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Abstract. In the present paper we introduce and study some lacunary difference bicomplex sequence
spaces by means of Orlicz functions. We make an effort to study some algebraic and topological properties
of these sequence spaces. We also show that these spaces are complete paranormed spaces. Further, some
inclusion relations between these spaces and some interesting examples are established. Finally, we prove
some results on modified complex Banach Algebra in the third section of the paper.

1. Introduction and Preliminaries

The algebra of bicomplex numbers is a generalization of the field of complex numbers. In [12] Luna-
Elizarrarás and Shapiro have described how to define elementary functions in such an algebra as well as
their inverse functions. They also emphazised the deep similarities between the properties of complex and
bicomplex numbers. The bicomplex numbers were apparently first introduced in 1892 by Segre [20] that
the origin of their function theory is due to the Italian school of Scorza-Dragoni and that a first theory of
differentiability in bicomplex numbers was developed by Price in [13]. The set of bicomplex numbers are
denoted by C2 and defined as follows:

C2 = {a1 + ia2 + ja3 + i ja4 : ak ∈ R, 1 ≤ k ≤ 4}
= {z1 + jz2 : z1, z2 ∈ C},

where i and j are commuting imaginary units that is, i j = ji, i2 = j2 = −1 andC is the set of complex numbers
with the imaginary unit i. The set of bicomplex numbers C2 have exactly two non-trivial idempotent
elements which are denoted by e1 and e2 defined as e1 = (1 + i j)/2 and e2 = (1 − i j)/2. Note that e1 + e2 = 1
and e1.e2 = 0. The number η = z1 + jz2 can uniquely expressed as a complex combination of e1 and e2 (see
[18]).

η = z1 + jz2 =
1ηe1 +

2ηe2, (1)

where 1η = z1−iz2 and 2η = z1+iz2. The complex coefficients 1η and 2η are called the idempotent components
of η and 1ηe1 +

2 ηe2 is known as idempotent representation of bicomplex number η. In [18], the auxiliary
complex spacesA1 andA2 are defined as

A1 = {
1η : η ∈ C2} and A2 = {

2η : η ∈ C2}.
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Also, the norm in C2 is defined as follows:

∥η∥ =
√

a2
1 + a2

2 + a2
3 + a2

4 =
√
|z1|

2 + |z2|
2 =

√
|1η|2 + |2η|2

2
(2)

The space (C2,+, ·, ∥ ·∥) is a Banach space by the norm defined in (2). Byω4, c, c0 and ℓ∞ we denote the classes
of all bicomplex sequences, convergent sequences, null sequences and all bounded sequences, respectively.
Let p = {pk} be a sequence of positive real numbers and {p−1

k } = {tk}. The set of all real numbers and the set
of all natural numbers are denoted by R andN, respectively.

In 1971 Lindenstrauss and Tzafriri [11] first investigated Orlicz sequence spaces in detail with certain
aims in Banach space theory. An Orlicz function M : [0,∞) → [0,∞) is a continuous, non-decreasing and
convex function such that M(0) = 0, M(x) > 0 for x > 0 and M(x) −→ ∞ as x −→ ∞.
Now by using the idea of Orlicz function, we define the following sequence space on bicomplex numbers:

ℓMC2
=

{
η = {ηk} ∈ ω4 :

∞∑
k=1

M
(
∥ηk∥

ρ

)
< ∞, for some ρ > 0

}
which is known as an Orlicz C2-sequence space. The space ℓM

C2
is a Banach space with the norm,

∥η∥M = inf
{
ρ > 0 :

∞∑
k=1

M
(
∥ηk∥

ρ

)
≤ 1

}
.

A sequenceM = (Mk) of Orlicz functions is called a Musielak-Orlicz function. A Musielak-Orlicz function
M = (Mk) is said to satisfy ∆2-condition if there exist constants a, K > 0 and a sequence c = (ck)∞k=1 ∈ ℓ

1
+ (the

positive cone of ℓ1) such that the inequality

Mk(2u) ≤ KMk(u) + ck

hold for all k ∈N and u ∈ R+,whenever Mk(u) ≤ a.
Many authors studied the bicomplex sequence spaces and their property in details. Recently, Değirmen
and Sağır [2] studied different bicomplex ℓp

C2
spaces. They proved that spaces ℓp

C2
are Banach C2-module

for 1 ≤ p ≤ ∞ and the spaces ℓp
C2

are p−Banach C2-module for 0 < p < 1. Now we study some more results
on bicomplex sequence spaces ℓM

C2
.

Theorem 1.1. The Orlicz C2-sequence space is convex.

Proof. Suppose {ηk}, {ξk} ∈ ℓMC2
, ρ = max{ρ1, ρ2} and λ ∈ R satisfying λ ∈ [0, 1]. Then

∞∑
k=1

∥ληk + (1 − λ)ξk∥M =

∞∑
k=1

M
(
∥ληk + (1 − λ)ξk∥

ρ

)
≤ K

[ ∞∑
k=1

M
(
∥ληk∥

ρ1

)
+

∞∑
k=1

M
(
∥(1 − λ)ξk∥

ρ2

)]

= K
[
λ
∞∑

k=1

M
(
∥ηk∥

ρ1

)
+M(1 − λ)

∞∑
k=1

(
∥ξk∥

ρ2

)]
which implies ληk + (1 − λ)ξk ∈ ℓMC2

.

