Filomat 37:8 (2023), 2295–2302 https://doi.org/10.2298/FIL2308295S

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On approximately biprojective and approximately biflat Banach algebras

Amir Sahami^a, Abasalt Bodaghi^{b,*}

^aDepartment of Mathematics Faculty of Basic Science, Ilam University, P.O. Box 69315-516 Ilam, Iran ^bDepartment of Mathematics, Garmsar Branch, Islamic Azad University, Garmsar, Iran

Abstract. In this paper, we study the approximate biprojectivity and the approximate biflatness of a Banach algebra \mathcal{A} and find some relations between theses concepts with ϕ -amenability and ϕ -contractibility, where ϕ is a character on \mathcal{A} . Among other things, we show that θ -Lau product algebra $L^1(G) \times_{\theta} A(G)$ is approximately biprojective if and only if *G* is finite, where $L^1(G)$ and A(G) are the group algebra and the Fourier algebra of a locally compact group *G*, respectively. We also characterize approximately biprojective and approximately biflat semigroup algebras associated with the inverse semigroups.

1. Introduction and preliminaries

Let \mathcal{A} be a Banach algebra. We denote the first and second dual of \mathcal{A} by \mathcal{A}^* and \mathcal{A}^{**} , respectively. Consider the mapping $\pi : \mathcal{A} \otimes_p \mathcal{A} \longrightarrow \mathcal{A}$ given by $\pi_A(a \otimes b) = ab$, which is the canonical morphism (for emphasis, $\pi_{\mathcal{A}}$), where $\mathcal{A} \otimes_p \mathcal{A}$ is the projective tensor product \mathcal{A} with itself. A Banach algebra \mathcal{A} is called biprojective [resp., biflat] if there exists a bounded \mathcal{A} -bimodule morphism $\rho : \mathcal{A} \longrightarrow \mathcal{A} \otimes_p \mathcal{A}$ [resp., $\rho : \mathcal{A} \longrightarrow (\mathcal{A} \otimes_p \mathcal{A})^{**}$] such that $\pi_{\mathcal{A}} \circ \rho(a) = a$ [resp., $\pi_{\mathcal{A}}^* \circ \rho(a) = a$] for all $a \in \mathcal{A}$. These concepts have been introduced by Helemskii to study the structure of Banach algebras via Banach algebraic homology; the basic properties of biprojectivity and biflatness for Banach algebras are available in [6] and [18]. As for some known results about the group algebra $L^1(G)$, it is biprojective (resp. biflat) if and only if *G* is compact (resp. amenable). For some similar results as module versions of biprojectivity and biflatness for Banach algebras, we refer to [2].

Approximate notions in the homology were introduced for more observations on the structure of Banach algebras. Indeed, to study the nilpotent ideals of a Banach algebra, Zhang [23] defined the notion of approximate biprojectivity. In fact, a Banach algebra \mathcal{A} is called *approximately biprojective* if there exists a net

of \mathcal{A} -bimodule morphisms (ρ_{α}) from \mathcal{A} into $\mathcal{A} \otimes_p \mathcal{A}$ such that $\pi_{\mathcal{A}} \circ \rho_{\alpha}(a) \xrightarrow{\|\cdot\|} a$, for all $a \in \mathcal{A}$. Next, Aghababa [15] introduced a new concept of (bounded) approximate biprojectivity and determine its relation to other notions of approximate biprojectivity defined in [23]. Some results about approximate homological notions of Banach homology can be found in [14] and [19].

²⁰²⁰ Mathematics Subject Classification. Primary 46M10, 43A20, Secondary 46H05.

Keywords. Banach algebra, approximate biprojectivity, approximate biflatness, θ -Lau product.

Received: 12 March 2022; Revised: 21 April 2022; Accepted: 22 April 2022

Communicated by Dragan S. Djordjević

^{*} Corresponding author: Abasalt Bodaghi

Email addresses: a.sahami@ilam.ac.ir (Amir Sahami), abasalt.bodaghi@gmail.com (Abasalt Bodaghi)

Samei et al. in [22] gave a concept of approximate biflatness and they studied some operator structures of Segal algebras and Fourier algebras via this notion. A Banach algebra \mathcal{A} is called *approximately biflat* if there exists a net of \mathcal{A} -bimodule morphisms (ρ_{α}) from $(\mathcal{A} \otimes_p \mathcal{A})^*$ into \mathcal{A}^* such that $W^*OT - \lim \rho_{\alpha} \circ \pi^*_{\mathcal{A}} = id_{\mathcal{A}^*}$, where W^*OT denotes for the weak-star operator topology. Here, we remind that for Banach algebras \mathcal{A} and \mathcal{B} the *weak*^{*} *operator topology* (W^*OT) on $B(\mathcal{A}, \mathcal{B}^*)$ (the set of all bounded linear operators from \mathcal{A} into \mathcal{B}^*) is a topology determined by seminorms { $p_{x,y} : x \in \mathcal{A}, y \in \mathcal{B}$ } that $p_{x,y}(T) = |T(x)(y)|$, where $T \in B(\mathcal{A}, \mathcal{B}^*)$. In other words, $T_{\alpha} \xrightarrow{W^*OT} T$ if and only if for every $x \in \mathcal{A}$; $T_{\alpha}(x) \xrightarrow{w^*} T(x)$. For a *SIN* group *G*, Samei et al. showed that the Segal algebra $S^1(G)$ is approximately biflat if and only if *G* is amenable. Recently, module approximately biflat and module approximately biprojective Banach algebras were studied in [4], applied to the weighted inverse semigroup algebra $l^1(S, \omega)$ and some results in [2] were improved as well.

