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Abstract. We define a locally convex space E to have the Josefson–Nissenzweig property (JNP) if the identity
map (E′, σ(E′,E)) → (E′, β∗(E′,E)) is not sequentially continuous. By the classical Josefson–Nissenzweig
theorem, every infinite-dimensional Banach space has the JNP. A characterization of locally convex spaces
with the JNP is given. We thoroughly study the JNP in various function spaces. Among other results we
show that for a Tychonoff space X, the function space Cp(X) has the JNP iff there is a weak∗ null-sequence
(µn)n∈ω of finitely supported sign-measures on X with unit norm. However, for every Tychonoff space X,
neither the space B1(X) of Baire-1 functions on X nor the free locally convex space L(X) over X has the JNP.

1. Introduction

All locally convex spaces (lcs for short) are assumed to be Hausdorff and infinite-dimensional, and all
topological spaces are assumed to be infinite and Tychonoff. We denote by E′ the topological dual of an
lcs E. The dual space E′ of E endowed with the weak∗ topology σ(E′,E) and the strong topology β(E′,E)
is denoted by E′w∗ and E′β, respectively. For a bounded subset B ⊆ E and a functional χ ∈ E′, we put
∥χ∥B := sup{|χ(x)| : x ∈ B ∪ {0}}.

Josefson [17] and Nissenzweig [20] proved independently the following theorem (other proofs of this
beautiful result were given by Hagler and Johnson [15] and Bourgain and Diestel [6]).

Theorem 1.1. [Josefson–Nissenzweig] E be a Banach space. Then there is a null sequence {χn}n∈ω in E′w∗ such that
∥χn∥ = 1 for every n ∈ ω.

Therefore the identity map E′w∗ → E′β is not sequentially continuous for every Banach space. Recall that a
function f : X→ Y between topological spaces X and Y is called sequentially continuous if for any convergent
sequence {xn}n∈ω ⊆ X, the sequence { f (xn)}n∈ω converges in Y and limn f (xn) = f (limn xn).

The Josefson–Nissenzweig theorem was extended to Fréchet spaces in [5].

Theorem 1.2. [Bonet–Lindström–Valdivia] For a Fréchet space E, the identity map E′w∗ → E′β is sequentially
continuous if and only if E is a Montel space.
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Another extension of the Josefson–Nissenzweig theorem was provided by Bonet [4] and Lindström and
Schlumprecht [18] who proved that a Fréchet space E is a Schwartz space if and only if every null sequence
in E′w∗ converges uniformly to zero on some zero-neighborhood in E.

Studying the separable quotient problem for Cp-spaces and being motivated by the Josefson–Nissenzweig
theorem, Banakh, Ka̧kol and Śliwa introduced in [3] the Josefson–Nissenzweig property for the space Cp(X)
of continuous real-valued functions on a Tychonoff space X, endowed with the topology of pointwise con-
vergence. Namely, they defined Cp(X) to have the Josefson–Nissenzweig property (JNP) if the dual space
Cp(X)′ of Cp(X) contains a weak∗ null sequence {µn}n∈ω of finitely supported sign-measures on X such that
∥µn∥ := |µn|(X) = 1 for every n ∈ ω. This definition implies that for any Tychonoff space X containing a
non-trivial convergent sequence, the function space Cp(X) has the JNP. Yet, there exists a compact space K
without non-trivial convergent sequences such that the function space Cp(K) has the Josefson–Nissenzweig
property, see Plebanek’s example in [3]. On the other hand, Banakh, Ka̧kol and Śliwa observed in [3] that
the function space Cp(βω) does not have the Josefson–Nissenzweig property.

Denote by C0
p(ω) the subspace of the product Rω consisting of all real-valued functions on the discrete

space ω that tend to zero at infinity. The following characterization of Cp-spaces with the Josefson–
Nissenzweig property is the main result of [3].

Theorem 1.3. [Banakh–Ka̧kol–Śliwa] For a Tychonoff space X, the following conditions are equivalent:
(i) Cp(X) has the Josefson–Nissenzweig property;

(ii) Cp(X) contains a complemented subspace isomorphic to C0
p(ω);

(iii) Cp(X) has a quotient isomorphic to C0
p(ω);

(iv) Cp(X) admits a linear continuous map onto C0
p(ω).

This characterization shows that the Josefson–Nissenzweig property depends only on the locally convex
structure of the space Cp(X) in spite of the fact that its definition involves the norm in the dual space, which
is a kind of an external structure for Cp(X).

The aforementioned results motivate us to define and study the Jossefson–Nissenzweig property in the
class of all locally convex spaces, this is the main goal of the article.

Let E be a locally convex space. Taking into account Theorem 1.2, it is natural to say that E has the
Jossefson–Nissenzweig property if the identity map E′w∗ → E′β is not sequentially continuous. However, such
definition is not fully consistent with the Josefson–Nissenzweig property for Cp-spaces: the identity map
Cp(X)′w∗ → Cp(X)′β is not sequentially continuous for any infinite Tychonoff space X containing a non-trivial
convergent sequence {xn}n∈ω because the strong dual of Cp(X) is feral (see for example [13, Proposition 2.6],
recall that a locally convex space E is called feral if any bounded subset of E is finite-dimensional). Indeed,
the sequence { 1

nδxn }n∈ω, where δx is the Dirac measure at the point x, is trivially w∗-null but it is not β-null
because of ferality. Therefore to give a “right” definition of the Josefson–Nissenzweig property, we should
consider a weaker topology on E′ than the strong topology β(E′,E). A locally convex topology on the dual
E′ which covers both cases described in Theorem 1.2 and Theorem 1.3 is the topology β∗(E′,E) of uniform
convergence on β(E,E′)-bounded subsets of E, defined in [16, 8.4.3.C]. Put E′β∗ :=

(
E′, β∗(E′,E)

)
.

Definition 1.4. A locally convex space E is said to have the Jossefson–Nissenzweig property (briefly, the JNP)
if the identity map E′w∗ → E′β∗ is not sequentially continuous.

Now, if E is a Fréchet space, then β∗(E′,E) = β(E′,E) by Corollary 10.2.2 of [16]. Therefore Theorem 1.2
states that a Fréchet space E has the JNP if and only if E is not a Montel space. In Section 2 we give an
independent proof of Theorem 1.2 in an extended form, see Theorem 2.3. We also consider other important
classes of locally convex spaces. In particular, we prove that for any Tychonoff space X, the space B1(X) of
all Baire one functions on X and the free locally convex space L(X) over X fail to have the JNP. In Theorem
2.5 we give an operator characterization of locally convex spaces with the JNP.