Remark : The Orlicz C2-sequence space is not strictly convex. Let us show this by an example.
Suppose {ηk} = (i, 0, 0, · · · ) and {ξk)} = (0,−i, 0, 0, · · · ). Then, we have

∥ηk∥M = ∥ξk∥M = 1
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and

∥ληk + (1 − λ)ξk∥M =

∞∑
k=1

M
(
∥ληk + (1 − λ)ξk∥

ρ

)
=M

(
∥λi∥ + ∥(1 − λ)(−i)∥

)
= λ + (1 − λ)
= 1,

for ρ = 1, M(η) = η and for all λ ∈ (0, 1). Here K = max(1, 2H−1). This implies that the Orlicz C2-sequence
space is not strictly convex.
Let θ = (kr) be the sequence of positive integers such that k0 = 0, 0 < kr < kr+1 and hr = kr − kr−1 → ∞ as
r → ∞. Then θ is called a lacunary sequence. The intervals determined by θ are denoted by Ir = (kr−1, kr].
The ratio kr

kr−1
will be denoted by qr.

The space of all lacunary strongly convergent sequences |ωθ|was defined by Freedman et al. in [7] as

|ωθ| =
{
x = (xk) : lim

r→∞

1
hr

∑
k∈Ir

|xk − λ| = 0, for some λ
}
. (3)

The notion of difference sequence spaces was introduced by Kızmaz [10], who studied the difference
sequence spaces ℓ∞(∆), c(∆) and c0(∆). The notion was further generalized by Et and Çolak [5] by introducing
the spaces ℓ∞(∆m), c(∆m) and c0(∆m). Later the concept have been studied by Bektaş et al. [1] and Et and Esi
[6]. Another type of generalization of the difference sequence spaces is due to Tripathy and Esi [22] who
studied the spaces ℓ∞(∆n), c(∆n) and c0(∆n). Recently, Esi et al. [4] and Tripathy et al. [21] have introduced
a new type of generalized difference operators and unified those as follows.
If n, m are non-negative integers, then for a given sequence space Z we have

Z(∆m
n ) = {x = (xk) : (∆m

n xk) ∈ Z}

for Z = c, c0 and ℓ∞ where ∆m
n x = (∆m

n xk) = (∆m−1
n xk − ∆

m−1
n xk+1) and ∆0

nxk = xk for all k ∈ N, which is
equivalent to the following binomial representation

∆m
n xk =

m∑
i=0

(−1)i
(

m
i

)
xk+ni.

Taking n = 1, we get the spaces ℓ∞(∆m), c(∆m) and c0(∆m) studied by Et and Çolak [5]. Taking m = n = 1,
we get the spaces ℓ∞(∆), c(∆) and c0(∆) introduced and studied by Kızmaz [10]. For more details about
sequence spaces (see [8], [14], [15], [16], [19]) and references therein.
A sequence space E is said to be solid (or normal) if {αkηk} ∈ E , whenever {ηk} ∈ E and for any sequence
{αk} of complex numbers such that |αk| ≤ 1 for all k ∈N.
A sequence space E is said to be symmetric if {ηk} ∈ E implies {ηπ(k)} ∈ E, where π(k) is a permutation of
elements ofN.
A linear metric space (X, d) is a linear space X with a translation invariant metric d on X such that addition
and scalar multiplication are continuous in (X, d).
Let X be a linear metric space. A function p : X→ R is called paranorm, if

1. p(x) ≥ 0 for all x ∈ X;
2. p(−x) = p(x) for all x ∈ X;
3. p(x + y) ≤ p(x) + p(y) for all x, y ∈ X;
4. if (λn) is a sequence of scalars with λn → λ as n → ∞ and (xn) is a sequence of vectors with

p(xn − x)→ 0 as n→∞, then p(λnxn − λx)→ 0 as n→∞.
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A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the pair (X, p) is called a
total paranormed space. It is well known that the metric of any linear metric space is given by some total
paranorm (see [23] Theorem 10.4.2, pp. 183).

Remark 1.2. Let M be an Orlicz function and λ ∈ (0, 1), then M(λx) ≤ λM(x), ∀x > 0.

LetM = (Mk) be a sequence of Orlicz functions, p = (pk) be a bounded sequence of positive real numbers,
u = (uk) be a sequence of positive real numbers and θ = (kr), r ∈ N be a lacunary sequence. In this paper
we define the following lacunary Orlicz C2-sequence spaces:

c(C2, θ,M,∆
m
n , p,u, ∥.∥) =

{
{ηk} ∈ ω4 : lim

r→∞

1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ηk − L∥
ρ

)]pk

= 0, for some ρ > 0 and L ∈ C2

}
,

c0(C2, θ,M,∆
m
n , p,u, ∥.∥) =

{
{ηk} ∈ ω4 : lim

r→∞

1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ηk∥

ρ

)]pk

= 0, for some ρ > 0
}
,

ℓ∞(C2, θ,M,∆
m
n , p,u, ∥.∥) =

{
{ηk} ∈ ω4 : sup

r

1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ηk∥

ρ

)]pk

< ∞, for some ρ > 0
}
,

ℓ(C2, θ,M,∆
m
n , p,u, ∥.∥) =

{
{ηk} ∈ ω4 :

1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ηk∥

ρ

)]pk

< ∞, for some ρ > 0, r ∈N
}
.

Proposition 1.3. Any C2−sequence {ηk} belongs to Z(C2, θ,M,∆m
n , p,u, ∥.∥) if and only if

{
1ηk} ∈ Z(A1, θ,M,∆m

n , p,u, ∥.∥) and {2ηk} ∈ Z(A2, θ,M,∆m
n , p,u, ∥.∥), where Z = c, c0, ℓ∞, ℓ.

Proof. It is easy to prove. For more details one can see ([13], [18]).

The following inequality will be used throughout the paper. If 0 < pk ≤ sup pk = H, K = max(1, 2H−1), then

∥ηk + ξk∥
pk ≤ K{∥ηk∥

pk + ∥ξk∥
pk } (4)

for all k and {ηk}, {ξk} ∈ C2. Also, ∥η∥pk ≤ max{1, ∥η∥H}, for all η ∈ C2.

The aim of the paper is to introduce some lacunary difference C2-sequence spaces by using a sequence
of Orlicz functions. We investigate some topological properties such as completeness, solidness, symmetric
and establish some inclusion relations concerning these spaces in second section of this paper. We make an
effort to study some results on modified complex Banach Algebra in the section third of the paper.

