*-Ricci tensor on three dimensional almost coKähler manifolds

V. Venkatesha ${ }^{\text {a }}$, Uday Chand De ${ }^{\text {b }}$, H. Aruna Kumara ${ }^{\text {c }}$, Devaraja Mallesha Naik ${ }^{\text {d }}$
${ }^{a}$ Department of Mathematics, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka-577 451, India
${ }^{b}$ Department of Mathematics, University of Calcutta, 35 Ballygunge Circular Road, West Bengal 700019, India
${ }^{c}$ Department of Mathematics, BMS Institute of Technology and Management, Yelahanka, Bangalore-560 064, India
${ }^{d}$ Department of Mathematics, Kuvempu University Shivamogga, Karnataka 577451, India

Abstract

In this paper, we obtain some classification results of three-dimensional non-coKähler almost coKähler manifold M whose Reeb vector field is strongly normal unit vector field with $\xi\left(\left\|\nabla_{\xi} h\right\|\right)=0$, for which the *-Ricci tensor is of Codazzi-type or M satisfies the curvature condition $Q^{*} \cdot R=0$.

1. Introduction

Corresponding to Ricci tensor, Tachibana in [22] introduced the concept of *-Ricci tensor. In [10] Hamada applied these ideas to real hypersurfaces in complex space form. The $*$-Ricci tensor S^{*} is defined by

$$
\begin{equation*}
S^{*}(X, Y)=\frac{1}{2} \operatorname{trace}\{\varphi \circ R(X, \varphi Y)\} \tag{1}
\end{equation*}
$$

for all vector fields X, Y, where φ is a $(1,1)$-tensor field. If $*$-Ricci tensor is a constant multiple of g, then M is said to be *-Einstein manifold. Hamada gave a complete classification of *-Einstein hypersurfaces, and further Ivey and Ryan [12] updated and refined the work of Hamada [10]. It is important to note that Kaimakamis and Panagiotidou [13] introduced the concept of $*$-Ricci soliton in non-flat complex space form as a generalization of *-Einstein metric. Further, the idea of $*$-Ricci solitons in almost contact metric manifolds was extensively studied by many authors in [5, 7, 11, 23, 24].

As a special class of almost contact metric manifolds and analogy of Kähler manifolds, the geometry of (almost) coKähler manifolds was first introduced by Blair [1] and studied by Goldberg and Yano [8] and Olszak [18]. Such manifolds are actually the almost cosymplectic manifolds studied in the above literature. Due to Li's [14] work, recently many authors in their papers adopted this new terminology. From Li's work we are aware that the coKähler manifolds are really odd dimensional analogues of Kähler manifolds. In a recent survey [3], the authors collected some new results concerning (almost) coKähler manifolds both from geometrical and topological point of view. Perrone [20,21] obtained a complete classification results of three-dimensional almost coKähler manifolds which are homogeneous or the Reeb vector field is minimal and also gave a local characterization of such manifolds.

[^0]In recent years, many classification results on three-dimensional almost coKähler manifolds are emerged. For instance, Cho [4], studied Reeb flow symmetry (that is, the Ricci tensor is invariant along the Reeb flow) on three-dimensional almost coKähler manifolds. Moreover, the authors respectively in [6, 15, 26] considered local φ-symmetry, curvature and ball homogeneities in three-dimensional almost coKähler manifolds. Some other symmetry properties in terms of the Ricci operators, such as Codazzi-type, η parallelism and transversal Killing on three-dimensional almost coKähler manifolds were also studied in [19, 27]. The authors in [11] studied contact metric generalized (κ, μ)-space form under some curvature condtion in terms of *-Ricci tensor, such as η-recurrent, $*$-Ricci semi-symmetry and globally $\varphi-*$-Ricci symmetry. Motivated by the above studies, in the present paper we start to study Codazzi-type *-Ricci tensor and curvature condtion $Q^{*} \cdot R=0$ on three-dimensional almost coKähler manifolds under some reasonable conditions for the first time.

2. Almost coKähler three-manifolds

Let M be a smooth differentiable manifold of dimension $2 n+1$. On M, if there exist a (1,1)-tensor field φ, a characterstic vector field ξ, a 1-form η and a Riemannian metric g such that

$$
\begin{align*}
& \varphi^{2} X=-X+\eta(X) \xi, \quad \eta(\xi)=1, \\
& g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y), \tag{2}
\end{align*}
$$

for any vector fields X, Y, then we say that M admits an almost contact metric structure. We call ξ as a Reeb vector field. As a result of (2) we have $\varphi(\xi)=0, \eta(\varphi)=0$. One can define an almost complex structure J on $M \times \mathbb{R}$ by

$$
J\left(X, u \frac{d}{d t}\right)=\left(\varphi X-u \xi, \eta(X) \frac{d}{d t}\right)
$$

where t is the coordinate of \mathbb{R} and u is a smooth function. If the aforementioned structure J is integrable, then we say that an almost contact structure is normal, and this is equivalent to require

$$
[\varphi, \varphi]=-2 d \eta \otimes \xi
$$

where $[\varphi, \varphi]$ indicates the Nijenhuis tensor of φ.
In this paper, by an almost coKähler manifold we mean an almost contact metric manifold (M, φ, ξ, η, g) in which η and Φ are closed, where the fundamental 2 -form Φ of almost contact metric manifold M is defined by $\Phi(X, Y)=g(X, \varphi Y)$, for all vector fields X and Y. An almost coKähler manifold is said to be coKähler manifold (see [14]) if the associated almost contact structure is normal, which is also equivalent to

