Filomat 37:6 (2023), 1767–1776 https://doi.org/10.2298/FIL2306767K

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Integral operators on grand Lebesgue spaces and related weights with properties

Santosh Kaushik^a, Taqseer Khan^b, Harindri Chaudhary^c

^aDepartment of Mathematics, Bhagini Nivedita College, University of Delhi, Kair, New Delhi-110043, India ^bDepartment of Mathematics, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi-110025, India ^cDepartment of Mathematics, Deshbandhu College, University of Delhi, Kalkaji, New Delhi-110019, India

Abstract. A number of properties for the classes B_p^{-1} and B_p^* have been proved. The class B_p^{-1} characterizes the L^p - inequality involving the averaging operator and the class B_p^* characterizes the L^p - inequality involving the adjoint averaging operator. The reverse inequalities involving the integral operators in L_w^{p} have also been studied.

1. Introduction

Let *w* be a weight which is positive and Lebesgue measurable function on $(0, \infty)$. The weight class B_p is due to Arino and Muckenhoupt [1] who used it to characterize the Hardy inequality

$$\int_0^\infty \left(\frac{1}{x} \int_0^x f(t)dt\right)^p v(x)dx \le C \int_0^\infty f^p(x)w(x)dx \tag{1}$$

in the case v = w for non-negative non-increasing functions f, and equivalently, to characterize the boundedness of the maximal operator between Lorentz spaces. The general case for different weights and for different indices p, q was proved by Sawyer [15]. The detailed information on the B_p -class weights can be found, e.g., in Cerda and Martin [2, 3], Kufner et al. [10], Maligranda [12], Sbordone and Wik [16] etc.

We say that $(v, w) \in B_p^{-1}$ if the following holds

$$\int_{r}^{\infty} \left(\frac{r}{x}\right)^{p} v(x) dx + \int_{0}^{r} v(x) dx \ge C \int_{0}^{r} w(x) dx, \quad r > 0$$
⁽²⁾

In [13], Neugebauer used B_p^{-1} to characterize the reverse of the inequality (1). Precisely, the following was proved.

²⁰²⁰ Mathematics Subject Classification. 26D10; 26D15; 46E35.

Keywords. B_p -class; B_p^{-1} -class; B_p^* -class; Averaging operator; Adjoint averaging operator; Lebesgue spaces; Grand Lebesgue spaces. Received: 18 September 2021; Accepted: 06 March 2022

Communicated by Naseer Shahzad

Email addresses: santoshkaushikk@gmail.com (Santosh Kaushik), tkhan4@jmi.ac.in (Taqseer Khan),

harindri20dbc@gmail.com (Harindri Chaudhary)

Theorem 1.1. Let $1 \le p < \infty$ and v, w be weight functions defined on $(0, \infty)$. Then the reverse Hardy inequality

$$\int_0^\infty \left(\frac{1}{x}\int_0^x f(t)dt\right)^p v(x)dx \ge C\int_0^\infty f^p(x)w(x)dx$$

holds for some constant C > 0 and for all non-negative, non-increasing measurable functions f if and only if $(v, w) \in B_p^{-1}$.

In this paper, we further investigate the class B_p^{-1} and prove a number of properties of weights belonging to this class. We also derive a number of properties of the weight class B_p^* which characterizes the Hardy inequality involving the conjugate Hardy operator

$$A^*f(x) = \frac{1}{x} \int_x^\infty f(t)dt$$

for non-increasing functions. In addition, we study the coresponding inequalities in grand Lebesgue spaces L^{p} which consist of all those measurable functions f for which

$$||f||_{p)} = \sup_{0 < \epsilon < p-1} \left(\epsilon \int_0^1 |f(x)|^{p-\epsilon} dx \right)^{\frac{1}{p-\epsilon}} < \infty, \quad p > 1$$

These spaces were introduced by Iwaniec and Sbordone [8] and were further investigated by Fiorenza [4], Fiorenza and Karadzhov [5], Fiorenza and Rakotoson [6, 7]. Further, the weighted version of the space L^{p} , denoted by L_w^{p} was introduced and the boundedness of the maximal operator was characterized in such spaces.