In the last decades, some homological notions for a Banach algebra \mathcal{A} based on character space such as ϕ -amenability (character amenability) [9, 11], ϕ -contractibility (character contractibility) [13], ϕ -biprojectivity and ϕ -biflatness [20] have been studied by a number of authors, where ϕ is a character on \mathcal{A} . In [11], Monfared characterized the structure of (right) character amenable Banach algebras and proved that for any locally compact group G, (right) character amenability of $L^1(G)$ is equivalent to the amenability of G. Module character amenability of Banach algebras and application to inverse semigroup algebras can be found in [3]. As some results in [20], the authors showed that $L^1(G)$ is ϕ -biflat if and only if G is an amenable group and moreover A(G) is ϕ -biprojective if and only if G is a discrete group. It is shown in [13] that $L^1(G)$ is left character contractible if and only if G is finite. The same result is valid for A(G). Recently, approximate left ϕ -biflatness for Banach algebras was introduced and studied in [21].

A large class of Banach algebras (called *F*-algebras) equipped with θ -Lau product has been introduced and investigated by Lau in [10] for certain class of Banach algebras, where θ is a character. This class includes group algebra, measure algebra and Fourier algebra of a locally compact group. This product is followed by Monfared in general [12].

Motivated by considerations above, we show that under which conditions, the approximate biprojectivity of a Banach algebra \mathcal{A} or its second dual implies that \mathcal{A} is left ϕ -contractible. The same results hold for approximate biflatness and left ϕ -amenability. We also study the approximate biprojectivity and the approximate biflatness of certain Banach algebras. In other words, we investigate the approximate biflatness and approximate biprojectivity of some θ -Lau product structures and semigroup algebras. More precisely, we prove that $L^1(G) \times_{\theta} A(G)$ is approximately biprojective if and only if *G* is finite.

2. Some properties of approximate biprojectivity and approximate biflatness

Let \mathcal{A} be a Banach algebra and X be a Banach \mathcal{A} -bimodule. Then, with the following actions X^* is also a Banach \mathcal{A} -bimodule:

$$a \cdot f(x) = f(x \cdot a), \quad f \cdot a(x) = f(x \cdot a) \quad (a \in \mathcal{A}, x \in X, f \in X^*).$$

The projective tensor product $\mathcal{A} \otimes_{v} \mathcal{A}$ is a Banach \mathcal{A} -bimodule with the following actions:

$$a \cdot (b \otimes c) = ab \otimes c, \quad (b \otimes c) \cdot a = b \otimes ca \quad (a, b, c \in \mathcal{A}).$$

Throughout this paper, $\Delta(\mathcal{A})$ denotes the character space of \mathcal{A} , that is, all non-zero multiplicative linear functionals on \mathcal{A} . Let $\phi \in \Delta(\mathcal{A})$. Then, ϕ has a unique extension on \mathcal{A}^{**} denoted by $\tilde{\phi}$ and defined via $\tilde{\phi}(F) = F(\phi)$ for every $F \in \mathcal{A}^{**}$. Clearly, this extension remains to be a character on \mathcal{A}^{**} .

Let \mathcal{A} be a Banach algebra and $\phi \in \Delta(\mathcal{A})$. Then, \mathcal{A} is called *left* (*right*) ϕ -*contractible* if there exists an element $m \in \mathcal{A}$ such that $am = \phi(a)m$ ($ma = \phi(a)m$) and $\phi(m) = 1$, for all $a \in \mathcal{A}$. Moreover, \mathcal{A} is called *character contractible* if it is left ϕ -contractible for all $\phi \in \Delta(\mathcal{A})$ and posses a left identity [13].

Theorem 2.1. Let \mathcal{A} be a Banach algebra and $\phi \in \Delta(\mathcal{A})$. Suppose that I is a closed ideal of \mathcal{A} which posses a left approximate identity such that $\phi|_I \neq 0$. If \mathcal{A} approximately biprojective, then I is left ϕ -contractible. In particular, \mathcal{A} is left ϕ -contractible.

Proof. By our assumptions, there exists a net of \mathcal{A} -bimodule morphisms (ρ_{α}) from \mathcal{A} into $\mathcal{A} \otimes_{p} \mathcal{A}$ such that $\pi_{\mathcal{A}} \circ \rho_{\alpha}(a) \to a$, for all $a \in \mathcal{A}$. Put $L = I \cap \ker \phi$. It is easy to see that L is a closed ideal of I. Consider the quotient map $q : I \longrightarrow \frac{I}{L}$. Pick $i_{0} \in I$ such that $\phi(i_{0}) = 1$. Define the map $L_{i_{0}} : \mathcal{A} \longrightarrow I$ by $L_{i_{0}}(a) = i_{0}a$ for all $a \in \mathcal{A}$. It is obvious that $L_{i_{0}}$ is a continuous map. Now, set

$$\eta_{\alpha} := (id_{\mathcal{A}} \otimes q) \circ (id_{\mathcal{A}} \otimes L_{i_0}) \circ \rho_{\alpha}|_I : I \longrightarrow \mathcal{A} \otimes_p \frac{I}{L}.$$

