Orlicz-Lacunary bicomplex sequence spaces of difference operators

Kuldip Raja ${ }^{\text {a }}$, Ayhan Esi ${ }^{\text {b }}$, Charu Sharma ${ }^{\text {a }}$
${ }^{a}$ School of Mathematics Shri Mata Vaishno Devi University, Katra-182320, J \& K, India
${ }^{b}$ Malatya Turgut Ozal University, Dept.of Basic Eng.Sci. (Math.Section) 44100, Malatya, Türkiye

Abstract

In the present paper we introduce and study some lacunary difference bicomplex sequence spaces by means of Orlicz functions. We make an effort to study some algebraic and topological properties of these sequence spaces. We also show that these spaces are complete paranormed spaces. Further, some inclusion relations between these spaces and some interesting examples are established. Finally, we prove some results on modified complex Banach Algebra in the third section of the paper.

1. Introduction and Preliminaries

The algebra of bicomplex numbers is a generalization of the field of complex numbers. In [12] LunaElizarrarás and Shapiro have described how to define elementary functions in such an algebra as well as their inverse functions. They also emphazised the deep similarities between the properties of complex and bicomplex numbers. The bicomplex numbers were apparently first introduced in 1892 by Segre [20] that the origin of their function theory is due to the Italian school of Scorza-Dragoni and that a first theory of differentiability in bicomplex numbers was developed by Price in [13]. The set of bicomplex numbers are denoted by \mathbb{C}_{2} and defined as follows:

$$
\begin{aligned}
\mathbb{C}_{2} & =\left\{a_{1}+i a_{2}+j a_{3}+i j a_{4}: a_{k} \in \mathbb{R}, 1 \leq k \leq 4\right\} \\
& =\left\{z_{1}+j z_{2}: z_{1}, z_{2} \in \mathbb{C}\right\}
\end{aligned}
$$

where i and j are commuting imaginary units that is, $i j=j i, i^{2}=j^{2}=-1$ and \mathbb{C} is the set of complex numbers with the imaginary unit i. The set of bicomplex numbers \mathbb{C}_{2} have exactly two non-trivial idempotent elements which are denoted by e_{1} and e_{2} defined as $e_{1}=(1+i j) / 2$ and $e_{2}=(1-i j) / 2$. Note that $e_{1}+e_{2}=1$ and $e_{1} \cdot e_{2}=0$. The number $\eta=z_{1}+j z_{2}$ can uniquely expressed as a complex combination of e_{1} and e_{2} (see [18]).

$$
\begin{equation*}
\eta=z_{1}+j z_{2}={ }^{1} \eta e_{1}+{ }^{2} \eta e_{2} \tag{1}
\end{equation*}
$$

where ${ }^{1} \eta=z_{1}-i z_{2}$ and ${ }^{2} \eta=z_{1}+i z_{2}$. The complex coefficients ${ }^{1} \eta$ and ${ }^{2} \eta$ are called the idempotent components of η and ${ }^{1} \eta e_{1}+{ }^{2} \eta e_{2}$ is known as idempotent representation of bicomplex number η. In [18], the auxiliary complex spaces \mathbb{A}_{1} and \mathbb{A}_{2} are defined as

$$
\mathbb{A}_{1}=\left\{{ }^{1} \eta: \eta \in \mathbb{C}_{2}\right\} \text { and } \mathbb{A}_{2}=\left\{{ }^{2} \eta: \eta \in \mathbb{C}_{2}\right\} .
$$

[^0]Also, the norm in \mathbb{C}_{2} is defined as follows:

$$
\begin{equation*}
\|\eta\|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}}=\sqrt{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}}=\sqrt{\frac{\left.{ }^{1} \eta\right|^{2}+\left.\left.\right|^{2} \eta\right|^{2}}{2}} \tag{2}
\end{equation*}
$$

The space $\left(\mathbb{C}_{2},+, \cdot,\|\cdot\|\right)$ is a Banach space by the norm defined in (2). By ω_{4}, c, c_{0} and ℓ_{∞} we denote the classes of all bicomplex sequences, convergent sequences, null sequences and all bounded sequences, respectively. Let $p=\left\{p_{k}\right\}$ be a sequence of positive real numbers and $\left\{p_{k}^{-1}\right\}=\left\{t_{k}\right\}$. The set of all real numbers and the set of all natural numbers are denoted by \mathbb{R} and \mathbb{N}, respectively.

In 1971 Lindenstrauss and Tzafriri [11] first investigated Orlicz sequence spaces in detail with certain aims in Banach space theory. An Orlicz function $M:[0, \infty) \rightarrow[0, \infty)$ is a continuous, non-decreasing and convex function such that $M(0)=0, M(x)>0$ for $x>0$ and $M(x) \longrightarrow \infty$ as $x \longrightarrow \infty$.
Now by using the idea of Orlicz function, we define the following sequence space on bicomplex numbers:

$$
\ell_{\mathbb{C}_{2}}^{M}=\left\{\eta=\left\{\eta_{k}\right\} \in \omega_{4}: \sum_{k=1}^{\infty} M\left(\frac{\left\|\eta_{k}\right\|}{\rho}\right)<\infty, \text { for some } \rho>0\right\}
$$

which is known as an Orlicz \mathbb{C}_{2}-sequence space. The space $\ell_{\mathbb{C}_{2}}^{M}$ is a Banach space with the norm,

$$
\|\eta\|_{M}=\inf \left\{\rho>0: \sum_{k=1}^{\infty} M\left(\frac{\left\|\eta_{k}\right\|}{\rho}\right) \leq 1\right\}
$$

A sequence $\mathcal{M}=\left(M_{k}\right)$ of Orlicz functions is called a Musielak-Orlicz function. A Musielak-Orlicz function $\mathcal{M}=\left(M_{k}\right)$ is said to satisfy Δ_{2}-condition if there exist constants $a, K>0$ and a sequence $c=\left(c_{k}\right)_{k=1}^{\infty} \in \ell_{+}^{1}$ (the positive cone of ℓ^{1}) such that the inequality

$$
M_{k}(2 u) \leq K M_{k}(u)+c_{k}
$$

hold for all $k \in \mathbb{N}$ and $u \in \mathbb{R}^{+}$, whenever $M_{k}(u) \leq a$.
Many authors studied the bicomplex sequence spaces and their property in details. Recently, Değirmen and Sağır [2] studied different bicomplex $\ell_{\mathbb{C}_{2}}^{p}$ spaces. They proved that spaces $\ell_{\mathbb{C}_{2}}^{p}$ are Banach \mathbb{C}_{2}-module for $1 \leq p \leq \infty$ and the spaces $\ell_{\mathbb{C}_{2}}^{p}$ are p-Banach \mathbb{C}_{2}-module for $0<p<1$. Now we study some more results on bicomplex sequence spaces $\ell_{\mathbb{C}_{2}}^{M}$.

Theorem 1.1. The Orlicz \mathbb{C}_{2}-sequence space is convex.
Proof. Suppose $\left\{\eta_{k}\right\},\left\{\xi_{k}\right\} \in \ell_{\mathbb{C}_{2}}^{M}, \rho=\max \left\{\rho_{1}, \rho_{2}\right\}$ and $\lambda \in \mathbb{R}$ satisfying $\lambda \in[0,1]$. Then

$$
\begin{aligned}
\sum_{k=1}^{\infty}\left\|\lambda \eta_{k}+(1-\lambda) \xi_{k}\right\|_{M} & =\sum_{k=1}^{\infty} M\left(\frac{\left\|\lambda \eta_{k}+(1-\lambda) \xi_{k}\right\|}{\rho}\right) \\
& \leq K\left[\sum_{k=1}^{\infty} M\left(\frac{\left\|\lambda \eta_{k}\right\|}{\rho_{1}}\right)+\sum_{k=1}^{\infty} M\left(\frac{\left\|(1-\lambda) \xi_{k}\right\|}{\rho_{2}}\right)\right] \\
& =K\left[\lambda \sum_{k=1}^{\infty} M\left(\frac{\left\|\eta_{k}\right\|}{\rho_{1}}\right)+M(1-\lambda) \sum_{k=1}^{\infty}\left(\frac{\left\|\xi_{k}\right\|}{\rho_{2}}\right)\right]
\end{aligned}
$$

which implies $\lambda \eta_{k}+(1-\lambda) \xi_{k} \in \ell_{\mathbb{C}_{2}}^{M}$.
Remark: The Orlicz \mathbb{C}_{2}-sequence space is not strictly convex. Let us show this by an example.
Suppose $\left\{\eta_{k}\right\}=(i, 0,0, \cdots)$ and $\left.\left\{\xi_{k}\right)\right\}=(0,-i, 0,0, \cdots)$. Then, we have