We show that the classes of weights characterising certain inequality in L^{p} -spaces is essentially the same as that in L_w^{p} -spaces. Finally, we shall discuss the inequality involving the conjugate averaging operator

$$A^*f(x) = \frac{1}{x} \int_x^\infty f(t)dt$$

in the framework of $L_w^{p)}$ -spaces.

The rest of the paper is organized as follows. In Section 2, we study the class B_p^{-1} where we prove a number of properties of this class. The two weight class B_p^* has been investigated in Section 3 and finally in Section

4, we study reverse $L_w^{p)}$ -inequalities for non-increasing functions involving averaging operator. All the functions used in this paper are measurable and non-negative. The alphabet *C* has been used for a constant which may have a different value at different places but does not create any confusion whatsoever.

2. The class B_n^{-1}

For measurable function *f*, consider the modified Hardy averaging operator

$$(A_q f)(x) = \frac{1}{x^{1/q}} \int_0^x \frac{f(t)}{t^{1/q'}} dt, \quad q \ge 1, \quad q' = \frac{q}{q-1}$$

Note that for q = 1, $A_q \equiv A$. In [14], Neugebauer proved the following.

Theorem 2.1. Let $1 \le p, q < \infty$ and w be a weight function defined on $(0, \infty)$. Then the inequality

$$\int_0^\infty \left(A_q f\right)^p(x) w(x) dx \le C \int_0^\infty f^p(x) w(x) dx \tag{3}$$

holds for all non-increasing functions f if and only if $w \in B_{p/q}$.

Our first aim is to characterize the reverse of the inequality (3). In the definition of B_p^{-1} , if $v \equiv w$, we simply write $v \in B_p^{-1}$. In that case, the inequality (2) becomes

$$\int_{r}^{\infty} \left(\frac{r}{x}\right)^{p} v(x) \, dx \ge C \int_{0}^{r} v(x) \, dx, \quad r > 0.$$

The constant C in the above inequality is, of course, different than in (2).

Remark 2.2. In (2), the value of the constant C is not specified. So, one could think that C could take the value 1. In that case $w \equiv v$ would imply that

$$\int_{r}^{\infty} \left(\frac{r}{x}\right)^{p} v(x) \, dx \ge 0 \tag{4}$$

which seems to be true always and as such there seems to be no meaning of saying that $v \in B_p^{-1}$. But when we say that a particular inequality holds, it means that both the sides should exist finitely. In the present case, for p = 4 and $v(x) = x^5$, LHS of (4) is not finite, i.e., (4) does not hold.

Theorem 2.3. Let $1 \le p, q < \infty$ and w be a weight function defined on $(0, \infty)$. Then the inequality

$$\int_0^\infty \left(A_q f\right)^p(x) w(x) dx \ge C \int_0^\infty f^p(x) w(x) dx \tag{5}$$

holds for all non-increasing functions f if and only if $w \in B^{-1}_{p/q}$.

Proof. We use the idea as in [14], Theorem 2.3). The necessity follows by using the function $f = \chi_{[0,r]}$ in ((5)). For the sufficiency, by change of variable, we get

$$\frac{1}{x^{1/q}}\int_0^x \frac{f(u)}{u^{1/q'}} du = \frac{q}{x^{1/q}}\int_0^{x^{1/q}} f(z^q) dz,$$

so that

$$\int_{0}^{\infty} \left(A_{q}f\right)^{p}(x)w(x)dx = q \int_{0}^{\infty} \left(\frac{1}{x^{1/q}} \int_{0}^{x^{1/q}} f(z^{q})dz\right)^{p} w(x)dx$$
$$= q^{2} \int_{0}^{\infty} \left(\frac{1}{t} \int_{0}^{t} f(z^{q})dz\right)^{p} w(t^{q})t^{q-1}dt.$$

