On approximately biprojective and approximately biflat Banach algebras

Amir Sahami ${ }^{\text {a }}$, Abasalt Bodaghi ${ }^{\text {b }}$,*
${ }^{a}$ Department of Mathematics Faculty of Basic Science, Ilam University, P.O. Box 69315-516 Ilam, Iran
${ }^{b}$ Department of Mathematics, Garmsar Branch, Islamic Azad University, Garmsar, Iran

Abstract

In this paper, we study the approximate biprojectivity and the approximate biflatness of a Banach algebra \mathcal{A} and find some relations between theses concepts with ϕ-amenability and ϕ-contractibility, where ϕ is a character on \mathcal{A}. Among other things, we show that θ-Lau product algebra $L^{1}(G) \times_{\theta} A(G)$ is approximately biprojective if and only if G is finite, where $L^{1}(G)$ and $A(G)$ are the group algebra and the Fourier algebra of a locally compact group G, respectively. We also characterize approximately biprojective and approximately biflat semigroup algebras associated with the inverse semigroups.

1. Introduction and preliminaries

Let \mathcal{A} be a Banach algebra. We denote the first and second dual of \mathcal{A} by \mathcal{A}^{*} and $\mathcal{A}^{* *}$, respectively. Consider the mapping $\pi: \mathcal{A} \otimes_{p} \mathcal{A} \longrightarrow \mathcal{A}$ given by $\pi_{A}(a \otimes b)=a b$, which is the canonical morphism (for emphasis, $\pi_{\mathcal{A}}$), where $\mathcal{A} \otimes_{p} \mathcal{A}$ is the projective tensor product \mathcal{A} with itself. A Banach algebra \mathcal{A} is called biprojective [resp., biflat] if there exists a bounded \mathcal{A}-bimodule morphism $\rho: \mathcal{A} \longrightarrow \mathcal{A} \otimes_{p} \mathcal{A}$ [resp., $\left.\rho: \mathcal{A} \longrightarrow\left(\mathcal{A} \otimes_{p} \mathcal{A}\right)^{* *}\right]$ such that $\pi_{\mathcal{A}} \circ \rho(a)=a$ [resp., $\pi_{\mathcal{A}}^{* *} \circ \rho(a)=a$] for all $a \in \mathcal{A}$. These concepts have been introduced by Helemskii to study the structure of Banach algebras via Banach algebraic homology; the basic properties of biprojectivity and biflatness for Banach algebras are available in [6] and [18]. As for some known results about the group algebra $L^{1}(G)$, it is biprojective (resp. biflat) if and only if G is compact (resp. amenable). For some similar results as module versions of biprojectivity and biflatness for Banach algebras, we refer to [2].

Approximate notions in the homology were introduced for more observations on the structure of Banach algebras. Indeed, to study the nilpotent ideals of a Banach algebra, Zhang [23] defined the notion of approximate biprojectivity. In fact, a Banach algebra \mathcal{A} is called approximately biprojective if there exists a net of \mathcal{A}-bimodule morphisms $\left(\rho_{\alpha}\right)$ from \mathcal{A} into $\mathcal{A} \otimes_{p} \mathcal{A}$ such that $\pi_{\mathcal{A}} \circ \rho_{\alpha}(a) \xrightarrow{\|\cdot\|} a$, for all $a \in \mathcal{A}$. Next, Aghababa [15] introduced a new concept of (bounded) approximate biprojectivity and determine its relation to other notions of approximate biprojectivity defined in [23]. Some results about approximate homological notions of Banach homology can be found in [14] and [19].

[^0]Samei et al. in [22] gave a concept of approximate biflatness and they studied some operator structures of Segal algebras and Fourier algebras via this notion. A Banach algebra \mathcal{A} is called approximately biflat if there exists a net of \mathcal{A}-bimodule morphisms $\left(\rho_{\alpha}\right)$ from $\left(\mathcal{A} \otimes_{p} \mathcal{A}\right)^{*}$ into \mathcal{H}^{*} such that $\mathrm{W}^{*} \mathrm{OT}-\lim \rho_{\alpha} \circ \pi_{\mathcal{A}}^{*}=i d_{\mathcal{A}^{*}}$, where $\mathrm{W}^{*} \mathrm{OT}$ denotes for the weak-star operator topology. Here, we remind that for Banach algebras \mathcal{A} and \mathcal{B} the weak operator topology $\left(\mathrm{W}^{*} \mathrm{OT}\right)$ on $B\left(\mathcal{A}, \mathcal{B}^{*}\right)$ (the set of all bounded linear operators from \mathcal{A} into $\left.\mathcal{B}^{*}\right)$ is a topology determined by seminorms $\left\{p_{x, y}: x \in \mathcal{A}, y \in \mathcal{B}\right\}$ that $p_{x, y}(T)=|T(x)(y)|$, where $T \in B\left(\mathcal{A}, \mathcal{B}^{*}\right)$. In other words, $T_{\alpha} \xrightarrow{W^{*} O T} T$ if and only if for every $x \in \mathcal{A} ; T_{\alpha}(x) \xrightarrow{w^{*}} T(x)$. For a SIN group G, Samei et al. showed that the Segal algebra $S^{1}(G)$ is approximately biflat if and only if G is amenable. Recently, module approximately biflat and module approximately biprojective Banach algebras were studied in [4], applied to the weighted inverse semigroup algebra $l^{1}(S, \omega)$ and some results in [2] were improved as well.