$$
\left\|\eta_{k}\right\|_{M}=\left\|\xi_{k}\right\|_{M}=1
$$

and

$$
\begin{aligned}
\left\|\lambda \eta_{k}+(1-\lambda) \xi_{k}\right\|_{M} & =\sum_{k=1}^{\infty} M\left(\frac{\left\|\lambda \eta_{k}+(1-\lambda) \xi_{k}\right\|}{\rho}\right) \\
& =M(\|\lambda i\|+\|(1-\lambda)(-i)\|) \\
& =\lambda+(1-\lambda) \\
& =1
\end{aligned}
$$

for $\rho=1, M(\eta)=\eta$ and for all $\lambda \in(0,1)$. Here $K=\max \left(1,2^{H-1}\right)$. This implies that the Orlicz \mathbb{C}_{2}-sequence space is not strictly convex.
Let $\theta=\left(k_{r}\right)$ be the sequence of positive integers such that $k_{0}=0,0<k_{r}<k_{r+1}$ and $h_{r}=k_{r}-k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$. Then θ is called a lacunary sequence. The intervals determined by θ are denoted by $I_{r}=\left(k_{r-1}, k_{r}\right]$. The ratio $\frac{k_{r}}{k_{r-1}}$ will be denoted by q_{r}.
The space of all lacunary strongly convergent sequences $\left|\omega_{\theta}\right|$ was defined by Freedman et al. in [7] as

$$
\begin{equation*}
\left|\omega_{\theta}\right|=\left\{x=\left(x_{k}\right): \lim _{r \rightarrow \infty} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left|x_{k}-\lambda\right|=0, \text { for some } \lambda\right\} . \tag{3}
\end{equation*}
$$

The notion of difference sequence spaces was introduced by Kızmaz [10], who studied the difference sequence spaces $\ell_{\infty}(\Delta), c(\Delta)$ and $c_{0}(\Delta)$. The notion was further generalized by Et and Çolak [5] by introducing the spaces $\ell_{\infty}\left(\Delta^{m}\right), c\left(\Delta^{m}\right)$ and $c_{0}\left(\Delta^{m}\right)$. Later the concept have been studied by Bektaş et al. [1] and Et and Esi [6]. Another type of generalization of the difference sequence spaces is due to Tripathy and Esi [22] who studied the spaces $\ell_{\infty}\left(\Delta_{n}\right), c\left(\Delta_{n}\right)$ and $c_{0}\left(\Delta_{n}\right)$. Recently, Esi et al. [4] and Tripathy et al. [21] have introduced a new type of generalized difference operators and unified those as follows. If n, m are non-negative integers, then for a given sequence space Z we have

$$
Z\left(\Delta_{n}^{m}\right)=\left\{x=\left(x_{k}\right):\left(\Delta_{n}^{m} x_{k}\right) \in Z\right\}
$$

for $Z=c, c_{0}$ and ℓ_{∞} where $\Delta_{n}^{m} x=\left(\Delta_{n}^{m} x_{k}\right)=\left(\Delta_{n}^{m-1} x_{k}-\Delta_{n}^{m-1} x_{k+1}\right)$ and $\Delta_{n}^{0} x_{k}=x_{k}$ for all $k \in \mathbb{N}$, which is equivalent to the following binomial representation

$$
\Delta_{n}^{m} x_{k}=\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} x_{k+n i} .
$$

Taking $n=1$, we get the spaces $\ell_{\infty}\left(\Delta^{m}\right), c\left(\Delta^{m}\right)$ and $c_{0}\left(\Delta^{m}\right)$ studied by Et and Çolak [5]. Taking $m=n=1$, we get the spaces $\ell_{\infty}(\Delta), c(\Delta)$ and $c_{0}(\Delta)$ introduced and studied by Kızmaz [10]. For more details about sequence spaces (see [8], [14], [15], [16], [19]) and references therein.
A sequence space E is said to be solid (or normal) if $\left\{\alpha_{k} \eta_{k}\right\} \in E$, whenever $\left\{\eta_{k}\right\} \in E$ and for any sequence $\left\{\alpha_{k}\right\}$ of complex numbers such that $\left|\alpha_{k}\right| \leq 1$ for all $k \in \mathbb{N}$.
A sequence space E is said to be symmetric if $\left\{\eta_{k}\right\} \in E$ implies $\left\{\eta_{\pi(k)}\right\} \in E$, where $\pi(k)$ is a permutation of elements of \mathbb{N}.
A linear metric space (X, d) is a linear space X with a translation invariant metric d on X such that addition and scalar multiplication are continuous in (X, d).
Let X be a linear metric space. A function $p: X \rightarrow \mathbb{R}$ is called paranorm, if

1. $p(x) \geq 0$ for all $x \in X$;
2. $p(-x)=p(x)$ for all $x \in X$;
3. $p(x+y) \leq p(x)+p(y)$ for all $x, y \in X$;
4. if $\left(\lambda_{n}\right)$ is a sequence of scalars with $\lambda_{n} \rightarrow \lambda$ as $n \rightarrow \infty$ and $\left(x_{n}\right)$ is a sequence of vectors with $p\left(x_{n}-x\right) \rightarrow 0$ as $n \rightarrow \infty$, then $p\left(\lambda_{n} x_{n}-\lambda x\right) \rightarrow 0$ as $n \rightarrow \infty$.

A paranorm p for which $p(x)=0$ implies $x=0$ is called total paranorm and the pair (X, p) is called a total paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (see [23] Theorem 10.4.2, pp. 183).

Remark 1.2. Let M be an Orlicz function and $\lambda \in(0,1)$, then $M(\lambda x) \leq \lambda M(x), \forall x>0$.
Let $\mathcal{M}=\left(M_{k}\right)$ be a sequence of Orlicz functions, $p=\left(p_{k}\right)$ be a bounded sequence of positive real numbers, $u=\left(u_{k}\right)$ be a sequence of positive real numbers and $\theta=\left(k_{r}\right), r \in \mathbb{N}$ be a lacunary sequence. In this paper we define the following lacunary Orlicz \mathbb{C}_{2}-sequence spaces:

$$
\begin{aligned}
& c\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\cdot\|\right)=\left\{\left\{\eta_{k}\right\} \in \omega_{4}: \lim _{r \rightarrow \infty} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k}-L\right\|}{\rho}\right)\right]^{p_{k}}=0, \text { for some } \rho>0 \text { and } L \in \mathbb{C}_{2}\right\}, \\
& c_{0}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\cdot\|\right)=\left\{\left\{\eta_{k}\right\} \in \omega_{4}: \lim _{r \rightarrow \infty} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k}\right\|}{\rho}\right)\right]^{p_{k}}=0, \text { for some } \rho>0\right\}, \\
& \ell \infty\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\cdot\|\right)=\left\{\left\{\eta_{k}\right\} \in \omega_{4}: \sup _{r} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k}\right\|}{\rho}\right)\right]^{p_{k}}<\infty, \text { for some } \rho>0\right\}, \\
& \ell\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\cdot\|\right)=\left\{\left\{\eta_{k}\right\} \in \omega_{4}: \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k}\right\|}{\rho}\right)\right]^{p_{k}}<\infty, \text { for some } \rho>0, r \in \mathbb{N}\right\} .
\end{aligned}
$$

Proposition 1.3. Any \mathbb{C}_{2}-sequence $\left\{\eta_{k}\right\}$ belongs to $Z\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$ if and only if $\left\{{ }^{1} \eta_{k}\right\} \in Z\left(\mathbb{A}_{1}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$ and $\left\{{ }^{2} \eta_{k}\right\} \in Z\left(\mathbb{A}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$, where $Z=c, c_{0}, \ell_{\infty}, \ell$.

Proof. It is easy to prove. For more details one can see ([13], [18]).
The following inequality will be used throughout the paper. If $0<p_{k} \leq \sup p_{k}=H, K=\max \left(1,2^{H-1}\right)$, then

$$
\begin{equation*}
\left\|\eta_{k}+\xi_{k}\right\|^{p_{k}} \leq K\left\{\left\|\eta_{k}\right\|^{p_{k}}+\left\|\xi_{k}\right\|^{p_{k}}\right\} \tag{4}
\end{equation*}
$$

for all k and $\left\{\eta_{k}\right\},\left\{\xi_{k}\right\} \in \mathbb{C}_{2}$. Also, $\|\eta\|^{p_{k}} \leq \max \left\{1,\|\eta\|^{H}\right\}$, for all $\eta \in \mathbb{C}_{2}$.
The aim of the paper is to introduce some lacunary difference \mathbb{C}_{2}-sequence spaces by using a sequence of Orlicz functions. We investigate some topological properties such as completeness, solidness, symmetric and establish some inclusion relations concerning these spaces in second section of this paper. We make an effort to study some results on modified complex Banach Algebra in the section third of the paper.

2. Lacunary Orlicz \mathbb{C}_{2}-sequence spaces

Theorem 2.1. Let $\mathcal{M}=\left(M_{k}\right)$ be a sequence of Orlicz functions, $p=\left(p_{k}\right)$ be a bounded sequence of positive real numbers and $u=\left(u_{k}\right)$ be a sequence of positive real numbers. Then the spaces $c\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$, $c_{0}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right), \ell^{\infty}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$ and $\ell\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$ are linear spaces over the complex field \mathbb{C}.