Now, since $w \in B_{p/q}^{-1}$, we find that

$$\int_{r}^{\infty} \left(\frac{r}{x}\right)^{p} w(x^{q}) x^{q-1} dx = \frac{1}{q} \int_{r^{q}}^{\infty} \left(\frac{r^{q}}{t}\right)^{p/q} w(t) dt$$
$$\geq \frac{(C-1)}{q} \int_{0}^{r^{q}} w(t) dt$$
$$= C \int_{0}^{r} w(x^{q}) x^{q-1} dx,$$

which implies that $w(t^q)t^{q-1} \in B_p^{-1}$. Consequently, by Theorem 1.1 and applying some variable transformation, the inequality

$$\int_0^\infty \left(\frac{1}{t} \int_0^t f(z^q) dz\right)^p w(t^q) t^{q-1} dt \ge C \int_0^\infty f(t^q)^p w(t^q) t^{q-1} dt$$
$$= \frac{C}{q} \int_0^\infty f^p(x) w(x) dx$$

i.e.

$$\int_0^\infty \left(A_q f\right)^p w(x) dx \ge C \int_0^\infty f^p(x) w(x) dx$$

holds, where we have used the constant *C* for *qC*. \Box

In [13], Neugebauer proved a number of properties for the weight class B_p . Here, we prove some similar properties as applicable for the weight class B_p^{-1} . We have

Theorem 2.4. For $1 < q < p < \infty$, if $w \in B_p^{-1}$ then $w(x^{q-1/p-1}) \in B_q^{-1}$.

Proof. By using change of variable, the fact that $w \in B_p^{-1}$ and again on using change of variable, we will obtain

$$\int_{r}^{\infty} \left(\frac{r}{x}\right)^{q} w(x^{q-1/p-1}) dx = \alpha \int_{r^{1}/\alpha}^{\infty} \left(\frac{r}{u^{\alpha}}\right)^{q} \left(\frac{1}{u^{1-\alpha}}\right) w(u) du$$
$$= \alpha r^{q-p/\alpha} \int_{r^{1}/\alpha}^{\infty} \left(\frac{r^{1/\alpha}}{u}\right)^{p} w(u) du$$
$$\geq C \alpha r^{q-p/\alpha} \int_{0}^{r^{1/\alpha}} w(u) du$$
$$= C r^{1-1/\alpha} \int_{0}^{r} w(x^{1/\alpha}) x^{1/\alpha-1} dx$$
$$\geq C r^{1-1/\alpha} r^{1/\alpha-1} \int_{0}^{r} w(x^{1/\alpha}) dx$$
$$= C \int_{0}^{r} w(x^{q-1/p-1}) dx,$$

where $\alpha = \frac{p-1}{q-1}$, which proves the theorem. \Box

Theorem 2.5. Let $1 < q < p < \infty$. If $(v, w) \in B_p^{-1}$, then $(v, w) \in B_q^{-1}$.

Proof. In view of the monotonicity, we find that

$$\int_{r}^{\infty} \left(\frac{r}{x}\right)^{q} v(x) dx \ge \int_{r}^{\infty} \left(\frac{r}{x}\right)^{p} v(x) dx$$

and the result follows immediately. \Box

Theorem 2.6. If $w \in B_p^{-1}$, then for all $\epsilon > 0$, $x^{\epsilon}w(x^{1+\epsilon}) \in B_p^{-1}$.

