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Abstract. A number of properties for the classes B−1
p and B∗p have been proved. The class B−1

p characterizes
the Lp- inequality involving the averaging operator and the class B∗p characterizes the Lp- inequality involving

the adjoint averaging operator. The reverse inequalities involving the integral operators in Lp)
w have also

been studied.

1. Introduction

Let w be a weight which is positive and Lebesgue measurable function on (0,∞). The weight class Bp is
due to Arino and Muckenhoupt [1] who used it to characterize the Hardy inequality∫

∞

0

(
1
x

∫ x

0
f (t)dt

)p

v(x)dx ≤ C
∫
∞

0
f p(x)w(x)dx (1)

in the case v = w for non-negative non-increasing functions f , and equivalently, to characterize the bound-
edness of the maximal operator between Lorentz spaces. The general case for different weights and for
different indices p, q was proved by Sawyer [15]. The detailed information on the Bp-class weights can be
found, e.g., in Cerda and Martin [2, 3], Kufner et al. [10], Maligranda [12], Sbordone and Wik [16] etc.

We say that (v,w) ∈ B−1
p if the following holds∫

∞

r

( r
x

)p
v(x) dx +

∫ r

0
v(x) dx ≥ C

∫ r

0
w(x)dx, r > 0 (2)

In [13], Neugebauer used B−1
p to characterize the reverse of the inequality (1). Precisely, the following was

proved.
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Theorem 1.1. Let 1 ≤ p < ∞ and v, w be weight functions defined on (0,∞). Then the reverse Hardy inequality∫
∞

0

(
1
x

∫ x

0
f (t)dt

)p

v(x)dx ≥ C
∫
∞

0
f p(x)w(x)dx

holds for some constant C > 0 and for all non-negative, non-increasing measurable functions f if and only if
(v,w) ∈ B−1

p .

In this paper, we further investigate the class B−1
p and prove a number of properties of weights belonging

to this class. We also derive a number of properties of the weight class B∗p which characterizes the Hardy
inequality involving the conjugate Hardy operator

A∗ f (x) =
1
x

∫
∞

x
f (t)dt

for non-increasing functions. In addition, we study the coresponding inequalities in grand Lebesgue spaces
Lp) which consist of all those measurable functions f for which

∥ f ∥p) = sup
0<ϵ<p−1

(
ϵ

∫ 1

0
| f (x)|p−ϵdx

) 1
p−ϵ

< ∞, p > 1.

These spaces were introduced by Iwaniec and Sbordone [8] and were further investigated by Fiorenza [4],
Fiorenza and Karadzhov [5], Fiorenza and Rakotoson [6, 7]. Further, the weighted version of the space Lp),
denoted by Lp)

w was introduced and the boundedness of the maximal operator was characterized in such
spaces.
We show that the classes of weights characterising certain inequality in Lp)-spaces is essentially the same as
that in Lp)

w -spaces. Finally, we shall discuss the inequality involving the conjugate averaging operator

A∗ f (x) =
1
x

∫
∞

x
f (t)dt

in the framework of Lp)
w -spaces.

The rest of the paper is organized as follows. In Section 2, we study the class B−1
p where we prove a number

of properties of this class. The two weight class B∗p has been investigated in Section 3 and finally in Section

4, we study reverse Lp)
w -inequalities for non-increasing functions involving averaging operator.

All the functions used in this paper are measurable and non-negative. The alphabet C has been used for a
constant which may have a different value at different places but does not create any confusion whatsoever.

2. The class B−1
p

For measurable function f , consider the modified Hardy averaging operator

(Aq f )(x) =
1

x1/q

∫ x

0

f (t)
t1/q′ dt, q ≥ 1, q′ =

q
q − 1

.

Note that for q = 1, Aq ≡ A. In [14], Neugebauer proved the following.

Theorem 2.1. Let 1 ≤ p, q < ∞ and w be a weight function defined on (0,∞). Then the inequality∫
∞

0

(
Aq f

)p
(x)w(x)dx ≤ C

∫
∞

0
f p(x)w(x)dx (3)

holds for all non-increasing functions f if and only if w ∈ Bp/q.
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Our first aim is to characterize the reverse of the inequality (3). In the definition of B−1
p , if v ≡ w, we simply

write v ∈ B−1
p . In that case, the inequality (2) becomes∫

∞

r

( r
x

)p
v(x) dx ≥ C

∫ r

0
v(x)dx, r > 0.