It is easily verified that (η_{α}) is a net of *I*-bimodule morphisms. We claim that $\eta_{\alpha}(l) = 0$, for all $l \in L$. To see this, having a left approximate identity for *I* implies that $\overline{IL} = L$. For an arbitrary element *l* of *L*, there exist sequences (i_n) and (l_n) such that $l = \lim_n i_n l_n$. Since $q(L) = \{0\}$, we get

$$\eta_{\alpha}(l) = (id_{\mathcal{A}} \otimes q) \circ (id_{\mathcal{A}} \otimes L_{i_0}) \circ \rho_{\alpha}|_{I}(\lim_{n} i_n l_n) = \lim_{n} (id_{\mathcal{A}} \otimes q) \circ (id_{\mathcal{A}} \otimes L_{i_0})(\rho_{\alpha}|_{I}(i_n) \cdot l_n)) = 0.$$

It follows that η_{α} induces a net of *I*-bimodule morphisms from $\frac{1}{L}$ into $\mathcal{A} \otimes_p \frac{1}{L}$, which we denote it again by (η_{α}) . Fix α . Set $m := \eta_{\alpha}(i_0 + L) \in \mathcal{A} \otimes_p \frac{1}{L}$. From the fact $\frac{1}{L} \cong \mathbb{C}$, we find $\mathcal{A} \otimes_p \frac{1}{L} \cong \mathcal{A} \otimes_p \mathbb{C} \cong \mathcal{A}$. Hence, we may consider *m* as an element of \mathcal{A} . Here, we show that $im = \phi(i)m$ and $\phi(m) = 1$ for all $i \in I$. We have $ii_0 + L = \phi(i)i_0 + L$ and η_{α} is a bounded *I*-bimodule morphism. Thus

$$im = i\eta_{\alpha}(i_0 + L) = \eta_{\alpha}(ii_0 + L) = \eta_{\alpha}(\phi(i)i_0 + L) = \phi(i)\eta_{\alpha}(i_0 + L) = \phi(i)m,$$

and

$$\phi(m) = (\phi \otimes \overline{\phi}) \circ (id_{\mathcal{A}} \otimes q) \circ (id_{\mathcal{A}} \otimes L_{i_0}) \circ \rho_{\alpha}|_{I}(i_0 + L) = \phi \circ \pi_A \circ \rho_{\alpha}|_{I}(i_0) \to \phi(i_0) = 1$$

for all $i \in I$. Replacing *m* with $\frac{mi_0}{\phi(m)}$, for a large enough α , we can assume that $m \in I$ and $\phi(m) = 1$. This shows that *I* is left ϕ -contractible. Moreover, Proposition 3.8 from [13] implies that \mathcal{A} is left ϕ -contractible. \Box

The following corollaries are the direct consequences of Theorem 2.1.

Corollary 2.2. Let \mathcal{A} be a Banach algebra with a left approximate identity and $\phi \in \Delta(\mathcal{A})$. Suppose that \mathcal{A} is a closed ideal of \mathcal{A}^{**} . If \mathcal{A}^{**} is approximately biprojective, then \mathcal{A} is left ϕ -contractible.

Proof. It is known that if $\phi \in \Delta(\mathcal{A})$, then $\phi \in \Delta(\mathcal{A}^{**})$. The proof will be finished by Theorem 2.1.

Corollary 2.3. Let \mathcal{A} be a Banach algebra and $\phi \in \Delta(\mathcal{A})$. Suppose that I is a closed ideal of \mathcal{A} which posses an approximate identity such that $\phi|_I \neq 0$. If \mathcal{A} is approximately biprojective, then there exists an element a_0 in $Z(\mathcal{A})$ (the center of \mathcal{A}) such that $\phi(a_0) = 1$.

Proof. By Theorem 2.1, \mathcal{A} is left and right ϕ -contractible. Then, there exist elements m_1 and m_2 in \mathcal{A} such that $am_1 = \phi(a)m_1, m_2a = \phi(a)m_2$ and $\phi(m_1) = \phi(m_2) = 1$ for all $a \in \mathcal{A}$. Put $M = m_1m_2 \in \mathcal{A}$. Then

$$aM = am_1m_2 = \phi(a)m_1m_2 = m_1m_2\phi(a) = Ma, \quad \phi(M) = \phi(m_1)\phi(m_2) = 1,$$

for all $a \in \mathcal{A}$. \Box

Let \mathcal{A} be a Banach algebra and $\phi \in \Delta(\mathcal{A})$. Recall from [20] that \mathcal{A} is said to be ϕ -*biprojective*, if there exists a bounded \mathcal{A} -bimodule morphism $\rho : \mathcal{A} \longrightarrow \mathcal{A} \otimes_p \mathcal{A}$ such that $\phi \circ \pi_{\mathcal{A}} \circ \rho(a) = \phi(a)$, for all $a \in \mathcal{A}$. Furthermore, \mathcal{A} is called ϕ -*biflat* if there exists a bounded \mathcal{A} -bimodule morphism $\rho : \mathcal{A} \longrightarrow (\mathcal{A} \otimes_p \mathcal{A})^{**}$ such that $\tilde{\phi} \circ \pi_{\mathcal{A}} \circ \rho(a) = \phi(a)$, for all $a \in \mathcal{A}$ [20].

The proof of the next proposition is similar to the proof of Theorem 2.1, and so omitted.

Proposition 2.4. Let \mathcal{A} be a Banach algebra and $\phi \in \Delta(\mathcal{A})$. Suppose that I is a closed ideal of \mathcal{A} which posses a left approximate identity such that $\phi|_I \neq 0$. If \mathcal{A} is ϕ -biprojective, then I is left ϕ -contractible. Moreover, \mathcal{A} is left ϕ -contractible.