Proof. It is clear that $w \in B_{p/1+\epsilon}^{-1}$ for all $\epsilon > 0$. The result now follows using this fact and some variable transformation. Indeed, we have

$$\int_{r}^{\infty} \left(\frac{r}{x}\right)^{p} x^{\epsilon} w(x^{1+\epsilon}) dx = \frac{1}{(1+\epsilon)} \int_{r^{1+\epsilon}}^{\infty} \left(\frac{r^{1+\epsilon}}{u}\right)^{\frac{p}{1+\epsilon}} w(u) du$$
$$\geq \frac{C}{1+\epsilon} \int_{0}^{r^{1+\epsilon}} w(u) du$$
$$= C \int_{0}^{r} x^{\epsilon} w(x^{1+\epsilon}) dx,$$

and the theorem is proved. $\hfill\square$

Theorem 2.7. Let $w \in B_1^{-1}$ and $\alpha \leq 1$. Then $w(x^{\alpha}) \in B_1^{-1}$.

Proof. By variable transformation and the fact that $w \in B_1^{-1}$, we have

$$\int_{r}^{\infty} \left(\frac{r}{x}\right) w(x^{\alpha}) dx = \frac{1}{\alpha} r^{1-\alpha} \int_{r^{\alpha}}^{\infty} \left(\frac{r^{\alpha}}{u}\right) w(u) du$$
$$\geq \frac{C}{\alpha} r^{1-\alpha} \int_{0}^{r^{\alpha}} w(u) du$$
$$= Cr^{1-\alpha} \int_{0}^{r} w(x^{\alpha}) x^{\alpha-1} dx$$
$$\geq C \int_{0}^{r} w(x^{\alpha}) dx,$$

hence the theorem. $\hfill\square$

Theorem 2.8. Let $1 . Then <math>w \in B_p^{-1}$ if and only if $w(x) = u(x)x^{p-1}$ with $u(x^{\frac{1}{p}}) \in B_1^{-1}$.

Proof. Assume first that $w \in B_p^{-1}$. Then

$$\int_{r}^{\infty} \left(\frac{r}{x}\right) \frac{w(x^{1/p})}{x^{1/p'}} dx = p \int_{r^{1/p}}^{\infty} \left(\frac{r^{1/p}}{t}\right)^{p} w(t) dt$$
$$\geq pC \int_{0}^{r^{1/p}} w(t) dt$$
$$= C \int_{0}^{r} \frac{w(x^{1/p})}{x^{1/p'}} dx.$$

Thus, if we write

$$u(x^{\frac{1}{p}}) = \frac{w(x^{1/p})}{x^{1/p'}},$$
(6)

then we have proved that $u(x^{\frac{1}{p}}) \in B_1^{-1}$. At the same time taking $x^{1/p} = t$ in 6, we find that $w(t) = u(t)t^{p-1}$ and the assertion follows. Conversely, assume that $w(x) = u(x)x^{p-1}$ with $u(x^{\frac{1}{p}}) \in B_1^{-1}$. We have

$$\int_{r}^{\infty} \left(\frac{r}{x}\right)^{p} w(x) dx = \int_{r}^{\infty} \left(\frac{r}{x}\right)^{p} u(x) x^{p-1} dx$$
$$= \frac{1}{p} \int_{r^{p}}^{\infty} \left(\frac{r^{p}}{t}\right) u(t^{\frac{1}{p}}) dt$$
$$\ge \frac{C}{p} \int_{0}^{r^{p}} u(t^{\frac{1}{p}}) dt$$
$$= C \int_{0}^{r} u(x) x^{p-1} dx$$
$$= C \int_{0}^{r} w(x) dx$$

and the theorem is proved. $\hfill\square$

3. The class B_p^*

On the similar lines, we prove some similar properties as applicable for the weight class B_p^* .