The constant C in the above inequality is, of course, different than in (2).

Remark 2.2. In (2), the value of the constant C is not specified. So, one could think that C could take the value 1. In
that case w ≡ v would imply that∫

∞

r

( r
x

)p
v(x) dx ≥ 0 (4)

which seems to be true always and as such there seems to be no meaning of saying that v ∈ B−1
p . But when we say

that a particular inequality holds, it means that both the sides should exist finitely. In the present case, for p = 4 and
v(x) = x5, LHS of (4) is not finite, i.e., (4) does not hold.

Theorem 2.3. Let 1 ≤ p, q < ∞ and w be a weight function defined on (0,∞). Then the inequality∫
∞

0

(
Aq f

)p
(x)w(x)dx ≥ C

∫
∞

0
f p(x)w(x)dx (5)

holds for all non-increasing functions f if and only if w ∈ B−1
p/q.

Proof. We use the idea as in [14], Theorem 2.3). The necessity follows by using the function f = χ[0,r] in ((5))
. For the sufficiency, by change of variable, we get

1
x1/q

∫ x

0

f (u)
u1/q′ du =

q
x1/q

∫ x1/q

0
f (zq)dz,

so that∫
∞

0

(
Aq f

)p
(x)w(x)dx = q

∫
∞

0

 1
x1/q

∫ x1/q

0
f (zq)dz

p

w(x)dx

= q2
∫
∞

0

(
1
t

∫ t

0
f (zq)dz

)p

w(tq)tq−1dt.

Now, since w ∈ B−1
p/q, we find that∫

∞

r

( r
x

)p
w(xq)xq−1dx =

1
q

∫
∞

rq

( rq

t

)p/q

w(t)dt

≥
(C − 1)

q

∫ rq

0
w(t)dt

= C
∫ r

0
w(xq)xq−1dx,

which implies that w(tq)tq−1
∈ B−1

p . Consequently, by Theorem 1.1 and applying some variable transforma-
tion, the inequality∫

∞

0

(
1
t

∫ t

0
f (zq)dz

)p

w(tq)tq−1dt ≥ C
∫
∞

0
f (tq)pw(tq)tq−1dt

=
C
q

∫
∞

0
f p(x)w(x)dx
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i.e. ∫
∞

0

(
Aq f

)p
w(x)dx ≥ C

∫
∞

0
f p(x)w(x)dx

holds, where we have used the constant C for qC.

In [13], Neugebauer proved a number of properties for the weight class Bp. Here, we prove some similar
properties as applicable for the weight class B−1

p . We have

Theorem 2.4. For 1 < q < p < ∞, if w ∈ B−1
p then w(xq−1/p−1) ∈ B−1

q .

Proof. By using change of variable, the fact that w ∈ B−1
p and again on using change of variable, we will

obtain∫
∞

r

( r
x

)q
w(xq−1/p−1)dx = α

∫
∞

r1/α

( r
uα

)q ( 1
u1−α

)
w(u)du

= αrq−p/α
∫
∞

r1/α

(
r1/α

u

)p

w(u)du

≥ Cαrq−p/α
∫ r1/α

0
w(u)du

= Cr1−1/α
∫ r

0
w(x1/α)x1/α−1dx

≥ Cr1−1/αr1/α−1
∫ r

0
w(x1/α)dx

= C
∫ r

0
w(xq−1/p−1)dx,

where α = p−1
q−1 ,which proves the theorem.

Theorem 2.5. Let 1 < q < p < ∞. If (v,w) ∈ B−1
p , then (v,w) ∈ B−1

q .

Proof. In view of the monotonicity, we find that∫
∞

r

( r
x

)q
v(x)dx ≥

∫
∞

r

( r
x

)p
v(x)dx

and the result follows immediately.

Theorem 2.6. If w ∈ B−1
p , then for all ϵ > 0, xϵw(x1+ϵ) ∈ B−1

p .

Proof. It is clear that w ∈ B−1
p/1+ϵ for all ϵ > 0. The result now follows using this fact and some variable

transformation. Indeed, we have∫
∞

r

( r
x

)p
xϵw(x1+ϵ)dx =

1
(1 + ϵ)

∫
∞

r1+ϵ
(
r1+ϵ

u
)

p
1+ϵw(u)du

≥
C

1 + ϵ

∫ r1+ϵ

0
w(u)du

= C
∫ r

0
xϵw(x1+ϵ)dx,

and the theorem is proved.
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Theorem 2.7. Let w ∈ B−1
1 and α ≤ 1. Then w(xα) ∈ B−1

1 .