Proof. Let $\eta=\left\{\eta_{k}\right\}, \xi=\left\{\xi_{k}\right\} \in c_{0}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$ and $\alpha, \beta \in \mathbb{C}$. Then there exist positive real numbers $\rho_{1}>0$ and $\rho_{2}>0$ such that

$$
\lim _{r \rightarrow \infty} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k}\right\|}{\rho_{1}}\right)\right]^{p_{k}}=0
$$

and

$$
\lim _{r \rightarrow \infty} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \xi_{k}\right\|}{\rho_{2}}\right)\right]^{p_{k}}=0
$$

Let $\rho_{3}=\max \left\{2\|\alpha\| \rho_{1}, 2\|\beta\| \rho_{2}\right\}$. Since $\left(M_{k}\right)$ is non-decreasing and convex by using inequality (4), we have

$$
\begin{aligned}
\frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k}\left[\alpha\left(\Delta_{n}^{m} \eta_{k}\right)+\beta\left(\Delta_{n}^{m} \xi_{k}\right)\right]\right\|}{\rho}\right)\right]^{p_{k}} & \leq K \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k}\right\|}{\rho_{1}}\right)\right]^{p_{k}}+K \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \xi_{k}\right\|}{\rho_{2}}\right)\right]^{p_{k}} \\
& \rightarrow 0 \text { as } r \rightarrow \infty .
\end{aligned}
$$

Thus, $\{\alpha \eta+\beta \xi\} \in c_{0}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$. Hence, $c_{0}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$ is a linear space. Similarly, we can prove $c\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right), \ell^{\infty}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\cdot\|\right)$ and $\ell\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$ are linear spaces over the complex field \mathbb{C}.

Theorem 2.2. Let $\mathcal{M}=\left(M_{k}\right)$ be a sequence of Orlicz functions, $p=\left(p_{k}\right)$ be a bounded sequence of positive real numbers and $u=\left(u_{k}\right)$ be a sequence of positive real numbers. Then $\ell^{\infty}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$ is a paranormed space with the paranorm

$$
g(\eta)=\left\|\eta_{1}\right\|+\inf \left\{(\rho)^{\frac{p_{k}}{H}}: \sup _{r}\left(\frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k}\right\|}{\rho}\right)\right]\left(t_{k}\right)^{\frac{1}{p_{k}}}\right) \leq 1, \text { for some } \rho>0\right\},
$$

where $H=\max \left(1, \sup _{k} p_{k}\right)<\infty$.

Proof. (i) Clearly, $g(\eta) \geq 0$, for $\eta=\left\{\eta_{k}\right\} \in \ell^{\infty}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$. Since $M_{k}\left(\theta_{1}\right)=0$, we get $g\left(\theta_{1}\right)=0$, (ii) $g(-\eta)=g(\eta)$,
(iii) Let $\eta=\left\{\eta_{k}\right\}, \xi=\left\{\xi_{k}\right\} \in \ell^{\infty}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$. Then there exist $\rho_{1}>0$ and $\rho_{2}>0$ such that

$$
\sup _{r}\left(\frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k}\right\|}{\rho_{1}}\right)\right]\left(t_{k}\right)^{\frac{1}{p_{k}}}\right) \leq 1
$$

and

$$
\sup _{r}\left(\frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \xi_{k}\right\|}{\rho_{2}}\right)\right]\left(t_{k}\right)^{\frac{1}{p_{k}}}\right) \leq 1
$$

Suppose $\rho=\rho_{1}+\rho_{2}$, then by Minkowski's inequality, we have

$$
\begin{aligned}
\sup _{r}\left(\frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m}\left(\eta_{k}+\xi_{k}\right)\right\|}{\rho}\right)\right]\left(t_{k}\right)^{\frac{1}{p_{k}}}\right) & \leq\left(\frac{\rho_{1}}{\rho_{1}+\rho_{2}}\right) \sup _{r}\left(\frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k}\right\|}{\rho_{1}}\right)\right]\left(t_{k}\right)^{\frac{1}{p_{k}}}\right) \\
& +\left(\frac{\rho_{2}}{\rho_{1}+\rho_{2}}\right) \sup _{r}\left(\frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \xi_{k}\right\|}{\rho_{2}}\right)\right]\left(t_{k}\right)^{\frac{1}{p_{k}}}\right) \\
& \leq 1 .
\end{aligned}
$$

Also,

$$
\begin{aligned}
g(\eta+\xi) & =\left\|\eta_{1}\right\|+\inf \left\{(\rho)^{\frac{p_{k}}{{ }_{k}}}: \sup _{r}\left(\frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m}\left(\eta_{k}+\xi_{k}\right)\right\|}{\rho_{1}+\rho_{2}}\right)\right]\left(t_{k}\right)^{\frac{1}{k_{k}}}\right) \leq 1\right\} \\
& \leq\left\|\eta_{1}\right\|+\inf \left\{\left(\rho_{1}\right)^{\frac{p_{k}}{\hbar}}: \sup _{r}\left(\frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k}\right\|}{\rho_{1}}\right)\right]\left(t_{k}\right)^{\frac{1}{p_{k}}}\right) \leq 1\right\} \\
& +\left\|\eta_{1}\right\|+\inf \left\{\left(\rho_{2}\right)^{\frac{p_{k}}{\hbar}}: \sup _{r}\left(\frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \xi_{k}\right\|}{\rho_{2}}\right)\right]\left(t_{k}\right)^{\frac{1}{p_{k}}}\right) \leq 1\right\} \\
& \leq g(\eta)+g(\xi) .
\end{aligned}
$$

Finally, we prove that scalar multiplication is continuous. Let λ be any complex number by definition

$$
\begin{aligned}
g(\lambda \eta) & =\left\|\lambda \eta_{1}\right\|+\inf \left\{(\rho)^{\frac{p_{k}}{H}}: \sup _{r}\left(\frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m}\left(\lambda \eta_{k}\right)\right\|}{\rho}\right)\right]\left(t_{k}\right)^{\frac{1}{p_{k}}}\right) \leq 1\right\} \\
& \leq \mid \lambda\| \| \eta_{1} \|+\inf \left\{(|\lambda| P)^{\frac{p_{k}}{H}}: \sup _{r}\left(\frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k}\right\|}{P}\right)\right]\left(t_{k}\right)^{\frac{1}{p_{k}}}\right) \leq 1, P>0\right\},
\end{aligned}
$$

where $P=\frac{\rho}{|\lambda|}$. Since $|\lambda|^{p_{k}} \leq \max \left(1,|\lambda| \sup p_{k}\right)$. This completes the proof.
Theorem 2.3. Let $\mathcal{M}=\left(M_{k}\right)$ be a sequence of Orlicz functions, $p=\left(p_{k}\right)$ be a bounded sequence of positive real numbers and $u=\left(u_{k}\right)$ be a sequence of positive real numbers. Then $\ell^{\infty}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$ is a complete paranormed space, paranormed defined by g.
Proof. Suppose $\left\{\eta^{n}\right\}$ is a Cauchy sequence in $\ell^{\infty}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\| \| \|\right)$, where $\eta^{n}=\left\{\eta_{k}^{n}\right\}_{k=1}^{\infty}$ for all $n \in \mathbb{N}$, so that $g\left(\eta_{k}^{i}-\eta_{k}^{j}\right) \rightarrow 0$ as $i, j \rightarrow \infty$. Suppose $\epsilon>0$ is given and let some $s>0$ and $x_{0}>0$ be such that $\frac{\epsilon}{s x_{0}}>0$ and $\sup _{k}\left(p_{k}\right)^{t_{k}} \leq M_{k}\left(\frac{s x_{0}}{2}\right)$. Since $g\left(\eta_{k}^{i}-\eta_{k}^{j}\right) \rightarrow 0$, as $i, j \rightarrow \infty$, there exists $n_{0} \in \mathbb{N}$ such that

$$
g\left(\eta_{k}^{i}-\eta_{k}^{j}\right)<\frac{\epsilon}{s x_{0}}, \text { for all } i, j \geq n_{0} .
$$

Therefore,

$$
\left\|\eta_{1}^{i}-\eta_{1}^{j}\right\|+\inf \left\{(\rho)^{\frac{p_{k}}{H}}: \sup _{r}\left(\frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k}\right\|}{\rho}\right)\right]\left(t_{k}\right)^{\frac{1}{p_{k}}}\right) \leq 1, \text { for some } \rho>0\right\}<\frac{\epsilon}{s x_{0}} .
$$