In Section 3 we study function spaces endowed with various natural topologies which have the JNP.
In particular, in Corollary 3.10 we show that a function space Cp(X) has the JNP if and only if it has that
property in the sense of Banakh, Ka̧kol and Śliwa [3] mentioned above.



T. Banakh, S. Gabriyelyan / Filomat 37:8 (2023), 2517–2529 2519

2. The Josefson–Nissenzweig property in some classes of locally convex spaces

All locally convex spaces considered in this paper are over the field F of real or complex numbers.
Let E be a locally convex space. A closed absorbent absolutely convex subset of E is called a barrel. The

polar of a subset A of E is denoted by

A◦ := {χ ∈ E′ : ∥χ∥A ≤ 1}, where ∥χ∥A = sup
{
|χ(x)| : x ∈ A ∪ {0}

}
.

Now we give a more clear and useful description of the topology β∗(E′,E). Recall that we defined a
subset B ⊆ E to be barrel-bounded if for any barrel U ⊆ E there is an n ∈ ω such that B ⊆ nU. It is easy to
see that each finite subset of E is barrel-bounded and each barrel-bounded set in E is bounded. Observe
that a subset of a barrelled space is bounded if and only if it is barrel-bounded. We recall that a locally
convex space E is barrelled if each barrel in E is a neighborhood of zero. A neighborhood base at zero of the
topology β∗(E′,E) on E′ consists of the polars B◦ of barrel-bounded subsets B ⊆ E.

Let E be a locally convex space. The space E with the weak topology σ(E,E′) is denoted by Ew. The
strong second dual space (E′β)

′

β of E will be denoted by E′′. Denote by ψE : E→ E′′ the canonical evaluation
map defined by ψE(x)(χ) := χ(x) for all x ∈ E and χ ∈ E′. Recall that E is called reflexive if ψE is a topological
isomorphism, and E is Montel if it is reflexive and every closed bounded subset of E is compact. We recall
that E has the Shur property if the identity map Ew → E is sequentially continuous. Recall also that E is
called quasi-complete if every closed bounded subset of E is complete.

Theorem 2.1. Let E be a quasi-complete reflexive space whose every separable bounded subset is metrizable. Then E
has the JNP if and only if E is not Montel.

Proof. Recall that each reflexive space is barrelled, see [16, Proposition 11.4.2]. Now we note that β∗(E′,E) =
β(E′,E) by Corollary 10.2.2 of [16].

To prove the “only if” part, suppose for a contradiction that E is Montel. Since the strong dual of a
Montel space is also Montel ([16, Proposition 11.5.4]), the strong dual space E′β is Montel and, by Proposition
2.3 of [10], E′β has the Schur property. As every Montel space is also reflexive, the Schur property exactly
means that the identity map E′w∗ → E′β = E′β∗ is sequentially continuous and hence E does not have the
JNP. This contradiction shows that E is not Montel. To prove the “if” part, assume that E is not Montel.
Then, by Proposition 3.7 of [10], E′ contains a σ(E′,E)-convergent sequence which does not converge in
β(E′,E) = β∗(E′,E). Thus E has the JNP.

Proposition 2.2. Let E be a barrelled space, and let T be a locally convex topology on E compatible with the duality
(E,E′). Then the space E has the JNP if and only if (E,T ) has the JNP.

Proof. Note that (E,T )′ = E′ and hence (E,T )′w∗ = E′w∗ . So to prove the proposition it suffices to show that
also (E,T )′β∗ = E′β∗ . To this end, we shall show that β∗

(
E′, (E,T )

)
= β(E′,E) = β∗(E′,E). It is clear that these

equalities hold true if the spaces E and (E,T ) have the same barrel-bounded sets. Since E is barrelled, a
subset of E is barrel-bounded if and only if it is bounded. As E and (E,T ) have the same bounded sets,
these spaces have the same barrel-bounded sets if we shall show that every bounded subset B of (E,T ) is
barrel-bounded. If U is a barrel in (E,T ), it is also a barrel in E and hence U is a neighborhood of zero in E.
Hence there is n ∈ ω such that B ⊆ nU. Thus B is barrel-bounded.

Below we give an independent proof of Theorem 1.2. Our proof, as well as the proof of Theorem 1.2,
also essentially uses the following result from [18]: a Fréchet space E is reflexive if the identity map E′w∗ → E′β is
sequentially continuous.

Theorem 2.3. For a Fréchet space E, the following assertions are equivalent:

(i) E is not Montel.
(ii) E has the JNP.
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(iii) Ew has the JNP.

Proof. (i)⇒ (ii) Let E be a non-Montel space. Since the Fréchet space E is barelled, E′β = E′β∗ . If the identity
map E′w∗ → E′β = E′β∗ is not sequentially continuous, then E has the JNP by definition. If this map is
sequentially continuous, then, by [18], E is reflexive. Finally, Theorem 2.1 implies that E has the JNP.

(ii) ⇒ (i) Assume that E has the JNP. Then E is not Montel by Theorem 2.1 (recall that every Montel
space is reflexive).

(iii)⇔ (ii) follows from Proposition 2.2.

Now we present a characterization of the JNP in the terms of C0
p(ω)-valued operators. An operator

T : X→ Y between locally convex spaces is β-to-β precompact if for any barrel-bounded set B ⊆ X the image
T(B) is barrel-precompact in Y. Recall that C0

p(ω) denotes the subspace of Fω consisting of functions ω→ F
that tend to zero at infinity. We shall use also the following well known description of precompact subsets
of the Banach space c0, where e′n is the nth coordinate functional of c0.

Proposition 2.4. A subset A of c0 is precompact if and only if lim
n→∞
∥e′n∥A = 0.

Now we are ready to prove an operator characterization of the JNP.

Theorem 2.5. For a locally convex space E over the field F the following conditions are equivalent:

(i) E has the Josefson-Nissenzweig property;
(ii) there exists a continuous operator T : E→ C0

p(ω), which is not β-to-β precompact.