Theorem 3.1. *For* $1 < q < p < \infty$ *, if* $w \in B_q^*$ *, then* $w(x^{p-1/q-1}) \in B_p^*$ *.*

Proof. By using change of variable, the fact that $w \in B_q^*$ and again using change of variable, we get

$$\int_0^r \left(\frac{r}{x}\right)^p w(x^{\alpha}) dx = \frac{1}{\alpha} \int_0^{r^{\alpha}} \left(\frac{r}{u^{\frac{1}{\alpha}}}\right)^p \left(\frac{1}{u^{1-\frac{1}{\alpha}}}\right) w(u) du$$
$$= \frac{1}{\alpha} r^{p-q\alpha} \int_0^{r^{\alpha}} \left(\frac{r^{\alpha}}{u}\right)^q w(u) du$$
$$\leq \frac{C}{\alpha} r^{p-q\alpha} \int_0^{r^{\alpha}} w(u) du$$
$$= Cr^{p-q\alpha} \int_0^r w(x^{\alpha}) x^{\alpha-1} dx$$
$$\leq Cr^{1-\alpha} r^{\alpha-1} \int_0^r w(x^{\alpha}) dx$$
$$= C \int_0^r w(x^{\alpha}) dx,$$

where $\alpha = \frac{p-1}{q-1}$. \Box

Theorem 3.2. *Let* $1 < q < p < \infty$ *. If* $w \in B_p^*$ *, then* $w \in B_q^*$ *.*

Proof. In view of the monotonicity, we find that

$$\int_0^r \left(\frac{r}{x}\right)^q w(x) dx \ge \int_0^r \left(\frac{r}{x}\right)^p w(x) dx$$

and the result follows immediately. \Box

Theorem 3.3. If $w \in B_p^*$, then for all $\epsilon > 0$, $x^{\epsilon}w(x^{1+\epsilon}) \in B_p^*$.

Proof. Using the previous theorem, we have $w \in B^*_{p/1+\epsilon}$ for all $\epsilon > 0$. The result now follows using this fact and some variable transformation. Indeed, we have

$$\int_0^r \left(\frac{r}{x}\right)^p x^{\epsilon} w(x^{1+\epsilon}) dx = \frac{1}{(1+\epsilon)} \int_0^{r^{1+\epsilon}} \left(\frac{r^{1+\epsilon}}{u}\right) r^{\frac{p}{1+\epsilon}} w(u) du$$
$$\leq \frac{C}{1+\epsilon} \int_0^{r^{1+\epsilon}} w(u) du$$
$$= C \int_0^r x^{\epsilon} w(x^{1+\epsilon}) dx,$$

which proves the result. \Box

Theorem 3.4. Let $w \in B_1^*$ and $\alpha > 1$. Then $w(x^{\alpha}) \in B_1^*$.

Proof. By variable transformation and the fact that $w \in B_1^*$, we have

$$\begin{split} \int_0^r \left(\frac{r}{x}\right) w(x^{\alpha}) dx &= \frac{1}{\alpha} r^{1-\alpha} \int_0^{r^{\alpha}} \left(\frac{r^{\alpha}}{u}\right) w(u) du &\leq \frac{C}{\alpha} r^{1-\alpha} \int_0^{r^{\alpha}} w(u) du \\ &= C r^{1-\alpha} \int_0^r w(x^{\alpha}) x^{\alpha-1} dx \\ &\leq C \int_0^r w(x^{\alpha}) dx, \end{split}$$

and the result is proved. \Box

Theorem 3.5. Let $1 . Then <math>w \in B_p^*$ if and only if $w(x) = u(x)x^{p-1}$ with $u(x^{\frac{1}{p}}) \in B_1^*$.