This implies $\left\|\eta_{1}^{i}-\eta_{1}^{j}\right\|<\frac{\epsilon}{s x_{0}}$ and

$$
\inf \left\{(\rho)^{\frac{p_{k}}{H}}: \sup _{r}\left(\frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k}\right\|}{\rho}\right)\right]^{\left.\frac{1}{k_{k}}\right)^{\frac{1}{p_{k}}}}\right) \leq 1 \text {, for some } \rho>0\right\} .
$$

It shows that $\left\{\eta_{1}^{i}\right\}$ is a Cauchy sequence in \mathbb{C}_{2}. Since \mathbb{C}_{2} is a modified complex Banach algebra, then $\left\{\eta_{1}^{i}\right\}$ converges in \mathbb{C}_{2}. Suppose $\lim _{i \rightarrow \infty} \eta_{1}^{i}=\eta_{1}$. Thus then $\lim _{j \rightarrow \infty}\left\|\eta_{1}^{i}-\eta_{1}^{j}\right\|<\frac{\epsilon}{s x_{0}}$, we get

$$
\left\|\eta_{1}^{i}-\eta_{1}\right\|<\frac{\epsilon}{s x_{0}} .
$$

Thus, we have

$$
\left(\frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m}\left(\eta_{k}^{i}-\eta_{k}^{j}\right)\right\|}{g\left(\eta_{k}^{i}-\eta_{k}^{j}\right)}\right)\right]^{\left(t_{k} \frac{1}{p_{k}}\right.}\right) \leq 1 .
$$

This implies

$$
\left(\frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m}\left(\eta_{k}^{i}-\eta_{k}^{j}\right)\right\|}{g\left(\eta_{k}^{i}-\eta_{k}^{j}\right)}\right)\right]\left(t_{k}\right)^{\frac{1}{p_{k}}}\right) \leq 1 \leq M_{k}\left(\frac{s x_{0}}{2}\right)
$$

and thus,

$$
\left\|u_{k} \Delta_{m}^{n} \eta_{k}^{i}-u_{k} \Delta_{m}^{n} \eta_{k}^{j}\right\| \leq\left(\frac{s x_{0}}{2}\right)\left(\frac{\epsilon}{s x_{0}}\right)=\frac{\epsilon}{2}
$$

which shows that $\left(u_{k} \Delta_{m}^{n} \eta_{k}^{i}\right)$ is a Cauchy sequence in \mathbb{C}_{2} for all $k \in \mathbb{N}$. Therefore, $\left(u_{k} \Delta_{m}^{n} \eta_{k}^{i}\right)$ converges in \mathbb{C}_{2}. Suppose $\lim _{i \rightarrow \infty} u_{k} \Delta_{m}^{n} \eta_{k}^{i}=\xi_{k}$ for all $k \in \mathbb{N}$.
Also, we have $\lim _{i \rightarrow \infty} \Delta_{m}^{n} \eta_{2}^{i}=\xi_{1}-\eta_{1}$. On repeating the same procedure, we obtain $\lim _{i \rightarrow \infty} \Delta_{m}^{n} \eta_{k+1}^{i}=\xi_{k}-\eta_{k}$ for all $k \in \mathbb{N}$. Therefore, by continuity of $\left(M_{k}\right)$, we have

$$
\lim _{j \rightarrow \infty} \sup _{r}\left(\frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m}\left(\eta_{k}^{i}-\eta_{k}^{j}\right)\right\|}{\rho}\right)\right]\left(t_{k}\right)^{\frac{1}{p_{k}}}\right) \leq 1
$$

so that

$$
\sup _{r}\left(\frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m}\left(\eta_{k}^{i}-\eta_{k}^{j}\right)\right\|}{\rho}\right)\right]\left(t_{k}\right)^{\frac{1}{p_{k}}}\right) \leq 1 .
$$

Let $i \geq n_{0}$ and taking infimum of each $\rho>0$, we have

$$
g\left(\eta^{i}-\eta\right)<\epsilon
$$

So $\left\{\eta^{i}-\eta\right\} \in \ell_{\infty}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$. Hence, $\eta=\left\{\eta_{k}\right\} \in \ell_{\infty}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$. Therefore, $\ell_{\infty}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$ is complete paranormed space.

Theorem 2.4. Let $\mathcal{M}=\left(M_{k}\right)$ be a sequence of Orlicz functions, $p=\left(p_{k}\right)$ be a bounded sequence of positive real numbers and $u=\left(u_{k}\right)$ be a sequence of positive real numbers. If $\sup \left[M_{k}(x)\right]^{p_{k}}<\infty$ for all fixed $x>0$, then

$$
c_{0}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|.\|\right) \subseteq \ell^{\infty}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|.\|\right) .
$$

Proof. Let $\eta=\left\{\eta_{k}\right\} \in c_{0}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$. Then there exists positive number $\rho>0$ such that

$$
\frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k}\right\|}{\rho}\right)\right]^{p_{k}} \rightarrow 0 \text { as } r \rightarrow \infty
$$

Define $\rho=2 \rho_{1}$. Since $\left(M_{k}\right)$ is non-decreasing and convex, also using inequality (4), we have

$$
\begin{aligned}
\sup _{r} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k}\right\|}{\rho}\right)\right]^{p_{k}} & =\sup _{r} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k}+L-L\right\|}{\rho}\right)\right]^{p_{k}} \\
& \leq K \frac{1}{2^{p_{k}}} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k}-L\right\|}{\rho_{1}}\right)\right]^{p_{k}}+K \frac{1}{2^{p_{k}}} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\|L\|}{\rho_{1}}\right)\right]^{p_{k}} \\
& \leq K \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k}-L\right\|}{\rho_{1}}\right)\right]^{p_{k}}+K \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\|L\|}{\rho_{1}}\right)\right]^{p_{k}} \\
& <\infty .
\end{aligned}
$$

Hence, $\left\{\eta_{k}\right\} \in \ell^{\infty}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$.

Theorem 2.5. Let $0<\inf p_{k}=h \leq p_{k} \leq \sup p_{k}=H<\infty$ and $\mathcal{M}=\left(M_{k}\right), \mathcal{M}^{\prime}=\left(M_{k}^{\prime}\right)$ be two sequences of Orlicz functions satisfying Δ_{2}-condition. Then we have
(i) $c_{0}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right) \subset c_{0}\left(\mathbb{C}_{2}, \theta, \mathcal{M} \circ \mathcal{M}^{\prime}, \Delta_{n}^{m}, p, u,\|\|.\right)$;
(ii) $c\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right) \subset c\left(\mathbb{C}_{2}, \theta, \mathcal{M} \circ \mathcal{M}^{\prime}, \Delta_{n}^{m}, p, u,\|\|.\right)$;
(iii) $\ell^{\infty}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\cdot\|\right)=\ell^{\infty}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\cdot\|\right) \subset \ell^{\infty}\left(\mathbb{C}_{2}, \theta, \mathcal{M} \circ \mathcal{M}^{\prime}, \Delta_{n}^{m}, p, u,\|\cdot\|\right)$.

Proof. If $\eta=\left\{\eta_{k}\right\} \in c_{0}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$, then we have

$$
\frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k}\right\|}{\rho}\right)\right]^{p_{k}} \rightarrow 0 \text { as } r \rightarrow \infty
$$

Let $\epsilon>0$ and choose δ with $0<\delta<1$ such that $M_{k}(t)<\epsilon$ for $0 \leq t \leq \delta$. Let
$\xi_{k}=M_{k}^{\prime}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k}\right\|}{\rho}\right)$ for all $k \in \mathbb{N}$. We can write

$$
\frac{1}{h_{r}} \sum_{k \in I_{r}} M_{k}\left[\xi_{k}\right]^{p_{k}}=\frac{1}{h_{r}} \sum_{k \in I_{r}, \xi_{k} \leq \delta} M_{k}\left[\xi_{k}\right]^{p_{k}}+\frac{1}{h_{r}} \sum_{k \in I_{r}, \xi_{k} \geq \delta} M_{k}\left[\xi_{k}\right]^{p_{k}}
$$

So we have

$$
\begin{align*}
\frac{1}{h_{r}} \sum_{k \in I_{r}, \xi_{k} \leq \delta} M_{k}\left[\xi_{k}\right]^{p_{k}} & \leq\left[M_{k}(1)\right]^{H} \frac{1}{h_{r}} \sum_{k \in I_{r}, \xi_{k} \leq \delta} M_{k}\left[\xi_{k}\right]^{p_{k}} \tag{5}\\
& \leq\left[M_{k}(2)\right]^{H} \frac{1}{h_{r}} \sum_{k \in I_{r}, \xi_{k} \leq \delta} M_{k}\left[\xi_{k}\right]^{p_{k}}
\end{align*}
$$

For $\xi_{k}>\delta, \xi_{k}<\frac{\xi_{k}}{\delta}<1+\frac{\xi_{k}}{\delta}$. Since $M_{k}^{\prime} s$ are non-deceasing and convex, it follows that

$$
M_{k}\left(\xi_{k}\right)<M_{k}\left(1+\frac{\xi_{k}}{\delta}\right)<\frac{1}{2} M_{k}(2)+\frac{1}{2} M_{k}\left(\frac{2 \xi_{k}}{\delta}\right)
$$