In the last decades, some homological notions for a Banach algebra \mathcal{A} based on character space such as ϕ amenability (character amenability) [9, 11], ϕ-contractibility (character contractibility) [13], ϕ-biprojectivity and ϕ-biflatness [20] have been studied by a number of authors, where ϕ is a character on \mathcal{A}. In [11], Monfared characterized the structure of (right) character amenable Banach algebras and proved that for any locally compact group G, (right) character amenability of $L^{1}(G)$ is equivalent to the amenability of G. Module character amenability of Banach algebras and application to inverse semigroup algebras can be found in [3]. As some results in [20], the authors showed that $L^{1}(G)$ is ϕ-biflat if and only if G is an amenable group and moreover $A(G)$ is ϕ-biprojective if and only if G is a discrete group. It is shown in [13] that $L^{1}(G)$ is left character contractible if and only if G is finite. The same result is valid for $A(G)$. Recently, approximate left ϕ-biflatness for Banach algebras was introduced and studied in [21].

A large class of Banach algebras (called F-algebras) equipped with θ-Lau product has been introduced and investigated by Lau in [10] for certain class of Banach algebras, where θ is a character. This class includes group algebra, measure algebra and Fourier algebra of a locally compact group. This product is followed by Monfared in general [12].

Motivated by considerations above, we show that under which conditions, the approximate biprojectivity of a Banach algebra \mathcal{A} or its second dual implies that \mathcal{A} is left ϕ-contractible. The same results hold for approximate biflatness and left ϕ-amenability. We also study the approximate biprojectivity and the approximate biflatness of certain Banach algebras. In other words, we investigate the approximate biflatness and approximate biprojectivity of some θ-Lau product structures and semigroup algebras. More precisely, we prove that $L^{1}(G) \times \times_{\theta} A(G)$ is approximately biprojective if and only if G is finite.

2. Some properties of approximate biprojectivity and approximate biflatness

Let \mathcal{A} be a Banach algebra and X be a Banach \mathcal{A}-bimodule. Then, with the following actions X^{*} is also a Banach \mathcal{A}-bimodule:

$$
a \cdot f(x)=f(x \cdot a), \quad f \cdot a(x)=f(x \cdot a) \quad\left(a \in \mathcal{A}, x \in X, f \in X^{*}\right)
$$

The projective tensor product $\mathcal{A} \otimes_{p} \mathcal{A}$ is a Banach \mathcal{A}-bimodule with the following actions:

$$
a \cdot(b \otimes c)=a b \otimes c, \quad(b \otimes c) \cdot a=b \otimes c a \quad(a, b, c \in \mathcal{A})
$$

Throughout this paper, $\Delta(\mathcal{A})$ denotes the character space of \mathcal{A}, that is, all non-zero multiplicative linear functionals on \mathcal{A}. Let $\phi \in \Delta(\mathcal{A})$. Then, ϕ has a unique extension on $\mathcal{A}^{* *}$ denoted by $\tilde{\phi}$ and defined via $\tilde{\phi}(F)=F(\phi)$ for every $F \in \mathcal{A}^{* *}$. Clearly, this extension remains to be a character on $\mathcal{A}^{* *}$.

Let \mathcal{A} be a Banach algebra and $\phi \in \Delta(\mathcal{A})$. Then, \mathcal{A} is called left (right) ϕ-contractible if there exists an element $m \in \mathcal{A}$ such that $a m=\phi(a) m(m a=\phi(a) m)$ and $\phi(m)=1$, for all $a \in \mathcal{A}$. Moreover, \mathcal{A} is called character contractible if it is left ϕ-contractible for all $\phi \in \Delta(\mathcal{A})$ and posses a left identity [13].

Theorem 2.1. Let \mathcal{A} be a Banach algebra and $\phi \in \Delta(\mathcal{A})$. Suppose that I is a closed ideal of \mathcal{A} which posses a left approximate identity such that $\left.\phi\right|_{I} \neq 0$. If \mathcal{A} approximately biprojective, then I is left ϕ-contractible. In particular, \mathcal{A} is left ϕ-contractible.

Proof. By our assumptions, there exists a net of \mathcal{A}-bimodule morphisms (ρ_{α}) from \mathcal{A} into $\mathcal{A} \otimes_{p} \mathcal{A}$ such that $\pi_{\mathcal{A}} \circ \rho_{\alpha}(a) \rightarrow a$, for all $a \in \mathcal{A}$. Put $L=I \cap \operatorname{ker} \phi$. It is easy to see that L is a closed ideal of I. Consider the quotient map $q: I \longrightarrow \frac{I}{L}$. Pick $i_{0} \in I$ such that $\phi\left(i_{0}\right)=1$. Define the map $L_{i_{0}}: \mathcal{A} \longrightarrow I$ by $L_{i_{0}}(a)=i_{0} a$ for all $a \in \mathcal{A}$. It is obvious that $L_{i_{0}}$ is a continuous map. Now, set

$$
\eta_{\alpha}:=\left.\left(i d_{\mathcal{A}} \otimes q\right) \circ\left(i d_{\mathcal{A}} \otimes L_{i_{0}}\right) \circ \rho_{\alpha}\right|_{I}: I \longrightarrow \mathcal{A} \otimes_{p} \frac{I}{L}
$$

It is easily verified that $\left(\eta_{\alpha}\right)$ is a net of I-bimodule morphisms. We claim that $\eta_{\alpha}(l)=0$, for all $l \in L$. To see this, having a left approximate identity for I implies that $\overline{I L}=L$. For an arbitrary element l of L, there exist sequences $\left(i_{n}\right)$ and $\left(l_{n}\right)$ such that $l=\lim _{n} i_{n} l_{n}$. Since $q(L)=\{0\}$, we get

$$
\left.\eta_{\alpha}(l)=\left.\left(i d_{\mathcal{A}} \otimes q\right) \circ\left(i d_{\mathcal{A}} \otimes L_{i_{0}}\right) \circ \rho_{\alpha}\right|_{I}\left(\lim _{n} i_{n} l_{n}\right)=\lim _{n}\left(i d_{\mathcal{A}} \otimes q\right) \circ\left(i d_{\mathcal{A}} \otimes L_{i_{0}}\right)\left(\left.\rho_{\alpha}\right|_{I}\left(i_{n}\right) \cdot l_{n}\right)\right)=0
$$