Proof. (i)⇒ (ii) Assume that E has the JNP, and take any null sequence {µn}n∈ω ⊆ E′w∗ that does not converge
to zero in the topology β∗(E′,E). Then there exist a barrel-bounded set B ⊆ E and ε > 0 such that the set
{n ∈ ω : ∥µn∥B > ε} is infinite. Replacing {µn}n∈ω by a suitable subsequence and multiplying it by 1

ε , we
can assume that ∥µn∥B > 1 for every n ∈ ω. The σ(E′,E)-null sequence {µn}n∈ω determines the continuous
operator T : X → C0

p(ω) defined by T(x) := (µn(x))n∈ω. For simplicity of notation, set Y := C0
p(ω). By

Lemma 2.4 of [2], the strong topology β(Y,Y′) on Y is generated by the norm ∥(xn)n∈ω∥ = supn∈ω |xn| (so(
Y, β(Y,Y′)

)
= c0). To see that the set T(B) is not precompact in the norm topology, for every k ∈ ω we can

inductively choose a number nk ∈ ω and a point bk ∈ B such that the following conditions are satisfied:

• |µn(bi)| < 1
2 for any i < k and any n ≥ nk;

• |µnk (bk)| > 1;

(this is possible because limn µn(b) = 0 and ∥µn∥B > 1). Then for any i < k, we have

∥T(bi) − T(bk)∥ ≥ |µnk (bk) − µnk (bi)| > 1 − 1
2 >

1
2 ,

which implies that the sequence {T(bk)}k∈ω has no accumulation point in the Banach space c0, and hence it
cannot be precompact in c0.

(ii)⇒ (i) Assume that E admits a continuous operator T : E→ C0
p(ω) such that T is not β-to-β precompact.

Then for some barrel-bounded set B ⊆ X, the image T(B) is not barrel-precompact in C0
p(ω).

Observe that any barrel B in C0
p(ω) is also a barrel in the Banach space c0, and hence B is a c0-neighborhood

of zero. This implies that a subset A of C0
p(ω) is barrel-bounded (resp. barrel-precompact) if and only if it is

a bounded (resp. precompact) subset in c0. Therefore T(B) is not precompact in c0. By Proposition 2.4 this
means that ∥e′n∥T(B) ̸→ 0. For every n ∈ ω, set χn := e′n ◦ T. Since e′n → 0 in the weak∗ topology of C0

p(ω)′, we
obtain that χn → 0 in the weak∗ topology of E′. Since

∥χn∥B = ∥e′n∥T(B) ̸→ 0 as n→∞,

the sequence {χn}n∈ω does not converge to zero in the topology β∗(E′,E). Thus E has the JNP.
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Recall that a locally convex space E is c0-barrelled if every σ(E′,E)-null sequence is equicontinuous. It is
well known that each Fréchet space is barrelled and each barrelled locally convex space is c0-barrelled.

Theorem 2.6. Let E be a c0-barrelled space such that E = Ew. Then E does not have the JNP.

Proof. It is well known that the space E is a dense linear subspace of FX for some set X (for example, X can
be chosen to be a Hamel basis of E′). Hence we can identify the dual space E′ with the linear space of all
functions µ : X→ Fwhose support supp(µ) := µ−1(F\{0}) is finite.

To see that E does not have the JNP, we have to check that the identity map E′w∗ → E′β∗ is sequentially
continuous. Fix any sequenceM = {µn}n∈ω ⊆ E′ that converges to zero in the topology σ(E′,E). Since E is
c0-barrelled, the sequenceM is equicontinuous, which means thatM ⊆ U◦ for some open neighborhood
U ⊆ E of zero. We can assume that U is of the basic form:

U = { f ∈ E : | f (x)| < ε for all x ∈ F}

for some finite set F ⊆ X and some ε > 0. The inclusionM ⊆ U◦ implies that
⋃
µ∈M supp(µ) ⊆ F, and hence

M is a subset of the finite-dimensional subspace E′F := {µ ∈ E′ : supp(µ) ⊆ F}. Since any finite-dimensional
locally convex space carries a unique locally convex topology, the sequenceM ⊆ E′F converges to zero also
in the topology β∗(E′,E).

A subset B of a topological space X is functionally bounded if for every continuous function f : X → R
the image f (B) is a bounded set in the real line. By [13], for a Tychonoff space X, the function space Cp(X) is
c0-barrelled if and only if every functionally bounded subset of X is finite. Combining this characterization
with Theorem 2.6, we obtain the following assertion.

Proposition 2.7. Let X be a Tychonoff space such that every functionally bounded subset of X is finite. Then the
function space Cp(X) does not have the JNP.

Let X be a Tychonoff space. Let B0(X) := Cp(X), and for every countable ordinal α ≥ 1, let Bα(X) be
the family of all functions f : X → F that are pointwise limits of sequences { fn}n∈ω ⊆

⋃
β<α Bβ(X) in the

Tychonoff product FX. All the spaces Bα(X) are endowed with the topology of pointwise convergence,
inherited from the Tychonoff product FX. The classes Bα(X) of Baire-α functions play an essential role in
Functional Analysis, see for example [7, 21].

Proposition 2.8. For every Tychonoff space X and each nonzero countable ordinal α, the function space Bα(X) does
not have the JNP.

Proof. In [1], we proved that the space Bα(X) is barrelled. Since Bα(X) carries its weak topology, Theorem
2.6 applies.

A locally convex space E is quasibarrelled if and only if the canonical map ψE : E → E′′ is a topological
embedding. The next assertion complements dually Proposition 2.2.

Proposition 2.9. Let (E, τ) be a quasibarrelled space,T be a locally convex topology on E′ compatible with the duality
(E,E′), and let H := (E′,T ). Then:

(i) β∗(H′,H) coincides with the topology τ on E = H′;
(ii) the space H has the JNP if and only if E does not have the Schur property.

Proof. (i) Since H′ = E and σ(H′,H) = σ(E,E′), a subset S of H′ = E is σ(H′,H)-bounded if and only if S is
bounded in E. Therefore a subset U of H is a barrel if and only if U = S◦ for some bounded subset S ⊆ H′.
Hence a subset B of H is barrel-bounded if and only if B is a β(E′,E)-bounded subset of E′ = H. Therefore
the topology β∗(H′,H) on H′ = E is the topology induced on E from E′′. Since E is quasibarrelled, E is a
subspace of E′′. Thus the topology β∗(H′,H) on H′ = E coincides with the original topology τ of the space
E.
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(ii) The JNP of H means that the identity map(
H′, σ(H′,H)

)
=
(
E, σ(E,E′)

)
→

(
H′, β∗(H′,H)

) (i)
= (E, τ)

is not sequentially continuous that, by definition, means that E does not have the Schur property.