Proof. By variable transformation and the fact that w ∈ B−1
1 , we have∫

∞

r

( r
x

)
w(xα)dx =

1
α

r1−α
∫
∞

rα

( rα

u

)
w(u)du

≥
C
α

r1−α
∫ rα

0
w(u)du

= Cr1−α
∫ r

0
w(xα)xα−1dx

≥ C
∫ r

0
w(xα)dx,

hence the theorem.

Theorem 2.8. Let 1 < p < ∞. Then w ∈ B−1
p if and only if w(x) = u(x)xp−1 with u(x

1
p ) ∈ B−1

1 .

Proof. Assume first that w ∈ B−1
p . Then∫

∞

r

( r
x

) w(x1/p)
x1/p′ dx = p

∫
∞

r1/p

(
r1/p

t

)p

w(t)dt

≥ pC
∫ r1/p

0
w(t)dt

= C
∫ r

0

w(x1/p)
x1/p′ dx.

Thus, if we write

u(x
1
p ) =

w(x1/p)
x1/p′ , (6)

then we have proved that u(x
1
p ) ∈ B−1

1 . At the same time taking x1/p = t in 6, we find that w(t) = u(t)tp−1 and

the assertion follows. Conversely, assume that w(x) = u(x)xp−1 with u(x
1
p ) ∈ B−1

1 . We have∫
∞

r

( r
x

)p
w(x)dx =

∫
∞

r

( r
x

)p
u(x)xp−1dx

=
1
p

∫
∞

rp

( rp

t

)
u(t

1
p )dt

≥
C
p

∫ rp

0
u(t

1
p )dt

= C
∫ r

0
u(x)xp−1dx

= C
∫ r

0
w(x)dx

and the theorem is proved.
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3. The class B∗p

On the similar lines, we prove some similar properties as applicable for the weight class B∗p.

Theorem 3.1. For 1 < q < p < ∞, if w ∈ B∗q, then w(xp−1/q−1) ∈ B∗p.

Proof. By using change of variable, the fact that w ∈ B∗q and again using change of variable, we get∫ r

0

( r
x

)p
w(xα)dx =

1
α

∫ rα

0

(
r

u
1
α

)p (
1

u1− 1
α

)
w(u)du

=
1
α

rp−qα
∫ rα

0

( rα

u

)q

w(u)du

≤
C
α

rp−qα
∫ rα

0
w(u)du

= Crp−qα
∫ r

0
w(xα)xα−1dx

≤ Cr1−αrα−1
∫ r

0
w(xα)dx

= C
∫ r

0
w(xα)dx,

where α = p−1
q−1 .

Theorem 3.2. Let 1 < q < p < ∞. If w ∈ B∗p, then w ∈ B∗q.

Proof. In view of the monotonicity, we find that∫ r

0

( r
x

)q
w(x)dx ≥

∫ r

0

( r
x

)p
w(x)dx

and the result follows immediately.

Theorem 3.3. If w ∈ B∗p, then for all ϵ > 0, xϵw(x1+ϵ) ∈ B∗p.

Proof. Using the previous theorem, we have w ∈ B∗p/1+ϵ for all ϵ > 0. The result now follows using this fact
and some variable transformation. Indeed, we have∫ r

0

( r
x

)p
xϵw(x1+ϵ)dx =

1
(1 + ϵ)

∫ r1+ϵ

0

(
r1+ϵ

u

)
r

p
1+ϵw(u)du

≤
C

1 + ϵ

∫ r1+ϵ

0
w(u)du

= C
∫ r

0
xϵw(x1+ϵ)dx,

which proves the result.

Theorem 3.4. Let w ∈ B∗1 and α > 1. Then w(xα) ∈ B∗1.
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Proof. By variable transformation and the fact that w ∈ B∗1, we have∫ r

0

( r
x

)
w(xα)dx =

1
α

r1−α
∫ rα

0

( rα

u

)
w(u)du ≤

C
α

r1−α
∫ rα

0
w(u)du

= Cr1−α
∫ r

0
w(xα)xα−1dx

≤ C
∫ r

0
w(xα)dx,

and the result is proved.