It follows that η_{α} induces a net of I-bimodule morphisms from $\frac{I}{L}$ into $\mathcal{A} \otimes_{p} \frac{I}{L}$, which we denote it again by $\left(\eta_{\alpha}\right)$. Fix α. Set $m:=\eta_{\alpha}\left(i_{0}+L\right) \in \mathcal{A} \otimes_{p} \frac{I}{L}$. From the fact $\frac{I}{L} \cong \mathbb{C}$, we find $\mathcal{A} \otimes_{p} \frac{I}{L} \cong \mathcal{A} \otimes_{p} \mathbb{C} \cong \mathcal{A}$. Hence, we may consider m as an element of \mathcal{A}. Here, we show that $i m=\phi(i) m$ and $\phi(m)=1$ for all $i \in I$. We have $i i_{0}+L=\phi(i) i_{0}+L$ and η_{α} is a bounded I-bimodule morphism. Thus

$$
i m=i \eta_{\alpha}\left(i_{0}+L\right)=\eta_{\alpha}\left(i i_{0}+L\right)=\eta_{\alpha}\left(\phi(i) i_{0}+L\right)=\phi(i) \eta_{\alpha}\left(i_{0}+L\right)=\phi(i) m
$$

and

$$
\phi(m)=\left.(\phi \otimes \bar{\phi}) \circ\left(i d_{\mathcal{A}} \otimes q\right) \circ\left(i d_{\mathcal{A}} \otimes L_{i_{0}}\right) \circ \rho_{\alpha}\right|_{I}\left(i_{0}+L\right)=\left.\phi \circ \pi_{A} \circ \rho_{\alpha}\right|_{I}\left(i_{0}\right) \rightarrow \phi\left(i_{0}\right)=1
$$

for all $i \in I$. Replacing m with $\frac{m i_{0}}{\phi(m)}$, for a large enough α, we can assume that $m \in I$ and $\phi(m)=1$. This shows that I is left ϕ-contractible. Moreover, Proposition 3.8 from [13] implies that \mathcal{A} is left ϕ-contractible.

The following corollaries are the direct consequences of Theorem 2.1.
Corollary 2.2. Let \mathcal{A} be a Banach algebra with a left approximate identity and $\phi \in \Delta(\mathcal{A})$. Suppose that \mathcal{A} is a closed ideal of $\mathcal{A}^{* *}$. If $\mathcal{A}^{* *}$ is approximately biprojective, then \mathcal{A} is left ϕ-contractible.

Proof. It is known that if $\phi \in \Delta(\mathcal{A})$, then $\tilde{\phi} \in \Delta\left(\mathcal{A}^{* *}\right)$. The proof will be finished by Theorem 2.1.
Corollary 2.3. Let \mathcal{A} be a Banach algebra and $\phi \in \Delta(\mathcal{A})$. Suppose that I is a closed ideal of \mathcal{A} which posses an approximate identity such that $\left.\phi\right|_{I} \neq 0$. If \mathcal{A} is approximately biprojective, then there exists an element a_{0} in $Z(\mathcal{A})$ (the center of \mathcal{A}) such that $\phi\left(a_{0}\right)=1$.

Proof. By Theorem 2.1, \mathcal{A} is left and right ϕ-contractible. Then, there exist elements m_{1} and m_{2} in \mathcal{A} such that $a m_{1}=\phi(a) m_{1}, m_{2} a=\phi(a) m_{2}$ and $\phi\left(m_{1}\right)=\phi\left(m_{2}\right)=1$ for all $a \in \mathcal{A}$. Put $M=m_{1} m_{2} \in \mathcal{A}$. Then

$$
a M=a m_{1} m_{2}=\phi(a) m_{1} m_{2}=m_{1} m_{2} \phi(a)=M a, \quad \phi(M)=\phi\left(m_{1}\right) \phi\left(m_{2}\right)=1,
$$

for all $a \in \mathcal{A}$.
Let \mathcal{A} be a Banach algebra and $\phi \in \Delta(\mathcal{A})$. Recall from [20] that \mathcal{A} is said to be ϕ-biprojective, if there exists a bounded \mathcal{A}-bimodule morphism $\rho: \mathcal{A} \longrightarrow \mathcal{A} \otimes_{p} \mathcal{A}$ such that $\phi \circ \pi_{\mathcal{A}} \circ \rho(a)=\phi(a)$, for all $a \in \mathcal{A}$. Furthermore, \mathcal{A} is called ϕ-biflat if there exists a bounded \mathcal{A}-bimodule morphism $\rho: \mathcal{A} \longrightarrow\left(\mathcal{A} \otimes_{p} \mathcal{A}\right)^{* *}$ such that $\tilde{\phi} \circ \pi_{\mathcal{A}} \circ \rho(a)=\phi(a)$, for all $a \in A$ [20].

The proof of the next proposition is similar to the proof of Theorem 2.1, and so omitted.
Proposition 2.4. Let \mathcal{A} be a Banach algebra and $\phi \in \Delta(\mathcal{A})$. Suppose that I is a closed ideal of \mathcal{A} which posses a left approximate identity such that $\left.\phi\right|_{I} \neq 0$. If \mathcal{A} is ϕ-biprojective, then I is left ϕ-contractible. Moreover, \mathcal{A} is left ϕ-contractible.

The upcoming lemmas are some fundamental tools in obtaining our results in this paper.

Lemma 2.5. Let \mathcal{A} be an approximately biprojective Banach algebra and $\phi \in \Delta(\mathcal{A})$. Suppose that $a_{0} \in \mathcal{A}$ is an element satisfying $a a_{0}=a_{0} a$ and $\phi\left(a_{0}\right)=1$, for all $a \in \mathcal{A}$. Then, \mathcal{A} is left ϕ-contractible.

