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Abstract. In this paper, we prove that an almost Kenmotsu manifold M has constant Reeb sectional
curvatures if and only if M has conformal Reeb foliation. On an almost Kenmotsu h-a-manifold of dimension
three having constantϕ-sectional curvature, the Reeb vector field is an eigenvector field of the Ricci operator
if and only if the manifold is locally isometric to a non-unimodular Lie group.

1. Introduction

In geometry of almost contact metric manifolds, the following three assertions are well known:

• If a contact metric manifold is of constant curvature c, then c = 1 and the manifold is Sasakian when
the dimension of the manifold is greater than three and c = 0 or 1 when the dimension of the manifold
is three (see [3, 24]);

• If an almost Kenmotsu manifold is of constant curvature c, then c = −1 and the manifold is Kenmotsu
(see [9]);

• If an almost cosymplectic manifold is of constant curvature c, then c = 0 and the manifold is cosym-
plectic (see [25, 26]).

In a sense, the above three kinds of almost contact metric manifolds correspond to the sphere of constant
positive curvatures, hyperbolic space of constant negative curvatures and Euclidean space, respectively;
and they are ones of the most important research objects in almost contact Riemannian geometry.

According to the above statements, one observes that the constancy of sectional curvatures in geometry of
almost contact metric manifolds is too strong. Therefore, one always considers some other kinds of sectional
curvatures. For an almost contact metric manifold (M, 1) together with the almost contact structure (ϕ, ξ, η),
the manifold M is said to have constant Reeb sectional curvature if the sectional curvature of the plane
section containing the Reeb vector field ξ and a vector field X ∈ ker η is a constant which is independent
of the choice of X ∈ ker η and the point in M. Similarly, M is said to have constant ϕ-sectional curvature if
the sectional curvature of the plane section containing a vector field X ∈ ker η and ϕX is a constant which
is independent of the choice of X ∈ ker η and the point in M. Weakening constancy of sectional curvature
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to constancy of Reeb or ϕ-sectional curvature in geometry of almost contact metric manifolds has been
investigated by many authors.

Moskal in [19] proved that for a Sasakian manifold the ϕ-sectional curvatures determine the curvature
completely. A Sasakian manifold of constant ϕ-sectional curvatures is called a Sasakian space form and its
curvature tensor was obtained by Ogiue in [23]. Koufogiorgos [18] found a class of non-Sasakian contact
metric manifolds which are of constantϕ-sectional curvatures. With regard to the Reeb sectional curvatures,
Gouli-Andreou and Xenos in [11] obtained a classification result of contact metric manifolds whose Reeb
sectional and ϕ-sectional curvatures are both constant. A classification of almost cosymplectic 3-manifolds
with constant Reeb sectional curvatures was considered by D. Perrone in [28]. Kenmotsu manifolds with
constant ϕ-sectional curvatures and cosymplectic manifolds with constant ϕ-sectional curvatures were
presented in [16] and [14], respectively. For some other results on almost contact metric manifolds with
constant Reeb sectional or ϕ-sectional curvatures, or some other types of sectional curvatures, we refer the
reader to [1–3, 6, 33].

The studies of constancy of certain sectional curvatures in both contact metric and almost cosymplectic
geometry are rich, but the corresponding theorem in almost Kenmotsu geometry is seldom. In view of
this, in the present paper, we aim to start the study of almost Kenmotsu manifolds having constant Reeb
sectional or ϕ-sectional curvatures. First, we prove that an almost Kenmotsu manifold is of constant Reeb
sectional curvatures if and only if the Lie derivative of the structure tensor field ϕ along the Reeb vector
field ξ vanishes identically. It is interesting that such a property is much different from the contact metric
and almost cosymplectic cases. We show that if an almost Kenmotsu manifold has constant Reeb sectional
curvature and all ϕ-sectional curvatures are constant −1, then the manifold is a Kenmotsu manifold of
constant sectional curvature −1. We classify almost Kenmotsu h-a-manifolds of dimension three having
constant ϕ-sectional curvatures under an additional assumption.