Proposition 2.9 can be applied to one of the most important classes of locally convex spaces, namely, the
class of free locally convex spaces introduced by Markov in [19]. Recall that the free locally convex space L(X)
on a Tychonoff space X is a pair consisting of a locally convex space L(X) and a continuous map i : X→ L(X)
such that every continuous map f from X to a locally convex space E gives rise to a unique continuous
operator f̄ : L(X)→ E such that f = f̄ ◦ i. The free locally convex space L(X) always exists and is essentially
unique. We recall also that the set X forms a Hamel basis of L(X) and the map i is a topological embedding.
Various locally convex properties of free locally convex spaces are studied in [11, 12].

From the definition of L(X) it easily follows the well known fact that the dual space L(X)′ of L(X) is
linearly isomorphic to the space C(X). Indeed, the uniqueness of the operator f̄ in the definition of the free
locally convex space (L(X), i) ensures that the operator i′ : L(X)′ → C(X), i′ : µ 7→ µ ◦ i, is bijective and hence
is a required linear isomorphism. Via the pairing (L(X)′,L(X)) = (C(X),L(X)) we note that Cp(X)′w∗ = L(X)w.
Usually the space L(X)w is denoted by Lp(X).

Proposition 2.10. For every Tychonoff space X, the space L(X) does not have the JNP.

Proof. By Corollary 11.7.3 of [16], the space E = Cp(X) is quasibarrelled for every Tychonoff space X. Since
Cp(X) carries its weak topology it is trivially has the Schur property. As we explained above the topology
T of L(X) is compatible with the duality (E,E′). Now (ii) of Proposition 2.9 applies.

If E is a locally convex space, we denote by E′µ =
(
E′, µ(E′,E)

)
the dual space E′ of E endowed with the

Mackey topology µ(E′,E) of the dual pair (E,E′). The following statement is dual to Theorem 2.3.

Theorem 2.11. For a Fréchet space E, the following assertions are equivalent:

(i) E does not have the Schur property.
(ii)
(
E′, µ(E′,E)

)
has the JNP.

(iii)
(
E′, σ(E′,E)

)
has the JNP.

(iv) E has a bounded non-precompact sequence which does not have a subsequence equivalent to the unit basis of ℓ1.

Proof. The clauses (i)–(iii) are equivalent by Proposition 2.9, and Theorem 1.2 of [10] exactly states that (i)
and (iv) are equivalent.

We finish this section with the following “hereditary” result.

Proposition 2.12. Let an lcs E have the JNP. Then:

(i) for every lcs L, the product E × L has the JNP;
(ii) closed subspaces and Hausdorff quotients of an lcs with the JNP may fail to have the JNP;

(iii) every lcs H is topologically isomorphic to a closed subspace of an lcs with the JNP.

Proof. (i) It is easy to check that (E × L)′β∗ = E′β∗ × L′β∗ . Since also (E × L)′w∗ = E′w∗ × L′w∗ the JNP of E implies
that the identity map (E × L)′w∗ → (E × L)′β∗ is not continuous. Thus E × L has the JNP.

(ii) Let E be a Banach space and L be a Fréchet–Montel space. Then L is topologically isomorphic to a
closed subspace and to a Hausdorff quotient of E × L, and the assertion follows from (i) and Theorem 2.3.

(iii) If Z is a Banach space, then H embeds into Z × H. It remains to note that, by (i) and the Josefson–
Nissenzweig theorem 1.1, Z ×H has the JNP.
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3. The Josefson–Nissenzweig property in function spaces

Let X be a set, and let f : X → F be a function to the field F of real or complex numbers. For a subset
A ⊆ X and ε > 0, let

∥ f ∥A := sup({| f (x)| : x ∈ A} ∪ {0}) ∈ [0,∞].

Observe that a subset A ⊆ X is functionally bounded iff ∥ f ∥A < ∞ for any continuous function f : X → R. A
Tychonoff space X is pseudocompact if X is functionally bounded in X.

For a subfamily F ⊆ FX, we put

[A; ε]F := { f ∈ F : ∥ f ∥A ≤ ε}.

If the family F is clear from the context, then we shall omit the subscript F and write [A; ε] instead of
[A; ε]F . A family S of subsets of X is directed if for any sets A,B ∈ S the union A ∪ B is contained in some
set C ∈ S.

For a Tychonoff space X, we denote by C(X) the space of all continuous functions f : X → F on X and
let Cb(X) be the subspace of C(X) consisting of all bounded functions.

A Tychonoff space X is defined to be a µ-space if every functionally bounded subset of X has compact
closure in X. We denote by υX, µX and βX the Hewitt completion (=realcompactification), the Diedonné
completion and the Stone-Čech compactification of X, respectively. It is known ([9, 8.5.8]) that X ⊆ µX ⊆
υX ⊆ βX. Also it is known that all paracompact spaces and all realcompact spaces are Diedonné complete
and each Diedonné complete space is a µ-space, see [9, 8.5.13]. On the other hand, each pseudocompact
µ-space is compact. By a compactification of a Tychonoff space X we understand any compact Hausdorff
space γX containing X as a dense subspace.

For a Tychonoff space X, the space C(X) carries many important locally convex topologies, i.e., topologies
turning C(X) into a locally convex space. For a locally convex topology T on C(X), we denote by CT (X)
the space C(X) endowed with the topology T . The subspace Cb(X) of CT (X) with the induced topology is
denoted by Cb

T
(X).

Each directed family S of functionally bounded sets in a Tychonoff space X induces a locally convex
topology TS on C(X) whose neighborhood base at zero consists of the sets [S; ε] where S ∈ S and ε > 0. The
topology TS is called the topology of uniform convergence on sets of the family S. The topology TS is Hausdorff
if and only if the union

⋃
S is dense in X.

If S is the family of all finite, compact or functionally bounded subsets of X, respectively, then the
topology TS will be denoted by Tp, Tk or Tb, and the function space CTS (X) will be denoted by Cp(X), Ck(X)
or Cb(X), respectively.