Proof. Our assumptions necessitate that there exists a net $\left(\rho_{\alpha}\right)$ of A-bimodule morphisms from \mathcal{A} into $\mathcal{A} \otimes_{p} \mathcal{A}$ such that $\pi_{\mathcal{A}} \circ \rho_{\alpha}(a) \rightarrow a$ for all $a \in \mathcal{A}$. Set $m_{\alpha}:=\rho_{\alpha}\left(a_{0}\right) \in A \otimes_{p} A$. We have

$$
a \cdot m_{\alpha}=a \cdot \rho_{\alpha}\left(a_{0}\right)=\rho_{\alpha}\left(a a_{0}\right)=\rho_{\alpha}\left(a_{0} a\right)=\rho_{\alpha}\left(a_{0}\right) \cdot a=m_{\alpha} \cdot a,
$$

and

$$
\phi \circ \pi_{\mathcal{A}}\left(m_{\alpha}\right)=\phi \circ \pi_{\mathcal{A}} \circ \rho_{\alpha}\left(a_{0}\right) \rightarrow \phi\left(a_{0}\right)=1,
$$

for all $a \in \mathcal{A}$. Define the mapping $T: \mathcal{A} \otimes_{p} \mathcal{A} \rightarrow \mathcal{A}$ via $T(a \otimes b)=\phi(b) a$ for all $a, b \in \mathcal{A}$. Obviously, T is a bounded linear map which satisfies

$$
a T(x)=T(a \cdot x), \quad T(x \cdot a)=\phi(a) T(x), \quad \phi \circ T(x)=\phi \circ \pi_{\mathcal{A}}(x),
$$

for all $a \in \mathcal{A}$ and $x \in \mathcal{A} \otimes_{p} \mathcal{A}$. Put $n_{\alpha}=T\left(m_{\alpha}\right)$. Thus

$$
a n_{\alpha}=a T\left(m_{\alpha}\right)=T\left(a \cdot m_{\alpha}\right)=T\left(m_{\alpha} \cdot a\right)=\phi(a) T\left(m_{\alpha}\right)=\phi(a) n_{\alpha}
$$

and

$$
\phi\left(n_{\alpha}\right)=\phi \circ T\left(m_{\alpha}\right)=\phi \circ \pi_{\mathcal{A}}\left(m_{\alpha}\right) \rightarrow 1,
$$

for all $a \in \mathcal{A}$. Interchanging n_{α} into $\frac{n_{\alpha}}{\phi\left(n_{\alpha}\right)}$, we conclude that $a n_{\alpha}=\phi(a) n_{\alpha}$ and $\phi\left(n_{\alpha}\right)=1$ for all $a \in \mathcal{A}$. Therefore, \mathcal{A} is left ϕ-contractible.

Lemma 2.6. Let \mathcal{A} be an approximately biflat Banach algebra. Then, there exists a net of \mathcal{A}-bimodule morphisms from $A^{* *}$ into $\left(\mathcal{A} \otimes_{p} \mathcal{A}\right)^{* *}$ such that $\pi_{\mathcal{A}}^{* *} \circ \rho_{\alpha}(\hat{a}) \xrightarrow{w^{*}} \hat{a}$, for all $a \in \mathcal{A}$, where \hat{a} is denoted for the canonical embedding of a in $\mathcal{A}^{* *}$.

Proof. Our hypothesis implies that there exists a net of \mathcal{A}-bimodule morphisms $\left(\eta_{\alpha}\right)$ from $\left(\mathcal{A} \otimes_{p} \mathcal{A}\right)^{*}$ into \mathcal{A}^{*} such that $\eta_{\alpha} \circ \pi_{\mathcal{A}}^{*}(f) \xrightarrow{w^{*}} f$, for all $f \in\left(\mathcal{A} \otimes_{p} \mathcal{A}\right)^{*}$. Take $\rho_{\alpha}=\eta_{\alpha}^{*}$. It is clear that $\left(\rho_{\alpha}\right)$ is a net of \mathcal{A}-bimodule morphisms from $\mathcal{A}^{* *}$ into $\left(\mathcal{A} \otimes_{p} \mathcal{A}\right)^{* *}$. For each $a \in \mathcal{A}$, we obtain

$$
\left(\pi_{\mathcal{A}}^{* *} \circ \rho_{\alpha}(\hat{a})-\hat{a}\right)(f)=\pi_{\mathcal{A}}^{* *} \circ \rho_{\alpha}(\hat{a})(f)-\hat{a}(f)=\hat{a}\left(\eta_{\alpha} \circ \pi_{\mathcal{A}}^{*}(f)-f\right)=\eta_{\alpha} \circ \pi_{\mathcal{A}}^{*}(f)(a)-f(a) \rightarrow 0 .
$$

This means that the result is valid.
Let \mathcal{A} be a Banach algebra and $\phi \in \Delta(\mathcal{A})$. We recall from [9] that \mathcal{A} is left (resp. right) ϕ-amenable if there exists an element $m \in \mathcal{A}^{* *}$ such that $a m=\phi(a) m$ (resp. $\left.m a=\phi(a) m\right)$ and $\tilde{\phi}(m)=1$, for all $a \in \mathcal{A}$. Moreover, \mathcal{A} is said to be character amenable if it is left ϕ-amenable for all $\phi \in \Delta(\mathcal{A})$ and posses a bounded left approximate identity.

In analogues to Theorem 2.1, we have the following result for the left ϕ-amenability case.
Theorem 2.7. Let \mathcal{A} be a Banach algebra and $\phi \in \Delta(\mathcal{A})$. Suppose that I is a closed ideal of \mathcal{A} which posses a left approximate identity such that $\left.\phi\right|_{I} \neq 0$. If $\mathcal{A}^{* *}$ is approximately biflat, then I is left ϕ-amenable. In addition, \mathcal{A} is left ϕ-amenable.