2. Almost Kenmotsu Manifolds

If on a smooth differentiable manifold M of dimension 2n + 1, n ≥ 1, there are three tensor fields ϕ, ξ, η
of type (1, 1), (1, 0) and (0, 1), respectively, satisfying

ϕ2 = −id + η ⊗ ξ and η(ξ) = 1, (1)

then M is said to admit an almost contact structure and it is called an almost contact manifold. If in addition
there exists a Riemannian metric 1 on M such that

1(ϕX, ϕY) = 1(X,Y) − η(X)η(Y) (2)

for any vector fields X,Y, M is said to be an almost contact metric manifold and 1 is said to be a compatible
metric with respect to the almost contact structure. An almost Kenmotsu manifold is defined as an almost
contact metric manifold satisfying dη = 0 and dΦ = 2η∧Φ, where the fundamental two-formΦ of the almost
contact metric manifold is defined by Φ(X,Y) = 1(X, ϕY) for any vector fields X and Y ([15]). A contact
metric (resp. almost cosymplectic) manifold is defined as an almost contact metric manifold satisfying
dη = Φ (resp. dη = 0 and dΦ = 0).

On the product M × R of an almost contact metric manifold M and R, there exists an almost complex
structure J defined by

J
(
X, f

d
dt

)
=
(
ϕX − fξ, η(X)

d
dt

)
,

where X denotes a vector field tangent to M, t is the coordinate ofR and f is a C∞-function on M×R. If J is
integrable, the almost contact metric structure is said to be normal. A normal almost Kenmotsu manifold
is called a Kenmotsu manifold; and a normal contact metric (resp. almost cosymplectic) manifold is called
a Sasakian (resp. cosymplectic) manifold.
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An almost Kenmotsu manifold is a Kenmotsu manifold if and only if

(∇Xϕ)Y = 1(ϕX,Y)ξ − η(Y)ϕX

for any vector fields X,Y. If the almost Kenmotsu manifold is of dimension three, h = 0 is a necessary and
sufficient condition for the manifold to be Kenmotsu, where h := 1

2Lξϕ. On an almost Kenmotsu manifold,
one can check that h and h′ := h ◦ϕ are both symmetric operators, and they satisfy hξ = 0, trh = 0, tr(h′) = 0
and hϕ + ϕh = 0 and

∇ξ = id − η ⊗ ξ + h′. (3)

All the above preliminaries can be seen in [3, 9, 10, 15].

3. Constant Reeb sectional and ϕ-sectional curvatures

Recall from [27, Section 3] that the Reeb foliation (generated by the Reeb vector field ξ) of an almost
Kenmotsu manifold is conformal if and only if h = 0. From this, our first result is given as follows:

Theorem 3.1. An almost Kenmotsu manifold has constant Reeb sectional curvatures if and only if the Reeb foliation
is conformal.

Proof. On an almost Kenmotsu manifold M, from (3) we obtain

R(X,Y)ξ = η(X)(Y + h′Y) − η(Y)(X + h′X) + (∇Xh′)Y − (∇Yh′)X (4)

for any vector fields X,Y, where the curvature operator R is defined by

R(X,Y) = [∇X,∇Y] − ∇[X,Y].

If the Reeb foliation is conformal, or equivalently, h = 0, from (4) we get

R(X, ξ)ξ = ϕ2X

for any vector field X. By this, we see that all Reeb sectional curvatures of the manifold are −1.
Conversely, suppose that an almost Kenmotsu manifold is of constant Reeb sectional curvatures, say

κ ∈ R. That is,

1(R(X, ξ)ξ,X) = κ(1(X,X) − η2(X))

for any vector field X. By polarization, the above equality is equivalent to

R(X, ξ)ξ = −κϕ2X (5)

for any vector field X. Setting Y = ξ in (4), with the aid of (3), we get

R(X, ξ)ξ = ϕ2X − 2h′X − (∇ξh′)X − h2X,

which is compared with (5) implying

∇ξh′ = (κ + 1)ϕ2
− 2h′ − h2.

As ∇ξϕ = 0 on an almost Kenmotsu manifold (see [17]), we have ∇ξh′ = ∇ξh ◦ϕ, which is used in the above
equality giving ∇ξh ◦ ϕ = (κ + 1)ϕ2

− 2h′ − h2. Applying this to ϕ and using (1), we have

∇ξh = (κ + 1)ϕ − 2h + h2
◦ ϕ.
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Recall that h is a self-adjoint operator on an almost Kenmotsu manifold, and so is ∇ξh. Applying such a
property on the above equality, with the aid of (1), we get

h2 = (κ + 1)ϕ2. (6)

Substituting (6) back into the previous equality we have

∇ξh = −2h.