The upcoming lemmas are some fundamental tools in obtaining our results in this paper.

Lemma 2.5. Let \mathcal{A} be an approximately biprojective Banach algebra and $\phi \in \Delta(\mathcal{A})$. Suppose that $a_0 \in \mathcal{A}$ is an element satisfying $aa_0 = a_0a$ and $\phi(a_0) = 1$, for all $a \in \mathcal{A}$. Then, \mathcal{A} is left ϕ -contractible.

Proof. Our assumptions necessitate that there exists a net (ρ_a) of *A*-bimodule morphisms from \mathcal{A} into $\mathcal{A} \otimes_p \mathcal{A}$ such that $\pi_{\mathcal{A}} \circ \rho_a(a) \to a$ for all $a \in \mathcal{A}$. Set $m_a := \rho_a(a_0) \in A \otimes_p A$. We have

$$a \cdot m_{\alpha} = a \cdot \rho_{\alpha}(a_0) = \rho_{\alpha}(aa_0) = \rho_{\alpha}(a_0a) = \rho_{\alpha}(a_0) \cdot a = m_{\alpha} \cdot a_{\alpha}$$

and

$$\phi \circ \pi_{\mathcal{A}}(m_{\alpha}) = \phi \circ \pi_{\mathcal{A}} \circ \rho_{\alpha}(a_0) \to \phi(a_0) = 1,$$

for all $a \in \mathcal{A}$. Define the mapping $T : \mathcal{A} \otimes_p \mathcal{A} \to \mathcal{A}$ via $T(a \otimes b) = \phi(b)a$ for all $a, b \in \mathcal{A}$. Obviously, *T* is a bounded linear map which satisfies

$$aT(x) = T(a \cdot x), \quad T(x \cdot a) = \phi(a)T(x), \quad \phi \circ T(x) = \phi \circ \pi_{\mathcal{A}}(x),$$

for all $a \in \mathcal{A}$ and $x \in \mathcal{A} \otimes_p \mathcal{A}$. Put $n_{\alpha} = T(m_{\alpha})$. Thus

$$an_{\alpha} = aT(m_{\alpha}) = T(a \cdot m_{\alpha}) = T(m_{\alpha} \cdot a) = \phi(a)T(m_{\alpha}) = \phi(a)n_{\alpha}$$

and

$$\phi(n_{\alpha}) = \phi \circ T(m_{\alpha}) = \phi \circ \pi_{\mathcal{A}}(m_{\alpha}) \to 1,$$

for all $a \in \mathcal{A}$. Interchanging n_{α} into $\frac{n_{\alpha}}{\phi(n_{\alpha})}$, we conclude that $an_{\alpha} = \phi(a)n_{\alpha}$ and $\phi(n_{\alpha}) = 1$ for all $a \in \mathcal{A}$. Therefore, \mathcal{A} is left ϕ -contractible. \Box

Lemma 2.6. Let \mathcal{A} be an approximately biflat Banach algebra. Then, there exists a net of \mathcal{A} -bimodule morphisms from A^{**} into $(\mathcal{A} \otimes_p \mathcal{A})^{**}$ such that $\pi^{**}_{\mathcal{A}} \circ \rho_{\alpha}(\hat{a}) \xrightarrow{w^*} \hat{a}$, for all $a \in \mathcal{A}$, where \hat{a} is denoted for the canonical embedding of a in \mathcal{A}^{**} .

Proof. Our hypothesis implies that there exists a net of \mathcal{A} -bimodule morphisms (η_{α}) from $(\mathcal{A} \otimes_p \mathcal{A})^*$ into \mathcal{A}^* such that $\eta_{\alpha} \circ \pi^*_{\mathcal{A}}(f) \xrightarrow{w^*} f$, for all $f \in (\mathcal{A} \otimes_p \mathcal{A})^*$. Take $\rho_{\alpha} = \eta^*_{\alpha}$. It is clear that (ρ_{α}) is a net of \mathcal{A} -bimodule morphisms from \mathcal{A}^{**} into $(\mathcal{A} \otimes_p \mathcal{A})^{**}$. For each $a \in \mathcal{A}$, we obtain

$$(\pi_{\mathcal{A}}^{**} \circ \rho_{\alpha}(\hat{a}) - \hat{a})(f) = \pi_{\mathcal{A}}^{**} \circ \rho_{\alpha}(\hat{a})(f) - \hat{a}(f) = \hat{a}(\eta_{\alpha} \circ \pi_{\mathcal{A}}^{*}(f) - f) = \eta_{\alpha} \circ \pi_{\mathcal{A}}^{*}(f)(a) - f(a) \to 0.$$

This means that the result is valid. \Box

Let \mathcal{A} be a Banach algebra and $\phi \in \Delta(\mathcal{A})$. We recall from [9] that \mathcal{A} is *left* (*resp. right*) ϕ -*amenable* if there exists an element $m \in \mathcal{A}^{**}$ such that $am = \phi(a)m$ (resp. $ma = \phi(a)m$) and $\tilde{\phi}(m) = 1$, for all $a \in \mathcal{A}$. Moreover, \mathcal{A} is said to be *character amenable* if it is left ϕ -amenable for all $\phi \in \Delta(\mathcal{A})$ and posses a bounded left approximate identity.

In analogues to Theorem 2.1, we have the following result for the left ϕ -amenability case.