Proof. By Lemma 2.6, there exists a net of $\mathcal{A}^{* *}$-bimodule morphisms, say Γ_{α}, from $\mathcal{A}^{* * * *}$ into $\left(\mathcal{A}^{* *} \otimes_{p} \mathcal{A}^{* *}\right)^{* *}$ such that $\pi_{\mathcal{A}^{* *}}^{* *} \circ \Gamma_{\alpha}(\hat{a}) \xrightarrow{w^{*}} \hat{a}$, for all $a \in \mathcal{A}^{* *}$. On the other hand, by [5, Lemma 1.7], there exists a bounded linear map $\psi: \mathcal{A}^{* *} \otimes_{p} \mathcal{A}^{* *} \longrightarrow\left(\mathcal{A} \otimes_{p} \mathcal{A}\right)^{* *}$ such that for $a, b \in \mathcal{A}$ and $m \in \mathcal{A}^{* *} \otimes_{p} \mathcal{A}^{* *}$, the following holds:
(i) $\psi(a \otimes b)=a \otimes b$;
(ii) $\psi(m) \cdot a=\psi(m \cdot a)$;
(iii) $a \cdot \psi(m)=\psi(a \cdot m)$;
(iv) $\pi_{\mathscr{A}}^{* *}(\psi(m))=\pi_{\mathcal{A}^{* *}}(m)$.

Consider the mapping $\rho_{\alpha}:\left.\psi^{* *} \circ \Gamma_{\alpha}\right|_{\mathcal{A}}: \mathcal{A} \longrightarrow\left(\mathcal{A} \otimes_{p} \mathcal{A}\right)^{* * * *}$. Since $\psi^{* *}$ and $\pi_{\mathcal{A}}^{* * *}$ are w^{*}-continuous maps, we have

$$
\pi_{\mathcal{A}}^{* * *} \circ \rho_{\alpha}(a)-a=\pi_{\mathcal{A}}^{* * *} \circ \psi^{* *} \circ \Gamma_{\alpha}(a)-a=\pi_{\mathcal{A}{ }^{* *}}^{* *} \circ \Gamma_{\alpha}(a)-a \xrightarrow{w^{*}} 0,
$$

where $a \in \mathcal{A}$. Following the notation and the arguments in the proof of Theorem 2.1, set

$$
\eta_{\alpha}:=\left.\left(i d_{A} \otimes q\right)^{* *} \circ\left(i d_{\mathcal{A}} \otimes L_{i_{0}}\right)^{* *} \circ \rho_{\alpha}\right|_{I}: I \longrightarrow\left(\mathcal{A} \otimes_{p} \frac{I}{L}\right)^{* * * *}
$$

Put $m_{\alpha}=\eta_{\alpha}\left(i_{0}+L\right) \in \mathcal{A}^{* * * *}$. One can readily see that $i m_{\alpha}=\phi(i) m_{\alpha}$ and $\tilde{\tilde{\phi}}\left(m_{\alpha}\right)=1$ for all $i \in I$. Using Mazur's lemma and replacing m_{α} with $m_{\alpha} i_{0}$, we may assume that $m_{\alpha} \in I^{* *}$. Hence, I is left ϕ-amenable. It also concludes that \mathcal{A} is left ϕ-amenable.

The next corollary has a similar proof to Theorem 2.1. We include it witout the proof.
Corollary 2.8. Let \mathcal{A} be a Banach algebra and $\phi \in \Delta(\mathcal{A})$. Suppose that I is a closed ideal of \mathcal{A} which posses a left approximate identity such that $\left.\phi\right|_{I} \neq 0$. Under one of the following conditions, I is left ϕ-amenable. In particular, \mathcal{A} is left ϕ-amenable.
(i) \mathcal{A} is approximately biflat;
(ii) \mathcal{A} is ϕ-biflat.

3. Applications for known Banach algebras

For two normed Banach algebras \mathcal{A} and \mathcal{B} such that $\theta \in \Delta(\mathcal{B})$, the Cartesian product $\mathcal{A} \times \mathcal{B}$ with the multiplication

$$
(a, b)\left(a^{\prime}, b^{\prime}\right)=\left(a a^{\prime}+\theta\left(b^{\prime}\right) a+\theta(b) a^{\prime}, b b^{\prime}\right)
$$

and norm $\|(a, b)\|=\|a\|+\|b\|$, is a Banach algebra, for all $a, a^{\prime} \in \mathcal{A}$ and $b, b^{\prime} \in \mathcal{B}$. The Cartesian product $\mathcal{A} \times \mathcal{B}$ with the above properties is called the θ-Lau product of \mathcal{A} and \mathcal{B} which is denoted by $\mathcal{A} \times{ }_{\theta} B$. From [12], we identify $\mathcal{A} \times\{0\}$ with \mathcal{A}, and $\{0\} \times \mathcal{B}$ with \mathcal{B}. It is clear that \mathcal{A} is a closed two-sided ideal while \mathcal{B} is a closed subalgebra of $\mathcal{A} \times_{\theta} \mathcal{B}$, and $\left(\mathcal{A} \times_{\theta} \mathcal{B}\right) / \mathcal{A}$ is isometrically isomorphic to \mathcal{B}. If $\theta=0$, then we obtain the usual direct product of \mathcal{A} and \mathcal{B}. Since the direct products often exhibit different properties, we have excluded the possibility that $\theta=0$. Moreover, if $\mathcal{B}=\mathbb{C}$, the complex numbers, and θ is the identity map on \mathbb{C}, then $\mathcal{A} \times_{\theta} \mathcal{B}$ is the unitization \mathcal{A}^{\sharp} of \mathcal{A}. Note that, by [12, Proposition 2.4], the character space $\Delta\left(\mathcal{A} \times_{\theta} \mathcal{B}\right)$ of $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ is equal to

$$
\{(\phi, \theta): \phi \in \Delta(\mathcal{A})\} \bigcup\{(0, \psi): \psi \in \sigma(\mathcal{B})\} .
$$

