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An iterative stochastic procedure with a general step to a linear regular
inverse problem
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Abstract. In this paper we consider a linear operator equation in a Hilbert space. Using Hoeffding
inequalities, an exponential bound to the solution obtained by a stochastic procedure is established and the
values of the step ak for which the procedure converges almost completely (a.co) are discussed.

An illustrative application was treated to the solution of a Fredholm integral equation of the second
kind.

Introduction

Stochastic algorithms are part of modern techniques for numerical solution of many practical problems
and are the basis of various advanced industrial applications: signal processing [5–7], adaptive control
[20], recursive estimation [12], inverse problems [22, 23]. Stochastic recursive procedures are also used in
various fields of considerable technological importance such as communication sciences [21, 28, 29], system
identification [8–10] and in the search for solutions of matrix equations [3].

Let (Ω, 𭟋,P) be a probability space and H a separable Hilbert space.
Consider the following operator equation

Ax = u, (1)

where A is a linear operator of H.
We will assume in this work that inf {re λ; λ ∈ ∆(A)} > 0 with ∆(A) is a spectrum of A.
The solution of the equation (1) is obtained using a stochastic Robbins-Monro type procedure [25]

Xk+1 = Xk − ak [AXk − uk] , (2)

with ak is a sequence of positive numbers decreasing towards zero, called the descent step.
In practice, the second member u is the result of measurements and is only known approximately.
Let’s put

uk = uex + ξk,
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where uex represents the exact and unknown value of the second member and (ξk )k∈N∗ is a sequence of
independent and identically distributed (i.i.d.) random variables with values in H.

We will assume that (ξk )k∈N∗ are bounded:

∥ξi∥ < b, b ∈ R. (3)

In a recent work [22] and when the step ak =
1
k , the Stochastic Algorithm (2) was applied to solve a linear

operator equation in a Hilbert space. The Bernstein-type exponential inequality for the found solution was
constructed, which allowed us to determine the almost complete convergence (a.co) of the said solution.

The aim of this work is to establish Hoeffding inequalities to find an exponential bound for the iterative
solution obtained by the procedure (2) and to discuss the values of the step ak for which the procedure
converges almost completely (a.co).

Our approach is to apply deterministic iterations in that it uses the full forward model when the noise
on the right hand side is stochastic. Other approaches using methods of the stochastic gradient descent,
have been recently investigated in the context of linear inverse problems by B. Jin et al [18] and T. Jahn et
al [17].

The approach of using multiple independent and identically distributed measurements for linear inverse
problems was treated recently by B. Harrach et al [14] and T. Jahn [16].

The study of regular inverse problems appears in works dealing with the fields of linear filtration
[1, 2, 15] and linear regression [11, 13].

The efficiency of the Robbins-Monro recursive procedure relies essentially on the choice of the sequence
ak, k ∈N∗, this choice remains until now a big open question that is at the heart of the efficiency of stochastic
recursive algorithms [19]. Even though experience shows that the choice of the sequence ak =

1
k ; under some

regularity conditions; generates better convergence properties for solving linear equations. Nevertheless,
the general case ak =

a
kθ , 0 < a ≤ 1, 1

2 < θ ≤ 1, k ∈N∗is not sufficiently explored theoretically in the literature.

1. Preliminary results

Using the fact that: uk = uex + ξk then, the procedure (2) will become

Xk+1 = Xk − ak [AXk − uex − ξk] . (4)

where (Xk)k∈N∗ , (ξk )k∈N∗ are elements of H and (ak)k∈N∗ is a real sequence satisfying

∞∑
k=1

ak = +∞, (5)

∞∑
k=1

a2
k < +∞.

The natural choice of steps ak verifying the hypothesis (5) is ak =
a

kθ , 0 < a ≤ 1, 1
2 < θ ≤ 1, k ∈N∗.

From an abstract point of view, we are interested in the iterative solution given by the recursive procedure
(4) to solve the linear operator equation (1) in a Hilbert space H.

According to [22, lemma 1] and after successive iterations, the following relation is obtained

Xk+1 − Xex =

k∏
i=1

(I − aiA)(X1 − Xex) +
k∑

i=1

k∏
j=i+1

(I − a jA)aiξi. (6)

Where, 1 ≤ i, j ≤ k,with the convention
k∏

j=k+1
(I − a jA) = I, with I is the unit operator in H.