Although the topologies Tp, Tk and Tb are the most famous and well-studied there are other natural
and important topologies on C(X), for example, the topology Ts defined by the family of all finite unions of
convergent sequences in X and the topology Tc on C(X) defined by the family of all countable functionally-
bounded subsets of X. It is clear that

Tp ⊆ Ts ⊆ Tc ⊆ Tb and Tp ⊆ Ts ⊆ Tk ⊆ Tb.

In [2] we consider the following locally convex topologies on function spaces. Let X be a dense subspace of
a Tychonoff space M (for example, M = µX, υX or βX). Then the union

⋃
S of the directed family S of all

finite (resp. compact, functionally bounded) subsets of X is dense in M. Therefore S defines the Hausdorff
locally convex vector topology TS on the space C(M) denoted by Tp↾X (resp. Tk↾X, Tb↾X).

Numerous results concerning the JNP obtained below show that if a function space CT (X) has the JNP,
then so do the spaces Cτ(X), CT (µX), Cb

T
(X), Cb

τ(X), Cb
T

(µX), and C(βX), where τ is a locally convex topology
on C(X), stronger than T . These facts and the aforementioned discussion motivate the following definition
which is very useful to unify all proofs.

Definition 3.1. Let I : E → L be an injective continuous operator between locally convex spaces E and L.
We shall say that a locally convex space H is between the spaces E and L if there exist injective continuous
operators TE : E→ H and TL : H→ L such that TL ◦ TE = I.
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For example, for any Tychonoff space X the function space Ck(X) is between Cb(X) and Cp(X). Also
for any compactification γX of X, the space Cb

k(X) is between the spaces C(γX) and Ck(X) linked by the
restriction operator I : C(γX)→ Ck(X), I : f 7→ f↾X.

The support supp(µ) of a linear functional µ : C(X)→ F is the set of all points x ∈ X such that for every
neighborhood Ox ⊆ X of x there exists a function f ∈ C(X) such that µ( f ) , 0 and supp( f ) ⊆ Ox where
supp( f ) = {x ∈ X : f (x) , 0}. The definition of supp(µ) implies that it is a closed subset of X. We shall use
the following assertions.

Lemma 3.2. Let X be a Tychonoff space, and letS be a directed family of functionally bounded sets in X. If a functional
µ ∈ C(X)′ is continuous in the topology TS, then supp(µ) ⊆ S for some set S ∈ S such that [S; 0] ⊆ µ−1(0).

Proof. By the continuity of µ in the topologyTS, there exist a set S ⊆ S and ε > 0 such that µ([S; ε]) ⊆ (−1, 1).
Then

[S; 0] =
⋂
n∈N

[S; εn ] ⊆
⋂
n∈ω

µ−1
(
(− 1

n ,
1
n )
)
= µ−1(0).

It remains to prove that supp(µ) ⊆ S. In the opposite case we can find a function f ∈ C(X) such that µ( f ) , 0
and supp( f ) ∩ S = ∅. On the other hand, f ∈ [S; 0] ⊆ µ−1(0) and hence µ( f ) = 0. This contradiction shows
that supp(µ) ⊆ S.

Lemma 3.3. Let X be a Tychonoff space. If a linear functional µ ∈ C(X)′ is continuous in the topology Tk, then
supp(µ) is a compact subset of X and [supp(µ); 0] ⊆ µ−1(0).

Proof. By the continuity of µ in the topology Tk, there exist a compact subset K ⊆ X and ε > 0 such that
µ([K; ε]) ⊆ (−1, 1). By (the proof of) Lemma 3.2, supp(µ) ⊆ K and [K; 0] ⊆ µ−1(0). Since supp(µ) is a closed
subset of X, supp(µ) is closed in K and hence supp(µ) is a compact subset of X.

It remains to prove that [supp(µ); 0] ⊆ µ−1(0). To derive a contradiction, assume that [supp(µ); 0] ⊈ µ−1(0)
and hence there exists a continuous function f ∈ C(X) such that µ( f ) , 0 but f↾supp(µ) = 0. Multiplying f by
a suitable constant, we can assume that µ( f ) = 2. Embed the space X into its Stone–Čech compactification
βX. By the Tietze–Urysohn Theorem, there exists a continuous function f̄ ∈ C(βX) such that f̄↾K = f↾K. It
follows from [K; 0] ⊆ µ−1(0) that µ( f ) = µ( f̄↾X).

Consider the open neighborhood U = {x ∈ βX : | f̄ (x)| < ε} of supp(µ) in βX. By the definition of support
supp(µ), every point x ∈ K \ U has an open neighborhood Ox ⊆ βX such that µ(1) = 0 for any function
1 ∈ C(X) with supp(1) ⊆ Ox ∩ X. Observe that U ∪

⋃
x∈K\U Ox is an open neighborhood of the compact

set K in βX. So there is a finite family F ⊆ K\U such that K ⊆ U ∪
⋃

x∈F Ox. Let 1βX denote the constant
function βX → {1}. By the paracompactness of the compact space βX, there is a finite family {λ0, . . . , λn}

of continuous functions λi : βX → [0, 1] such that
∑n

i=0 λi = 1βX and for every i ∈ {0, . . . ,n}, the support
supp(λi) is contained in some set V ∈ {βX \ K,U} ∪ {Ox : x ∈ F}. We lose no generality assuming that

j⋃
i=0

supp(λi) ⊆ βX \ K,
s⋃

i= j+1

supp(λi) ⊆ U,

and for every i ∈ {s + 1, . . . ,n} there exists xi ∈ F such that supp(λi) ⊆ Oxi .
Replacing the functions, λ0, . . . , λ j by the single function

∑ j
i=0 λi and the functions λ j+1, . . . , λs by the

single function
∑s

j+1 λi, we can assume that j = 0 and s = 1. In this simplified case we have supp(λ0) ⊆ βX\K,
supp(λ1) ⊆ U and supp(λi) ⊆ Oxi for all i ∈ {2, . . . ,n}.