2. Lacunary Orlicz C2-sequence spaces

Theorem 2.1. Let M = (Mk) be a sequence of Orlicz functions, p = (pk) be a bounded sequence of positive
real numbers and u = (uk) be a sequence of positive real numbers. Then the spaces c(C2, θ,M,∆m

n , p,u, ∥.∥),
c0(C2, θ,M,∆m

n , p,u, ∥.∥), ℓ∞(C2, θ,M,∆m
n , p,u, ∥.∥) and ℓ(C2, θ,M,∆m

n , p,u, ∥.∥) are linear spaces over the complex
field C.

Proof. Let η = {ηk}, ξ = {ξk} ∈ c0(C2, θ,M,∆m
n , p,u, ∥.∥) and α, β ∈ C. Then there exist positive real numbers

ρ1 > 0 and ρ2 > 0 such that

lim
r→∞

1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ηk∥

ρ1

)]pk

= 0
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and

lim
r→∞

1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ξk∥

ρ2

)]pk

= 0.

Let ρ3 = max{2∥α∥ρ1, 2∥β∥ρ2}. Since (Mk) is non-decreasing and convex by using inequality (4), we have

1
hr

∑
k∈Ir

[
Mk

(
∥uk[α(∆m

n ηk) + β(∆m
n ξk)]∥

ρ

)]pk

≤ K
1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ηk∥

ρ1

)]pk

+ K
1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ξk∥

ρ2

)]pk

→ 0 as r→∞.

Thus, {αη+βξ} ∈ c0(C2, θ,M,∆m
n , p,u, ∥.∥). Hence, c0(C2, θ,M,∆m

n , p,u, ∥.∥) is a linear space. Similarly, we can
prove c(C2, θ,M,∆m

n , p,u, ∥.∥), ℓ∞(C2, θ,M,∆m
n , p,u, ∥.∥) and ℓ(C2, θ,M,∆m

n , p,u, ∥.∥) are linear spaces over the
complex field C.

Theorem 2.2. Let M = (Mk) be a sequence of Orlicz functions, p = (pk) be a bounded sequence of positive real
numbers and u = (uk) be a sequence of positive real numbers. Then ℓ∞(C2, θ,M,∆m

n , p,u, ∥.∥) is a paranormed space
with the paranorm

1(η) = ∥η1∥ + inf
{

(ρ)
pk
H : sup

r

(
1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ηk∥

ρ

)]
(tk)

1
pk

)
≤ 1, for some ρ > 0

}
,

where H = max(1, supk pk) < ∞.

Proof. (i) Clearly, 1(η) ≥ 0, for η = {ηk} ∈ ℓ∞(C2, θ,M,∆m
n , p,u, ∥.∥). Since Mk(θ1) = 0,we get 1(θ1) = 0,

(ii) 1(−η) = 1(η),
(iii) Let η = {ηk}, ξ = {ξk} ∈ ℓ∞(C2, θ,M,∆m

n , p,u, ∥.∥). Then there exist ρ1 > 0 and ρ2 > 0 such that

sup
r

(
1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ηk∥

ρ1

)]
(tk)

1
pk

)
≤ 1

and

sup
r

(
1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ξk∥

ρ2

)]
(tk)

1
pk

)
≤ 1.

Suppose ρ = ρ1 + ρ2, then by Minkowski’s inequality, we have

sup
r

(
1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n (ηk + ξk)∥
ρ

)]
(tk)

1
pk

)
≤

(
ρ1

ρ1 + ρ2

)
sup

r

(
1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ηk∥

ρ1

)]
(tk)

1
pk

)

+

(
ρ2

ρ1 + ρ2

)
sup

r

(
1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ξk∥

ρ2

)]
(tk)

1
pk

)
≤ 1.
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Also,

1(η + ξ) = ∥η1∥ + inf
{

(ρ)
pk
H : sup

r

(
1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n (ηk + ξk)∥
ρ1 + ρ2

)]
(tk)

1
pk

)
≤ 1

}

≤ ∥η1∥ + inf
{

(ρ1)
pk
H : sup

r

(
1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ηk∥

ρ1

)]
(tk)

1
pk

)
≤ 1

}

+ ∥η1∥ + inf
{

(ρ2)
pk
H : sup

r

(
1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ξk∥

ρ2

)]
(tk)

1
pk

)
≤ 1

}
≤ 1(η) + 1(ξ).

Finally, we prove that scalar multiplication is continuous. Let λ be any complex number by definition

1(λη) = ∥λη1∥ + inf
{

(ρ)
pk
H : sup

r

(
1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n (ληk)∥
ρ

)]
(tk)

1
pk

)
≤ 1

}

≤ |λ|∥η1∥ + inf
{

(|λ|P)
pk
H : sup

r

(
1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ηk∥

P

)]
(tk)

1
pk

)
≤ 1, P > 0

}
,

where P = ρ
|λ| . Since |λ|pk ≤ max(1, |λ| sup pk). This completes the proof.

Theorem 2.3. Let M = (Mk) be a sequence of Orlicz functions, p = (pk) be a bounded sequence of positive
real numbers and u = (uk) be a sequence of positive real numbers. Then ℓ∞(C2, θ,M,∆m

n , p,u, ∥.∥) is a complete
paranormed space, paranormed defined by 1.

Proof. Suppose {ηn
} is a Cauchy sequence in ℓ∞(C2, θ,M,∆m

n , p,u, ∥.∥), where ηn = {ηn
k }
∞

k=1 for all n ∈ N, so

that 1(ηi
k − η

j
k)→ 0 as i, j→∞. Suppose ϵ > 0 is given and let some s > 0 and x0 > 0 be such that ϵ

sx0
> 0 and

supk(pk)tk ≤Mk( sx0
2 ). Since 1(ηi

k − η
j
k)→ 0, as i, j→∞, there exists n0 ∈N such that

1(ηi
k − η

j
k) <

ϵ
sx0
, for all i, j ≥ n0.