Since $\mathcal{M}=\left(M_{k}\right)$ satisfies Δ_{2}-condition, we can write

$$
M_{k}\left(\xi_{k}\right)<\frac{1}{2} T \frac{\xi_{k}}{\delta} M_{k}(2)+\frac{1}{2} T \frac{\xi_{k}}{\delta} M_{k}(2)=T \frac{\xi_{k}}{\delta} M_{k}(2)
$$

Hence,

$$
\begin{equation*}
\frac{1}{h_{r}} \sum_{k \in I_{r}, \xi_{k} \geq \delta} M_{k}\left[\xi_{k}\right]^{p_{k}} \leq \max \left(1,\left(T \frac{M_{k}(2)}{\delta}\right)^{H}\right) \frac{1}{h_{r}} \sum_{k \in I_{r}, \xi_{k} \geq \delta}\left[\xi_{k}\right]^{p_{k}} \tag{6}
\end{equation*}
$$

From equation (5) and (6), we have $\eta=\left\{\eta_{k}\right\} \in c_{0}\left(\mathbb{C}_{2}, \theta, \mathcal{M} \circ \mathcal{M}^{\prime}, \Delta_{n}^{m}, p, u,\|\|.\right)$. This completes the proof of (i). Similarly, we can prove the others.

Theorem 2.6. Let $0<h=\inf p_{k}=p_{k}<\sup p_{k}=H<\infty$. Then for a sequence of Orlicz functions $\mathcal{M}=\left(M_{k}\right)$ which satisfies Δ_{2}-condition, we have
(i) $c_{0}\left(\mathbb{C}_{2}, \theta, \Delta_{n}^{m}, p, u,\|\|.\right) \subset c_{0}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$;
(ii) $c\left(\mathbb{C}_{2}, \theta, \Delta_{n}^{m}, p, u,\|\|.\right) \subset c\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$;
(iii) $\ell^{\infty}\left(\mathbb{C}_{2}, \theta, \Delta_{n}^{m}, p, u,\|\|.\right) \subset \ell^{\infty}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$.

Proof. It is easy to prove so we omit the details.
Theorem 2.7. Let $0<h=\inf p_{k}=p_{k}<\sup p_{k}=H<\infty$. Then for a sequence of Orlicz functions $\mathcal{M}=\left(M_{k}\right)$ which satisfies Δ_{2}-condition, we have
(i) $c_{0}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m-1}, p, u,\|\|.\right) \subset c_{0}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$;
(ii) $c\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m-1}, p, u,\|\cdot\|\right) \subset c\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$;
(iii) $\ell^{\infty}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m-1}, p, u,\|\|.\right) \subset \ell^{\infty}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$.

Proof. Here we prove the result for $c_{0}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$ and for other cases it will follow on applying similar arguments. Let $\eta=\left\{\eta_{k}\right\} \in c_{0}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m-1}, p, u,\|\|.\right)$. Then there exist $\rho>0$ such that

$$
\begin{equation*}
\frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m-1} \eta_{k}\right\|}{\rho}\right)\right]^{p_{k}} \rightarrow 0 \text { as } r \rightarrow \infty . \tag{7}
\end{equation*}
$$

On considering 2ρ, by the convexity of Orlicz function, we have

$$
\frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m-1} \eta_{k}\right\|}{2 \rho}\right)\right] \leq \frac{1}{2} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m-1} \eta_{k}\right\|}{\rho}\right)\right]+\frac{1}{2} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m-1} \eta_{k+n}\right\|}{\rho}\right)\right]
$$

Hence, we have

$$
\frac{1}{\lambda_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k}\right\|}{2 \rho}\right)\right]^{p_{k}} \leq K\left\{\frac{1}{2} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m-1} \eta_{k}\right\|}{\rho}\right)\right]^{p_{k}}+\frac{1}{2} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m-1} \eta_{k+n}\right\|}{\rho}\right)\right]^{p_{k}}\right\} .
$$

Then using (7), we get

$$
\lim _{r \rightarrow \infty} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k}\right\|}{2 \rho}\right)\right]^{p_{k}}=0
$$

Thus, $c_{0}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m-1}, p, u,\|\|.\right) \subset c_{0}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$.
Theorem 2.8. Let $0 \leq p_{k} \leq s_{k}$ for all k and let $\left(\frac{s_{k}}{p_{k}}\right)$ be bounded. Then

$$
c\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, s, u,\|\cdot\|\right) \subset c\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\cdot\|\right)
$$

Proof. Let $\eta=\left\{\eta_{k}\right\} \in c\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, s, u,\|\|.\right)$, write

$$
r_{k}=\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k}-L\right\|}{\rho}\right)\right]^{s_{k}}
$$

and $\mu_{k}=\frac{p_{k}}{s_{k}}$ for all $k \in \mathbb{N}$. Then $0<\mu_{k} \leq 1$ for all $k \in \mathbb{N}$. Take $0<\mu \leq \mu_{k}$ for $k \in \mathbb{N}$. Define sequences $\left\{v_{k}\right\}$ and $\left\{w_{k}\right\}$ as follows:
For $r_{k} \geq 1$, let $v_{k}=r_{k}$ and $w_{k}=0$ and for $r_{k}<1$, let $v_{k}=0$ and $w_{k}=r_{k}$. Then, clearly for all $k \in \mathbb{N}$, we have

$$
r_{k}=v_{k}+w_{k}, \quad r_{k}^{\mu_{k}}=v_{k}^{\mu_{k}}+w_{k}^{\mu_{k}}
$$

Now it follows that $v_{k}^{\mu_{k}} \leq v_{k} \leq r_{k}$ and $w_{k}^{\mu_{k}} \leq w_{k}^{\mu}$. Therefore,

$$
\begin{aligned}
\frac{1}{h_{r}} \sum_{k \in I_{r}} r_{k}^{\mu_{k}} & =\frac{1}{h_{r}} \sum_{k \in I_{r}}\left(v_{k}^{\mu_{k}}+w_{k}^{\mu_{k}}\right) \\
& \leq \frac{1}{h_{r}} \sum_{k \in I_{r}} r_{k}+\frac{1}{h_{r}} \sum_{k \in I_{r}} w_{k}^{\mu} .
\end{aligned}
$$

Now for each k,

$$
\begin{aligned}
\frac{1}{h_{r}} \sum_{k \in I_{r}} w_{k}^{\mu} & =\sum_{k \in I_{r}}\left(\frac{1}{h_{r}} w_{k}\right)^{\mu}\left(\frac{1}{h_{r}}\right)^{1-\mu} \\
& \leq\left(\sum_{k \in h_{r}}\left[\left(\frac{1}{h_{r}} w_{k}\right)^{\mu}\right]^{\frac{1}{\mu}}\right)^{\mu}\left(\sum_{k \in I_{r}}\left[\left(\frac{1}{h_{r}}\right)^{1-\mu}\right]^{\frac{1}{1-\mu}}\right)^{1-\mu} \\
& =\left(\frac{1}{h_{r}} \sum_{k \in I_{r}} w_{k}\right)^{\mu}
\end{aligned}
$$

and so

$$
\frac{1}{h_{r}} \sum_{k \in I_{r}} r_{k}^{\mu_{k}} \leq \frac{1}{h_{r}} \sum_{k \in I_{r}} r_{k}+\left(\frac{1}{h_{r}} \sum_{k \in I_{r}} w_{k}\right)^{\mu}
$$

Hence, $\eta=\left\{\eta_{k}\right\} \in c\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$. This completes the proof of the theorem.
Theorem 2.9. (i) If $0<\inf p_{k} \leq p_{k} \leq 1$ for all $k \in \mathbb{N}$, then

$$
c\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\cdot\|\right) \subseteq c\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, u,\|\cdot\|\right)
$$

(ii) If $1 \leq p_{k} \leq \sup p_{k}=H<\infty$, for all $k \in \mathbb{N}$, then

$$
c\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, u,\|\cdot\|\right) \subseteq c\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\cdot\|\right)
$$

Proof. (i) Let $\eta=\left\{\eta_{k}\right\} \in c\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$. Then

$$
\lim _{r} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k}-L\right\|}{\rho}\right)\right]^{p_{k}}=0
$$

Since $0<\inf p_{k} \leq p_{k} \leq 1$. This implies that

$$
\frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k}-L\right\|}{\rho}\right)\right] \leq \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k}-L\right\|}{\rho}\right)\right]^{p_{k}}
$$

Thus, $\eta=\left\{\eta_{k}\right\} \in c\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, u,\|\|.\right)$.
(ii) Let $p_{k} \geq 1$ for each k and sup $p_{k}<\infty$. Let $\eta=\left\{\eta_{k}\right\} \in c\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, u,\|\cdot\|\right)$. Then for each $0<\epsilon<1$, there exists a positive integer N such that

$$
\frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k}-L\right\|}{\rho}\right)\right] \leq \epsilon<1 \text { for all } r \geq N
$$

This implies that

$$
\frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k}-L\right\|}{\rho}\right)\right]^{p_{k}} \leq \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k}-L\right\|}{\rho}\right)\right] .
$$

Therefore, $\eta=\left\{\eta_{k}\right\} \in c\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$. This completes the proof.
Theorem 2.10. Let $\mathcal{M}=\left(M_{k}\right)$ be a sequence of Orlicz functions, $p=\left(p_{k}\right)$ be a bounded sequence of positive real numbers and $u=\left(u_{k}\right)$ be a sequence of positive real numbers. If $0<\inf p_{k} \leq p_{k} \leq \sup p_{k}=H<\infty$, for all $k \in \mathbb{N}$, then

$$
c\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\cdot\|\right)=c\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, u,\|\cdot\|\right)
$$

Proof. It is easy to prove so we omit the details.
Proposition 2.11. The spaces $c_{0}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right), c\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$ and $\ell^{\infty}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\cdot\|\right)$ are Banach spaces.