$$
\nabla \varphi=0, \quad(\nabla \Phi=0) .
$$

On almost coKähler manifold, we set three (1,1)-type tensor fields $h=\frac{1}{2} £_{\xi} g$, where $£$ is the Lie differentiation, Jacobi operator $\ell=R(\cdot, \xi) \xi$ generated by ξ and $h^{\prime}=h \circ \varphi$, where R is the Riemannian curvature tensor. From [2,18], we are aware that ℓ, h and h^{\prime} are symmetric and satisfy

$$
\begin{array}{r}
h \xi=\ell \xi=0, \quad \operatorname{tr}(h)=\operatorname{tr}\left(h^{\prime}\right)=0, \\
h \varphi+\varphi h=0, \quad \nabla \xi=h^{\prime}, \quad \operatorname{div} \xi=0, \\
\nabla \xi h=-h^{2} \varphi-\varphi \ell, \quad \varphi \ell \varphi-\ell=2 h^{2}, \tag{5}
\end{array}
$$

where $t r$ and div indicates the trace and divergence operators, respectively. The well-known Ricci tensor S is defined by

$$
S(X, Y)=g(Q X, Y)=\operatorname{tr}\{Z \rightarrow R(Z, X) Y\},
$$

where Q denotes the Ricci operator. Note that a three-dimensional almost coKähler manifold is coKähler if and only if h vanishes. In this connection it is worth to note that (almost) coKähler manifold in fact is the (almost) cosymplectic manifold studied in [4, 20].

Let us recall some useful formula listed in [21]. Let \mathcal{U}_{1} be the open subset of three-dimensional almost coKähler manifold M satisfying $h \neq 0$ and \mathcal{U}_{2} be the open subset of M which is defined by $\mathcal{U}_{2}=\{p \in M: h=0$ in a neighborhood of $p\}$. Consequently, $\mathcal{U}_{1} \cup \mathcal{U}_{2}$ is open and dense in M and there exists a local orthonormal basis $\{\xi, e, \varphi e\}$ of three smooth unit eigenvectors of h for any point $p \in \mathcal{U}_{1} \cup \mathcal{U}_{2}$. On \mathcal{U}_{1}, we set $h(e)=\lambda e$ and hence $h \varphi e=-\lambda \varphi e$, where λ is a positive function on \mathcal{U}_{1}. The eigenvalue function λ is continuous on M and smooth on $\mathcal{U}_{1} \cup \mathcal{U}_{2}$.

Lemma 2.1. On \mathcal{U}_{1}, the Levi-Civita connection is given by

$$
\begin{gathered}
\nabla_{\xi} e=f \varphi e, \quad \nabla_{\xi} \varphi e=-f e, \quad \nabla_{e} \xi=-\lambda \varphi e, \quad \nabla_{\varphi e} \xi=-\lambda e, \\
\nabla_{e} e=\frac{1}{2 \lambda}(\varphi e(\lambda)+\sigma(e)) \varphi e, \quad \nabla_{\varphi e} \varphi e=\frac{1}{2 \lambda}(e(\lambda)+\sigma(\varphi e)) e, \\
\nabla_{\varphi e} e=\lambda \xi-\frac{1}{2 \lambda}(e(\lambda)+\sigma(\varphi e)) \varphi e, \quad \nabla_{e} \varphi e=\lambda \xi-\frac{1}{2 \lambda}(\varphi e(\lambda)+\sigma(e)) e,
\end{gathered}
$$

where f is a smooth function and σ is the 1-form defined by $\sigma(\cdot)=S(\cdot, \xi)$.
As a result of above lemma, we have the following Poisson brackets:

$$
\begin{gather*}
{[\xi, e]=(\lambda+f) \varphi e, \quad[\xi, \varphi e]=(\lambda-f) e} \\
{[e, \varphi e]=\frac{1}{2 \lambda}(e(\lambda)+\sigma(\varphi e)) \varphi e-\frac{1}{2 \lambda}(\varphi e(\lambda)+\sigma(e)) e} \tag{6}
\end{gather*}
$$

Putting (6) into the well-known Jacobi identity $[[\xi, e], \varphi e]+[[e, \varphi e], \xi]+[[\varphi e, \xi], e]=0$, we obtain

$$
\begin{align*}
e(\lambda-f)+\xi\left(\frac{\varphi e(\lambda)+\sigma(e)}{2 \lambda}\right)+\frac{f-\lambda}{2 \lambda}(e(\lambda)+\sigma(\varphi e)) & =0 \\
\varphi e(\lambda+f)+\xi\left(\frac{e(\lambda)+\sigma(\varphi e)}{2 \lambda}\right)-\frac{f+\lambda}{2 \lambda}(\varphi e(\lambda)+\sigma(e)) & =0 \tag{7}
\end{align*}
$$

The Ricci operator Q of three-dimensional almost coKähler manifold is expressed (see Proposition 4.1 in [21]) on \mathcal{U}_{1} by

$$
\begin{gather*}
Q \xi=-2 \lambda^{2} \xi+\sigma(e) e+\sigma(\varphi e) \varphi e \\
Q e=\sigma(e) \xi+\frac{1}{2}\left(r+2 \lambda^{2}-4 f \lambda\right) e+\xi(\lambda) \varphi e \tag{8}\\
Q \varphi e=\sigma(\varphi e) \xi+\xi(\lambda) e+\frac{1}{2}\left(r+2 \lambda^{2}+4 f \lambda\right) \varphi e
\end{gather*}
$$

with respect to the local basis $\{\xi, e, \varphi\}$, where r denotes the scalar curvature.