Theorem 2.7. Let \mathcal{A} be a Banach algebra and $\phi \in \Delta(\mathcal{A})$. Suppose that I is a closed ideal of \mathcal{A} which posses a left approximate identity such that $\phi|_I \neq 0$. If \mathcal{A}^{**} is approximately biflat, then I is left ϕ -amenable. In addition, \mathcal{A} is left ϕ -amenable.

Proof. By Lemma 2.6, there exists a net of \mathcal{A}^{**} -bimodule morphisms, say Γ_{α} , from \mathcal{A}^{****} into $(\mathcal{A}^{**} \otimes_p \mathcal{A}^{**})^{**}$ such that $\pi^{**}_{\mathcal{A}^{**}} \circ \Gamma_{\alpha}(\hat{a}) \xrightarrow{w^*} \hat{a}$, for all $a \in \mathcal{A}^{**}$. On the other hand, by [5, Lemma 1.7], there exists a bounded linear map $\psi : \mathcal{A}^{**} \otimes_p \mathcal{A}^{**} \longrightarrow (\mathcal{A} \otimes_p \mathcal{A})^{**}$ such that for $a, b \in \mathcal{A}$ and $m \in \mathcal{A}^{**} \otimes_p \mathcal{A}^{**}$, the following holds:

- (i) $\psi(a \otimes b) = a \otimes b$;
- (ii) $\psi(m) \cdot a = \psi(m \cdot a);$
- (iii) $a \cdot \psi(m) = \psi(a \cdot m);$
- (iv) $\pi_{\mathcal{A}}^{**}(\psi(m)) = \pi_{\mathcal{A}^{**}}(m).$

Consider the mapping $\rho_{\alpha} : \psi^{**} \circ \Gamma_{\alpha}|_{\mathcal{A}} : \mathcal{A} \longrightarrow (\mathcal{A} \otimes_{p} \mathcal{A})^{****}$. Since ψ^{**} and $\pi_{\mathcal{A}}^{****}$ are w^{*} -continuous maps, we have

$$\pi_{\mathcal{A}}^{****} \circ \rho_{\alpha}(a) - a = \pi_{\mathcal{A}}^{****} \circ \psi^{**} \circ \Gamma_{\alpha}(a) - a = \pi_{\mathcal{A}^{**}}^{**} \circ \Gamma_{\alpha}(a) - a \xrightarrow{w} 0$$

where $a \in \mathcal{A}$. Following the notation and the arguments in the proof of Theorem 2.1, set

$$\eta_{\alpha} := (id_A \otimes q)^{**} \circ (id_{\mathcal{A}} \otimes L_{i_0})^{**} \circ \rho_{\alpha}|_I : I \longrightarrow \left(\mathcal{A} \otimes_p \frac{I}{L}\right)^{****}.$$

Put $m_{\alpha} = \eta_{\alpha}(i_0 + L) \in \mathcal{R}^{****}$. One can readily see that $im_{\alpha} = \phi(i)m_{\alpha}$ and $\tilde{\phi}(m_{\alpha}) = 1$ for all $i \in I$. Using Mazur's lemma and replacing m_{α} with $m_{\alpha}i_0$, we may assume that $m_{\alpha} \in I^{**}$. Hence, I is left ϕ -amenable. It also concludes that \mathcal{R} is left ϕ -amenable. \Box

The next corollary has a similar proof to Theorem 2.1. We include it witout the proof.

Corollary 2.8. Let \mathcal{A} be a Banach algebra and $\phi \in \Delta(\mathcal{A})$. Suppose that I is a closed ideal of \mathcal{A} which posses a left approximate identity such that $\phi|_I \neq 0$. Under one of the following conditions, I is left ϕ -amenable. In particular, \mathcal{A} is left ϕ -amenable.

- (i) *A* is approximately biflat;
- (ii) \mathcal{A} is ϕ -biflat.

3. Applications for known Banach algebras

For two normed Banach algebras \mathcal{A} and \mathcal{B} such that $\theta \in \Delta(\mathcal{B})$, the Cartesian product $\mathcal{A} \times \mathcal{B}$ with the multiplication

$$(a, b)(a', b') = (aa' + \theta(b')a + \theta(b)a', bb'),$$

and norm ||(a, b)|| = ||a|| + ||b||, is a Banach algebra, for all $a, a' \in \mathcal{A}$ and $b, b' \in \mathcal{B}$. The Cartesian product $\mathcal{A} \times \mathcal{B}$ with the above properties is called the θ -Lau product of \mathcal{A} and \mathcal{B} which is denoted by $\mathcal{A} \times_{\theta} \mathcal{B}$. From [12], we identify $\mathcal{A} \times \{0\}$ with \mathcal{A} , and $\{0\} \times \mathcal{B}$ with \mathcal{B} . It is clear that \mathcal{A} is a closed two-sided ideal while \mathcal{B} is a closed subalgebra of $\mathcal{A} \times_{\theta} \mathcal{B}$, and $(\mathcal{A} \times_{\theta} \mathcal{B})/\mathcal{A}$ is isometrically isomorphic to \mathcal{B} . If $\theta = 0$, then we obtain the usual direct product of \mathcal{A} and \mathcal{B} . Since the direct products often exhibit different properties, we have excluded the possibility that $\theta = 0$. Moreover, if $\mathcal{B} = \mathbb{C}$, the complex numbers, and θ is the identity map on \mathbb{C} , then $\mathcal{A} \times_{\theta} \mathcal{B}$ is the unitization \mathcal{A}^{\sharp} of \mathcal{A} . Note that, by [12, Proposition 2.4], the character space $\Delta(\mathcal{A} \times_{\theta} \mathcal{B})$ of $\mathcal{A} \times_{\theta} \mathcal{B}$ is equal to

$$\{(\phi, \theta) : \phi \in \Delta(\mathcal{A})\} \left| \{(0, \psi) : \psi \in \sigma(\mathcal{B})\}\right|$$