Theorem 2.12. The spaces $c_{0}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right), c\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$ and $\ell^{\infty}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$ are not solid in general.

Example 2.13. Let $M_{k}(x)=x,\left(p_{k}\right)=\left(u_{k}\right)=1$ for all $k \in \mathbb{N}, \rho=1, m=0$ and $\theta=\{1,2, \ldots, n\}$. Consider a sequence $\left\{\eta_{k}\right\} \in \omega_{4}$ given as $\eta_{k}=\left\{\eta_{k}^{(s)}\right\}=\{2,2,2, \ldots\}$. Then $\left\{\eta_{k}^{(s)}\right\} \in c_{0}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$. Now, let $\left\{\alpha_{k}\right\}=\left\{(-1)^{k}\right\}, \forall k \in \mathbb{N}$. Then, $\left\{\alpha_{k} \eta_{k}^{(s)}\right\} \notin c_{0}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$. Therefore, $c_{0}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$ is not solid.
Let $\left\{\eta_{k}\right\} \in \omega_{4}$ defined as $\eta_{k}=\left\{\eta_{k}^{(s)}\right\}=\left\{k^{2}, k^{2}+1, k^{2}+2, \ldots\right\}, \forall k, s \in \mathbb{N}$. Then $\left\{\eta_{k}^{(s)}\right\} \in c\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$ as well as $\left\{\eta_{k}^{(s)}\right\} \in \ell^{\infty}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$. Now, let $\left\{\alpha_{k}\right\}=\left\{(-1)^{k}\right\}, \forall k \in \mathbb{N}$. Then, $\left\{\alpha_{k} \eta_{k}^{(s)}\right\} \notin c\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$ as well as $\left\{\alpha_{k} \eta_{k}^{(s)}\right\} \notin \quad \ell^{\infty}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$. Hence, the spaces $c\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$ and $\ell^{\infty}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$ are not solid.

Theorem 2.14. The spaces $c_{0}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right), c\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$ and $\ell^{\infty}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$ are not symmetric in general.

To show that the spaces are not symmetric in general, consider the following example.
Example 2.15. Let $M_{k}(x)=x,\left(p_{k}\right)=2,\left(u_{k}\right)=1$ for all $k \in \mathbb{N}, \rho=1, m=0$ and $\theta=\{1,2, \ldots, n\}$. Suppose that $\left\{\eta_{k}\right\}=\left\{\eta_{k}^{s}\right\}=\left\{k^{2}, k^{2}+1, k^{2}+2, \ldots\right\}, \forall k, s \in \mathbb{N}$. Then, $\left\{\eta_{k}\right\} \in c\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right) \cap \ell^{\infty}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$ Consider the rearranged sequence, $\left(\xi_{k}\right)$ of $\left(\eta_{k}\right)$ defined as

$$
\left\{\xi_{k}\right\}=\left\{\eta_{1}^{s}, \eta_{8}^{s}, \eta_{2}^{s}, \eta_{27}^{s}, \eta_{3}^{s}, \eta_{64}^{s}, \eta_{4}^{s}, \ldots\right\}
$$

Then $\left\{\xi_{k}\right\} \notin c\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$ as well as $\left\{\xi_{k}\right\} \notin \ell^{\infty}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$. Hence, $c\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$ and $\ell^{\infty}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$ are not symmetric in general. Similarly, we can prove for other space.

Theorem 2.16. Let $\mathcal{M}_{1}=M_{1}$ and $\mathcal{M}_{2}=M_{2}$ be the Orlicz functions with Δ_{2} conditions and $p=\left(p_{k}\right) \in l^{\infty}$, then $c\left(\mathbb{C}_{2}, \theta, \mathcal{M}_{1}, \Delta_{n}^{m}, p, u,\|\|.\right) \cap c\left(\mathbb{C}_{2}, \theta, \mathcal{M}_{2}, \Delta_{n}^{m}, p, u,\|\|.\right) \subset c\left(\mathbb{C}_{2}, \theta, \mathcal{M}_{1}+\mathcal{M}_{2}, \Delta_{n}^{m}, p, u,\|\|.\right)$.

Proof. Let $\left\{\eta_{k}\right\} \in c\left(\mathbb{C}_{2}, \theta, \mathcal{M}_{1}, \Delta_{n}^{m}, u,\|\|.\right) \cap c\left(\mathbb{C}_{2}, \theta, \mathcal{M}_{2}, \Delta_{n}^{m}, p, u,\|\|.\right)$. Then \exists some $L \in \mathbb{C}_{2}, \rho_{1}>0, \rho_{2}>0$ such that

$$
\begin{align*}
& \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{1}\left(\frac{\left\|u_{k} \Delta_{n}^{m-1} \eta_{k}-L\right\|}{\rho_{1}}\right)\right]^{p_{k}} t_{k} \rightarrow 0 \tag{8}\\
& \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{2}\left(\frac{\left\|u_{k} \Delta_{n}^{m-1} \eta_{k}-L\right\|}{\rho_{2}}\right)\right]^{p_{k}} t_{k} \rightarrow 0 . \tag{9}
\end{align*}
$$

Let $\rho=\max \left\{\rho_{1}, \rho_{2}\right\}$. Then,

$$
\left\{\frac{1}{h_{r}} \sum_{k \in I_{r}}\left[\left(M_{1}+M_{2}\right)\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k}-L\right\|}{\rho}\right)\right]^{p_{k}} t_{k}\right\} \leq \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{1}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k}-L\right\|}{\rho_{1}}\right)\right]+\frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{2}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k}-L\right\|}{\rho_{2}}\right)\right] .
$$

From (3.4) and (3.5), we get $\left\{\eta_{k}\right\} \in c\left(\mathbb{C}_{2}, \theta, \mathcal{M}_{1}+\mathcal{M}_{2}, \Delta_{n}^{m}, u,\|\|.\right)$.
Theorem 2.17. The sequence space $\ell^{\infty}\left(\mathbb{C}_{2}, \theta, \Delta_{n}^{m}, p, u,\|\|.\right)$ is convex.

Proof. Let $\left\{\eta_{k}\right\},\left\{\xi_{k}\right\} \in \ell^{\infty}\left(\mathbb{C}_{2}, \theta, \Delta_{n}^{m}, p, u,\|\|.\right)$ and $\lambda \in \mathbb{R}$ satisfying $\lambda \in[0,1]$. Then

$$
\left\{\sup _{r} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k}\right\|}{\rho_{1}}\right)\right]^{p_{k}}\right\}
$$

and

$$
\left\{\sup _{r} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \xi_{k}\right\|}{\rho_{2}}\right)\right]^{p_{k}}\right\}
$$

are finite. Now, let $\rho=\max \left\{\rho_{1}, \rho_{2}\right\}$ then, we have

$$
\begin{aligned}
& \left\{\sup _{r} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \lambda \eta_{k}+u_{k} \Delta_{n}^{m} \xi_{k}(1-\lambda)\right\|}{\rho}\right)\right]^{p_{k}}\right\} \\
& \leq \sup _{r} \frac{1}{h_{r}} \sum_{k \in I_{r}} M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \lambda \eta_{k}\right\|}{\rho_{1}}\right)^{p_{k}}+\sup _{r} \frac{1}{h_{r}} \sum_{k \in I_{r}} M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \xi_{k}(1-\lambda)\right\|}{\rho_{2}}\right)^{p_{k}} \\
& =\lambda \sup _{r} \frac{1}{h_{r}} \sum_{k \in I_{r}} M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k}\right\|}{\rho_{1}}\right)^{p_{k}}+(1-\lambda) \sup _{r} \frac{1}{h_{r}} \sum_{k \in I_{r}} M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \xi_{k}\right\|}{\rho_{2}}\right)^{p_{k}}
\end{aligned}
$$

which implies $\lambda \eta_{k}+(1-\lambda) \xi_{k} \in \ell^{\infty}\left(\mathbb{C}_{2}, \theta, \Delta_{n}^{m}, p, u,\|\|.\right)$. Thus, $\ell^{\infty}\left(\mathbb{C}_{2}, \theta, \Delta_{n}^{m}, p, u,\|\|.\right)$ is convex.