3. *-Ricci tensor on almost coKähler three-manifolds

In this section, first we classify three-dimensional almost coKähler manifolds whose *-Ricci tensor is of Codazzi-type, that is,

$$
\begin{equation*}
\left(\nabla_{X} Q^{*}\right) Y=\left(\nabla_{Y} Q^{*}\right) X \tag{9}
\end{equation*}
$$

for any vector fields X and Y.
Before giving our main results, we first find the expression of *-Ricci operator on non-coKähler almost coKähler three-manifold with respect to the local basis $\{\xi, e, \varphi e\}$.

Lemma 3.1. The *-Ricci opearator Q^{*} of three-dimensional almost coKähler manifold is expressed on \mathcal{U}_{1} by

$$
\begin{equation*}
Q^{*} \xi=\sigma(e) e+\sigma(\varphi e) \varphi e, \quad Q^{*} e=\left(\frac{r}{2}+2 \lambda^{2}\right) e, \quad Q^{*} \varphi e=\left(\frac{r}{2}+2 \lambda^{2}\right) \varphi e, \tag{10}
\end{equation*}
$$

with respect to $\{\xi, e, \varphi e\}$.
Proof. It is well known that the curvature tensor R of any three-dimensional Riemannian manifold is given by

$$
\begin{aligned}
R(X, Y) Z= & g(Y, Z) Q X-g(X, Z) Q Y+g(Q Y, Z) X-g(Q X, Z) Y \\
& -\frac{r}{2}(g(Y, Z) X-g(X, Z) Y)
\end{aligned}
$$

for any vector fields X, Y, Z. Applying (8), the curvature tensor R of a non-coKähler three-dimensional almost coKähler manifold M can be given as the following:

$$
\begin{array}{r}
R(e, \xi) \xi=-\lambda(\lambda+2 f) e+\xi(\lambda) \varphi e, \\
R(\varphi e, \xi) \xi=\xi(\lambda) e-\lambda(\lambda-2 f) \varphi e \\
R(e, \xi) e=\lambda(\lambda+2 f) \xi-\sigma(\varphi e) \varphi e \\
R(e, \xi) \varphi e=-\xi(\lambda) \xi+\sigma(\varphi e) e, \\
R(\varphi e, \xi) e=-\xi(\lambda) \xi+\sigma(e) \varphi e, \\
R(\varphi e, \xi) \varphi e=\lambda(\lambda-2 f) \xi-\sigma(e) e, \\
R(e, \varphi e) \xi=\sigma(\varphi e) e-\sigma(e) \varphi e, \\
R(e, \varphi e) e=-\sigma(\varphi e) \xi-\left(\frac{r}{2}+2 \lambda^{2}\right) \varphi e, \\
R(e, \varphi e) \varphi e=\sigma(e) \xi+\left(\frac{r}{2}+2 \lambda^{2}\right) e . \tag{19}
\end{array}
$$

By the definition of *-Ricci tensor, we have

$$
\begin{aligned}
S^{*}(X, Y) & =\frac{1}{2} \sum_{i=1}^{3} g\left(\varphi R(X, \varphi Y) e_{i}, e_{i}\right) \\
& =-\frac{1}{2} \sum_{i=1}^{3} g\left(R\left(e_{i}, \varphi e_{i}\right) X, \varphi Y\right) \\
& =\frac{1}{2} \sum_{i=1}^{3} g\left(\varphi R\left(e_{i}, \varphi e_{i}\right) X, Y\right)
\end{aligned}
$$

where $e_{1}=\xi, e_{2}=e$ and $e_{3}=\varphi e$. In this sequel, we can write

$$
\begin{align*}
Q^{*} X & =\frac{1}{2} \sum_{i=1}^{3} \varphi R\left(e_{i}, \varphi e_{i}\right) X \\
& =\frac{1}{2}\{\varphi R(e, \varphi e) X-\varphi R(\varphi e, e) X\} \tag{20}
\end{align*}
$$

Emplyoing $X=\xi$ in above equation, recalling (17) we obtain

$$
\begin{aligned}
Q^{*} \xi & =\varphi R(e, \varphi e) \xi \\
& =\sigma(e) e+\sigma(\varphi e) \varphi e
\end{aligned}
$$

Simillarly, setting X by e and φe separately in (20), utilization of (18) and (19) gives second and third term of (10) respectively.

Proposition 3.2. The *-Ricci tensor of three-dimensional almost coKähler manifold is symmetric if and only if Reeb vector field is an eigenvector field of the Ricci operator.
Proof. As a result of Lemma 3.1, we have

$$
\begin{array}{r}
S^{*}(\xi, e)=g\left(Q^{*} \xi, e\right)=\sigma(e), \quad S^{*}(e, \xi)=g\left(Q^{*} e, \xi\right)=0, \\
S^{*}(e, \varphi e)=g\left(Q^{*} e, \varphi e=0, \quad S^{*}(\xi, \varphi e)=g\left(Q^{*} \xi, \varphi e\right)=\sigma(\varphi e),\right. \\
S^{*}(\varphi e, \xi)=g\left(Q^{*} \varphi e, \xi\right)=0, \quad S^{*}(\varphi e, e)=g\left(Q^{*} \varphi e, e\right)=0
\end{array}
$$