Xex represents the exact solution verifying AXex = uex.
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Lemma 1.1. Let ai =
a
iθ , 0 < a ≤ 1, 1

2 < θ ≤ 1. Suppose that inf {re λ; λ ∈ ∆(A)} > 0. The following expressions
hold.

1) If θ = 1, then

∃γ > 0, ∃p > 0, ∀ 1 ≤ i ≤ k :

∥∥∥∥∥∥∥∥
k∏

j=i+1

(I − a jA)

∥∥∥∥∥∥∥∥ ≤ γ (i + 1)ap

(k + 1)ap . (7)

2) If 1
2 < θ < 1, then

∃ γ > 0, ∃ p > 0, ∀ 1 ≤ i ≤ k :

∥∥∥∥∥∥∥∥
k∏

j=i+1

(I − a jA)

∥∥∥∥∥∥∥∥ ≤ γ exp
( ap

1 − θ

(
(i + 1)1−θ

− (k + 1)1−θ
))
. (8)

Proof. Under the condition inf {re λ; λ ∈ ∆(A)} > 0, H. Walk obtained the following result [27, Lemma 3.b]

∃γ > 0, ∃p > 0, ∀ 1 ≤ i ≤ k :

∥∥∥∥∥∥∥∥
k∏

j=i+1

(I − a jA)

∥∥∥∥∥∥∥∥ ≤ γ
 k∏

j=i+1

(
1 − a j

)
p

. (9)

Then, taking into account that: ln (1 + x) ≤ x, for x > −1, we have

p ln
(
1 −

a
jθ

)
≤ −

ap
jθ

k∑
j=i+1

ln
(
1 −

a
jθ

)p

≤

k∑
j=i+1

−
ap
jθ
= −ap

k∑
j=i+1

1
jθ
= −ap

k+1∫
i+1

1
xθ

dx.

If θ = 1, then

k∑
j=i+1

ln
(
1 −

a
jθ

)p

≤ ap ln(
i + 1
k + 1

).

This implies that

exp

 k∑
j=i+1

ln
(
1 −

a
jθ

)p
 ≤ exp

(
ln

( i + 1
k + 1

)ap)
.

So,

γ

 k∏
j=i+1

(
1 −

a
jθ

)
p

≤ γ
(i + 1)ap

(k + 1)ap . (10)

If 1
2 < θ < 1, then

k∑
j=i+1

ln
(
1 −

a
jθ

)p

≤
ap

1 − θ

(
(i + 1)1−θ

− (k + 1)1−θ
)
.
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This implies that

exp

 k∑
j=i+1

ln
(
1 −

a
jθ

)p
 ≤ exp

( ap
1 − θ

(
(i + 1)1−θ

− (k + 1)1−θ
))
.

The latter is equivalent to the following relation

γ

 k∏
j=i+1

(
1 −

a
jθ

)
p

≤ γ exp
( ap

1 − θ

(
(i + 1)1−θ

− (k + 1)1−θ
))
. (11)

From (10) and (11), we deduce that

lim
k→∞

∥∥∥∥∥∥∥∥
k∏

j=1

(I − a jA)

∥∥∥∥∥∥∥∥ ≤ lim
k→∞
γ

 k∏
j=1

(
1 −

a
jθ

)
p

= 0. (12)

Lemma 1.2. Let ai =
a
iθ , 0 < a ≤ 1, 1

2 < θ ≤ 1. Under assumptions of Lemma 1, the following expressions hold.
1) If θ = 1, then

∃γ > 0, ∃p > 0, ∀ 1 ≤ i ≤ k :
k∑

i=1

∥∥∥∥∥∥∥∥
k∏

j=i+1

(I − a jA)ai

∥∥∥∥∥∥∥∥
2

≤ C
(
γa

)2

(k + 1)2ap , (13)

with C is a constant.
2) If 1

2 < θ < 1, then

∃γ > 0, ∃p > 0, ∀ 1 ≤ i ≤ k :
k∑

i=1

∥∥∥∥∥∥∥∥
k∏

j=i+1

(I − a jA)ai

∥∥∥∥∥∥∥∥
2

≤
2
(
γa

)2 Dθ(
ap

) 1
1−θ

1
kθ
, (14)

with Dθ = 4 + 2
2θ−1

(
θ

e(2−2θ)

) θ
1−θ .