For every i ∈ n, consider the function fi ∈ C(βX), defined by fi(x) := λi(x) · f̄ (x) for x ∈ βX. Then
f̄ =
∑

i∈n fi.
It follows from supp( f0) ⊆ supp(λ0) ⊆ βX \ K and [K; 0] ⊆ µ−1(0) that f0↾K = 0 and µ( f0↾X) = 0.
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Since K ⊆ U, f̄ (U) ⊆ (−ε, ε) and supp( f1) ⊆ supp(λ1) ⊆ U, the function f1↾X = ( f̄ ·λ1)↾X belongs to the
set [K; ε] ⊆ µ−1

(
(−1, 1)

)
and hence∣∣∣µ( f1↾X

)∣∣∣ ≤ 1. (1)

For every i ∈ {2, . . . ,n}, we have supp( fi) ⊆ supp(λi) ⊆ Oxi and hence µ( fi↾X) = 0 by the choice of Oxi .
Now we see that

2 = µ( f ) = µ( f̄↾X) = µ( f0↾X) + µ( f1↾X) + µ
( n∑

i=2

fi↾X

)
= µ( f1↾X),

which contradicts (1).

Lemma 3.4. Let X be a Tychonoff space. For any bounded subsetM ⊆ (Cb(X))′w∗ the set supp(M) =
⋃
µ∈M supp(µ)

is functionally bounded in X.

Proof. To derive a contradiction, assume that the set supp(M) is not functionally bounded in X. Then
there exists a continuous function φ : X → [0,∞) such that the set φ(supp(M)) is not bounded in the real
line. Inductively we shall choose sequences of functionals {µn}n∈ω ⊆ M, points {xn}n∈ω ⊆ supp(M) and
functionally bounded sets {Sn}n∈ω in X such that for every n ∈ ω the following conditions are satisfied:

1. φ(xn) > 3 + supφ(
⋃

i<n Si);
2. xn ∈ supp(µn) ⊆ Sn and [Sn; 0] ⊆ µ−1(0).

To start the inductive construction, choose any point x0 ∈ supp(M) with φ(x0) > 3 and find a functional
µ0 ∈ M such that x0 ∈ supp(µ0). By Lemma 3.2, there exists a functionally bounded set S0 ⊆ X such that
supp(µ0) ⊆ S0 and [S0, 0] ⊆ µ−1

0 (0). Assume that for some n ∈Nwe have chosen functionally bounded sets
S0, . . . ,Sn−1 in X satisfying the inductive conditions (1) and (2). As the set φ(supp(M)) is unbounded and
the set φ(

⋃
i<n Si) is bounded in the real line, we can find a point xn ∈ supp(M) satisfying the inductive

condition (1). Since xn ∈ supp(M) =
⋃
µ∈M supp(µ) we can find a functionalµn ∈ M such that xn ∈ supp(µn).

By Lemma 3.2, for the functional µn ∈ Cb(X)′ there exists a functionally bounded set Sn ⊆ X satisfying the
inductive condition (2). This completes the inductive step.

Now, for every n ∈ ω, consider the open neighborhood On = {x ∈ X : |φ(x) − φ(xn)| < 1} of the point
xn. The inductive condition (1) ensures that φ(xn) − φ(xi) > 3 for any i < n, which implies that the family
(On)n∈ω is discrete in X. Moreover, Om ∩ Sn = ∅ for any numbers n < m.

For every n ∈ ω, the definition of the support supp(µn) ∋ xn implies the existence of a function fn ∈ C(X)
such that µn( fn) , 0 and supp( fn) ⊆ On. Multiplying fn by a suitable constant, we can assume that

µn( fn) > n +
∑
i<n

|µn( fi)|. (2)

Since the family (On)n∈ω is discrete, so is the family (supp( fn))n∈ω. Consequently, the function f =
∑

n∈ω fn :
X→ F is well-defined and continuous.

For every numbers n < m we have supp( fm) ∩ Sn ⊆ Om ∩ Sn = ∅ and hence f↾Sn =
∑

i≤n fi↾Sn . Since
[Sn; 0] ⊆ µ−1

n (0), we have
µn( f ) =

∑
i≤n

µn( fi) ≥ µn( fn) −
∑
i<n

|µn( fi)| > n

according to (2). Consequently, sup{|µ( f )| : µ ∈ M} ≥ supn∈ω |µn( f )| = ∞, which contradicts the bounded-
ness of the setM in C(X)′w∗ .

The next theorem shows that the JNP has some “hereditary” type property with respect to finer locally
convex topologies.
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Theorem 3.5. Let γX be a compactification of a Tychonoff space X. Let Y be an lcs between Ck(X) and Cp(X), and
let Z be an lcs between C(γX) and Y. If the lcs Y has the JNP, then Z has the JNP, too.

Proof. We can identify the lcs Y with the function space C(X) endowed with a suitable locally convex
topology T such that Tp ⊆ T ⊆ Tk. Since Z is between C(γX) and Y, there exist injective operators
Tγ : C(γX)→ Z and T : Z→ Y such that T ◦ Tγ( f ) = f↾X for every f ∈ C(γX).

Assuming that the lcs Y has the JNP, find a null sequence {µn}n∈ω ⊆ Y′w∗ such that infn∈ω ∥µn∥B > ε for
some barrel-bounded set B ⊆ Y and some ε > 0. For every n ∈ ω, choose an element fn ∈ B such that
|µn( fn)| > ε. Since T ⊆ Tk ⊆ Tb, the linear functionals µn ∈ Y′ are continuous in the topology Tb. The
continuity of the identity operator Cb(X)→ Y implies that the sequence (µn)n∈ω is weak∗ null in Cb(X)′. By
Lemma 3.4, the set S =

⋃
n∈ω supp(µn) is functionally bounded in X. It follows that the set [S; 1] is a barrel

in Cp(X) and hence in Y. Since B is barrel-bounded in Y, there exists r ∈N such that B ⊆ r · [S; 1].
For every n ∈ ω, the functional µn is continuous in the topologyT ⊆ Tk and hence, by Lemma 3.3, µn has

compact support supp(µn). By the Tietze–Urysohn Theorem, there exists a continuous function 1n ∈ C(γX)
such that 1n↾supp(µn) = fn↾supp(µn) and ∥1n∥γX = ∥ fn∥supp(µn) and hence, by Lemma 3.3, µn

(
1n↾X

)
= µn( fn).

The definition of the number r guarantees that

sup
n∈ω
∥1n∥γX = sup

n∈ω
∥ fn∥supp(µn) ≤ sup

f∈B
∥ f ∥S ≤ r.