Above relations enables us to conclude that S^{*} is symmetric if and only if $\sigma(e)=\sigma(\varphi e)=0$, that is, Reeb vector field is an eigenvector field of the Ricci operator.
Remark 3.3. It is worth to remark that the *-Ricci tensor is not symmetric for three-dimensional almost coKähler manifolds. But, our Proposition 3.2 gives a necessary and sufficient condition for the $*$-Ricci tensor to be symmetric.
Lemma 3.4. The *-Ricci operator of three-dimensional non-coKähler almost coKähler manifold is of Codazzi type if and only if Reeb vector field is an eigenvector field of the Ricci operator and $r=-4 \lambda^{2}$.
Proof. On \mathcal{U}_{1} by applying Lemma 2.1 and relation (10) we obtain the following equations:

$$
\begin{align*}
&\left(\nabla_{\xi} Q^{*}\right) \xi=(\xi(\sigma(e))-f \sigma(\varphi e)) e+(\xi(\sigma(\varphi e))+f \sigma(e)) \varphi e, \tag{21}\\
&\left(\nabla_{\xi} Q^{*}\right) e=\xi\left(\frac{r}{2}+2 \lambda^{2}\right) e, \quad\left(\nabla_{\xi} Q^{*}\right) \varphi e=\xi\left(\frac{r}{2}+2 \lambda^{2}\right) \varphi e, \tag{22}\\
&\left(\nabla_{e} Q^{*}\right) e=e\left(\frac{r}{2}+2 \lambda^{2}\right) e, \quad\left(\nabla_{\varphi e} Q^{*}\right) \varphi e=\varphi e\left(\frac{r}{2}+2 \lambda^{2}\right) \varphi e, \tag{23}\\
&\left(\nabla_{e} Q^{*}\right) \varphi e=\lambda\left(\frac{r}{2}+2 \lambda^{2}\right) \xi-\lambda \sigma(e) e+\left(e\left(\frac{r}{2}+2 \lambda^{2}\right)-\lambda \sigma(\varphi e)\right) \varphi e, \tag{24}\\
&\left(\nabla_{\varphi e} Q^{*}\right) e=\lambda\left(\frac{r}{2}+2 \lambda^{2}\right) \xi+\left(\varphi e\left(\frac{r}{2}+2 \lambda^{2}\right)-\lambda \sigma(e)\right) e-\lambda \sigma(\varphi e) \varphi e, \tag{25}\\
&\left(\nabla_{e} Q^{*}\right) \xi=\lambda \sigma(\varphi e) \xi+\left\{e(\sigma(e))-\frac{\sigma(\varphi e)}{2 \lambda}(\varphi e(\lambda)+\sigma(e))\right\} e \\
&\left\{\lambda\left(\frac{r}{2}+2 \lambda^{2}\right)+e(\sigma(\varphi e))+\frac{\sigma(e)}{2 \lambda}(\varphi e(\lambda)+\sigma(e))\right\} \varphi e, \tag{26}\\
&\left(\nabla_{\varphi e} Q^{*}\right) \xi=\lambda \sigma(e) \xi+\left\{\lambda\left(\frac{r}{2}+2 \lambda^{2}\right)+\varphi e(\sigma(e))+\frac{\sigma(\varphi e)}{2 \lambda}(e(\lambda)+\sigma(\varphi e))\right\} e \\
&\left\{\varphi e(\sigma(\varphi e))-\frac{\sigma(e)}{2 \lambda}(e(\lambda)+\sigma(\varphi e))\right\} \varphi e . \tag{27}
\end{align*}
$$

Let us suppose that the *-Ricci operator of M is of Codazzi-type. Then switching $X=e$ and $Y=\xi$ into (9) we obtain $\left(\nabla_{e} Q^{*}\right) \xi-\left(\nabla_{\xi} Q^{*}\right) e=0$. In this relation, applying (26) and first term of (22) we get

$$
\lambda \sigma(\varphi e)=0
$$

$$
\begin{align*}
& e(\sigma(e))-\frac{\sigma(\varphi e)}{2 \lambda}(\varphi e(\lambda)+\sigma(e))-\xi\left(\frac{r}{2}+2 \lambda^{2}\right)=0 \tag{28}\\
& \lambda\left(\frac{r}{2}+2 \lambda^{2}\right)+e(\sigma(\varphi e))+\frac{\sigma(e)}{2 \lambda}(\varphi e(\lambda)+\sigma(e))=0
\end{align*}
$$

Similarly, setting $X=\varphi e$ and $Y=\xi$ into (9) we have $\left(\nabla_{\varphi e} Q^{*}\right) \xi-\left(\nabla_{\xi} Q^{*}\right) \varphi e=0$. In this relation, using (27) and second term of (22) we obtain

$$
\begin{gather*}
\lambda \sigma(e)=0 \\
\lambda\left(\frac{r}{2}+2 \lambda^{2}\right)+\varphi e(\sigma(e))+\frac{\sigma(\varphi e)}{2 \lambda}(e(\lambda)+\sigma(\varphi e))=0 \tag{29}\\
\varphi e(\sigma(\varphi e))-\frac{\sigma(e)}{2 \lambda}(e(\lambda)+\sigma(\varphi e))-\xi\left(\frac{r}{2}+2 \lambda^{2}\right)=0
\end{gather*}
$$

Employing $X=e$ and $Y=\varphi e$ into (9) we obtain $\left(\nabla_{e} Q^{*}\right) \varphi e-\left(\nabla_{\varphi e} Q^{*}\right) e=0$. In this relation, applying (24) and (25) we get

$$
\begin{equation*}
e\left(\frac{r}{2}+2 \lambda^{2}\right)=0, \quad \varphi e\left(\frac{r}{2}+2 \lambda^{2}\right)=0 \tag{30}
\end{equation*}
$$

In view of λ is positive function on \mathcal{U}_{1}, it follows from first terms of (28) and (29) that $\sigma(e)=\sigma(\varphi e)=0$, that is, Reeb vector field is an eigenvector field of the Ricci operator. This together with second term of (29) enables us to claim that $r=-4 \lambda^{2}$. Conversely, suppose that Reeb vector field is an eigenvector field of the Ricci operator and the relation $r=-4 \lambda^{2}$ holds, one can check directly that (9) holds trivially for any vector fields X, Y.