Proof. 1) Let θ = 1, by virtue of the relation (7) one has

∃γ > 0, ∃p > 0, ∀ 1 ≤ i ≤ k :

∥∥∥∥∥∥∥∥
k∏

j=i+1

(I − a jA)ai

∥∥∥∥∥∥∥∥
2

≤
(
γa

)2 (i + 1)2ap

(k + 1)2api2
.

Then

∃γ > 0, ∃p > 0, ∀ 1 ≤ i ≤ k :
k∑

i=1

∥∥∥∥∥∥∥∥
k∏

j=i+1

(I − a jA)ai

∥∥∥∥∥∥∥∥
2

≤

(
γa

)2

(k + 1)2ap

k∑
i=1

(i + 1)2ap

i2
. (15)

By Kronecker’s lemma, (γa)2

(k+1)2ap

∑k
i=1

(i+1)2ap

i2 tends to 0 when k tends to infinity.

In fact,
(

1
i2

)
i∈N∗

is a convergent sequence and lim
i→+∞

(i + 1)2ap = +∞.

So,

lim
i→+∞

1
(k + 1)2ap

k∑
i=1

(i + 1)2ap

i2
= 0. (16)
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From the relation (16) one deduces that: ∃(N ∈N∗) such that

lim
k→∞

1

(k + 1)2ap

k∑
i=N+1

(i + 1)2ap

i2
= 0. (17)

We have the following relationship

1

(k + 1)2ap

k∑
i=1

(i + 1)2ap

i2
=

1

(k + 1)2ap

N∑
i=1

(i + 1)2ap

i2
+

1

(k + 1)
2c

k∑
i=N+1

(i + 1)2ap

i2

≤
1

(k + 1)2ap

N∑
i=1

(i + 1)2ap

i2
=

C
(k + 1)2ap ,

with,
∑N

i=1
(i+1)2ap

i2 = C.
Replacing in (15) we find (13).
2) Let 1

2 < θ < 1, by virtue of the relation (8) we have

k∑
i=1

∥∥∥∥∥∥∥∥
k∏

j=i+1

(I − a jA)ai

∥∥∥∥∥∥∥∥
2

≤
(
γa

)2
k∑

i=1

1
i2θ

exp
(

2ap
1 − θ

(
(i + 1)1−θ

− (k + 1)1−θ
))
. (18)

The second member of the inequality (18) is estimated in [26, Lemma A1] using estimates based on the
Gamma function.
Therefore,

(
γa

)2
k∑

i=1

1
i2θ

exp
(

2ap
1 − θ

(
(i + 1)1−θ

− (k + 1)1−θ
))
≤

2
(
γa

)2 Dθ(
ap

) θ
1−θ

1
kθ
, (19)

where Dθ = 4 + 2
2θ−1

(
θ

e(2−2θ)

) θ
1−θ .

Then, the relation (14) is obtained from (18) and (19).

2. Exponential inequalities and convergence results

In this section, exponential inequalities of the Hoeffding type are established. These allow us to establish
the values of the steps ak for which the iterative procedure (4) converges almost completely to the exact
solution.

Definition 2.1. The sequence of random variables (Xk )k∈N∗ converges almost completely (a.co) to a random variable
X, when k tends to infinity, if and only if: ∀ε > 0,

∑+∞
k=1 P (∥Xk+1 − Xex∥ > ε) < +∞.

Theorem 2.2. Let ai =
a
iθ , 0 < a ≤ 1, 1

2 < θ ≤ 1, i ∈ N∗, A ∈ L(H) : the set of linear applications in H. Under the
condition inf {re λ; λ ∈ ∆(A)} > 0, the following exponential inequality holds.

P (∥Xk+1 − Xex∥ > ε) ≤ 2 exp

−
ε2

8b2
∑k

i=1

∥∥∥∥∥∥ k∏
j=i+1

(I − a jA)

∥∥∥∥∥∥2

a2
i

 . (20)
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Proof. By virtue of the relation (6), one has the following expression

P (∥Xk+1 − Xex∥ > ε) = P


∥∥∥∥∥∥∥∥

k∏
i=1

(I − aiA)(X1 − Xex) +
k∑

i=1

k∏
j=i+1

(I − a jA)aiξi

∥∥∥∥∥∥∥∥ > ε


≤ P


∥∥∥∥∥∥∥∥

k∑
i=1

k∏
j=i+1

(I − a jA)aiξi

∥∥∥∥∥∥∥∥ > ε −
∥∥∥∥∥∥∥

k∏
i=1

(I − aiA)(X1 − Xex)

∥∥∥∥∥∥∥
 .