Theorem 3.5. Let 1 < p < ∞. Then w ∈ B∗p if and only if w(x) = u(x)xp−1 with u(x
1
p ) ∈ B∗1.

Proof. Assume first that w ∈ B∗p. Then∫ r

0

( r
x

) w(x1/p)
x1/p′ dx = p

∫ r1/p

0

(
r1/p

t

)p

w(t)dt

≤ pC
∫ r1/p

0
w(t)dt

= C
∫ r

0

w(x1/p)
x1/p′ dx.

Thus, if we write

u(x
1
p ) =

w(x1/p)
x1/p′ , (7)

then we have proved that u(x
1
p ) ∈ B∗1. At the same time taking x1/p = t in ((7)) , we find that w(t) = u(t)tp−1

and the assertion follows. Conversely, assume that w(x) = u(x)xp−1 with u(x
1
p ) ∈ B∗1. We have∫ r

0

( r
x

)p
w(x)dx =

∫ r

0

( r
x

)p
u(x)xp−1dx =

1
p

∫ rp

0

( rp

t

)
u(t

1
p )dt

≤
C
p

∫ rp

0
u(t

1
p )dt

= C
∫ r

0
u(x)xp−1dx

= C
∫ r

0
w(x)dx

and the theorem is proved.

4. Applications to Grand Lebesgue Spaces

In this section, we shall study some inequalities in the framework of weighted grand Lebesgue spaces
Lp)

w : These spaces consist of all those measurable functions f for which

∥ f ∥p),w := sup
0<ϵ<p−1

(
ϵ

∫ 1

0
| f (x)|p−ϵw(x)dx

) 1
p−ϵ

< ∞, p > 1.
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Jain and Kumari [9] proved that the averaging operator A is bounded between Lp)
w spaces for non-increasing

functions if and only if w ∈ Bp. In other words, it was proved that Lp)
w -boundedness and Lp

w-boundedness of
A are equivalent, where Lp

w is used to denote weighted Lp-space. The equivalence of Lp)
w -boundedness and

Lp
w-boundedness of the maximal operator has been proved in terms of the famous Ap-condition.

In this section, we investigate the corresponding result of Theorem 1.1 in the context of Lp)
w spaces. These

spaces require that the functions should be defined on bounded intervals, say,(0, 1). Note that Theorem A
is true for all functions which are non-negative and non-increasing. Among these functions, if we choose
those which are supported in (0, 1), the result remains valid. However, in the corresponding two weighted

B−1
p condition, the integral

∫
∞

r will be replaced by
∫ 1

r . In order to avoid any ambiguity, we shall denote this
modified condition by B−1

p (0, 1). Thus, we have the following modification of Theorem 1.1.

Theorem 4.1. Let 1 ≤ p < ∞ and v, w be weight functions defined on (0,∞). Then the reverse Hardy inequality∫ 1

0

(
1
x

∫ x

0
f (t)dt

)p

v(x)dx ≥ C
∫ 1

0
f p(x)w(x)dx (8)

holds for some constant C > 0 and for all non-negative, non-increasing measurable functions f if and only if
(v,w) ∈ B−1

p (0, 1), i.e.,∫ 1

r

( r
x

)
v(x)dx +

∫ 1

0
v(x)dx ≥ C

∫ 1

0
w(x)dx, 0 < r < 1.

Remark 4.2. The result of Theorem 2.5 is valid for the class (v,w) ∈ B−1
p (0, 1) too, i.e., (v,w) ∈ B−1

p (0, 1) implies
(v,w) ∈ B−1

q (0, 1) for 1 < q < p < ∞. Indeed, the implication follows by monotonicity.

We now prove the following.

Theorem 4.3. Let 1 < p < ∞ and v, w be weight functions defined on (0, 1). The necessary condition for the
inequality

∥A f ∥p),v ≥ ∥ f ∥p),w (9)

to hold for all non-negative and non-increasing functions f is (v,w) ∈ B−1
p (0, 1).