As a consequence of above lemma, we state the following:
Proposition 3.5. If *-Ricci operator of three-dimensional non-coKähler almost coKähler manifold is of Codazzi-type, then the $*$-Ricci tensor vanishes.

In [9], the authors introduced the notion of strongly normal unit vector field. A unit vector field V on a Riemannian manifold is called strongly normal if

$$
g\left(\left(\nabla_{X} \nabla V\right) Y, Z\right)=0, \quad \text { for any } X, Y, Z \perp V
$$

Many geometers studied three-dimensional almost coKähler manifold under the condition $\nabla_{\xi} h=0$ (see [28]). In this paper we consider the condition $\xi\left(\left\|\nabla_{\xi} h\right\|\right)=0$, which is weaker than $\nabla_{\xi} h=0$. Applying this with Lemma 3.4, we obtain the following outcome:

Theorem 3.6. Let M be a three-dimensional non-coKähler almost coKähler manifold whose Reeb vector field ξ is strongly normal unit vector field with $\xi\left(\left\|\nabla \nabla_{\xi} h\right\|\right)=0$. Then $*$-Ricci operator is of Codazzi-type if and only if it is locally isometric to a simply connected unimodular Lie group equipped with a left invariant almost coKähler structure. More precisely, we have the following classification:

- In case $f=0$, then M is locally isometric to the group $E(1,1)$ of rigid motions of the Minkowski 2-space.
- In case $f>0$, then M is locally isometric to either the universal covering $\widetilde{E}(2)$ of the group of rigid motions of the Euclidean 2-space if $f>\lambda$, the Heisenberg group H^{3} if $f=\lambda$ or the group $E(1,1)$ of rigid motions of the Minkowski 2-space if $f<\lambda$.
- In case $f<0$, then M is locally isometric to either the universal covering $\widetilde{E}(2)$ of the group of rigid motions of the Euclidean 2-space if $f<-\lambda$, the Heisenberg group H^{3} if $f=-\lambda$ or the group $E(1,1)$ of rigid motions of the Minkowski 2-space if $f>-\lambda$.

Proof. As a result of Lemma 2.1 we find

$$
\begin{gathered}
\left(\nabla_{e} \nabla \xi\right) e=-\lambda^{2} \xi+\varphi e(\lambda) e-e(\lambda) \varphi e, \\
\left(\nabla_{e} \nabla \xi\right) \varphi e=\left(\nabla_{\varphi e} \nabla \xi\right) e=-e(\lambda) e-\varphi e(\lambda) \varphi e, \\
\left(\nabla_{\varphi e} \nabla \xi\right) \varphi e=-\left(\nabla_{e} \nabla \xi\right) e-2 \lambda^{2} \xi
\end{gathered}
$$

and so ξ is strongly normal implies $e(\lambda)=\varphi e(\lambda)=0$. Suppose that M has a Codazzi-type *-Ricci tensor, then Lemma 3.4 is applicable. Switching $r=-4 \lambda^{2}$ into (8), recalling $\sigma(e)=\sigma(\varphi e)=0$ yields

$$
\begin{equation*}
Q \xi=-2 \lambda^{2} \xi, \quad Q e=-\lambda(\lambda+2 f) e+\xi(\lambda) \varphi e, \quad Q \varphi e=\xi(\lambda) e+\lambda(2 f-\lambda) \varphi e \tag{31}
\end{equation*}
$$

Applying Lemma 2.1 and (31), by a direct calculation, we have

$$
\begin{gathered}
\left(\nabla_{\xi} Q\right) \xi=-4 \lambda \xi(\lambda) \xi, \quad\left(\nabla_{e} Q\right) e=\lambda \xi(\lambda) \xi-2 \lambda e(f) e+e(\xi(\lambda)) \varphi e \\
\left(\nabla_{\varphi e} Q\right) \varphi e=\lambda \xi(\lambda) \xi+\varphi e(\xi(\lambda)) e+2 \lambda \varphi e(f) \varphi e
\end{gathered}
$$

where we utilized $X\left(t r h^{2}\right)=0$ for any $X \in$ Ker η. Applying aforementioned three equations in the wellknown formula div $Q=\frac{1}{2}$ grad r we see that the following relation holds on \mathcal{U}_{1} :

$$
\begin{equation*}
\frac{1}{2} \operatorname{grad} r=-2 \lambda \xi(\lambda) \xi+(\varphi e(\xi(\lambda))-2 \lambda e(f)) e+(2 \lambda \varphi e(f)+e(\xi(\lambda))) \varphi e \tag{32}
\end{equation*}
$$

In view of $\lambda>0$, taking inner product of above equation with ξ we obtain that $\xi(\lambda)=0$. Utilization of this in $X\left(\operatorname{trh}^{2}\right)=0$ for any $X \in$ Ker η shows that λ is a positive constant and the scalar curvature r is also constant. Again, take inner product of (32) with e and φ respectively to obtain $e(f)=\varphi e(f)=0$, that is, $X(f)=0$ for any $X \in \operatorname{Ker} \eta$. Utilization of Lemma 2.1, a simple calculation, gives

$$
\nabla_{\xi} h=\frac{1}{\lambda} \xi(\lambda) h+2 f \varphi h .
$$

Since ξ is minimal and λ is constant, we obtain from above equation that $\left\|\nabla_{\xi} h\right\|^{2}=8 \lambda^{2} f^{2}$. We know that $e(f)=\varphi e(f)=0$ and hence, since $\xi(\|\nabla \xi h\|)=0$ gives $\xi(f)=0$, so that f is constant.