The relation (12) proves that:

∃ε > 0,

∥∥∥∥∥∥∥
k∏

i=1

(I − aiA)(X1 − Xex)

∥∥∥∥∥∥∥ ≤ ε2 . (21)

Then,

P (∥Xk+1 − Xex∥ > ε) ≤ P


∥∥∥∥∥∥∥∥

k∑
i=1

k∏
j=i+1

(I − a jA)aiξi

∥∥∥∥∥∥∥∥ > ε − ε2


≤ P


∥∥∥∥∥∥∥∥

k∑
i=1

k∏
j=i+1

(I − a jA)aiξi

∥∥∥∥∥∥∥∥ > ε2
 .

We pose

ηi =

k∏
j=i+1

(I − a jA)aiξi. (22)

(
ηi
)

i∈N∗ is a sequence of bounded and i.i.d random variables in a Hilbert space such that

∥∥∥ηi

∥∥∥ <
∥∥∥∥∥∥∥∥

k∏
j=i+1

(I − a jA)

∥∥∥∥∥∥∥∥ aib = di. (23)

Thus

P (∥Xk+1 − Xex∥ > ε) ≤ P


∥∥∥∥∥∥∥

k∑
i=1

ηi

∥∥∥∥∥∥∥ > ε2
 . (24)

We give the Pinelis-Hoeffding inequality for the sequence
(
ηi
)

i∈N∗ such that
∥∥∥ηi

∥∥∥ < di in a Hilbert space H (
[24]).

P


∥∥∥∥∥∥∥

k∑
i=1

ηi

∥∥∥∥∥∥∥ > ε
 ≤ 2 exp

− ε2

2
∑k

i=1 d2
i

 . (25)

Then, we deduce from (23) and (25) the following relation.

P


∥∥∥∥∥∥∥

k∑
i=1

ηi

∥∥∥∥∥∥∥ > ε2
 ≤ 2 exp

−
ε2

8b2
∑k

i=1

∥∥∥∥∥∥ k∏
j=i+1

(I − a jA)

∥∥∥∥∥∥2

a2
i

 . (26)

Finally, by virtue of the relation (24) we get (20).
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Corollary 2.3. Let ai =
a
iθ , 0 < a ≤ 1, 1

2 < θ ≤ 1, A ∈ L(H).Under the condition inf {re λ; λ ∈ ∆(A)} > 0, the
following exponential inequalities hold.

1) If ai =
a
i , then

P (∥Xk+1 − Xex∥ > ε) ≤ 2 exp
(
−

(k + 1)2apε2

α

)
. (27)

2) If ai =
a
iθ ,

1
2 < θ < 1, then

P (∥Xk+1 − Xex∥ > ε) ≤ 2 exp
(
−

kθε2

β

)
. (28)

Proof. 1) By virtue of the relation (13) and from the relation (20), we obtain

P (∥Xk+1 − Xex∥ > ε) ≤ 2 exp

− ε2

8C(γab)2

(k+1)2ap

 .
By putting α = 8C

(
γab

)2 we will find (27).
2) By virtue of the relation (14) and from the relation (20), we obtain

P (∥Xk+1 − Xex∥ > ε) ≤ 2 exp

−
ε2

16(γab)2
Dθ

(ap)
θ

1−θ

1
kθ

 .

By putting β =
16(γab)2

Dθ

(ap)
θ

1−θ

we will find (28).

In the next corollary, we give the value of ai so that the iterative procedure (4) converges almost
completely to the solution of the equation (1).

Corollary 2.4. Under the conditions of Theorem 1:
The recursive procedure (4) converges almost completely (a.co) to the solution of the equation (1) if ai =

a
i , i ∈N

∗ :

∀ε > 0,
+∞∑
k=1

P (∥Xk+1 − Xex∥ > ε) < +∞. (29)

Additionally,

∥Xk+1 − Xex∥ = O(k−2ap), ap >
1
2
. (30)

Proof. 1) Let us pose

vk = 2 exp
(
−

(k + 1)2apε2

α

)
≤ 2 exp

(
− (k + 1)2ap ε2

)
,

and,

uk = 2 exp
(
−

kθε2

β

)
≤ 2 exp

(
(−k)θε2

)
(31)
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Applying Cauchy’s rule to the positive term series vk and uk it follows that:
When ap > 1

2 ,
∑+∞

k=1 vk is a convergent series.
This implies that

∀ε > 0,
+∞∑
k=1

P (∥Xk+1 − Xex∥ > ε) ≤
+∞∑
k=1

2 exp
(
− (k + 1)2ap ε2

)
< +∞. (32)

∑+∞
k=1 uk is a divergent sequence (because: 1

2 < θ < 1).
Therefore, almost complete convergence is assured when ai =

a
i .