This means that the set {1n}n∈ω is bounded in the Banach space C(γX). Since Banach spaces are barrelled,
{1n}n∈ω is barrel-bounded in C(γX). Now the continuity of the operator Tγ : C(γX) → Z ensures that the
set D = {Tγ(1n)}n∈ω is barrel-bounded in Z. For every n ∈ ω, consider the linear continuous functional
λn = µn ◦ T ∈ Z′. The convergence µn → 0 in Y′w∗ implies the convergence λn → 0 in Z′w∗ .

Finally, observe that for every n ∈ ω we have

λn(Tγ(1n)) = µn(T ◦ Tγ(1n)) = µn(1n↾X) = µn( fn)

and hence ∥λn∥D ≥ |µn( fn)| > ε and ∥λn∥D ̸→ 0, witnessing that the lcs Z has the JNP.

Applying Theorem 3.5 to γX = βX, Y = Cp(X) and Z = Ck(X) we obtain

Corollary 3.6. Let X be a Tychonoff space such that the space Cp(X) has the JNP. Then also the space Ck(X) has the
JNP. Moreover, the weak∗ null sequence {µn}n∈ω in the dual space Ck(X)′ witnessing the JNP of Ck(X) can be chosen
such that all µn have finite support.

Corollary 3.7. Let X be a Tychonoff space such that the space Ck(X) has the JNP. Then:

(i) the spaces Ck(µX), Ck(υX), C(βX) and Cb(X) have the JNP;
(ii) the spaces Cb

k(µX), Cb
k(υX), and Cb

b(X) have the JNP.

Moreover, the weak∗ null sequence {µn}n∈ω in their dual spaces witnessing the JNP can be chosen such that all µn have
compact support contained in X.

Proof. The corollary follows from Theorem 3.5 applied to γX = βX, Y = Ck(X) and Z is one of the spaces
from (i) and (ii).

If E is a locally convex space, we denote by Eβ the space E endowed with the locally convex topology
β(E,E′) whose neighborhood base at zero consists of barrels. To characterize function spaces Cp(X) and
Ck(X) having the JNP we shall use the following proposition.

Proposition 3.8. Let X be a Tychonoff space, and letT be a locally convex topology on C(X) such thatTp ⊆ T ⊆ Tk.
Then:

(i) for every barrel D in CT (X), there are a functionally bounded subset A of X and ε > 0 such that [A; ε] ⊆ D.
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(ii) a subset F ⊆ CT (X) is barrel-bounded if and only if for any functionally bounded set A ⊆ X, the set
F (A) :=

⋃
f∈F f (A) is bounded in F;

(iii)
(
CT (X)

)
β
= Cb(X).

Proof. (i) Let υX be the realcompactification of X, and let R : Ck(υX)→ Ck(X), R : f 7→ f↾X, be the restriction
operator. Since every continuous function f : X → F admits a unique continuous extension to υX, the
operator R is bijective. As υX is a µ-space, the Nachbin–Shirota theorem [16, 11.7.5] implies that Ck(υX) is
barrelled. The continuity of the operators Ck(υX)→ Ck(X)→ CT (X) implies that for every barrel D in CT (X),
the preimage R−1(D) is a barrel in Ck(υX). Since the space Ck(υX) is barrelled, R−1(D) is a neighborhood
of zero. So, there exists a compact subset K ⊆ υX and ε > 0 such that [K; ε] ⊆ R−1(D). It follows that the
set A = K ∩ X is functionally bounded and closed in X. It is clear that the set [A; ε] is a barrel in Cp(X)
and hence also in CT (X). We claim that [A; ε] ⊆ D. Indeed, suppose for a contradiction that [A; ε] \ D
contains some function f . Since the barrel D is closed in T and the identity operator Ck(X) → CT (X) is
continuous, there exist δ > 0 and a compact set C ⊆ X such that ( f + [C; δ])∩D = ∅. If follows from f ∈ [A; ε]
that f [C ∩ K] = f [C ∩ A] ⊆ [−ε, ε]. By the Tietze–Urysohn Theorem, there exists a continuous function
1 : K→ [−ε, ε] such that 1(x) = f (x) for every x ∈ K ∩ C. Define the function φ : C ∪ K→ F by the formula

φ(x) =

 f (x) if x ∈ C;
1(x) if x ∈ K;

and observe that it is well-defined and continuous. By the Tietze–Urysohn Theorem, the function φ can be
extended to a bounded continuous functionψ : υX→ F. Thenψ↾X ∈ ( f + [C; δ])∩R([K; ε]) ⊆ ( f + [C; δ])∩D,
which contradicts the choice of C and δ. This contradiction shows that B ⊆ D.

(ii) To prove the “only if” part, take a functionally bounded set A ⊆ X and observe that the set [A; 1] is a
barrel in Cp(X), and hence B is a barrel in CT (X). If F is barrel-bounded, then F ⊆ n · [A; 1] for some n ∈ ω,
which implies F (A) ⊆ {z ∈ F : |z| ≤ n}.

To prove the “if” part, assume that for any functionally bounded set A ⊆ X, the setF (A) is bounded inF.
To see that F is barrel-bounded in CT (X), fix any barrel D ⊆ CT (X). By (i), there are a functionally bounded
set Z in X and ε > 0 such that [Z; ε] ⊆ D. It is clear that [Z; ε] is a barrel in Cp(X) and hence in CT (X).
By our assumption, the set F (Z) is bounded, and hence the real number r = sup{| f (x)| : f ∈ F , x ∈ Z} is
well-defined. It is clear that F ⊆ [Z; r] = r

ε [Z; ε] ⊆ r
εD. Thus F is barrel-bounded.

(iii) Set E = CT (X). By (i), the family B of sets of the form [A; ε], where A is functionally bounded in X
and ε > 0, is a neighborhood base at zero of the topology β(E,E′). On the other hand, by the definition of
Tb, the family B is also a neighborhood base at zero of the topology Tb. Thus β(E,E′) = Tb, as desired.

In the following theorem for a Tychonoff space X and a functional µ ∈ C(X)′ we put

∥µ∥ := ∥µ∥[X;1].

Theorem 3.9. X be a Tychonoff space, and let T be a locally convex topology on C(X) such that Tp ⊆ T ⊆ Tk. The
function space CT (X) has the JNP if and only if there is a null sequence {µn}n∈ω ⊆ CT (X)′w∗ such that ∥µn∥ = 1 for
every n ∈ ω.