Next, we shall separate our discussions into two cases as follows.
Case 1. $f=0$. In this context, we obtain from Poisson brackets (6) that

$$
[\xi, e]=\lambda \varphi e, \quad[\varphi e, \xi]=-\lambda e, \quad[e, \varphi e]=0 .
$$

According to Milnor [16] and the abovementioned relations, it can be easily seen that the manifold is locally isometric to the group $E(1,1)$ of rigid motions of the Minkowski 2-space equipped with a left invariant almost coKähler structure.
Case 2. $f \neq 0$. We obtain from Poisson brackets (6) that

$$
[\xi, e]=(\lambda+f) \varphi e, \quad[\xi, \varphi e]=(\lambda-f) e, \quad[e, \varphi e]=0 .
$$

Now, we consider the following invariant

$$
p=\left\|\nabla_{\xi} h\right\|-\sqrt{2}\|h\|^{2}
$$

which is defined by Perrone in [21]. From the relation $\nabla_{\xi} h=2 f \varphi h$ with $f \in \mathbb{R}$ and using simple computation we obtain that

$$
\begin{array}{cl}
\bar{p}=2 \sqrt{2} \lambda(f-\lambda), & \text { if } f>0, \\
\bar{p}=-2 \sqrt{2} \lambda(f+\lambda), & \text { if } f<0 .
\end{array}
$$

We know that Reeb vector field is minimal and also note that both $\left\|\nabla_{\xi} h\right\|$ and $\|h\|$ are constants. From Theorem 4.4 of Perrone [21] we conclude that M is locally isometric to a simply connected unimodular Lie group G equipped with a left invariant almost coKähler structure. More precisely, G is the universal covering $\widetilde{E}(2)$ of the group of rigid motions of the Euclidean 2-space if $\bar{p}>0$, the Heisenberg group H^{3} if $\bar{p}=0$ or the group $E(1,1)$ of rigid motions of the Minkowski 2-space if $\bar{p}<0$.

Conversely, on non-coKähler almost coKähler structures defined on the above Lie groups, from Perrone [20] one can easily check that r is constant and hence equation (9) holds true. This completes the proof.

Now, we give the coKähler version of Theorem 3.6 as follows:
Theorem 3.7. The *-Ricci operator of three-dimensional coKähler manifold is of Codazzi-type if and only if the manifold is locally isometric to the product space $\mathbb{R} \times N^{2}(c)$, where $N^{2}(c)$ denotes a Kähler surface of constant curvature c ($c=0$ means that M is locally the flat Euclidean space \mathbb{R}^{3}).
Proof. The authors in [17], gave the expression of *-Ricci operator Q^{*} on three-dimensional coKähler manifold in the following form:

$$
Q^{*} X=\frac{r}{2} X-\frac{r}{2} \eta(X) \xi
$$

But, we know that the expression of Ricci operator is of the form $Q X=\frac{r}{2} X-\frac{r}{2} \eta(X) \xi$. This together with above equation shows that $Q^{*}=Q$. Consequently, M becomes a manifold whose Ricci operator is of Codazzi-type (Riemannian curvature tensor is harmonic). According to Theorem 5.1 of Wang [25], we state that the manifold M is locally isometric to the product space $\mathbb{R} \times N^{2}(c)$, where $N^{2}(c)$ denotes a Kähler surface of constant curvature $c\left(c=0\right.$ means that M is locally the flat Euclidean space \mathbb{R}^{3}). The converse part can be proved easily.

Now, we characterize three-dimensional almost coKähler manifold whose *-Ricci operator satisfy $Q^{*} \cdot R=$ 0 and this curvature condition is defined by

$$
\begin{align*}
\left(Q^{*} \cdot R\right)(X, Y) Z= & Q^{*}(R(X, Y) Z)-R\left(Q^{*} X, Y\right) Z \\
& -R\left(X, Q^{*} Y\right) Z-R(X, Y) Q^{*} Z \tag{33}
\end{align*}
$$

for any vector fields X, Y, Z.
We prove the following outcome.
Lemma 3.8. A three-dimensional non-coKähler almost coKähler manifold M satisfies the curvature condition $Q^{*} \cdot R=$ 0 if and only if Reeb vector field is an eigenvector field of the Ricci operator and the scalar curvature $r=-4 \lambda^{2}$.
Proof. Let us suppose that M satisfies the curvature condition $Q^{*} \cdot R=0$, then setting $X=Z=e$ and $Y=\varphi e$ into (33), recalling (10) and (18) gives

$$
\begin{equation*}
\sigma(e) \sigma(\varphi e)=0, \quad\left(\frac{r}{2}+2 \lambda^{2}\right) \sigma(\varphi e)=0, \quad 2\left(\frac{r}{2}+2 \lambda^{2}\right)^{2}-(\sigma(\varphi e))^{2}=0 \tag{34}
\end{equation*}
$$

Similarly, taking $X=e$ and $Y=Z=\varphi e$ into (33), applying (10) and (19) we obtain

$$
\begin{equation*}
\left(\frac{r}{2}+2 \lambda^{2}\right) \sigma(e)=0, \quad(\sigma(e))^{2}-2\left(\frac{r}{2}+2 \lambda^{2}\right)^{2}=0, \quad \sigma(\varphi e) \sigma(e)=0 \tag{35}
\end{equation*}
$$