Therefore,

∥ηi
1 − η

j
1∥ + inf

{
(ρ)

pk
H : sup

r

(
1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ηk∥

ρ

)]
(tk)

1
pk

)
≤ 1, for some ρ > 0

}
<
ϵ

sx0
.

This implies ∥ηi
1 − η

j
1∥ <

ϵ
sx0

and

inf
{

(ρ)
pk
H : sup

r

(
1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ηk∥

ρ

)]
(tk)

1
pk

)
≤ 1, for some ρ > 0

}
.

It shows that {ηi
1} is a Cauchy sequence in C2. Since C2 is a modified complex Banach algebra, then {ηi

1}

converges in C2. Suppose lim
i→∞
ηi

1 = η1. Thus then lim
j→∞
∥ηi

1 − η
j
1∥ <

ϵ
sx0

, we get

∥ηi
1 − η1∥ <

ϵ
sx0
.

Thus, we have(
1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n (ηi

k − η
j
k)∥

1(ηi
k − η

j
k)

)]
(tk)

1
pk

)
≤ 1.
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This implies(
1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n (ηi

k − η
j
k)∥

1(ηi
k − η

j
k)

)]
(tk)

1
pk

)
≤ 1 ≤Mk

( sx0

2

)
and thus,

∥uk∆
n
mη

i
k − uk∆

n
mη

j
k∥ ≤

( sx0

2

)( ϵ
sx0

)
=
ϵ
2

which shows that (uk∆
n
mη

i
k) is a Cauchy sequence in C2 for all k ∈ N. Therefore, (uk∆

n
mη

i
k) converges in C2.

Suppose lim
i→∞

uk∆
n
mη

i
k = ξk for all k ∈N.

Also, we have lim
i→∞
∆n

mη
i
2 = ξ1 − η1. On repeating the same procedure, we obtain lim

i→∞
∆n

mη
i
k+1 = ξk − ηk for all

k ∈N. Therefore, by continuity of (Mk),we have

lim
j→∞

sup
r

(
1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n (ηi

k − η
j
k)∥

ρ

)]
(tk)

1
pk

)
≤ 1,

so that

sup
r

(
1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n (ηi

k − η
j
k)∥

ρ

)]
(tk)

1
pk

)
≤ 1.

Let i ≥ n0 and taking infimum of each ρ > 0, we have

1(ηi
− η) < ϵ.

So {ηi
− η} ∈ ℓ∞(C2, θ,M,∆m

n , p,u, ∥.∥). Hence, η = {ηk} ∈ ℓ∞(C2, θ,M,∆m
n , p,u, ∥.∥). Therefore,

ℓ∞(C2, θ,M,∆m
n , p,u, ∥.∥) is complete paranormed space.

Theorem 2.4. Let M = (Mk) be a sequence of Orlicz functions, p = (pk) be a bounded sequence of positive real
numbers and u = (uk) be a sequence of positive real numbers. If sup

k
[Mk(x)]pk < ∞ for all fixed x > 0, then

c0(C2, θ,M,∆
m
n , p,u, ∥.∥) ⊆ ℓ

∞(C2, θ,M,∆
m
n , p,u, ∥.∥).

Proof. Let η = {ηk} ∈ c0(C2, θ,M,∆m
n , p,u, ∥.∥). Then there exists positive number ρ > 0 such that

1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ηk∥

ρ

)]pk

→ 0 as r→∞.

Define ρ = 2ρ1. Since (Mk) is non-decreasing and convex, also using inequality (4), we have

sup
r

1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ηk∥

ρ

)]pk

= sup
r

1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ηk + L − L∥
ρ

)]pk

≤ K
1

2pk

1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ηk − L∥
ρ1

)]pk

+ K
1

2pk

1
hr

∑
k∈Ir

[
Mk

(
∥L∥
ρ1

)]pk

≤ K
1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ηk − L∥
ρ1

)]pk

+ K
1
hr

∑
k∈Ir

[
Mk

(
∥L∥
ρ1

)]pk

< ∞.

Hence, {ηk} ∈ ℓ∞(C2, θ,M,∆m
n , p,u, ∥.∥).
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Theorem 2.5. Let 0 < inf pk = h ≤ pk ≤ sup pk = H < ∞ andM = (Mk),M′ = (M′

k) be two sequences of Orlicz
functions satisfying ∆2-condition. Then we have

(i) c0(C2, θ,M,∆m
n , p,u, ∥.∥) ⊂ c0(C2, θ,M◦M′,∆m

n , p,u, ∥.∥);

(ii) c(C2, θ,M,∆m
n , p,u, ∥.∥) ⊂ c(C2, θ,M◦M′,∆m

n , p,u, ∥.∥);

(iii) ℓ∞(C2, θ,M,∆m
n , p,u, ∥.∥) =ℓ∞(C2, θ,M,∆m

n , p,u, ∥.∥) ⊂ ℓ∞(C2, θ,M◦M′,∆m
n , p,u, ∥.∥).

Proof. If η = {ηk} ∈ c0(C2, θ,M,∆m
n , p,u, ∥.∥), then we have

1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ηk∥

ρ

)]pk

→ 0 as r→∞.

Let ϵ > 0 and choose δwith 0 < δ < 1 such that Mk(t) < ϵ for 0 ≤ t ≤ δ. Let

ξk =M′

k

(
∥uk∆

m
n ηk∥

ρ

)
for all k ∈N.We can write

1
hr

∑
k∈Ir

Mk[ξk]pk =
1
hr

∑
k∈Ir,ξk≤δ

Mk[ξk]pk +
1
hr

∑
k∈Ir,ξk≥δ

Mk[ξk]pk .

