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A new combinatorial identity for Bernoulli numbers and its
application in Ramanujan’s expansion of harmonic numbers
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aSchool of Information and Engineering, Zhejiang Ocean University, Zhoushan 316000, China

Abstract. We establish a new combinatorial identity related to the well-known Bernoulli numbers, which
generalizes the result due to Feng and Wang. By means of the identity, we find a recursive formula
for successively determining the coefficients of Ramanujan’s asymptotic expansion for the generalized
harmonic numbers.

1. Introduction

Harmonic numbers and generalized harmonic numbers have been widely studied in many fields of
mathematics, such as in mathematical analysis, number theory, special functions, combinatorics and so
on. Recently, more attention on harmonic numbers and generalized harmonic numbers has been paid
to their generating functions and related properties [9, 10], summation formulas [6, 18], the identities
involving other special numbers [17]. Specifically, Dattoli and Srivastava [10] proposed several generating
functions involving harmonic numbers by making use of an interesting approach based on the umbral
calculus. Subsequently, Cvijović[8] showed the truth of the conjectured relations in [10] by using some
simple analytical arguments. By the similar method, Giuseppe Dattoli et al. [9] introduced higher-order
harmonic numbers and derived their relevant properties and generating functions. Their work shows
that the combinations of umbral and other techniques yield a very efficient tool to explore the properties
of these numbers. Different from [9, 10], J. Choi and H.M. srivastava[6] proposed to present further
identities for series associated with harmonic numbers and generalized harmonic numbers by making
use of the unique series expansion of classical hypergeometric summary formulas. In [17], A. Sofo and
H.M. Srivastava extended some results of Euler related sums. Integral and closed-form representations of
sums with products of harmonic numbers and binomial coefficients were developed in terms of Polygamma
functions. In their paper[18], A. Sofo and H.M. Srivastava further developed a set of identities for Euler-type
sums and investigate products of the shifted harmonic numbers and the reciprocal binomial coefficients.

The asymptotic expansion of harmonic numbers is another subject of great concern [4, 5, 11–15, 20, 21, 23].
In his lost notebook, Ramanujan [2, 19] proposed the following asymptotic expansion for the nth harmonic
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number:

Hn =

n∑
k=1

1
k
∼

1
2

ln(2m) + γ +
1

12m
−

1
120m2 +

1
630m3 −

1
1680m4 +

1
2310m5

−
191

360360m6 +
29

30030m7 −
2833

1166880m8 +
140051

17459442m9 − · · · (1)

as n→∞, where m = 1
2 n(n+1) is the nth triangular number and γ is the Euler-Mascheroni constant. Berndt

[2] described Eq.(1) as “somewhat enigmatic” and mentioned that “we cannot find a ‘natural’ method to
produce such asymptotic series”. He converted it into powers of 1/n and found it agrees with Euler’s
asymptotic expansion

Hn ∼ ln n + γ −
∞∑

k=1

Bk

knk
, n→∞,

where Bn are the well-known Bernoulli numbers.
In 2008, Villarino [21] gave the general formula and error estimate for the Ramanujan asymptotic

expansion, and proved that for every integer r ≥ 1, there exists a Θr with 0 < Θr < 1, for which the
following representation is true:

Hn =
1
2

ln(2m) + γ +
r∑

i=1

Ri

mi + Θr ·
Rr+1

mr+1 . (2)

where

Ri =
(−1)i−1

2i · 8i

1 +
i∑

j=1

(
i
j

)
(−4) jB2 j

(1
2

) (3)

and Bi(x) are the Bernoulli polynomials defined by the following generating function:

text

et − 1
=

∞∑
i=0

Bi(x)
ti

i!
.

Recently, Chen and Cheng [5] provided a recurrence relation for successively determining the coefficients
Ri:

R1 =
1

12
, Ri =

1
2i

 1
4i
−

B2i

2i
−

i−1∑
j=1

2 jR jP2(i− j)( j)

 , i ≥ 2, (4)

where

P j(k) = (−1) j
(
k + j − 1

j

)
.