Furthermore, the dual space $\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right)^{*}$ of $\mathcal{A} \times{ }_{\theta} \mathcal{B}$ is identified with $\mathcal{A}^{*} \times \mathcal{B}^{*}$ such that for each $(a, b) \in \mathcal{A} \times{ }_{\theta} \mathcal{B}$, $\phi \in \Delta(\mathcal{F})$ and $\psi \in \Delta(\mathcal{B})$ we have

$$
\langle(\phi, \psi),(a, b)\rangle=\phi(a)+\psi(b) .
$$

Now, assume that $\mathcal{A}^{* *}, \mathcal{B}^{* *}$ and $\left(\mathcal{A} \times_{\theta} \mathcal{B}\right)^{* *}$ are equipped with their first Arens product \square. Then, $\left(\mathcal{A} \times_{\theta} \mathcal{B}\right)^{* *}$ is isometrically isomorphic with $\mathcal{A}^{* *} \times_{\theta} \mathcal{B}^{* *}$. In addition, for all $(m, n),(p, q) \in\left(\mathcal{A} \times{ }_{\theta} \mathcal{B}\right)^{* *}$ the first Arens product is defined by

$$
(m, n) \square(p, q)=(m \square p+n(\theta) p+q(\theta) m, n \square q) ;
$$

for more details, we refer to [12, Proposition 2.12].
Let G be a locally compact group. We denote $A(G)$ and $L^{1}(G)$ for the Fourier algebra and group algebra, respectively.

Theorem 3.1. Let G be a locally compact group G. Then, $L^{1}(G) \times{ }_{\theta} A(G)$ is approximately biprojective if and only if G is finite.

Proof. Suppose that $L^{1}(G) \times{ }_{\theta} A(G)$ is approximately biprojective. It is well-known that $L^{1}(G)$ has a bounded approximate identity and also $L^{1}(G)$ is a closed ideal of $L^{1}(G) \times_{\theta} A(G)$. Applying Theorem 2.1, we find that $L^{1}(G)$ is left ϕ-contractible for all $\phi \in \Delta\left(L^{1}(G)\right)$. Using [13, Theorem 6.1], we see that G is compact. On the other hand, the element $(0, a)$ commutes with each elements of $L^{1}(G) \times{ }_{\theta} A(G)$. Pick $a_{0} \in A(G)$ which $\psi\left(a_{0}\right)=1$, where ψ is a character on $A(G)$ with $\psi \neq \theta$. Since $A(G)$ is a commutative Banach algebra, the element $\left(0, a_{0}\right)$ commutes with each element of $L^{1}(G) \times_{\theta} A(G)$ and $(0, \psi)\left(0, a_{0}\right)=\psi\left(a_{0}\right)=1$. By Lemma 2.5, $L^{1}(G) \times_{\theta} A(G)$ is left $(0, \psi)$-contractible and so $A(G)$ is left ψ-contractible. Now, Theorem 3.5 from [1] can be applied to show that G is discrete, and therefore G must be finite.
The converse is clear.
Let G be a locally compact group. A linear subspace $S^{1}(G)$ of $L^{1}(G)$ is said to be a Segal algebra on G if it satisfies the following conditions:
(i) $S^{1}(G)$ is dense in $L^{1}(G)$,
(ii) $S(G)$ with a norm $\|\cdot\|_{S^{1}(G)}$ is a Banach space and $\|f\|_{L^{1}(G)} \leq\|f\|_{S^{1}(G)}$ for all $f \in S^{1}(G)$,
(iii) for $f \in S^{1}(G)$ and $y \in G$, we have $L_{y}(f) \in S^{1}(G)$ the map $y \mapsto L_{y}(f)$ from G into $S^{1}(G)$ is continuous, where $L_{y}(f)(x)=f\left(y^{-1} x\right)$,
(iv) $\left\|L_{y}(f)\right\|_{S^{1}(G)}=\|f\|_{S^{1}(G)}$ for all $f \in S^{1}(G)$ and $y \in G$.

It is well-known that $S(G)$ always has a left approximate identity; for more information refer to [17].
It has been shown in [1, Lemma 2.2] that for a Segal algebra $S^{1}(G)$

$$
\Delta\left(S^{1}(G)\right)=\left\{\phi_{\mathrm{I}^{1}(G)} \mid \phi \in \Delta\left(L^{1}(G)\right)\right\} .
$$

Besides, it was proved in [1, Corollary 3.4] that for a locally compact group $G, S^{1}(G)$ is left ϕ-amenable if and only if G is amenable. Using the above facts, we have the next result.
Proposition 3.2. Let G be a locally compact group. If $S^{1}(G) \times{ }_{\theta} S^{1}(G)$ is approximately biflat, then G is amenable.
Proof. Since $S^{1}(G)$ has an approximate identity and is a closed ideal of $S^{1}(G) \times{ }_{\theta} S^{1}(G)$, it is left ϕ-amenable, and so by [1, Corollary 3.4], G is amenable.
Theorem 3.3. Let G be a locally compact group G. If $\left(S^{1}(G) \times{ }_{\theta} \mathcal{A}\right)^{* *}$ is approximately biflat, then G is amenable, where \mathcal{A} is any Banach algebra with a non-empty character space.

Proof. Suppose that $\left(S^{1}(G) \times_{\theta} \mathcal{A}\right)^{* *}$ is approximately biflat. It is known that $S^{1}(G)$ is a closed ideal of $S^{1}(G) \times_{\theta} A(G)$ which has a left approximate identity. Applying Theorem 2.7, we arrive to the left ϕ amenability of $S^{1}(G)$ and hence by Corollary 3.4 from [1], G is amenable.

One should remember that a Banach algebra \mathcal{A} is amenable if and only if there exists an element $M \in\left(\mathcal{A} \otimes_{p} \mathcal{A}\right)^{* *}$ such that $a \cdot M=M \cdot a$ and $\pi_{\mathcal{A}}^{* *}(M) a=a$, for all $a \in \mathcal{A}$. Furthermore, \mathcal{A} is amenable if and only if \mathcal{A} is biflat with a bounded approximate identity (see chapter 4 of [18]).
Theorem 3.4. Let G be a locally compact group. Then, $L^{1}(G) \times_{\theta} L^{1}(G)$ is approximately biflat if and only if G is amenable.