3. Modified complex Banach Algebra

From many years a lot of results has been published on modified complex Banach Algebra by various mathematicians. Recently Nilay Sager and Birsen Sağır [17] worked on completeness of bicomplex sequence space. By using modified complex Banach Algebra they have proved bicomplex Hölder's Inequality and several other interesting results.
The norm of the product of two bicomplex numbers and the product of their norms are connected by means of the following inequality:

$$
\begin{equation*}
\|\eta \xi\| \leq \sqrt{2}\|\eta\|\|\xi\| . \tag{10}
\end{equation*}
$$

The inequality given in (10) is the best possible relation. For this reason, we call $\left(\mathbb{C}_{2},+, \cdot,\|\cdot\|\right)$ as modified complex Banach algebra.

Justification of (10): Let $\eta, \xi \in \mathbb{C}_{2}$. Then $\|\eta \xi\| \leq \sqrt{2}\|\eta\|\| \| \|$.
Let $\eta=\left(z_{1}+j z_{2}\right) \in \mathbb{C}_{2}$ and $\xi=z_{3}+j z_{4} \in \mathbb{C}_{2}$. Then

$$
\eta \xi=\left(z_{1}+j z_{2}\right)\left(z_{3}+j z_{4}\right)=z_{1}\left(z_{3}+j z_{4}\right)+j z_{2}\left(z_{3}+j z_{4}\right)
$$

Moreover, $\left\|z_{1}\left(z_{3}+j z_{4}\right)\right\|=\left\|z_{1}\left|\left\|\mid z_{3}+j z_{4}\right\|\right.\right.$ and $\left\|j z_{2}\left(z_{3}+j z_{4}\right)\right\|=\left|j\left\|\left|z_{2}\right|\right\|\right| z_{3}+j z_{4}\|=\| z_{2}\| \| z_{3}+j z_{4} \|$. Therefore, from the triangle inequality, we have

$$
\begin{aligned}
\|\eta \xi\|=\left\|\left(z_{1}+j z_{2}\right)\left(z_{3}+j z_{4}\right)\right\| & \leq\left\|z_{1}\right\|\left\|\left(z_{3}+j z_{4}\right)\right\|+\left\|z_{2}\right\|\left\|\left(z_{3}+j z_{4}\right)\right\| \\
& \leq\left(\left\|z_{1}\right\|+\left\|z_{2}\right\|\right)\left\|z_{3}+j z_{4}\right\| .
\end{aligned}
$$

Since $2\left\|z_{1}\left|\left\|\mid z_{2}\right\| \leq\left\|z_{1}\right\|^{2}+\left\|z_{2}\right\|^{2}\right.\right.$, then $\left(\left\|z_{1}\right\|+\left\|z_{2}\right\|\right)^{2} \leq 2\left(\left\|z_{1}\right\|^{2}+\left\|z_{2}\right\|^{2}\right)$. Thus, we have

$$
\left(\left\|z_{1}\right\|+\left\|z_{2}\right\|\right) \leq \sqrt{2}\left(\left\|z_{1}\right\|^{2}+\left\|z_{2}\right\|^{2}\right)^{1 / 2}
$$

Hence, $\|\eta \xi\| \leq \sqrt{2}\|\eta \mid\|\|\xi\|$.
We note that the constant $\sqrt{2}$ is the best possible one in above justification. Moreover, if we combine the last results with the fact that $\left(\mathbb{C}_{2},+, \cdot,\|\cdot\|\right)$ is a Banach space, we obtain that $\left(\mathbb{C}_{2},+, \cdot,\|\cdot\|\right)$ is a modified complex Banach algebra.
But in the usual definition of a complex Banach algebra, the norm of the product of two elements is required to be equal to or less than the product of the norms of these elements that is, $\left\|z_{1} z_{2}\right\| \leq\left\|z_{1}\right\|\left\|z_{2}\right\|$. This is the difference between the complex Banach algebra and the modified complex Banach algebra.
Romesh et al. [9] introduced the spectrum of the unilateral shift operator by using $\ell_{\mathbb{C}_{2}}^{2}$. Dubey et al. [3] studied the Orlicz bicomplex sequence spaces. They proved that the bicomplex sequence spaces $\ell_{\mathrm{C} 2}^{M}$ is a Banach space and used as Complex Banach Algebra. They studied the different properties of linear operators such as boundedness, compactness etc.
Now we prove some results on modified Complex Banach Algebra.
Theorem 3.1. Let $\left\{z_{k}\right\}, z, y \in \mathbb{C}_{2}$.
(i) If $z_{k} \rightarrow z$ then $y z_{k} \rightarrow y z$ and $z_{k} y \rightarrow z y$;
(ii) If $z_{k} \rightarrow z$ and $y_{k} \rightarrow y$ then $z_{k} y_{k} \rightarrow z y$.

Proof. (i) Since $z_{k} \rightarrow z,\left\|z_{k}-z\right\| \rightarrow 0$ in \mathbb{C}_{2} and hence we have

$$
\left\|y z_{k}-y z\right\|=\left\|y\left(z_{k}-z\right)\right\| \leq \sqrt{2}\|y\|\left\|z_{k}-z\right\| \rightarrow \sqrt{2}\|y\| .0 \in \mathbb{C}_{2}
$$

Other case can be proved in the similar manner.
(ii) If $z_{k} \rightarrow z$ also $\left\|z_{k}\right\| \rightarrow\|z\|$, hence $\left\|z_{k}\right\|$ is bounded say by M. Now, for given ϵ, let N_{z} be such that $k \geq N_{z}$ $\Rightarrow\left\|z_{k}-z\right\|<\frac{\epsilon}{2 \sqrt{2}\|y\|}$ if $y \neq 0$ and arbitrary otherwise, so that in any case $\left\|z_{k}-z\right\|\|y\|<\frac{\epsilon}{2 \sqrt{2}}$. Let N_{y} such that $k \geq N_{y} \Rightarrow\left\|y_{k}-y\right\|<\frac{\epsilon}{2 \sqrt{2} M}($ choose $M>0)$ for $N=\max \left(N_{z}, N_{y}\right)$ holds if $k \geq N$, then

$$
\begin{aligned}
\left\|z_{k} y_{k}-z y\right\| & =\left\|z_{k} y_{k}-z_{k} y+z_{k} y-z y\right\| \\
& \leq\left\|z_{k} y_{k}-z_{k} y\right\|+\left\|z_{k} y-z y\right\| \\
& \leq \sqrt{2}\left\|z_{k}\right\|\left\|y_{k}-y\right\|+\sqrt{2}\|y\|\left\|z_{k}-z\right\| \\
& <\sqrt{2} M \times \frac{\epsilon}{2 \sqrt{2} M}+\sqrt{2} \frac{\epsilon}{2 \sqrt{2}} \\
& =\epsilon .
\end{aligned}
$$

Thus, $z_{k} y_{k} \rightarrow z y$.
Now, let us define $\omega_{4}=\left\{\left\{\eta_{k}\right\}: \forall k \in \mathbb{N}, \eta_{k} \in \mathbb{C}_{2}\right\}$. This space of all \mathbb{C}_{2} sequences forms a \mathbb{C}_{2}-module (see [17]). Also, ω_{4} forms a \mathbb{C}_{2}-module with the operations addition and bicomplex scaler multiplication as follows:

$$
\begin{aligned}
& \oplus: \omega_{4} \times \omega_{4} \rightarrow \omega_{4},(\eta, s) \rightarrow \eta+s=\left(\eta_{k} \oplus s_{k}\right) \\
& \odot: \mathbb{C}_{2} \times \omega_{4} \rightarrow \omega_{4},(\vartheta, \eta) \rightarrow \vartheta \odot \eta=\vartheta \eta=\left(\vartheta \eta_{k}\right) \\
& \otimes: \mathbb{C}_{2} \otimes \omega_{4} \rightarrow \omega_{4},(\vartheta, \eta) \rightarrow \vartheta \cdot \eta=\vartheta \eta=\left(\vartheta \eta_{k}\right)
\end{aligned}
$$

for all $\left\{\eta_{k}\right\},\left\{s_{k}\right\} \in \omega_{4}$ and $\forall \vartheta \in \mathbb{C}_{2}$.
Remark: $\ell_{\mathbb{C}_{2}}^{M}$ is a subspace of ω_{4}.
Proof. It is obvious that $\ell_{\mathbb{C}_{2}}^{M} \subset \omega_{4}$. Let $\left\{\eta_{k}\right\},\left\{s_{k}\right\} \in \ell_{\mathbb{C}_{2}}^{M}$. Then $\exists \rho_{1}, \rho_{2}$ such that

$$
\sum_{k=1}^{\infty} M\left(\frac{\left\|\eta_{k}\right\|}{\rho_{1}}\right)<\infty
$$

and

$$
\sum_{k=1}^{\infty} M\left(\frac{\left\|s_{k}\right\|}{\rho_{2}}\right)<\infty .
$$