The coefficient sequence (Ri)i≥1 in Eq.(2) or Eq.(3) satisfies the recurrence and initial condition Eq.(4), which
is an open problem proposed by Chen and Cheng [5]. For more works related to the Ramanujan harmonic
number expansion, one is referred to [3, 4, 14, 15, 20, 23].

It is remarkable that in order to give an affirmative answer to the open problem, Feng and Wang [11]
established two key binomial coefficients identities by using the Riordan array method, and then they
proved the following interesting identity involving Bernoulli numbers holds true:

l∑
p=1

p∑
q=0

(
2l − p − 1

p − 1

)(
p
q

) (−1)p+q−1B2q

(
1
2

)
2p · 4p−q =

1
4l
−

B2l

2l
. (5)
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Equivalently, we rewrite Eq.(5) as

l∑
p=1

p∑
q=0

(
2l − p − 1

p − 1

)(
p
q

)
(−1)p+q(4q

− 2)B2q

2p · 4p =
1
4l
−

B2l

2l
(6)

because of the following relation (see for example [1])

Bi

(1
2

)
= −(1 − 21−i)Bi. (7)

For more identities on the Bernoulli numbers, one is referred to [16].
Let (x)k = Γ(x + 1)/Γ(k + 1). In fact, for l ≥ 1, if we write

A(l, p) =

 1
p
(2l−p−1

2l−2p

)
, p ≥ 1,

limp→0
(2l−p−1)2l−2p−1

(2l−2p)! = 1
2l , p = 0,

then Eq.(6) can be written in a more compact form

l∑
p=0

p∑
q=0

(
p
q

)
(−1)p+q(4q

− 2)A(l, p)B2q

22p+1 = −
B2l

2l
. (8)

It looks very nice that the combinatorial identity is actually related to the well-known Bernoulli numbers
with even indexes.

In this paper, we extend the definition of A(l, p) to

A(l, p; r) =

 1
p+r

(r+2l−p−1
2l−2p

)
, p ≥ 1 or r ≥ 1,

limp→0 limr→0
(r+2l−p−1)2l−2p−1

(2l−2p)! = 1
2l , r = p = 0,

for any integer r ≥ 0. Obviously, A(l, p; 0) = A(l, p). Hence we obtain an extended version of Identity Eq.(8),
namely,

Theorem 1.1. Let l and r be two integers such that l ≥ 1 and r ≥ 0. Then there holds

l∑
p=0

p∑
q=0

(
p + r
q + r

)(
2r + 2q

2q

)
(−1)p+q(4q

− 2)A(l, p; r)B2q

22p+1 = −
B2l

(2l)!
(2r − 1 + 2l)2l−1. (9)

By means of the above combinatorial identity involving Bernoulli numbers, we find a recursive formula
for successively determining the coefficients of Ramanujan’s asymptotic expansion for the generalized
harmonic numbers (see Theorem 3.1).

2. The Proof of Theorem 1.1

Let [tn] be the operator which gives the nth coefficient in the series development of a generating
function. As usual, the coefficient of tn in f (t) may be denoted by [tn] f (t). In this section, we give a proof for
the main theorem by using the method of generating function [7, 22]. First of all, we present two identities
as lemmas.

Lemma 2.1. Let s and n be non-negative integers. The following identity holds true:

n∑
k=0

(
−

1
4

)k (2n + s − k
2n − 2k

)(
s + k

k

)
=

1
4n

(
2n + 2s + 1

2n

)
. (10)
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Proof. It is clear that the generating function of the sequence
{(
−

1
4

)k (s+k
k
)}

k≥0
is

h(t) =
∞∑

k=0

(
−

1
4

)k (s + k
k

)
tk =

1
(1 + 1

4 t)s+1
. (11)

It implies that

[tk]

 1
(1 + 1

4 t)s+1

 = (
−

1
4

)k (s + k
k

)
. (12)

Similarly, we have(
2n + s − k

2n − 2k

)
= [u2n−2k]

{
1

(1 − u)s+1+k

}
= [u2n]

 1
(1 − u)s+1

(
u2

1 − u

)k
 . (13)

Then, by Eqs.(11),(12) and Eq.(13), we have

n∑
k=0

(
−

1
4

)k (2n + s − k
2n − 2k

)(
s + k

k

)

=

n∑
k=0

[tk]

 1
(1 + 1

4 t)s+1

 · [u2n]

 1
(1 − u)s+1

(
u2

1 − u

)k


=[u2n]
{

1
(1 − u)s+1 h

(
u2

1 − u

)}
=[u2n]

{
1

(1 − u
2 )2s+2

}
=

1
4n

(
2n + 2s + 1

2n

)
,

which gives the desired result.