Proof. Assume first that $w \in B_p^*$. Then

$$\int_0^r \left(\frac{r}{x}\right) \frac{w(x^{1/p})}{x^{1/p'}} dx = p \int_0^{r^{1/p}} \left(\frac{r^{1/p}}{t}\right)^p w(t) dt$$
$$\leq pC \int_0^{r^{1/p}} w(t) dt$$
$$= C \int_0^r \frac{w(x^{1/p})}{x^{1/p'}} dx.$$

Thus, if we write

$$u(x^{\frac{1}{p}}) = \frac{w(x^{1/p})}{x^{1/p'}},$$
(7)

then we have proved that $u(x^{\frac{1}{p}}) \in B_1^*$. At the same time taking $x^{1/p} = t$ in ((7)), we find that $w(t) = u(t)t^{p-1}$ and the assertion follows. Conversely, assume that $w(x) = u(x)x^{p-1}$ with $u(x^{\frac{1}{p}}) \in B_1^*$. We have

$$\int_{0}^{r} \left(\frac{r}{x}\right)^{p} w(x) dx = \int_{0}^{r} \left(\frac{r}{x}\right)^{p} u(x) x^{p-1} dx = \frac{1}{p} \int_{0}^{r^{r}} \left(\frac{r^{p}}{t}\right) u(t^{\frac{1}{p}}) dt$$
$$\leq \frac{C}{p} \int_{0}^{r^{p}} u(t^{\frac{1}{p}}) dt$$
$$= C \int_{0}^{r} u(x) x^{p-1} dx$$
$$= C \int_{0}^{r} w(x) dx$$

and the theorem is proved. $\ \ \Box$

4. Applications to Grand Lebesgue Spaces

In this section, we shall study some inequalities in the framework of weighted grand Lebesgue spaces $L_w^{p)}$: These spaces consist of all those measurable functions f for which

$$\|f\|_{p),w} := \sup_{0 < \epsilon < p-1} \left(\epsilon \int_0^1 |f(x)|^{p-\epsilon} w(x) dx \right)^{\frac{1}{p-\epsilon}} < \infty, \quad p > 1.$$

Jain and Kumari [9] proved that the averaging operator A is bounded between L_w^{p} spaces for non-increasing functions if and only if $w \in B_p$. In other words, it was proved that L_w^{p} -boundedness and L_w^{p} -boundedness of A are equivalent, where L_w^{p} is used to denote weighted L^{p} -space. The equivalence of L_w^{p} -boundedness and L_w^{p} -boundedness and L_w^{p} -boundedness of the maximal operator has been proved in terms of the famous A_p -condition.

In this section, we investigate the corresponding result of Theorem 1.1 in the context of $L_w^{p_1}$ spaces. These spaces require that the functions should be defined on bounded intervals, say,(0, 1). Note that Theorem A is true for all functions which are non-negative and non-increasing. Among these functions, if we choose those which are supported in (0, 1), the result remains valid. However, in the corresponding two weighted B_p^{-1} condition, the integral \int_r^{∞} will be replaced by \int_r^1 . In order to avoid any ambiguity, we shall denote this modified condition by $B_p^{-1}(0, 1)$. Thus, we have the following modification of Theorem 1.1.

Theorem 4.1. Let $1 \le p < \infty$ and v, w be weight functions defined on $(0, \infty)$. Then the reverse Hardy inequality

$$\int_0^1 \left(\frac{1}{x} \int_0^x f(t)dt\right)^p v(x)dx \ge C \int_0^1 f^p(x)w(x)dx \tag{8}$$

holds for some constant C > 0 and for all non-negative, non-increasing measurable functions f if and only if $(v, w) \in B_p^{-1}(0, 1)$, *i.e.*,

$$\int_{r}^{1} \left(\frac{r}{x}\right) v(x) dx + \int_{0}^{1} v(x) dx \ge C \int_{0}^{1} w(x) dx, \quad 0 < r < 1$$

Remark 4.2. The result of Theorem 2.5 is valid for the class $(v, w) \in B_p^{-1}(0, 1)$ too, i.e., $(v, w) \in B_p^{-1}(0, 1)$ implies $(v, w) \in B_a^{-1}(0, 1)$ for $1 < q < p < \infty$. Indeed, the implication follows by monotonicity.

We now prove the following.

