆ K(X) and K ∗ is countably
filtered. Since K(X) is a cdcpo, by Lemma 4.4, ∅ ,

⋂
K
∗ =
⋂

K∈K ↑ (K ∩ A) ∈ K(X). By condition (3),
↑ (A ∩

⋂
K ) =

⋂
K∈K (↑ A ∩ K) , ∅. On the other hand, ↑ (A ∩

⋂
K ) ⊆↑ (A ∩ U) = ∅ since A ⊆ X \ U, a

contradiction. Therefore X is an ω∗-well-filtered space.
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