So we have

1
hr

∑
k∈Ir,ξk≤δ

Mk[ξk]pk ≤ [Mk(1)]H 1
hr

∑
k∈Ir,ξk≤δ

Mk[ξk]pk (5)

≤ [Mk(2)]H 1
hr

∑
k∈Ir,ξk≤δ

Mk[ξk]pk .

For ξk > δ, ξk <
ξk
δ < 1 + ξk

δ . Since M′

ks are non-deceasing and convex, it follows that

Mk(ξk) <Mk

(
1 +
ξk

δ

)
<

1
2

Mk(2) +
1
2

Mk

(2ξk

δ

)
.

SinceM = (Mk) satisfies ∆2-condition, we can write

Mk(ξk) <
1
2

T
ξk

δ
Mk(2) +

1
2

T
ξk

δ
Mk(2) = T

ξk

δ
Mk(2).

Hence,

1
hr

∑
k∈Ir,ξk≥δ

Mk[ξk]pk ≤ max
(
1,

(
T

Mk(2)
δ

)H) 1
hr

∑
k∈Ir,ξk≥δ

[ξk]pk . (6)

From equation (5) and (6), we have η = {ηk} ∈ c0(C2, θ,M◦M′,∆m
n , p,u, ∥.∥). This completes the proof of (i).

Similarly, we can prove the others.

Theorem 2.6. Let 0 < h = inf pk = pk < sup pk = H < ∞. Then for a sequence of Orlicz functionsM = (Mk) which
satisfies ∆2-condition, we have

(i) c0(C2, θ,∆m
n , p,u, ∥.∥) ⊂ c0(C2, θ,M,∆m

n , p,u, ∥.∥);

(ii) c(C2, θ,∆m
n , p,u, ∥.∥) ⊂ c(C2, θ,M,∆m

n , p,u, ∥.∥);

(iii) ℓ∞(C2, θ,∆m
n , p,u, ∥.∥) ⊂ ℓ∞(C2, θ,M,∆m

n , p,u, ∥.∥).
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Proof. It is easy to prove so we omit the details.

Theorem 2.7. Let 0 < h = inf pk = pk < sup pk = H < ∞. Then for a sequence of Orlicz functionsM = (Mk) which
satisfies ∆2-condition, we have

(i) c0(C2, θ,M,∆m−1
n , p,u, ∥.∥) ⊂ c0(C2, θ,M,∆m

n , p,u, ∥.∥);

(ii) c(C2, θ,M,∆m−1
n , p,u, ∥.∥) ⊂ c(C2, θ,M,∆m

n , p,u, ∥.∥);

(iii) ℓ∞(C2, θ,M,∆m−1
n , p,u, ∥.∥) ⊂ ℓ∞(C2, θ,M,∆m

n , p,u, ∥.∥).

Proof. Here we prove the result for c0(C2, θ,M,∆m
n , p,u, ∥.∥) and for other cases it will follow on applying

similar arguments. Let η = {ηk} ∈ c0(C2, θ,M,∆m−1
n , p,u, ∥.∥). Then there exist ρ > 0 such that

1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m−1
n ηk∥

ρ

)]pk

→ 0 as r→∞. (7)

On considering 2ρ, by the convexity of Orlicz function, we have

1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m−1
n ηk∥

2ρ

)]
≤

1
2

1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m−1
n ηk∥

ρ

)]
+

1
2

1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m−1
n ηk+n∥

ρ

)]
.

Hence, we have

1
λr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ηk∥

2ρ

)]pk

≤ K
{

1
2

1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m−1
n ηk∥

ρ

)]pk

+
1
2

1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m−1
n ηk+n∥

ρ

)]pk}
.

Then using (7), we get

lim
r→∞

1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ηk∥

2ρ

)]pk

= 0.

Thus, c0(C2, θ,M,∆m−1
n , p,u, ∥.∥) ⊂ c0(C2, θ,M,∆m

n , p,u, ∥.∥).

Theorem 2.8. Let 0 ≤ pk ≤ sk for all k and let ( sk
pk

) be bounded. Then

c(C2, θ,M,∆
m
n , s,u, ∥.∥) ⊂ c(C2, θ,M,∆

m
n , p,u, ∥.∥).

Proof. Let η = {ηk} ∈ c(C2, θ,M,∆m
n , s,u, ∥.∥),write

rk =

[
Mk

(
∥uk∆

m
n ηk − L∥
ρ

)]sk

and µk =
pk
sk

for all k ∈N. Then 0 < µk ≤ 1 for all k ∈N. Take 0 < µ ≤ µk for k ∈N.Define sequences {vk} and
{wk} as follows :
For rk ≥ 1, let vk = rk and wk = 0 and for rk < 1, let vk = 0 and wk = rk. Then, clearly for all k ∈N,we have

rk = vk + wk, rµk

k = vµk

k + wµk

k .

Now it follows that vµk

k ≤ vk ≤ rk and wµk

k ≤ wµk . Therefore,

1
hr

∑
k∈Ir

rµk

k =
1
hr

∑
k∈Ir

(vµk

k + wµk

k )

≤
1
hr

∑
k∈Ir

rk +
1
hr

∑
k∈Ir

wµk .
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Now for each k,

1
hr

∑
k∈Ir

wµk =
∑
k∈Ir

( 1
hr

wk

)µ( 1
hr

)1−µ

≤

(∑
k∈hr

[( 1
hr

wk

)µ] 1
µ
)µ(∑

k∈Ir

[( 1
hr

)1−µ] 1
1−µ

)1−µ

=
( 1
hr

∑
k∈Ir

wk

)µ
and so

1
hr

∑
k∈Ir

rµk

k ≤
1
hr

∑
k∈Ir

rk +
( 1
hr

∑
k∈Ir

wk

)µ
.

Hence, η = {ηk} ∈ c(C2, θ,M,∆m
n , p,u, ∥.∥). This completes the proof of the theorem.