Proof. Let (v,w) ∈ B−1
p (0, 1) and 0 < σ < p − 1. We have

∥ f ∥p),w = max

 sup
0<ϵ<σ

(
ϵ

∫ 1

0
[ f (x)]p−ϵw(x)dx

) 1
p−ϵ

, sup
σ≤ϵ<p−1

(
ϵ

∫ 1

0
[ f (x)]p−ϵw(x)dx

) 1
p−ϵ


≤ max

 sup
0<ϵ<σ

(
ϵ

∫ 1

0
[ f (x)]p−ϵw(x)dx

) 1
p−ϵ

, sup
σ≤ϵ<p−1

(ϵ)
1

p−ϵ σ−
1

p−σ σ
1

p−σ

( ∫ 1

0
[ f (x)]p−ϵw(x)dx

) 1
p−σ


≤ (p − 1)σ−

1
p−σ sup

0<ϵ<σ

(
ϵ

∫ 1

0
[ f (x)]p−ϵw(x)dx

) 1
p−ϵ

. (10)

Since 0 < ϵ < σ, therefore p− ϵ > 1. In view of Remark 4.2 , (v,w) ∈ B−1
p−ϵ(0, 1). Then, in view of Theorem 4.1,

the Inequality 8 with p replaced by p − ϵ holds. In the corresponding inequality, multiplying both sides by
ϵ

1
p−ϵ , we obtain

C
(
ϵ

∫ 1

0
[ f (x)]p−ϵw(x)dx

) 1
p−ϵ

≤

(
ϵ

∫ 1

0
[A f (x)]p−ϵv(x)dx

) 1
p−ϵ

,



S. Kaushik et al. / Filomat 37:6 (2023), 1767–1776 1775

which on passing to the sup over 0 < ϵ < σ gives

C sup
0<ϵ<σ

(
ϵ

∫ 1

0
[ f (x)]p−ϵw(x)dx

) 1
p−ϵ

≤ sup
0<ϵ<σ

(
ϵ

∫ 1

0
[A f (x)]p−ϵv(x)dx

) 1
p−ϵ

≤ ∥A f ∥p),v.

Combining the last estimate with (10), we get

∥A f ∥p),v ≥
C

p − 1
σ

1
p−σ ∥ f ∥p),w,

which is true for all σ ∈ (0, p − 1). Therefore, we have

∥A f ∥p),v ≥ C(p, v,w)∥ f ∥p),w

with

C(p, v,w) =
C

p − 1
sup

0<ϵ<σ
σ

1
p−σ ,

and the result is proved.

For the converse of the above theorem, we have the following.

Theorem 4.4. Let 1 < p < ∞, σ ∈ (0, p − 1) and v, w be weight functions defined on (0, 1). The sufficient condition
for the inequality ∥A f ∥p),v ≥ ∥ f ∥p),w for non-negative and non-increasing function f to hold is (v,w) ∈ B−1

p−σ(0, 1).

Proof. Let ∥A f ∥p),v ≥ ∥ f ∥p),w i.e.

sup
0<ϵ<p−1

(
ϵ

∫ 1

0

(1
x

∫ x

0
f (t)dt

)p−ϵ

v(x)dx
) 1

p−ϵ

≥ C sup
0<ϵ<p−1

(
ϵ

∫ 1

0
( f (x))p−ϵw(x)dx

) 1
p−ϵ

hold. Then there exists a σ ∈ (0, p − 1) such that the inequality

σ
( ∫ 1

0

(1
x

∫ x

0
f (t)dt

)p−σ

v(x)dx
) 1

p−σ

≥ C sup
0<ϵ<p−1

(
ϵ

∫ 1

0
( f (x))p−ϵw(x)dx

) 1
p−ϵ

holds. This implies that the LHS dominates the RHS for every ϵ ∈ (0, p − 1) and in particular, for ϵ = σ.
Consequently, the inequality∫ 1

0

(1
x

∫ x

0
f (t)dt

)p−σ

v(x)dx ≥ Cp−σ
∫ 1

0
( f (x))p−σw(x)dx

holds. Now, consider the function f = (0, r) for a fixed 0 < r < 1,which is a non-negative and non-increasing
function. With this f the last inequality becomes∫ 1

r

( r
x

)p−σ

v(x)dx +
∫ r

0
v(x)dx ≥ Cp−σ

∫ r

0
w(x)dx

which means that (v,w) ∈ B−1
p−σ(0, 1) and we are done.

As regards a kind of converse of Theorem 2.5, we believe that the following should be true.

Conjecture 4.5. Let 1 < p < ∞ and v, w be weight functions defined on (0,∞). If (v,w) ∈ B−1
p , then there exists

ϵ > 0 such that (v,w) ∈ B−1
p+ϵ.
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