Taking the covariant derivative of (6) along the Reeb vector field ξ, in view of ∇ξϕ = 0 and κ ∈ R, we obtain
∇ξh ◦ h+ h ◦∇ξh = 0. Now, putting ∇ξh = −2h into the previous equality gives h2 = 0. Since h is self-adjoint,
we have h = 0.

Remark 3.2. There are some contact metric and almost cosymplectic manifolds with constant Reeb sectional curva-
tures on which h , 0 (see [11, 28]). But, by Theorem 3.1, if the Reeb sectional curvatures of an almost Kenmotsu
manifold are the same constant at each point and for any vector field, then h = 0 everywhere. This is much different
from the contact metric and almost cosymplectic cases.

From the proof of Theorem 3.1, we also have

Corollary 3.3. All Reeb sectional curvatures of an almost Kenmotsu manifold with conformal Reeb foliation are −1.

On an almost Kenmotsu manifold of dimension 2n + 1 having constant Reeb sectional curvatures, by
Theorem 3.1, using h = 0 in (4) gives

R(X,Y)ξ = η(X)Y − η(Y)X

for any vector fields X and Y. It follows immediately that Qξ = −2nξ, where Q denotes the Ricci operator
which is defined as the trace of the curvature tensor Q := trace{X→ R(·,X)X}.

Corollary 3.4. On an almost Kenmotsu manifold with constant Reeb sectional curvatures, the Reeb vector field is
an eigenvector field of the Ricci operator.

Naik, Venkatesha and Kumara in [22] obtained the same conclusion of Corollary 3.4 under the constancy
of the Reeb sectional curvatures and local symmetry. Obviously, from our Corollary 3.4, the local symmetry
condition in [22] is redundant.

An almost Kenmotsu manifold M is Kenmotsu if and only if h = 0 and M is CR-integrable, i.e., the
associated almost Kähler structure on ker η is integrable. From this we have

Corollary 3.5. A CR-integrable almost Kenmotsu manifold with constant Reeb sectional curvatures is Kenmotsu.

A Kenmotsu manifold of constant ϕ-sectional curvatures is said to be a Kenmotsu space form and its
curvature tensor is given in [16]. From the following theorem, we see that the conclusion in Corollary 3.5
is still true if the CR-integrability is replaced by constancy of ϕ-sectional curvatures.

Theorem 3.6. On an almost Kenmotsu manifold M having constant Reeb sectional curvatures, M has constant
ϕ-sectional curvatures −1 if and only if M is a Kenmotsu manifold of constant sectional curvature −1.

Proof. First, if an almost Kenmotsu manifold M is of constant Reeb sectional curvatures, from Theorem 3.1
we have h = 0. Let M′ be the maximal integral submanifold of the contact distribution ker η of an almost
Kenmotsu manifold M satisfying h = 0 whose associated metric is 1. According to [17], one sees that M′ is
an almost Kähler manifold whose almost Kähler metric is the restriction of 1 on ker η. Let ∇ and ∇′ be the
Levi-Civita connections of the metric 1 on M and the induced metric on M′, respectively. Then, from (3)
and h = 0 we have

∇X′Y′ = ∇′X′Y
′
− 1(X′,Y′)ξ (7)
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for any vector fields X′,Y′ on M′. Let τ and τ′ be the sectional curvatures of the manifold M and M′,
respectively. Then, from (7) we obtain (see also the proof of [9, Theorem 3]):

τ′(X′,Y′) = τ(X′,Y′) + 1 (8)

for any vector fields X′,Y′ on M′. If the manifold M is of constant ϕ-sectional curvatures −1, then from
(8) we obtain that M′ is of constant holomorphic sectional curvatures zero. From [21, Theorem 2.1], one
sees that M′ is of constant sectional curvature zero. Consequently, by [13, Corollary 1.2], one sees that
the almost Kähler structure on M′ is integrable. This, together with h = 0, implies that the manifold M
is Kenmotsu. For a Kenmotsu manifold of constant ϕ-sectional curvature τ, the curvature tensor of the
manifold is obtained by K. Kenmotsu (see [16]):

R(X,Y)Z =
τ − 3

4
{1(Y,Z)X − 1(X,Z)Y}

+
τ + 1

4
{η(X)η(Z)Y − η(Y)η(Z)X + η(Y)1(X,Z)ξ − η(X)1(Y,Z)ξ

+ 1(X, ϕZ)ϕY − 1(Y, ϕZ)ϕX + 21(X, ϕY)ϕZ}

for any vector fields X,Y,Z. Thus, if τ = −1, using it in the above equality we see that the manifold is of
constant sectional curvature −1.