Theorem 2.9. (i) If 0 < inf pk ≤ pk ≤ 1 for all k ∈N, then

c(C2, θ,M,∆
m
n , p,u, ∥.∥) ⊆ c(C2, θ,M,∆

m
n ,u, ∥.∥).

(ii) If 1 ≤ pk ≤ sup pk = H < ∞, for all k ∈N, then

c(C2, θ,M,∆
m
n ,u, ∥.∥) ⊆ c(C2, θ,M,∆

m
n , p,u, ∥.∥).

Proof. (i) Let η = {ηk} ∈ c(C2, θ,M,∆m
n , p,u, ∥.∥). Then

lim
r

1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ηk − L∥
ρ

)]pk

= 0.

Since 0 < inf pk ≤ pk ≤ 1. This implies that

1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ηk − L∥
ρ

)]
≤

1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ηk − L∥
ρ

)]pk

.

Thus, η = {ηk} ∈ c(C2, θ,M,∆m
n ,u, ∥.∥).

(ii) Let pk ≥ 1 for each k and sup pk < ∞. Let η = {ηk} ∈ c(C2, θ,M,∆m
n ,u, ∥.∥). Then for each 0 < ϵ < 1, there

exists a positive integer N such that

1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ηk − L∥
ρ

)]
≤ ϵ < 1 for all r ≥ N.

This implies that

1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ηk − L∥
ρ

)]pk

≤
1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ηk − L∥
ρ

)]
.

Therefore, η = {ηk} ∈ c(C2, θ,M,∆m
n , p,u, ∥.∥). This completes the proof.

Theorem 2.10. Let M = (Mk) be a sequence of Orlicz functions, p = (pk) be a bounded sequence of positive real
numbers and u = (uk) be a sequence of positive real numbers. If 0 < inf pk ≤ pk ≤ sup pk = H < ∞, for all k ∈ N,
then

c(C2, θ,M,∆
m
n , p,u, ∥.∥) = c(C2, θ,M,∆

m
n ,u, ∥.∥).
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Proof. It is easy to prove so we omit the details.

Proposition 2.11. The spaces c0(C2, θ,M,∆m
n , p,u, ∥.∥), c(C2, θ,M,∆m

n , p,u, ∥.∥) and ℓ∞(C2, θ,M,∆m
n , p,u, ∥.∥) are

Banach spaces.

Theorem 2.12. The spaces c0(C2, θ,M,∆m
n , p,u, ∥.∥), c(C2, θ,M,∆m

n , p,u, ∥.∥) and ℓ∞(C2, θ,M,∆m
n , p,u, ∥.∥) are

not solid in general.

Example 2.13. Let Mk(x) = x, (pk) = (uk) = 1 for all k ∈N, ρ = 1, m = 0 and θ = {1, 2, ...,n}. Consider a sequence
{ηk} ∈ ω4 given as ηk = {η

(s)
k } = {2, 2, 2, ...}. Then {η(s)

k } ∈ c0(C2, θ,M,∆m
n , p,u, ∥.∥).Now, let {αk} = {(−1)k

}, ∀k ∈N.
Then, {αkη

(s)
k } < c0(C2, θ,M,∆m

n , p,u, ∥.∥). Therefore, c0(C2, θ,M,∆m
n , p,u, ∥.∥) is not solid.

Let {ηk} ∈ ω4 defined as ηk = {η
(s)
k } = {k

2, k2 + 1, k2 + 2, ...}, ∀k, s ∈N. Then {η(s)
k } ∈ c(C2, θ,M,∆m

n , p,u, ∥.∥) as well
as {η(s)

k } ∈ ℓ
∞(C2, θ,M,∆m

n , p,u, ∥.∥). Now, let {αk} = {(−1)k
}, ∀k ∈ N. Then, {αkη

(s)
k } < c(C2, θ,M,∆m

n , p,u, ∥.∥) as
well as {αkη

(s)
k } < ℓ∞(C2, θ,M,∆m

n , p,u, ∥.∥). Hence, the spaces c(C2, θ,M,∆m
n , p,u, ∥.∥) and

ℓ∞(C2, θ,M,∆m
n , p,u, ∥.∥) are not solid.

Theorem 2.14. The spaces c0(C2, θ,M,∆m
n , p,u, ∥.∥), c(C2, θ,M,∆m

n , p,u, ∥.∥) and ℓ∞(C2, θ,M,∆m
n , p,u, ∥.∥) are

not symmetric in general.

To show that the spaces are not symmetric in general, consider the following example.

Example 2.15. Let Mk(x) = x, (pk) = 2, (uk) = 1 for all k ∈ N, ρ = 1, m = 0 and θ = {1, 2, ...,n}. Suppose that
{ηk} = {ηs

k} = {k
2, k2 + 1, k2 + 2, ...}, ∀k, s ∈ N. Then, {ηk} ∈ c(C2, θ,M,∆m

n , p,u, ∥.∥) ∩ ℓ∞(C2, θ,M,∆m
n , p,u, ∥.∥)

Consider the rearranged sequence, (ξk) of (ηk) defined as

{ξk} = {η
s
1, η

s
8, η

s
2, η

s
27, η

s
3, η

s
64, η

s
4, ...}.

Then {ξk} < c(C2, θ,M,∆m
n , p,u, ∥.∥) as well as {ξk} < ℓ∞(C2, θ,M,∆m

n , p,u, ∥.∥). Hence, c(C2, θ,M,∆m
n , p,u, ∥.∥)

and ℓ∞(C2, θ,M,∆m
n , p,u, ∥.∥) are not symmetric in general. Similarly, we can prove for other space.