Proof. Assume that $L^{1}(G) \times_{\theta} L^{1}(G)$ is approximately biflat. Since $L^{1}(G)$ is a closed ideal of $L^{1}(G) \times{ }_{\theta} L^{1}(G)$, Corollary 2.8 gives that $L^{1}(G)$ is left ϕ-amenable. Now, by [1, Corollary 3.4], G is amenable.

Conversely, suppose that G is amenable group. The celebrated Johnson's theorem [8] implies that $L^{1}(G)$ is amenable. Hence, by [12, pp. 285], $L^{1}(G) \times{ }_{\theta} L^{1}(G)$ is amenable and thus it is biflat. This implies that $L^{1}(G) \times{ }_{\theta} L^{1}(G)$ is approximately biflat.

Suppose that \mathcal{A} is a Banach algebra and I is a totally ordered set. We denote $U P(I, \mathcal{A})$ for the set of all $I \times I$ upper triangular matrices which its entries come from \mathcal{A} and

$$
\left\|\left(a_{i, j}\right)_{i, j \in I}\right\|=\sum_{i, j \in I}\left\|a_{i, j}\right\|<\infty .
$$

With matrix operations and $\|\cdot\|$ as a norm, $U P(I, \mathcal{A})$ becomes a Banach algebra.

Example 3.5. The Banach algebra $U P(\mathbb{N}, \mathbb{C})$ is not approximately biprojective. To see this, we go toward a contradiction and assume that $U P(\mathbb{N}, \mathbb{C})$ is approximately biprojective. Define $\phi\left(\left(a_{i, j}\right)_{i, j \in \mathbb{N}}\right)=a_{1,1}$, for every $\left(a_{i, j}\right)_{i, j \in \mathbb{C}} \in U P(\mathbb{N}, \mathbb{C})$. It is easy to see that ϕ is a character on $U P(\mathbb{N}, \mathbb{C})$. One can show that $U P(\mathbb{N}, \mathbb{C})$ has an approximate identity. Consider $\operatorname{UP}(\mathbb{N}, \mathbb{C})$ as its closed ideal, by Theorem $2.1, \operatorname{UP}(\mathbb{N}, \mathbb{C})$ is right ϕ-contractible. Put

$$
J=\left\{\left(a_{i, j}\right)_{i, j \in I} \in \operatorname{UP}(\mathbb{N}, \mathbb{C}) \mid a_{i, j}=0 \quad \text { for } \quad i \neq 1\right\} .
$$

It is easily checked that J is a closed ideal of $U P(\mathbb{N}, \mathbb{C})$ and $\left.\phi\right|_{J} \neq 0$ and thus by [13, Proposition 3.8], J is right ϕ-contractible. Therefore, there exists an element j_{0} in J such that

$$
\begin{equation*}
j_{0} j=\phi(j) j_{0}, \quad \phi\left(j_{0}\right)=1 \quad(j \in J) \tag{1}
\end{equation*}
$$

Set

$$
j=\left(\begin{array}{ccccc}
0 & 1 & \cdots & 1 & \cdots \\
0 & 0 & \cdots & 0 & \cdots \\
: & : & : & : & : \\
0 & 0 & \cdots & 0 & \cdots \\
: & : & : & : & :
\end{array}\right)_{\mathbb{N} \times \mathbb{N}} \quad \text { and } j_{0}=\left(\begin{array}{ccccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} & \cdots \\
0 & 0 & \cdots & 0 & \cdots \\
: & : & : & : & : \\
0 & 0 & \cdots & 0 & \cdots \\
: & : & : & : & :
\end{array}\right)_{\mathbb{N} \times \mathbb{N}}
$$

for some $\left(a_{i, j}\right)$ in \mathbb{C}. Put these facts in (1), gives that $a_{1,1}=0$. But $\phi\left(j_{0}\right)=a_{1,1}=1$ which is a contradiction.
An inverse semigroup is a semigroup S such that for each $s \in S$, there exists a unique element $s^{*} \in S$ such that $s s^{*} s=s$ and $s^{*} s s^{*}=s^{*}$. The set $E(S)$ of idempotents of S is a commutative subsemigroup; it is ordered by $e \leq f$ if and only if $e f=e$. With this ordering $E(S)$ is a meet semilattice (every element is idempotenet)with the meet given by the product; see [7, Theorem 5.1.1]. The order on E extends to S as so-called natural partial order by

$$
s \leq t \Leftrightarrow s=s s^{*} t \quad(s, t \in S)
$$

Suppose that (S, \leq) is an inverse semigroup. For an arbitrary element $s \in S$, put $(x]=\{y \in S \mid y \leq x\}$. We say that S is uniformly locally finite if sup $\{|(x]|: x \in S\}<\infty$. With respect to $e \in E(S), G_{e}=\left\{s \in S \mid s s^{*}=s^{*} s=e\right\}$ is denoted for a maximal subgroup of S. An inverse semigroup S is called Clifford semigroup if for each $s \in S$ there exists $s^{*} \in S$ such that $s s^{*}=s^{*} s$; for more details see [7].

Proposition 3.6. Let $S=\cup_{e \in E(S)} G_{e}$ be a Clifford semigroup such that $E(S)$ is uniformly locally finite. Then, $l^{1}(S)$ is approximately biprojective if and only if each maximal subgroup G_{e} is finite.