The converse is easy to check. This completes the proof.

Remark 3.7. It was pointed out in [16, Theorem 13] that if a Kenmotsu manifold is of constantϕ-sectional curvature,
then it is of constant sectional −1. This is much different from the Sasakian and cosymplectic cases.

In view of the above results, the constancy of ϕ-sectional curvatures is a strong condition on an almost
Kenmotsu manifold with h = 0. Next, we study strictly almost Kenmotsu manifolds (which means h , 0
everywhere) having constant ϕ-sectional curvatures. On such manifolds we shall find in the following
statement that the constancy of ϕ-sectional curvatures is much weaker. Therefore, we need some other
assumptions.

An almost Kenmotsu manifold is said to be a h-a-manifold if

∇ξh is a constant multiple of h′. (∗)

Notice that the above condition was widely used in contact metric geometry (see [3–5, 7, 12]) and almost
Kenmotsu geometry (see [30–32]) and it is natural for almost Kenmotsu 3-manifolds (see the first equality
in the proof of Theorem 3.9). The condition (∗) is meaningless for the case h = 0, so in the next theorem we
consider the case h , 0 everywhere.

In general case, let U1 be the maximal open subset of an almost Kenmotsu 3-manifold M on which
h , 0; and letU2 be the maximal open subset on which h = 0. ThenU1 ∪U2 is an open and dense subset
of M and there exists a local orthonormal basis {ξ, e, ϕe} of three smooth unit eigenvectors of h for any
point p ∈ U1 ∪ U2. On U1, we set he = λe and hence hϕe = −λϕe, where λ is assumed to be a positive
eigenfunction of h onU1.

Lemma 3.8 ([8, Lemma 6]). OnU1 we have

∇ξξ = 0, ∇ξe = aϕe, ∇ξϕe = −ae,
∇eξ = e − λϕe, ∇ee = −ξ − bϕe, ∇eϕe = λξ + be,
∇ϕeξ = −λe + ϕe, ∇ϕee = λξ + cϕe, ∇ϕeϕe = −ξ − ce,

(9)

where a, b, c are smooth functions.

Theorem 3.9. On a strictly almost Kenmotsu 3-manifold with (∗) and constantϕ-sectional curvature, the Reeb vector
field is an eigenvector field of the Ricci operator if and only if the manifold is locally isometric to a non-unimodular
Lie group.
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Proof. From Lemma 3.8, on an almost Kenmotsu 3-manifold M with h , 0 we have

∇ξh =
1
λ
ξ(λ)h + 2aϕh.

So by the assumption of the theorem we have ξ(λ) = 0 and a ∈ R. From a direct calculation we have

R(e, ϕe)ϕe = −(2bλ + ϕe(λ))ξ − (1 − λ2 + e(c) + ϕe(b) + b2 + c2)e.

Thus, if the ϕ-sectional curvature of the manifold is a constant, say τ ∈ R, it follows directly that

1 − λ2 + e(c) + ϕe(b) + b2 + c2 + τ = 0.

From Lemma 3.8, in view of ξ(λ) = 0 and a direct calculation, we have

Qξ = −2(λ2 + 1)ξ,

Qe = (τ − λ2
− 1 − 2aλ)e + 2λϕe

and

Qϕe = 2λe + (τ − λ2
− 1 + 2aλ)ϕe,

where the scalar curvature

r = 2(τ − 2λ2
− 2)

and we used the assumption that the Reeb vector field is an eigenvector field of the Ricci operator. Applying
again Lemma 3.8 and the above three equalities, with the aid of a ∈ R, we have

(∇ξQ)ξ = 0,

(∇eQ)e = (λ2
− 1 − τ + 2aλ)ξ + 2(2bλ − (λ + a)e(λ))e + 2(e(λ) + 2abλ)ϕe

and

(∇ϕeQ)ϕe = (λ2
− 1 − τ − 2aλ)ξ + 2(ϕe(λ) − 2acλ)e + 2(2cλ − (λ − a)ϕe(λ))ϕe.