Let $\rho=\max \left(\rho_{1}, \rho_{2}\right)$, then

$$
\sum_{k=1}^{\infty} M\left(\frac{\left\|\eta_{k}+s_{k}\right\|}{\rho}\right) \leq \sum_{k=1}^{\infty} M\left(\frac{\left\|\eta_{k}\right\|}{\rho_{2}}\right)+\sum_{k=1}^{\infty} M\left(\frac{\left\|s_{k}\right\|}{\rho_{2}}\right)
$$

which means that $\eta_{k} \oplus s_{k} \in \ell_{\mathbb{C}_{2}}^{M}$. Now, suppose $\alpha \in \mathbb{R}$ and $\left\{\eta_{k}\right\} \in \ell_{\mathbb{C}_{2}}^{M}$. Since

$$
\left\|\alpha \eta_{k}\right\|=|\alpha|\left\|\eta_{k}\right\|
$$

and

$$
\sum_{k=1}^{\infty} M\left(\frac{\left\|\eta_{k}\right\|}{\rho}\right)<\infty
$$

We can easily say that

$$
\sum_{k=1}^{\infty} M\left(\frac{\left\|\alpha \eta_{k}\right\|}{\rho}\right)<\infty \Longrightarrow|\alpha| \sum_{k=1}^{\infty} M\left(\frac{\left\|\eta_{k}\right\|}{\rho}\right)<\infty
$$

So, $\alpha \odot \eta_{k} \in \ell_{\mathbb{C}_{2}}^{M}$. Thus, $\ell_{\mathbb{C}_{2}}^{M}$ is a subspace of ω_{4}.
Remark: $\ell^{\infty}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$ is a subspace of ω_{4}.
Proof. This remark can be proved in similar manner as proof of above remark.
Theorem 3.2. $\ell_{\mathbb{C}_{2}}^{M}$ is a \mathbb{C}_{2}-submodule of ω_{4}.
Proof. As $\ell_{\mathbb{C}_{2}}^{M}$ is a subspace of ω_{4}. Also, we obtain that $\left\{\eta_{k}\right\} \in \ell_{\mathbb{C}_{2}}^{M}$ and $\vartheta \in \mathbb{C}_{2}-\{0\}$.

$$
\sum_{k=1}^{\infty} M\left(\frac{\left\|\eta_{k} \vartheta\right\|}{\rho}\right) \leq \sum_{k=1}^{\infty} M \frac{(\sqrt{2})\left\|\eta_{k}\right\| \| \vartheta \vartheta}{\rho}=(\sqrt{2})\|\vartheta\| \sum_{k=1}^{\infty} M \frac{\left\|\eta_{k}\right\|}{\rho}<\infty
$$

Thus, $\forall\left\{\eta_{k}\right\} \in \ell_{\mathbb{C}_{2}}^{M}, \vartheta \in \mathbb{C}_{2}$ implies $\eta_{k} \vartheta \in \ell_{\mathbb{C}_{2}}^{M}$.
Theorem 3.3. $\ell^{\infty}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$ is a \mathbb{C}_{2}-submodule of ω_{4}.
Proof. As $\ell^{\infty}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$ is a subspace of ω_{4}. Now, $\forall \vartheta \in \mathbb{C}_{2}$ and $\forall\left\{\eta_{k}\right\} \in \ell^{\infty}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$ we have

$$
\begin{aligned}
& \sup _{r} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left(\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k} \vartheta\right\|}{\rho}\right)\right]^{p_{k}}\right)^{\frac{1}{p_{k}}} \\
& \leq \sup _{r} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left(\left[M_{k}\left(\frac{\sqrt{2}\left\|u_{k} \Delta_{n}^{m} \eta_{k}\right\|\|\vartheta\|}{\rho}\right)\right]^{p_{k}}\right)^{\frac{1}{p_{k}}} \\
& =\sqrt{2}\|\vartheta\| \sup _{r} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[M_{k}\left(\frac{\left\|u_{k} \Delta_{n}^{m} \eta_{k}\right\|}{\rho}\right)\right] \\
& <\infty
\end{aligned}
$$

Thus, $\forall \vartheta \in \mathbb{C}_{2}$ and $\forall\left\{\eta_{k}\right\} \in \ell^{\infty}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$, we have $\vartheta \eta_{k} \in \ell^{\infty}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$. Hence $\ell^{\infty}\left(\mathbb{C}_{2}, \theta, \mathcal{M}, \Delta_{n}^{m}, p, u,\|\|.\right)$ is a \mathbb{C}_{2}-submodule of ω_{4}.

References

[1] Ç. A. Bektaş, M. Et and R. Çolak, Generalized difference sequence spaces and their dual spaces, J. Math. Anal. Appl. 292 (2004) 423-432.
[2] N. Değirmen and B. Sağır, Some new notes on the Bicomplex sequence spaces $\ell_{p}(B C)$, J. Fract. Calc. Appl. 13 (2022) 66-76.
[3] S. Dubey, R. Kumar and K. Sharma, A note on Bicompex Orlicz sapces, arXiv preprint arXiv:1401.7112 (2014) 1-12.
[4] A. Esi, B. C. Tripathy and B. Sarma, On some new type generalized difference sequence spaces, Math. Slovaca 57 (2007) $475-482$.
[5] M. Et and R. Çolak, On generalized difference sequence spaces, Soochow. J. Math. 21 (1995) 377-386.
[6] M. Et and A. Esi, On Köthe-Toeplitz duals of generalized difference sequence spaces, Bull. Malays. Math. Sci. Soc. 23 (2000) 25-32.
[7] A. R. Freedman, J. J. Sember and M. Raphael, Some Cesàro type summability spaces, Proc. London Math. Soc. 37 (1978) 508-520.
[8] B. Hazarika and E. Savaş, Some I-convergent lambda-summable difference sequence spaces of fuzzy real numbers defined by a sequence of Orlicz, Math. Comput. Modelling 54 (2011) 2986-2998.
[9] R. Kumar, K. Sharma, R. Tundup and S. Wazir, Orlicz Spaces with Bicomplex Scalars, arXiv preprint arXiv:1401.7112 (2014).
[10] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull. 24 (1981) 169-176.
[11] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math. 10 (1971) 379-390.
[12] M. E. Luna-Elizarrarás and M. Shapiro, Bicomplex numbers and their elementary functions, Cubo 14 (2012) 61-80.
[13] G. B. Price, An Introduction to Multicomplex Spaces and Functions. Marcel Dekker, Inc., New York, 1991.
[14] K. Raj and C. Sharma, Applications of strongly convergent sequences to Fourier series by means of modulus functions, Acta Math. Hungar. 150 (2016) 396-411.
[15] K. Raj and A. Kilicman, On certain generalized paranormed spaces, J. Inequal. Appl. (2015) 2015: 37.
[16] K. Raj, S. Jamwal and S. K. Sharma, New classes of generalized sequence spaces defined by an Orlicz function, J. Comput. Anal. Appl. 15 (2013) 730-737.
[17] N. Sager and B. Sağır, On completeness of some Bicomplex sequence spaces, Palest. J. Math. 9 (2020) 891-902.
[18] R. K. Srivastava, Bicomplex numbers: Analysis and applications, Math. Student 72 (2003) 69-87.
[19] E. Savaş and M. Mursaleen, Matrix transformations in some sequence spaces, Istanb. Univ. Fen Fak. Mat. Derg. 52 (1993) 1-5.
[20] C. Segre, Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici, Math. Ann. 40 (1892) 413-467.
[21] B. C. Tripathy, A. Esi and B. Tripathy, On a new type of generalized difference Cesàro sequence spaces, Soochow J. Math. 31 (2005) 333-340.
[22] B. C. Tripathy and A. Esi, A new type of difference sequence spaces, Int. J. Sci. Tech. 1 (2006) 11-14.
[23] A. Wilansky, Summability through Functional Analysis, North-Holland Mathematics Studies 85, Amsterdam-New York-Oxford, 1984.

[^0]: 2020 Mathematics Subject Classification. Primary 40A05; Secondary 40A30
 Keywords. Orlicz function, paranorm space, lacunary sequence spaces, bicomplex sequence spaces, solidity
 Received: 24 March 2022; Revised: 23 July 2022; Accepted: 24 July 2022
 Communicated by Eberhard Malkowsky
 Email addresses: kuldipraj68@gmail.com (Kuldip Raj), aesi23@hotmail.com (Ayhan Esi), charu145.cs@gmail.com (Charu Sharma)