Proof. Let $l^{1}(S)$ be approximately biprojective. Using [16, Theorem 2.16], we have $l^{1}(S) \cong \ell^{1}-\oplus_{e \in E(S)} l^{1}\left(G_{e}\right)$. It is obvious that $l^{1}\left(G_{e}\right)$ is a closed ideal of $l^{1}(S)$ which posses an identity. Furthermore, each character on $l^{1}\left(G_{e}\right)$ can be extended to whole $l^{1}(S)$ (for instance the augmentation character of $l^{1}\left(G_{e}\right)$). Applying Theorem 2.1 follows that $\not^{1}\left(G_{e}\right)$ is left ϕ-contractible, where ϕ is the augmentation character on $l^{1}\left(G_{e}\right)$. By $[1$, Theorem 3.3] the discrete group G_{e} is compact. Then G_{e} is finite.

The converse is clear by [16, Theorem 3.7].
Proposition 3.7. Let $S=\cup_{e \in E(S)} G_{e}$ be a Clifford semigroup such that $E(S)$ is uniformly locally finite. Then, $l^{1}(S)$ is approximately biflat if and only if G_{e} is amenable.

Proof. Suppose that $l^{1}(S)$ is approximately biflat. Theorem 2.16 from [16] implies that $l^{1}(S) \cong \ell^{1}-\oplus_{e \in E(S)} l^{1}\left(G_{e}\right)$. Since $l^{1}\left(G_{e}\right)$ is a closed ideal of $l^{1}(S)$, it has an identity. It now follows from Theorem 2.7 that $l^{1}\left(G_{e}\right)$ is left ϕ-amenable, where ϕ is the augmentation character on $l^{1}\left(G_{e}\right)$. By [11, Corollary 2.4], G_{e} is amenable. Conversely, let G_{e} be amenable. Now, Theorem 3.7 of [16] shows that $l^{1}(S)$ is biflat, and so is approximately biflat.

Acknowledgments

The authors sincerely thank the anonymous reviewer for the careful reading, constructive comments to improve the quality of the first draft of paper.

References

[1] M. Alaghmandan, R. Nasr Isfahani and M. Nemati, Character amenability and contractibility of abstract Segal algebras, Bull. Aust. Math. Soc. 82 (2010), 274-281.
[2] A. Bodaghi and M. Amini, Module biprojective and module biflat Banach algaebras, U.P.B. Sci. Bull. Series A. 75 (2013), Iss. 3, 25-36.
[3] A. Bodaghi and M. Amini, Module character amenability of Banach algebras, Arch. Math (Basel). 99 (2012), 353-365.
[4] A. Bodaghi and S. Grailoo Tanha, Module approximate biprojectivity and module approximate bifatness of Banach algebras, Rend. del Cir. Mat. di Palermo Series 2. 70 (2021), 409-425.
[5] F. Ghahramani, R. J. Loy and G. A. Willis, Amenability and weak amenability of second conjugate Banach algebras, Proc. Amer. Math. Soc. 124 (1996), 1489-1497.
[6] A. Ya. Helemskii, The homology of Banach and topological algebras, Kluwer, Academic Press, Dordrecht, 1989.
[7] J. Howie, Fundamental of Semigroup Theory, London Math. Soc Monographs, vol. 12, Clarendon Press, Oxford, 1995.
[8] B. E. Johnson, Cohomology in Banach algebras, Memoirs Amer. Math. Soc. 127, Providence, 1972.
[9] E. Kaniuth, A. T. Lau and J. Pym, On ϕ-amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc. 144 (2008), 85-96.
[10] A. T. Lau, Analysis on a class of Banach algebras with application to harmonic analysis on locally compact groups and semigroups, Fund. Math. 118 (1983), 161-175.
[11] M. S. Monfared, Character amenability of Banach algebras, Math. Proc. Camb. Philos. Soc. 144 (2008), 697-706.
[12] M. S. Monfared, On certain products of Banach algebras with applications to harmonic analysis, Studia Math. 178 (2007), 277-294.
[13] R. Nasr Isfahani and S. Soltani Renani, Character contractibility of Banach algebras and homological properties of Banach modules, Studia Math. 202 (3) (2011), 205-225.
[14] M. Nemati, Some properties of Banach algebras associated with locally compact groups, Colleq. Math. 139 (2) (2015), $259-271$.
[15] H. Pourmahmood-Aghababa, Approximately biprojective Banach algebras and nilpotent ideals, Bull. Aust. Math. Soc. 87 (2013), 158-173.
[16] P. Ramsden, Biflatness of semigroup algebras, Semigroup Forum. 79 (2009), 515-530.
[17] H. Reiter, L^{1}-algebras and Segal Algebras, Lecture Notes in Mathematics. 231, Springer, 1971.
[18] V. Runde, Lectures on Amenability, Springer, New York, 2002.
[19] A. Sahami, Approximate biflatness and approximate biprojectivity of some Banach algebras, Quaestiones Math. 43 (2020), No. 9, 1273-1284.
[20] A. Sahami and A. Pourabbas, On ϕ-biflat and ϕ-biprojective Banach algebras, Bull. Belg. Math. Soc. Simon Stevin. 20 (5) (2013), 789-801.
[21] A. Sahami, M. Rostami and A. Bodaghi, A notion of approximate biflatness for Banach algebras based on character space, Rend. del Cir. Mat. di Palermo Series 2. 72 (2023), 483-492.
[22] E. Samei, N. Spronk and R. Stokke, Biflatness and Pseudo-Amenability of Segal algebras, Canad. J. Math. 62(4) (2010), 845-869.
[23] Y. Zhang, Nilpotent ideals in a class of Banach algebras, Proc. Amer. Math. Soc. 127 (1999), 3237-3242.

[^0]: 2020 Mathematics Subject Classification. Primary 46M10, 43A20, Secondary 46H05.
 Keywords. Banach algebra, approximate biprojectivity, approximate biflatness, θ-Lau product.
 Received: 12 March 2022; Revised: 21 April 2022; Accepted: 22 April 2022
 Communicated by Dragan S. Djordjević

 * Corresponding author: Abasalt Bodaghi

 Email addresses: a.sahami@ilam.ac.ir (Amir Sahami), abasalt.bodaghi@gmail.com (Abasalt Bodaghi)