It is well known that the Bernoulli polynomials satisfy the following identity

Bn(x + y) =
n∑

k=0

(
n
k

)
Bk(x)yn−k.

Taking x = 1/2 and y = −1/2, and using Bn(0) = Bn and B2n+1

(
1
2

)
= 0 for n ≥ 0, we get a fact as follows.

Lemma 2.2 ([1, 11]). For n ≥ 0, we have

B2n =

n∑
k=0

(
2n
2k

)
1

4n−k
B2k

(1
2

)
. (14)

Now, we are in a position to prove the main theorem. It is obvious that Eq.(9) reduces to Eq.(8) when
r = 0. So let us consider the case for r ≥ 1. It suffices to prove that

l∑
p=0

(
−

1
4

)p (
r + 2l − 1 − p

2l − 2p

) p∑
q=0

(−1)q
(
p + r − 1

p − q

)(
2r + 2q

2q

)
4q
− 2

2(r + q)
B2q

= −
B2l

(2l)!
(2r − 1 + 2l)2l−1. (15)
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Changing the order of summation in the left hand side of Eq.(15) we arrive at

l∑
q=0

(−1)q
(
2r + 2q

2q

)
4q
− 2

2(r + q)
B2q

l∑
p=q

(
−

1
4

)p (
r + 2l − 1 − p

2l − 2p

)(
p + r − 1

p − q

)
= −

B2l

(2l)!
(2r − 1 + 2l)2l−1. (16)

Replacing p by k + q gives

l∑
p=q

(
−

1
4

)p (
r + 2l − 1 − p

2l − 2p

)(
p + r − 1

p − q

)

=
(
−

1
4

)q l−q∑
k=0

(
−

1
4

)k (r + 2l − q − 1 − k
2l − 2q − 2k

)(
q + r − 1 + k

k

)
.

Let n = l − q and s = q + r − 1. By Lemma 2.1 we have

l∑
p=q

(
−

1
4

)p (
r + 2l − 1 − p

2l − 2p

)(
p + r − 1

p − q

)
=

(−1)q

4l

(
2r + 2l − 1

2l − 2q

)
.

Thus, combining with Eq.(16) we need to prove

1
4l

l∑
q=0

(
2r + 2q

2q

)(
2r + 2l − 1

2l − 2q

)
4q
− 2

2(r + q)
B2q = −

B2l

(2l)!
(2r − 1 + 2l)2l−1. (17)

From Eq.(7) we have

B2q = −
1

1 − 21−2q B2q

(1
2

)
. (18)

Substituting Eq.(18) into the left hand side of Eq.(17) gives

1
4l

l∑
q=0

(
2r + 2q

2q

)(
2r + 2l − 1

2l − 2q

)
4q
− 2

2(r + q)
B2q

= −

l∑
q=0

(
2r + 2q

2q

)(
2r + 2l − 1

2l − 2q

)
1

2(r + q)
1

4l−q
B2q

(1
2

)

= −
(2r + 2l − 1)2l−1

(2l)!

l∑
q=0

(
2l
2q

)
1

4l−q
B2q

(1
2

)
,

since

1
2(r + q)

(
2r + 2q

2q

)(
2r + 2l − 1

2l − 2q

)
=

(2r + 2l − 1)2l−1

(2l)!

(
2l
2q

)
.

By Lemma 2.2 we immediately obtain Eq.(17), which implies Eq.(9) is true.
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3. Application in Ramanujan’s Expansion of Harmonic Numbers

Based on a natural derivation for the Ramanujan asymptotic expansion, Hirschhorn [12] obtained the
following results for the odd powers, that is 2i + 1 for 1 ≤ i ≤ 11 of the tail of the Riemann zeta function in
terms of 1/m.