Furthermore, the dual space $(\mathcal{A} \times_{\theta} \mathcal{B})^*$ of $\mathcal{A} \times_{\theta} \mathcal{B}$ is identified with $\mathcal{A}^* \times \mathcal{B}^*$ such that for each $(a, b) \in \mathcal{A} \times_{\theta} \mathcal{B}$, $\phi \in \Delta(\mathcal{A})$ and $\psi \in \Delta(\mathcal{B})$ we have

$$\langle (\phi, \psi), (a, b) \rangle = \phi(a) + \psi(b).$$

Now, assume that \mathcal{A}^{**} , \mathcal{B}^{**} and $(\mathcal{A} \times_{\theta} \mathcal{B})^{**}$ are equipped with their first Arens product \Box . Then, $(\mathcal{A} \times_{\theta} \mathcal{B})^{**}$ is isometrically isomorphic with $\mathcal{A}^{**} \times_{\theta} \mathcal{B}^{**}$. In addition, for all (m, n), $(p, q) \in (\mathcal{A} \times_{\theta} \mathcal{B})^{**}$ the first Arens product is defined by

$$(m,n)\Box(p,q) = (m\Box p + n(\theta)p + q(\theta)m, n\Box q);$$

for more details, we refer to [12, Proposition 2.12].

Let *G* be a locally compact group. We denote A(G) and $L^1(G)$ for the Fourier algebra and group algebra, respectively.

Theorem 3.1. Let G be a locally compact group G. Then, $L^1(G) \times_{\theta} A(G)$ is approximately biprojective if and only if G is finite.

Proof. Suppose that $L^1(G) \times_{\theta} A(G)$ is approximately biprojective. It is well-known that $L^1(G)$ has a bounded approximate identity and also $L^1(G)$ is a closed ideal of $L^1(G) \times_{\theta} A(G)$. Applying Theorem 2.1, we find that $L^1(G)$ is left ϕ -contractible for all $\phi \in \Delta(L^1(G))$. Using [13, Theorem 6.1], we see that *G* is compact. On the other hand, the element (0, a) commutes with each elements of $L^1(G) \times_{\theta} A(G)$. Pick $a_0 \in A(G)$ which $\psi(a_0) = 1$, where ψ is a character on A(G) with $\psi \neq \theta$. Since A(G) is a commutative Banach algebra, the element $(0, a_0)$ commutes with each element of $L^1(G) \times_{\theta} A(G)$ and $(0, \psi)(0, a_0) = \psi(a_0) = 1$. By Lemma 2.5, $L^1(G) \times_{\theta} A(G)$ is left $(0, \psi)$ -contractible and so A(G) is left ψ -contractible. Now, Theorem 3.5 from [1] can be applied to show that *G* is discrete, and therefore *G* must be finite.

Let *G* be a locally compact group. A linear subspace $S^1(G)$ of $L^1(G)$ is said to be a *Segal algebra* on *G* if it satisfies the following conditions:

- (i) $S^1(G)$ is dense in $L^1(G)$,
- (ii) S(G) with a norm $\|\cdot\|_{S^1(G)}$ is a Banach space and $\|f\|_{L^1(G)} \leq \|f\|_{S^1(G)}$ for all $f \in S^1(G)$,
- (iii) for $f \in S^1(G)$ and $y \in G$, we have $L_y(f) \in S^1(G)$ the map $y \mapsto L_y(f)$ from G into $S^1(G)$ is continuous, where $L_y(f)(x) = f(y^{-1}x)$,
- (iv) $||L_y(f)||_{S^1(G)} = ||f||_{S^1(G)}$ for all $f \in S^1(G)$ and $y \in G$.

It is well-known that S(G) always has a left approximate identity; for more information refer to [17]. It has been shown in [1, Lemma 2.2] that for a Segal algebra $S^1(G)$

$$\Delta(S^1(G)) = \left\{ \phi_{|_{S^1(G)}} | \phi \in \Delta(L^1(G)) \right\}$$

Besides, it was proved in [1, Corollary 3.4] that for a locally compact group G, $S^1(G)$ is left ϕ -amenable if and only if G is amenable. Using the above facts, we have the next result.

Proposition 3.2. Let G be a locally compact group. If $S^1(G) \times_{\theta} S^1(G)$ is approximately biflat, then G is amenable.

Proof. Since $S^1(G)$ has an approximate identity and is a closed ideal of $S^1(G) \times_{\theta} S^1(G)$, it is left ϕ -amenable, and so by [1, Corollary 3.4], *G* is amenable. \Box

Theorem 3.3. Let G be a locally compact group G. If $(S^1(G) \times_{\theta} \mathcal{A})^{**}$ is approximately biflat, then G is amenable, where \mathcal{A} is any Banach algebra with a non-empty character space.