2) To obtain (30), it is sufficient to choose A = εk2ap in (32) to have

+∞∑
k=1

P
(
∥Xk+1 − Xex∥ > Ak−2ap

)
< +∞.

3. Numerical application

Consider the Fredholm integral equation of the second kind [4]

x(s) = y(s) + h
∫ b

a
K(s, t) x(t) dt, h ∈ R, (33)

on the interval [a, b] = [0, π2 ], with the kernel K and the function y given by K(s, t) = cos(s − t) and
y(s) = −2

π cos(s).

By the method of quadratures, the integral
∫ b

a K(s, t) x(t) dt is approximated by a sum.∫ b

a
K(s, t) x(t) dt ≈

∑n

j=1
w jK(si, t j) x(t j). (34)

Particularly, for the method of midpoints (rectangles), we use w j =
b−a

n at t j =
( j− 1

2 )(b−a)
n , j = 1, ...,n,

si =
(i− 1

2 )(b−a)
n , i = 1, ...,n.

Then, the following relation will be checked

x(si) = y(si) + h
∑n

j=1
w jK(si, t j) x(t j). (35)

So, we will obtain a system of linear equations

x = u + hKx, (36)

where, the matrix K is of finite dimension given by the elements

ki j = w jK(si, t j) =
π
2n

cos
(
π(i − j)

2n

)
, i, j = 1, ...,n. (37)

And, the vectors x, u are of elements

xi = x(si) = x(t j), i, j = 1, ...,n, (38)

ui = y(si) =
−2
π

cos

π(i − 1
2 )

2n

 , i = 1, ...,n (39)
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The system of matrix equations (36) can be rewritten as follows

(I − hK) x = u, (40)

where I is the unit matrix.
The matrix (I − hK) is regular and its inverse (I − hK)−1 exists, so the equation (40) admits a unique

solution x.
We apply the iterative procedure

Xk+1 = Xk − ak [(I − hK) Xk − uex − ξk ] (41)

for solving the equation (40),with X1 is an arbitrary vector, ξk are random vectors of elements ξk (s).
We choose for this simulation functional random errors: ξk (s) = θk cos 2πs, 0 ≤ s ≤ π

2 , i ≥ 1.With, θ1,
θ2, ... is a family of real random variables such that Eθ2

i < +∞, i ≥ 1 and ∥ξk (s)∥ ≤ ∥θk∥ <M, M ∈ R.

We considered steps ak =
a

kθ , 0 < a ≤ 1, 1
2 < θ ≤ 1, k ∈N∗,which are the natural choices for verifying the

hypothesis (5).
The table below, shows the influence of the choice of the step on the numerical convergence of Xk to the

exact solution. In this way, we have chosen three types of steps verifying the hypothesis (5) and we have
repatriated the error committed for each choice of step, after n iterations.

n=100 n=500 n=1000
ak =

1
k 0.239 0.109 0.025

ak =
1/2

k 0.210 0.101 0.018
ak =

1
k0.6 1.912 1.810 1.719

We can clearly see that the procedure (41) is more accurate when ak =
1
k and ak =

1/2
k .On the other hand,

the error made when ak =
1

k0.6 is very significant.
The graph below, gives the look of the solution obtained by the procedure (41) when ak =

1/2
k and ak =

1
k0.6

compared to the exact solution: x(t) = sin(t).

4. Conclusion

In this paper, a stochastic recursive method for solving regular inverse problems, defined by linear
operator equations in a Hilbert space has been applied. Through the theoretical results demonstrated, it
has been deduced that the step size of stochastic algorithms has a real influence on their convergence.
Indeed, the almost complete convergence is obtained when the step takes the value ak =

a
k , with 0 < a ≤ 1.

Numerical simulation results for the solution of the Fredholm equation of the second kind support the
theoretical results obtained.

Data Availability Data sharing is not applicable to this article as no new data were created or analyzed
in this study.
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