Theorem 2.16. LetM1 = M1 andM2 = M2 be the Orlicz functions with ∆2 conditions and p = (pk) ∈ l∞, then
c(C2, θ,M1,∆m

n , p,u, ∥.∥) ∩ c(C2, θ,M2,∆m
n , p,u, ∥.∥) ⊂ c(C2, θ,M1 +M2,∆m

n , p,u, ∥.∥).

Proof. Let {ηk} ∈ c(C2, θ,M1,∆m
n ,u, ∥.∥) ∩ c(C2, θ,M2,∆m

n , p,u, ∥.∥). Then ∃ some L ∈ C2, ρ1 > 0, ρ2 > 0 such
that

1
hr

∑
k∈Ir

[
M1

(
∥uk∆

m−1
n ηk − L∥
ρ1

)]pk

tk → 0 (8)

1
hr

∑
k∈Ir

[
M2

(
∥uk∆

m−1
n ηk − L∥
ρ2

)]pk

tk → 0. (9)

Let ρ = max{ρ1, ρ2}. Then,{
1
hr

∑
k∈Ir

[(
M1 +M2

)(
∥uk∆

m
n ηk − L∥
ρ

)]pk

tk

}
≤

1
hr

∑
k∈Ir

[
M1

(
∥uk∆

m
n ηk − L∥
ρ1

)]
+

1
hr

∑
k∈Ir

[
M2

(
∥uk∆

m
n ηk − L∥
ρ2

)]
.

From (3.4) and (3.5),we get {ηk} ∈ c(C2, θ,M1 +M2,∆m
n ,u, ∥.∥).

Theorem 2.17. The sequence space ℓ∞(C2, θ,∆m
n , p,u, ∥.∥) is convex.
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Proof. Let {ηk}, {ξk} ∈ ℓ∞(C2, θ,∆m
n , p,u, ∥.∥) and λ ∈ R satisfying λ ∈ [0, 1]. Then{

sup
r

1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ηk∥

ρ1

)]pk}
and {

sup
r

1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ξk∥

ρ2

)]pk}
are finite. Now, let ρ = max{ρ1, ρ2} then, we have{

sup
r

1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ληk + uk∆

m
n ξk(1 − λ)∥

ρ

)]pk}

≤ sup
r

1
hr

∑
k∈Ir

Mk

(
∥uk∆

m
n ληk∥

ρ1

)pk

+ sup
r

1
hr

∑
k∈Ir

Mk

(
∥uk∆

m
n ξk(1 − λ)∥
ρ2

)pk

= λ sup
r

1
hr

∑
k∈Ir

Mk

(
∥uk∆

m
n ηk∥

ρ1

)pk

+ (1 − λ) sup
r

1
hr

∑
k∈Ir

Mk

(
∥uk∆

m
n ξk∥

ρ2

)pk

which implies ληk + (1 − λ)ξk ∈ ℓ∞(C2, θ,∆m
n , p,u, ∥.∥). Thus, ℓ∞(C2, θ,∆m

n , p,u, ∥.∥) is convex.

3. Modified complex Banach Algebra

From many years a lot of results has been published on modified complex Banach Algebra by various
mathematicians. Recently Nilay Sager and Birsen Sağır [17] worked on completeness of bicomplex sequence
space. By using modified complex Banach Algebra they have proved bicomplex Hölder’s Inequality and
several other interesting results.
The norm of the product of two bicomplex numbers and the product of their norms are connected by means
of the following inequality:

∥ηξ∥ ≤
√

2∥η∥∥ξ∥. (10)

The inequality given in (10) is the best possible relation. For this reason, we call (C2,+, · , ∥ · ∥) as modified
complex Banach algebra.

Justification of (10): Let η, ξ ∈ C2. Then ∥ηξ∥ ≤
√

2∥η∥∥ξ∥.
Let η = (z1 + jz2) ∈ C2 and ξ = z3 + jz4 ∈ C2. Then

ηξ = (z1 + jz2)(z3 + jz4) = z1(z3 + jz4) + jz2(z3 + jz4).

Moreover, ∥z1(z3 + jz4)∥ = ∥z1∥∥z3 + jz4∥ and ∥ jz2(z3 + jz4)∥ = | j|∥z2∥∥z3 + jz4∥ = ∥z2∥∥z3 + jz4∥. Therefore, from
the triangle inequality, we have

∥ηξ∥ = ∥(z1 + jz2)(z3 + jz4)∥ ≤ ∥z1∥∥(z3 + jz4)∥ + ∥z2∥∥(z3 + jz4)∥
≤ (∥z1∥ + ∥z2∥)∥z3 + jz4∥.

Since 2∥z1∥∥z2∥ ≤ ∥z1∥
2 + ∥z2∥

2, then (∥z1∥ + ∥z2∥)2
≤ 2(∥z1∥

2 + ∥z2∥
2). Thus, we have

(∥z1∥ + ∥z2∥) ≤
√

2(∥z1∥
2 + ∥z2∥

2)1/2.
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Hence, ∥ηξ∥ ≤
√

2∥η∥∥ξ∥.
We note that the constant

√
2 is the best possible one in above justification. Moreover, if we combine the last

results with the fact that (C2,+, ·, ∥ · ∥) is a Banach space, we obtain that (C2,+, ·, ∥ · ∥) is a modified complex
Banach algebra.
But in the usual definition of a complex Banach algebra, the norm of the product of two elements is required
to be equal to or less than the product of the norms of these elements that is, ∥z1z2∥ ≤ ∥z1∥∥z2∥. This is the
difference between the complex Banach algebra and the modified complex Banach algebra.
Romesh et al. [9] introduced the spectrum of the unilateral shift operator by using ℓ2

C2
. Dubey et al. [3]

studied the Orlicz bicomplex sequence spaces. They proved that the bicomplex sequence spaces ℓM
C2 is

a Banach space and used as Complex Banach Algebra. They studied the different properties of linear
operators such as boundedness, compactness etc.
Now we prove some results on modified Complex Banach Algebra.

Theorem 3.1. Let {zk}, z, y ∈ C2.