Proof. Suppose that $(S^1(G) \times_{\theta} \mathcal{A})^{**}$ is approximately biflat. It is known that $S^1(G)$ is a closed ideal of $S^1(G) \times_{\theta} A(G)$ which has a left approximate identity. Applying Theorem 2.7, we arrive to the left ϕ -amenability of $S^1(G)$ and hence by Corollary 3.4 from [1], *G* is amenable. \Box

One should remember that a Banach algebra \mathcal{A} is amenable if and only if there exists an element $M \in (\mathcal{A} \otimes_p \mathcal{A})^{**}$ such that $a \cdot M = M \cdot a$ and $\pi_{\mathcal{A}}^{**}(M)a = a$, for all $a \in \mathcal{A}$. Furthermore, \mathcal{A} is amenable if and only if \mathcal{A} is biflat with a bounded approximate identity (see chapter 4 of [18]).

Theorem 3.4. Let G be a locally compact group. Then, $L^1(G) \times_{\theta} L^1(G)$ is approximately biflat if and only if G is amenable.

Proof. Assume that $L^1(G) \times_{\theta} L^1(G)$ is approximately biflat. Since $L^1(G)$ is a closed ideal of $L^1(G) \times_{\theta} L^1(G)$, Corollary 2.8 gives that $L^1(G)$ is left ϕ -amenable. Now, by [1, Corollary 3.4], *G* is amenable.

Conversely, suppose that *G* is amenable group. The celebrated Johnson's theorem [8] implies that $L^1(G)$ is amenable. Hence, by [12, pp. 285], $L^1(G) \times_{\theta} L^1(G)$ is amenable and thus it is biflat. This implies that $L^1(G) \times_{\theta} L^1(G)$ is approximately biflat. \Box

Suppose that \mathcal{A} is a Banach algebra and I is a totally ordered set. We denote $UP(I, \mathcal{A})$ for the set of all $I \times I$ upper triangular matrices which its entries come from \mathcal{A} and

$$||(a_{i,j})_{i,j\in I}|| = \sum_{i,j\in I} ||a_{i,j}|| < \infty.$$

With matrix operations and $\|\cdot\|$ as a norm, $UP(I, \mathcal{A})$ becomes a Banach algebra.

Example 3.5. The Banach algebra $UP(\mathbb{N}, \mathbb{C})$ is not approximately biprojective. To see this, we go toward a contradiction and assume that $UP(\mathbb{N}, \mathbb{C})$ is approximately biprojective. Define $\phi((a_{i,j})_{i,j\in\mathbb{N}}) = a_{1,1}$, for every $(a_{i,j})_{i,j\in\mathbb{C}} \in UP(\mathbb{N},\mathbb{C})$. It is easy to see that ϕ is a character on $UP(\mathbb{N},\mathbb{C})$. One can show that $UP(\mathbb{N},\mathbb{C})$ has an approximate identity. Consider $UP(\mathbb{N},\mathbb{C})$ as its closed ideal, by Theorem 2.1, $UP(\mathbb{N},\mathbb{C})$ is right ϕ -contractible. Put

$$J = \{(a_{i,j})_{i,j\in I} \in UP(\mathbb{N},\mathbb{C}) | a_{i,j} = 0 \quad \text{for} \quad i \neq 1\}.$$

It is easily checked that *J* is a closed ideal of $UP(\mathbb{N}, \mathbb{C})$ and $\phi|_J \neq 0$ and thus by [13, Proposition 3.8], *J* is right ϕ -contractible. Therefore, there exists an element j_0 in *J* such that

$$j_0 j = \phi(j) j_0, \quad \phi(j_0) = 1 \quad (j \in J).$$
 (1)

Set

$$j = \begin{pmatrix} 0 & 1 & \cdots & 1 & \cdots \\ 0 & 0 & \cdots & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}_{N \times N} \text{ and } j_0 = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} & \cdots \\ 0 & 0 & \cdots & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}_{N \times N}$$

for some $(a_{i,j})$ in \mathbb{C} . Put these facts in (1), gives that $a_{1,1} = 0$. But $\phi(j_0) = a_{1,1} = 1$ which is a contradiction.

An inverse semigroup is a semigroup *S* such that for each $s \in S$, there exists a unique element $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$. The set E(S) of idempotents of *S* is a commutative subsemigroup; it is ordered by $e \leq f$ if and only if ef = e. With this ordering E(S) is a meet semilattice (every element is idempotenet)with the meet given by the product; see [7, Theorem 5.1.1]. The order on *E* extends to *S* as so-called natural partial order by

$$s \le t \Leftrightarrow s = ss^*t \quad (s, t \in S).$$

Suppose that (S, \leq) is an inverse semigroup. For an arbitrary element $s \in S$, put $(x] = \{y \in S | y \leq x\}$. We say that *S* is *uniformly locally finite* if $\sup\{|(x]| : x \in S\} < \infty$. With respect to $e \in E(S)$, $G_e = \{s \in S | ss^* = s^*s = e\}$ is denoted for a maximal subgroup of *S*. An inverse semigroup *S* is called *Clifford semigroup* if for each $s \in S$ there exists $s^* \in S$ such that $ss^* = s^*s$; for more details see [7].

Proposition 3.6. Let $S = \bigcup_{e \in E(S)} G_e$ be a Clifford semigroup such that E(S) is uniformly locally finite. Then, $l^1(S)$ is approximately biprojective if and only if each maximal subgroup G_e is finite.