Setting $X=e, Y=\varphi e$ and $Z=\xi$ into (33), according to (10) and (18) one can get

$$
\begin{equation*}
\left(\frac{r}{2}+2 \lambda^{2}\right) \sigma(e)=0, \quad\left(\frac{r}{2}+2 \lambda^{2}\right) \sigma(\varphi e)=0 \tag{36}
\end{equation*}
$$

Substituting $X=Z=e$ and $Y=\xi$ into (33), as a result of (10), (13) and (18) gives

$$
\begin{gather*}
(\sigma(\varphi e))^{2}-2 \lambda(\lambda+2 f)\left(\frac{r}{2}+2 \lambda^{2}\right)=0, \quad \lambda(\lambda+2 f) \sigma(e)=0, \tag{37}\\
\lambda(\lambda+2 f) \sigma(\varphi e)+2\left(\frac{r}{2}+2 \lambda^{2}\right) \sigma(\varphi e)=0
\end{gather*}
$$

Setting $X=e$ and $Y=Z=\xi$ into (33), utilization of (10) and (11)-(19) yields

$$
\begin{equation*}
\sigma(\varphi e) \xi(\lambda)-\lambda(\lambda+2 f) \sigma(e)=0, \quad(\sigma(\varphi e))^{2}=0, \quad \sigma(e) \sigma(\varphi e)=0 \tag{38}
\end{equation*}
$$

Taking $X=e, Y=\xi$ and $Z=\varphi e$ into (33), applying (10) and (11)-(19) we obtain

$$
\begin{gather*}
2\left(\frac{r}{2}+2 \lambda^{2}\right) \xi(\lambda)-\sigma(e) \sigma(\varphi e)=0 \\
\sigma(e) \xi(\lambda)+2\left(\frac{r}{2}+2 \lambda^{2}\right) \sigma(\varphi e)=0, \quad \sigma(\varphi e) \xi(\lambda)=0 \tag{39}
\end{gather*}
$$

Substituting $X=\varphi e, Y=\xi$ and $Z=e$ into (33), recalling (10) and (11)-(19) gives

$$
\begin{gather*}
2 \xi(\lambda)\left(\frac{r}{2}+2 \lambda^{2}\right)-\sigma(e) \sigma(\varphi e)=0, \quad \sigma(e) \xi(\lambda)=0 \tag{40}\\
\sigma(\varphi e) \xi(\lambda)+2\left(\frac{r}{2}+2 \lambda^{2}\right) \sigma(e)=0
\end{gather*}
$$

Switching $X=Z=\varphi e$ and $Y=\xi$ into (33) and making use of (10) and (11)-(19) we obtain

$$
\begin{gather*}
(\sigma(e))^{2}-2 \lambda(\lambda-2 f)\left(\frac{r}{2}+2 \lambda^{2}\right)=0, \quad \lambda(\lambda-2 f) \sigma(\varphi e)=0, \tag{41}\\
\lambda(\lambda-2 f) \sigma(e)+2 \sigma(e)\left(\frac{r}{2}+2 \lambda^{2}\right)=0
\end{gather*}
$$

Setting $X=\varphi e$ and $Y=Z=\xi$ into (33), utilization of (10) and (11)-(19) we have

$$
\begin{equation*}
\sigma(e) \xi(\lambda)-\lambda(\lambda-2 f) \sigma(\varphi e)=0, \quad \sigma(e) \sigma(\varphi e)=0, \quad(\sigma(e))^{2}=0 \tag{42}
\end{equation*}
$$

The relation $\sigma(e)=\sigma(\varphi e)=0$ follows directly from third term of (42) and second term of (38). This together with second term of equation (35) shows that the scalar curvature $r=-4 \lambda^{2}$. Convesely, if the conditions $r=-4 \lambda^{2}$ and $\sigma(e)=\sigma(\varphi e)=0$ holds, then it is not hard to show that M satisfies $Q^{*} \cdot R=0$.
Proposition 3.9. If three-dimensional non-coKähler almost coKähler manifold M satisfies the curvature condition $Q^{*} \cdot R=0$, then the *-Ricci tensor vanishes.

Theorem 3.10. Let M be a three-dimensional non-coKähler almost coKähler manifold whose Reeb vector field ξ is strongly normal unit vector field with $\xi(\|\nabla \xi h\|)=0$. Then M satisfies the curvature condition $Q^{*} \cdot R=0$ if and only if it is locally isometric to a simply connected unimodular Lie group equipped with a left invariant almost coKähler structure. More precisely, we have the following classifications:

- In case $f=0$, then M is locally isometric to the group $E(1,1)$ of rigid motions of the Minkowski 2-space.
- In case $f>0$, then M is locally isometric to either the universal covering $\widetilde{E}(2)$ of the group of rigid motions of the Euclidean 2-space if $f>\lambda$, the Heisenberg group H^{3} if $f=\lambda$ or the group $E(1,1)$ of rigid motions of the Minkowski 2-space if $f<\lambda$.
- In case $f<0$, then M is locally isometric to either the universal covering $\widetilde{E}(2)$ of the group of rigid motions of the Euclidean 2-space if $f<-\lambda$, the Heisenberg group H^{3} if $f=-\lambda$ or the group $E(1,1)$ of rigid motions of the Minkowski 2-space if $f>-\lambda$.

Proof. The proof of this theorem follows the same steps and arguments as followed in Theorem 3.6.
Remark 3.11. From Lemma 3.4 and Lemma 3.8, we can state that in a three-dimensional non-coKähler almost coKähler manifold M the following conditions are equivalent:

- *-Ricci operator is Codazzi-type.
- M satisfies $Q^{*} \cdot R=0$.
- Reeb vector field is an eigenvector field of the Ricci operator and the scalar curvature $r=-4 \lambda^{2}$.