Theorem 4.3. Let 1 and v, w be weight functions defined on (0,1). The necessary condition for the inequality

$$||Af||_{p),v} \ge ||f||_{p),w}$$
(9)

to hold for all non-negative and non-increasing functions f is $(v, w) \in B_p^{-1}(0, 1)$.

Proof. Let $(v, w) \in B_p^{-1}(0, 1)$ and $0 < \sigma < p - 1$. We have

$$\begin{split} \|f\|_{p),w} &= \max\left\{\sup_{0<\varepsilon<\sigma}\left(\varepsilon\int_{0}^{1}[f(x)]^{p-\varepsilon}w(x)dx\right)^{\frac{1}{p-\varepsilon}},\sup_{\sigma\leq\varepsilon

$$(10)$$$$

Since $0 < \epsilon < \sigma$, therefore $p - \epsilon > 1$. In view of Remark 4.2, $(v, w) \in B_{p-\epsilon}^{-1}(0, 1)$. Then, in view of Theorem 4.1, the Inequality 8 with p replaced by $p - \epsilon$ holds. In the corresponding inequality, multiplying both sides by $\epsilon^{\frac{1}{p-\epsilon}}$, we obtain

$$C\left(\epsilon \int_0^1 [f(x)]^{p-\epsilon} w(x) dx\right)^{\frac{1}{p-\epsilon}} \leq \left(\epsilon \int_0^1 [Af(x)]^{p-\epsilon} v(x) dx\right)^{\frac{1}{p-\epsilon}},$$

which on passing to the sup over $0 < \epsilon < \sigma$ gives

$$C \sup_{0<\epsilon<\sigma} \left(\epsilon \int_0^1 [f(x)]^{p-\epsilon} w(x) dx\right)^{\frac{1}{p-\epsilon}} \leq \sup_{0<\epsilon<\sigma} \left(\epsilon \int_0^1 [Af(x)]^{p-\epsilon} v(x) dx\right)^{\frac{1}{p-\epsilon}} \leq ||Af||_{p),v}.$$

Combining the last estimate with (10), we get

$$||Af||_{p),v} \ge \frac{C}{p-1}\sigma^{\frac{1}{p-\sigma}}||f||_{p),w},$$

which is true for all $\sigma \in (0, p - 1)$. Therefore, we have

$$||Af||_{p,v} \ge C(p, v, w)||f||_{p,w}$$

with

$$C(p,v,w) = \frac{C}{p-1} \sup_{0 < e < \sigma} \sigma^{\frac{1}{p-\sigma}},$$

and the result is proved. \Box

For the converse of the above theorem, we have the following.

Theorem 4.4. Let $1 , <math>\sigma \in (0, p - 1)$ and v, w be weight functions defined on (0, 1). The sufficient condition for the inequality $||Af||_{p),v} \ge ||f||_{p),w}$ for non-negative and non-increasing function f to hold is $(v, w) \in B_{p-\sigma}^{-1}(0, 1)$.

Proof. Let $||Af||_{p),v} \ge ||f||_{p),w}$ i.e.

$$\sup_{0<\epsilon< p-1} \left(\epsilon \int_0^1 \left(\frac{1}{x} \int_0^x f(t)dt\right)^{p-\epsilon} v(x)dx\right)^{\frac{1}{p-\epsilon}} \ge C \sup_{0<\epsilon< p-1} \left(\epsilon \int_0^1 (f(x))^{p-\epsilon} w(x)dx\right)^{\frac{1}{p-\epsilon}}$$

hold. Then there exists a $\sigma \in (0, p - 1)$ such that the inequality

$$\sigma \bigg(\int_0^1 \bigg(\frac{1}{x} \int_0^x f(t) dt \bigg)^{p-\sigma} v(x) dx \bigg)^{\frac{1}{p-\sigma}} \ge C \sup_{0 < \varepsilon < p-1} \bigg(\varepsilon \int_0^1 (f(x))^{p-\varepsilon} w(x) dx \bigg)^{\frac{1}{p-\varepsilon}}$$