Recall that the following equality is always valid on a Riemannian manifold:

1
2

grad r = divQ. (10)

Taking the inner product of (10) with ξ and using the above three equalities, with the aid of r = 2(τ−2λ2
−2),

we get

τ = λ2
− 1,

and hence λ is a nonzero constant. Taking the inner product of (10) with e and using the previous three
equalities we get

b = ac.

Similarly, taking the inner product of (10) with ϕe and using the previous three equalities we get

c = −ab.

Comparing this with the above equality we obtain b = c = 0. Now, from Lemma 3.8 we have

[ξ, e] = −e + (λ + a)ϕe, [e, ϕe] = 0, [ϕe, ξ] = (a − λ)e + ϕe. (11)
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From this one sees that

trace(adξ) = −2, trace(ade) = 0 and trace(adϕe) = 0.

This means that the unimodular kernel of the Lie algebra generated by {ξ, e, ϕe} is of dimension two. Thus,
from [20], the manifold is locally isometric to a non-unimodular Lie group whose Lie algebra is given by
(11).

Conversely, from Milnor [20], if G is a three-dimensional non-unimodular Lie group, then there exists a
left invariant local orthonormal frame fields {e1, e2, e3} satisfying

[e1, e2] = αe2 + βe3, [e2, e3] = 0, [e1, e3] = γe2 + δe3 (12)

and α+δ = 2, where α, β, γ, δ ∈ R. Let 1 be a Riemannian metric defined on G by 1(ei, e j) = δi j for 1 ≤ i, j ≤ 3.
Let ξ := −e1 and by ηwe mean the dual one-form of ξ. Let ϕ be a (1, 1)-type tensor field defined by ϕ(ξ) = 0,
ϕ(e2) = e3 and ϕ(e3) = −e2. Now, one sees that (G, ϕ, ξ, η, 1) admits a left invariant almost Kenmotsu
structure. For more details regarding the above statements we refer the reader to [10, Theorem 5.2]. The
Levi-Civita connection of the metric 1 is

∇ξξ = 0, ∇e2ξ = αe2 +
1
2

(β + γ)e3, ∇e3ξ =
1
2

(β + γ)e2 + (2 − α)e3,

∇ξe2 =
1
2

(γ − β)e3, ∇e2 e2 = −αξ, ∇e3 e2 = −
1
2

(β + γ)ξ,

∇ξe3 =
1
2

(β − γ)e2, ∇e2 e3 = −
1
2

(β + γ)ξ, ∇e3 e3 = (α − 2)ξ.

From this we have

he2 =
1
2

(β + γ)e2 + (1 − α)e3 and he3 = (1 − α)e2 −
1
2

(β + γ)e3.

So one can check that the following equality is true (see also [32]):

∇ξh = (β − γ)h′.

This means that the the condition (∗) is valid. By a direct calculation we have

Qξ = −2
(
α2
− 2α +

1
4

(β + γ)2 + 2
)
ξ.

This means that the the Reeb vector field is an eigenvector field of the Ricci operator. Moreover, the
ϕ-sectional curvature τ of this almost Kenmotsu structure is

τ = α(α − 2) +
1
4

(β + γ)2
∈ R.

This completes the proof.

As followed from Theorems 3.1 and 3.6, a Kenmotsu 3-manifold has constant ϕ-sectional curvature if
and only if it is of constant sectional curvature −1.

Except for the above left-invariant almost Kenmotsu 3-manifolds on Lie groups, next we show that there
is a type of warped product almost Kenmotsu manifolds having constant ϕ-sectional curvatures.

Example 3.10. Let (N2n, 1′) be a non-Kähler almost Kähler manifold of constant holomorphic sectional curvatures
τ′ , 0 ∈ R (for existence of these manifolds we refer to [29]). The warped product manifold R × f N2n admits an
almost Kenmotsu structure, where f = cet for a nonzero constant c and t is the coordinate of R (see [9, Example 1]).
This almost Kenmotsu structure is non-Kenmotsu (since the CR-integrability is invalid) and the associated tensor
field h = 0. From the proof of Theorem 3.6, such an almost Kenmotsu manifold has constant ϕ-sectional curvature
τ′ − 1.
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