Acknowledgments

We express our sincere thanks to the editors and anonymous reviewer for their constructive comments, which helped us to improve the manuscript.

References

[1] D. E. Blair, The theory of quasi-Sasakian structures, J. Differ. Geom. 1 (1967), 331-345.
[2] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics, Vol. 203 (Birkhäuser, Boston, 2002).
[3] B. Cappelletti-Montano, A. D. Nicola and I. Yudin, A survey on cosymplectic geometry, Reviews Math. Phys. 25, 1343002 (2013) (55 pages).
[4] J. T. Cho, Reeb flow symmetry on almost cosymplectic threemanifolds, Bull. Korean Math. Soc., 53 (4) (2016), 1249-1255.
[5] X. Dai, Y. Zhao, and U. C. De, *-Ricci soliton on $(\kappa, \mu)^{\prime}$-almost Kenmotsu manifolds, Open Math., 17 (2019), 874-882.
[6] U. C. De, P. Majhi and Y. J. Suh, Semi-symmetric properties of almost coKähler 3-manifolds, Bull. Korean Math. Soc., 56 (2019), 219-228.
[7] A. Ghosh and D. S. Patra, *-Ricci Soliton within the frame-work of Sasakian and (κ, μ)-contact manifold, Int. J. Geom. Methods Mod. Phys., 15 (7) (2018), 1850120.
[8] S. I. Goldberg and K. Yano, Integrability of almost cosymplectic structures, Pacic J. Math. 31 (1969), 373-382.
[9] J. C. González-Dávila and L. Vanhecke, Examples of minimal unit vector fields, Ann. Global Anal. Geom., 18 (2000), 385-404.
[10] T. Hamada, Real hypersurfaces of complex space forms in terms of Ricci *-tensor, Tokyo J. Math., 25 (2002), 473-483.
[11] A. K. Huchchappa, V. Venkatesha and D. M. Naik, Certain results on contact metric generalized (κ, μ)-space forms, Commun. Korean Math. Soc., 34 (4) (2019), 1315-1328.
[12] T. Ivey and P. J. Ryan, The *-Ricci tensor for hypersurface in $\mathbb{C P}^{n}$ and $\mathbb{C H}^{n}$, Tokyo J. Math. 34 (2011), 445-471.
[13] G. Kaimakamis and K. Panagiotidou, *-Ricci solitons of real hypersurfaces in non-flat complex space forms, J. Geom. Phys. 86 (2014), 408-413.
[14] H. Li, Topology of co-symplectic/co-Kähler manifolds, Asian J. Math. 12 (2008), 527-544.
[15] X. Liu and W. Wang, Locally φ-symmetric almost coKähler 3-manifolds, Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie, 62 (2019), 427-438.
[16] J. Milnor, Curvature of left invariant metrics on Lie groups, Adv. Math. 21 (1976), 293-329.
[17] D.M. Naik, V. Venkatesha, H.A. Kumara, Certain types of metrics on almost coKähler manifolds. Ann. Math. Québec (2021). https://doi.org/10.1007/s40316-021-00162-w
[18] Z. Olszak, On almost cosymplectic manifolds, Kodai Math. J. 4 (1981), 239-250.
[19] Q. Pan and Y. Wang, Remarks on almost cosymplectic 3-manifolds with Ricci operators, J. Math. (2020), Article ID 4172197, 7 page.
[20] D. Perrone, Classication of homogeneous almost cosymplectic three-manifolds, Differ. Geom. Appl. 30 (2012), 49-58.
[21] D. Perrone, Minimal Reeb vector elds on almost cosymplectic manifolds, Kodai Math. J. 36 (2013), 258-274.
[22] S. Tachibana, On almost-analytic vectors in almost-Kählerian manifolds, Tohoku Math. J., 11 (1959), 247-265.
[23] V. Venkatesha, D. M. Naik and H. A. Kumara, *-Ricci solitons and gradient almost *-Ricci solitons on Kenmotsu manifolds, Math. Slovaca. 69 (6) (2019), 1447-1458.
[24] V. Venkatesha H. A. Kumara and D. M. Naik, Almost *-Ricci soliton on paraKenmotsu manifolds, Arab. J. Math. 9 (2020), 715-726
[25] Y. Wang, Ricci tensors on three-dimensional almost coKahler manifolds, Kodai Math. J., 39 (3) (2016), 469-483.
[26] Y. Wang, Curvature homogeneity and ball-homogeneity on almost coKähler 3-manifolds, Bull. Korean Math. Soc., 56 (2019), 253-263.
[27] W. Wang and X. Liu, Three-dimensional almost coKähler manifolds with harmonic Reeb vector fields, Revista de la Union Matematica Argentina, 58 (2017), 307-317.
[28] W. Wang, A class of three dimensional almost coKähler manifolds, Palestine Journal of Mathematics, 6(1) (2017), 111-118.

[^0]: 2020 Mathematics Subject Classification. Primary 53D15; Secondary 53C25.
 Keywords. Almost coKähler manifolds; Codazzi-type *-Ricci tensor; Lie group.
 Received: 3 February 2022; Accepted: 28 July 2022
 Communicated by Ljubica Velimirović
 Email addresses: vensmath@gmail.com (V. Venkatesha), uc_de@yahoo.com (Uday Chand De), arunakumara@bmsit.in (H. Aruna Kumara), devarajamaths@gmail.com (Devaraja Mallesha Naik)