holds. This implies that the LHS dominates the RHS for every $\epsilon \in (0, p - 1)$ and in particular, for $\epsilon = \sigma$. Consequently, the inequality

$$\int_0^1 \left(\frac{1}{x} \int_0^x f(t)dt\right)^{p-\sigma} v(x)dx \ge C^{p-\sigma} \int_0^1 (f(x))^{p-\sigma} w(x)dx$$

holds. Now, consider the function f = (0, r) for a fixed 0 < r < 1, which is a non-negative and non-increasing function. With this f the last inequality becomes

$$\int_{r}^{1} \left(\frac{r}{x}\right)^{p-\sigma} v(x) dx + \int_{0}^{r} v(x) dx \ge C^{p-\sigma} \int_{0}^{r} w(x) dx$$

which means that $(v, w) \in B_{p-\sigma}^{-1}(0, 1)$ and we are done. \Box

As regards a kind of converse of Theorem 2.5, we believe that the following should be true.

Conjecture 4.5. Let 1 and <math>v, w be weight functions defined on $(0, \infty)$. If $(v, w) \in B_p^{-1}$, then there exists $\epsilon > 0$ such that $(v, w) \in B_{p+\epsilon}^{-1}$.

References

- M. Arino and B. Muckenhoupt, Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions, Trans. Amer. Math. Soc. 320 (1990), 727–735.
- [2] J. Cerda and J. Martin, Conjugate Hardy's inequalities with decreasing weights, Proc. Amer. Math. Soc. 126 (1998), 2341–2344.
- [3] J. Cerda and J. Martin, Weighted Hardy inequalities and Hardy transforms of weights, Studia Math. 132 (2000), 189–196.
- [4] A. Fiorenza, Duality and reflexivity in grand Lebesgue spaces, Collect. Math. 51 (2000), 131–148.
- [5] A. Fiorenza and G. E. Karadzhov, Grand and small Lebesgue spaces and their analogs, Zeit. fur Anal. Anwen. 23 (2004), 657-681.
- [6] A. Fiorenza and J. M. Rakotoson, New properties of small Lebesgue spaces and their applications, Math. Ann. 326 (2003), 543-561.
- [7] A. Fiorenza and J. M. Rakotoson, Compactness, interpolation inequalities for small Lebesgue-Sobolev spaces and applications, Calc. Var. Partial Differential Equations 25 (2006), 187–203.
- [8] T. Iwaniec and C. Sbordone, On the integrability of the Jacobian under minimal hypotheses, Arch. Rat. Mach. Anal. 119 (1992), 129–143.
- [9] P. Jain and S. Kumari, On grand Lorentz spaces and the maximal operator, Georgian Math. J. 19 (2012), 235–246.
- [10] A. Kufner, L. Maligranda and L. E. Persson, The Hardy Inequality. About Its History and Some Related Results, Pilson, 2007.
- [11] A. Kufner and L. E. Persson, Weighted Inequalities of Hardy Type, World Scientific Publishing Co., Inc., River Edge, NJ, 2003.
- [12] L. Maligranda, Weighted estimates of integral operators for decreasing functions, In: Proc. of Internat. Conference Boundary Value Problems, Special Functions and Fractional Calculus (Belarus, Minsk, Feb. 16–20, 1996), Belgosuniversitet, Minsk (1996), 226–236.
- [13] C. J. Neugebauer, Weighted norm inequalities for averaging operators of monotone functions, Pub. Mat. 35 (1991), 429-447.
- [14] C. J. Neugebauer, Some classical operators on Lorentz space, Forum Math. 4 (1992), 135-146.
- [15] E. T. Sawyer, Boundedness of classical operators on classical Lorentz spaces, Studia Math. 96 (1990), 145–158.
- [16] C. Sbordone and I. Wik, Maximal functions and related weight classes, Publ. Mat. 38 (1994), 127–155.