∞∑
k=n+1

1
k3 ∼

1
4m
−

1
16m2 +

1
48m3 −

1
96m4 +

1
120m5 −

1
96m6 + · · · ,

∞∑
k=n+1

1
k5 ∼

1
16m2 −

1
24m3 +

11
384m3 −

5
192m5 +

13
384m6 −

1
16m7 + · · · ,

...
∞∑

k=n+1

1
k23 ∼

1
45056m11 − · · · ,

as n→∞.
Recently, Issaka [13] provided a rigorous proof of those expansions for the generalized harmonic num-

bers with odd powers mentioned in Hirschhorn [12]. He obtained

∞∑
k=n+1

1
k2i+1

= −
1

(2m)i


r∑

p=0

Ai
p

mp + κr(n, i)
Ai

r+1

mr+1

 , (19)

where 0 < κr(n, i) < 1 and

Ai
p =

(−1)p

8p

p∑
q=0

(−1)q
(
p + i − 1

p − q

)(
2i + 2q

2q

)
(22q
− 2)B2q

2i + 2q
. (20)

Let H(2i+1)
n =

∑n
k=1

1
k2i+1 and Ci

p =
1
2i Ai

p for i ≥ 1. We rewrite (3.1) as

H(2i+1)
n = ζ(2i + 1) +

r∑
p=0

Ci
p

mi+p + Ei
r+1, (21)

where ζ(z) is the Riemman zeta function and the error term Ei
r+1 =

Ai
r+1

2imi+r+1κr(n, i).
In this section, by using the combinatorial identity derived in Theorem 1, we find a recursive formula

for determining the coefficients Ci
p for p ≥ 0, which is similar to Eq.(4). Specifically, we have

Theorem 3.1. For i ≥ 1, the coefficients Ci
p in Eq.(21) can be recursively determined by

Ci
0 = −

1
i · 2i+1

,

Ci
p =

1
2i+p

− B2p

(2p)!
(2i − 1 + 2p)2p−1 −

p−1∑
k=0

2i+k
(
i + 2p − 1 − k

2p − 2k

)
Ci

k

 , p ≥ 1. (22)

Proof. Taking r = i ≥ 1 in Eq.(9) yields

l∑
p=0

p∑
q=0

(
p + i
q + i

)(
2i + 2q

2q

)(
i + 2l − p − 1

2l − 2p

)
(−1)p+q(4q

− 2)B2q

(p + i)22p+1

= −
B2l

(2l)!
(2i − 1 + 2l)2l−1.
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It is clear that(
p + i
q + i

)
=

p + i
q + i

(
p + i − 1

p − q

)
,

which leads to

l∑
p=0

p∑
q=0

(
p + i − 1

p − q

)(
2i + 2q

2q

)(
i + 2l − p − 1

2l − 2p

)
(−1)p+q(4q

− 2)B2q

2(q + i)4p

= −
B2l

(2l)!
(2i − 1 + 2l)2l−1.

Replacing l by p and p by k, we obtain

p∑
k=0

2i+k
(
i + 2p − 1 − k

2p − 2k

)
Ci

k = −
B2p

(2p)!
(2i − 1 + 2p)2p−1, p ≥ 1,

which is equivalent to Eq.(22).

By the above theorem, several first few coefficients are calculated as follows.

C1
0 = −

1
4
, C1

1 =
1
16
, C1

2 = −
1
48
, C1

3 =
1
96
, C1

4 = −
1

120
, C1

5 =
1

96
,

C2
0 = −

1
16
, C2

1 =
1

24
, C2

2 = −
11

384
, C2

3 =
5

192
, C2

4 = −
13

384
, C2

5 =
1

16
,

C3
0 = −

1
48
, C3

1 =
5

192
, C3

2 = −
29

960
, C3

3 =
11
256
, C3

4 = −
313
384
, C3

5 =
1589
7680

,

C4
0 = −

1
128
, C4

1 =
1

64
, C4

2 = −
7

256
, C4

3 =
25
448
, C4

4 = −
592

4096
, C4

5 =
1481
3092

,

C5
0 = −

1
320
, C5

1 =
7

768
, C5

2 = −
43

1920
, C5

3 =
317

5120
, C5

4 = −
3227

15360
, C5

5 =
54499
61440

.
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