Proof. Let $l^1(S)$ be approximately biprojective. Using [16, Theorem 2.16], we have $l^1(S) \cong \ell^1 - \bigoplus_{e \in E(S)} l^1(G_e)$. It is obvious that $l^1(G_e)$ is a closed ideal of $l^1(S)$ which posses an identity. Furthermore, each character on $l^1(G_e)$ can be extended to whole $l^1(S)$ (for instance the augmentation character of $l^1(G_e)$). Applying Theorem 2.1 follows that $l^1(G_e)$ is left ϕ -contractible, where ϕ is the augmentation character on $l^1(G_e)$. By [1, Theorem 3.3] the discrete group G_e is compact. Then G_e is finite. The converse is clear by [16, Theorem 3.7]. \Box

Proposition 3.7. Let $S = \bigcup_{e \in E(S)} G_e$ be a Clifford semigroup such that E(S) is uniformly locally finite. Then, $l^1(S)$ is approximately biflat if and only if G_e is amenable.

Proof. Suppose that $l^1(S)$ is approximately biflat. Theorem 2.16 from [16] implies that $l^1(S) \cong \ell^1 - \bigoplus_{e \in E(S)} l^1(G_e)$. Since $l^1(G_e)$ is a closed ideal of $l^1(S)$, it has an identity. It now follows from Theorem 2.7 that $l^1(G_e)$ is left ϕ -amenable, where ϕ is the augmentation character on $l^1(G_e)$. By [11, Corollary 2.4], G_e is amenable. Conversely, let G_e be amenable. Now, Theorem 3.7 of [16] shows that $l^1(S)$ is biflat, and so is approximately biflat. \Box

Acknowledgments

The authors sincerely thank the anonymous reviewer for the careful reading, constructive comments to improve the quality of the first draft of paper.

References

- M. Alaghmandan, R. Nasr Isfahani and M. Nemati, Character amenability and contractibility of abstract Segal algebras, Bull. Aust. Math. Soc. 82 (2010), 274–281.
- [2] A. Bodaghi and M. Amini, Module biprojective and module biflat Banach algaebras, U.P.B. Sci. Bull. Series A. 75 (2013), Iss. 3, 25–36.
- [3] A. Bodaghi and M. Amini, Module character amenability of Banach algebras, Arch. Math (Basel). 99 (2012), 353–365.
- [4] A. Bodaghi and S. Grailoo Tanha, Module approximate biprojectivity and module approximate bifatness of Banach algebras, Rend. del Cir. Mat. di Palermo Series 2. 70 (2021), 409–425.
- [5] F. Ghahramani, R. J. Loy and G. A. Willis, Amenability and weak amenability of second conjugate Banach algebras, Proc. Amer. Math. Soc. 124 (1996), 1489–1497.
- [6] A. Ya. Helemskii, The homology of Banach and topological algebras, Kluwer, Academic Press, Dordrecht, 1989.
- [7] J. Howie, Fundamental of Semigroup Theory, London Math. Soc Monographs, vol. 12, Clarendon Press, Oxford, 1995.
- [8] B. E. Johnson, Cohomology in Banach algebras, Memoirs Amer. Math. Soc. 127, Providence, 1972.
- [9] E. Kaniuth, A. T. Lau and J. Pym, On ϕ -amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc. 144 (2008), 85–96.
- [10] A. T. Lau, Analysis on a class of Banach algebras with application to harmonic analysis on locally compact groups and semigroups, Fund. Math. 118 (1983), 161–175.
- [11] M. S. Monfared, Character amenability of Banach algebras, Math. Proc. Camb. Philos. Soc. 144 (2008), 697-706.
- [12] M. S. Monfared, On certain products of Banach algebras with applications to harmonic analysis, Studia Math. 178 (2007), 277–294.
 [13] R. Nasr Isfahani and S. Soltani Renani, Character contractibility of Banach algebras and homological properties of Banach modules, Studia Math. 202 (3) (2011), 205–225.
- [14] M. Nemati, Some properties of Banach algebras associated with locally compact groups, Colleq. Math. 139 (2) (2015), 259–271.
- [14] M. Pennah, some properties of banach algebras associated with locarly compact groups, coneq. Math. 107 (2) (2015), 257–271.
 [15] H. Pourmahmood-Aghababa, Approximately biprojective Banach algebras and nilpotent ideals, Bull. Aust. Math. Soc. 87 (2013), 158–173.
- [16] P. Ramsden, Biflatness of semigroup algebras, Semigroup Forum. 79 (2009), 515–530.
- [17] H. Reiter, L¹-algebras and Segal Algebras, Lecture Notes in Mathematics. 231, Springer, 1971.
- [18] V. Runde, Lectures on Amenability, Springer, New York, 2002.
- [19] A. Sahami, Approximate biflatness and approximate biprojectivity of some Banach algebras, Quaestiones Math. 43 (2020), No. 9, 1273–1284.
- [20] A. Sahami and A. Pourabbas, On ϕ -biflat and ϕ -biprojective Banach algebras, Bull. Belg. Math. Soc. Simon Stevin. 20 (5) (2013), 789–801.
- [21] A. Sahami, M. Rostami and A. Bodaghi, A notion of approximate biflatness for Banach algebras based on character space, Rend. del Cir. Mat. di Palermo Series 2. 72 (2023), 483-492.
- [22] E. Samei, N. Spronk and R. Stokke, Biflatness and Pseudo-Amenability of Segal algebras, Canad. J. Math. 62(4) (2010), 845-869.
- [23] Y. Zhang, Nilpotent ideals in a class of Banach algebras, Proc. Amer. Math. Soc. 127 (1999), 3237–3242.