(i) If zk → z then yzk → yz and zky→ zy;
(ii) If zk → z and yk → y then zkyk → zy.

Proof. (i) Since zk → z, ∥zk − z∥ → 0 in C2 and hence we have

∥yzk − yz∥ = ∥y(zk − z)∥ ≤
√

2∥y∥∥zk − z∥ →
√

2∥y∥.0 ∈ C2.

Other case can be proved in the similar manner.
(ii) If zk → z also ∥zk∥ → ∥z∥, hence ∥zk∥ is bounded say by M. Now, for given ϵ, let Nz be such that k ≥ Nz
⇒ ∥zk − z∥ < ϵ

2
√

2∥y∥
if y , 0 and arbitrary otherwise, so that in any case ∥zk − z∥∥y∥ < ϵ

2
√

2
. Let Ny such that

k ≥ Ny ⇒ ∥yk − y∥ < ϵ
2
√

2M
(choose M > 0) for N = max(Nz,Ny) holds if k ≥ N, then

∥zkyk − zy∥ = ∥zkyk − zky + zky − zy∥
≤ ∥zkyk − zky∥ + ∥zky − zy∥

≤

√

2∥zk∥∥yk − y∥ +
√

2∥y∥∥zk − z∥

<
√

2M ×
ϵ

2
√

2M
+
√

2
ϵ

2
√

2
= ϵ.

Thus, zkyk → zy.

Now, let us defineω4 = {{ηk} : ∀k ∈N, ηk ∈ C2}. This space of allC2 sequences forms aC2−module (see [17]).
Also, ω4 forms a C2−module with the operations addition and bicomplex scaler multiplication as follows:

⊕ : ω4 × ω4 → ω4, (η, s)→ η + s = (ηk ⊕ sk),

⊙ : C2 × ω4 → ω4, (ϑ, η)→ ϑ ⊙ η = ϑη = (ϑηk),

⊗ : C2 ⊗ ω4 → ω4, (ϑ, η)→ ϑ · η = ϑη = (ϑηk),

for all {ηk}, {sk} ∈ ω4 and ∀ϑ ∈ C2.

Remark: ℓM
C2

is a subspace of ω4.

Proof. It is obvious that ℓM
C2
⊂ ω4. Let {ηk}, {sk} ∈ ℓMC2

. Then ∃ ρ1, ρ2 such that

∞∑
k=1

M
(
∥ηk∥

ρ1

)
< ∞
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and
∞∑

k=1

M
(
∥sk∥

ρ2

)
< ∞.

Let ρ = max(ρ1, ρ2), then
∞∑

k=1

M
(
∥ηk + sk∥

ρ

)
≤

∞∑
k=1

M
(
∥ηk∥

ρ2

)
+

∞∑
k=1

M
(
∥sk∥

ρ2

)
,

which means that ηk ⊕ sk ∈ ℓMC2
. Now, suppose α ∈ R and {ηk} ∈ ℓMC2

. Since

∥αηk∥ = |α|∥ηk∥

and
∞∑

k=1

M
(
∥ηk∥

ρ

)
< ∞.

We can easily say that
∞∑

k=1

M
(
∥αηk∥

ρ

)
< ∞ =⇒ |α|

∞∑
k=1

M
(
∥ηk∥

ρ

)
< ∞.

So, α ⊙ ηk ∈ ℓMC2
. Thus, ℓM

C2
is a subspace of ω4.

Remark: ℓ∞(C2, θ,M,∆m
n , p,u, ∥.∥) is a subspace of ω4.

Proof. This remark can be proved in similar manner as proof of above remark.

Theorem 3.2. ℓM
C2

is a C2−submodule of ω4.

Proof. As ℓM
C2

is a subspace of ω4. Also, we obtain that {ηk} ∈ ℓMC2
and ϑ ∈ C2 − {0}.

∞∑
k=1

M
(
∥ηkϑ∥

ρ

)
≤

∞∑
k=1

M
(
√

2)∥ηk∥∥ϑ∥

ρ
= (
√

2)∥ϑ∥
∞∑

k=1

M
∥ηk∥

ρ
< ∞.

Thus, ∀ {ηk} ∈ ℓMC2
, ϑ ∈ C2 implies ηkϑ ∈ ℓMC2

.

Theorem 3.3. ℓ∞(C2, θ,M,∆m
n , p,u, ∥.∥) is a C2−submodule of ω4.

Proof. As ℓ∞(C2, θ,M,∆m
n , p,u, ∥.∥) is a subspace of ω4. Now, ∀ϑ ∈ C2 and ∀ {ηk} ∈ ℓ∞(C2, θ,M,∆m

n , p,u, ∥.∥)
we have

sup
r

1
hr

∑
k∈Ir

([
Mk

(
∥uk∆

m
n ηkϑ∥

ρ

)]pk) 1
pk

≤ sup
r

1
hr

∑
k∈Ir

([
Mk

( √
2∥uk∆

m
n ηk∥∥ϑ∥

ρ

)]pk) 1
pk

=
√

2 ∥ϑ∥ sup
r

1
hr

∑
k∈Ir

[
Mk

(
∥uk∆

m
n ηk∥

ρ

)]
< ∞.

Thus, ∀ϑ ∈ C2 and ∀ {ηk} ∈ ℓ∞(C2, θ,M,∆m
n , p,u, ∥.∥), we have ϑηk ∈ ℓ∞(C2, θ,M,∆m

n , p,u, ∥.∥). Hence
ℓ∞(C2, θ,M,∆m

n , p,u, ∥.∥) is a C2−submodule of ω4.
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[17] N. Sager and B. Sağır, On completeness of some Bicomplex sequence spaces, Palest. J. Math. 9 (2020) 891–902.
[18] R. K. Srivastava, Bicomplex numbers: Analysis and applications, Math. Student 72 (2003) 69–87.
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