Proof. To prove the “if” part, assume that the weak dual E′w∗ of the locally convex space E = CT (X) contains
a null sequence {µn}n∈ω ⊆ E′w∗ such that ∥µn∥ = 1 for all n ∈ ω. To see that E has the Josefson–Nissenzweig
property, it suffices to show that the sequence {µn}n∈ω diverges in the topology β∗(E′,E).

Since the null sequenceM = {µn}n∈ω ⊆ E′w∗ is bounded, we can apply Lemma 3.4 and conclude that the
set supp(M) is functionally bounded in X. By (ii) of Proposition 3.8, the set [X; 1] is barrel-bounded in E.
Since ∥µn∥[X;1] = ∥µn∥ = 1 ̸→ 0, the sequence {µn}n∈ω does not converge to zero in the topology β∗(E′,E).
Thus the identity map E′w∗ → E′β∗ is not sequentially continuous and E = CT (X) has the JNP.
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To prove the “only if” part, assume that the space E = CT (X) has the Josefson–Nissenzweig property
and hence there is a sequenceM = {µn} ⊆ E′w∗ that converges to zero in the topology σ(E′,E) but not in the
topology β∗(E′,E). By Lemma 3.4, the set supp(M) is functionally bounded in X.

We claim that ∥µn∥ ̸→ 0. Indeed, suppose for a contradiction that limn ∥µn∥ = 0. In this case we shall
prove that the sequence {µn}n∈ω converges to zero in the topology β∗(E′,E). Given any barrel-bounded set
B ⊆ E, we need to find an n ∈ ω such that ∥µk∥B ≤ 1 for every k ≥ n. By (ii) of Proposition 3.8, the number

r := sup{| f (x)| : f ∈ B, x ∈ supp(M)}

is finite. Since ∥µn∥ → 0, there exists a number m ∈ ω such that r · ∥µk∥ ≤ 1 for all k ≥ m. Fix k ≥ m and
choose an arbitrary f ∈ B. Since T ⊆ Tk, the functional µk has compact support supp(µn), according to
Lemma 3.3. By the Tietze–Urysohn Theorem, there is an extension f̂ ∈ C(X) of the function f↾supp(µn) such
that ∥ f̂ ∥X = ∥ f ∥supp(µn) ≤ r. By Lemma 3.3, we have µk( f̂ ) = µk( f ). Therefore

|µk( f )| =
∣∣∣µk( f̂ )

∣∣∣ ≤ ∥µk∥ · ∥ f̂ ∥X ≤ ∥µk∥ · r ≤ 1,

which implies that ∥µk∥B ≤ 1. Therefore, the sequence {µk}k∈ω converges to zero in the topology β∗(E′,E),
which is a desired contradiction.

By the claim, there is ε > 0 such that the set Ω = {n ∈ ω : ∥µn∥ ≥ ε} is infinite. Write Ω as Ω = {nk}k∈ω,
where n0 < n1 < · · · , and observe that the sequence {ηk}k∈ω of functionals

ηk :=
µnk

∥µnk∥

converges to zero in the topology σ(E′,E) and consists of functionals of norm 1.

The next corollary of Theorem 3.9 and Lemma 3.2 shows that for Cp-spaces the Josefson–Nissenzweig
property introduced in Definition 1.4 is equivalent to the JNP introduced in [3].

Corollary 3.10. For a Tychonoff space X, the function space Cp(X) has the JNP if and only if there is a null sequence
{µn}n∈ω ⊆ Cp(X)′w∗ that consists of finitely supported sign-measures of norm 1.

Applying Theorem 3.9 and Lemma 3.2 to the compact-open topology T = Tk on C(X), we obtain

Corollary 3.11. For a Tychonoff space X, the function space Ck(X) has the JNP if and only if there is a null sequence
{µn}n∈ω ⊆ Ck(X)′w∗ that consists of compactly supported sign-measures of norm 1.

Corollary 3.12. If a Tychonoff space X contains a non-trivial convergent sequence, then the function space Cp(X)
has the JNP.

Proof. Let {xn}n∈ω ⊆ X be a non-trivial sequence that converges to some point x ∈ X \ {xn}n∈ω. For every
n ∈ ω, consider the functional χn ∈ Cp(X)′ defined by χn( f ) = 1

2

(
f (xn) − f (x)

)
for any f ∈ Cp(X). It follows

that {χn}n∈ω is a null sequence in Cp(X)′w∗ with ∥χn∥ = 1 for all n ∈ ω. By Corollary 3.10, the function space
Cp(X) has the JNP.

For function spaces over pseudocompact spaces, the JNP has even better “hereditary” properties.

Theorem 3.13. Let X be a pseudocompact space, D be a dense subset in X, and let τ and T be two locally convex
topologies on C(X) such that Tp↾D ⊆ τ ⊆ T ⊆ Tb. If the space Cτ(X) has JNP, then also the space CT (X) has the JNP.

Proof. If the lcs Cτ(X) has the JNP, then there exists a null sequence {µn}n∈ω ⊆ Cτ(X)′w∗ such that ∥µn∥B ̸→ 0
for some barrel-bounded set B ⊆ Cτ(X). Since τ ⊆ T , the functionals µn areT -continuous and hence {µn}n∈ω
is a null sequence in CT (X)′w∗ . We claim that the set B remains barrel-bounded in CT (X). Indeed, since
T ⊆ Tb, any barrel A in CT (X) is a barrel in Cb(X). Since X is pseudocompact, Cb(X) is a Banach space whose
topology is generated by the norm ∥ · ∥X. Since Banach spaces are barrelled, the barrel A is a neighborhood
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of zero and hence [X; ε] ⊆ A for some ε > 0. As D is dense in X, the barrel [X; ε] is a barrel in Cp↾D(X) and
hence a barrel in Cτ(X). Since the set B is barrel-bounded in Cτ(X), there exists a positive real number r
such that B ⊆ r · [X; ε] ⊆ r · A, which means that B is barrel-bounded in CT (X). Since ∥µn∥B ̸→ 0, the locally
convex space CT (X) has the JNP.

Recall that a Tychonoff space X is called an F-space if every functionally open set A in X is C∗-embedded
in the sense that every bounded continuous function f : A → R has a continuous extension f̄ : X → R.
For numerous equivalent conditions for a Tychonoff space X being an F-space, see [14, 14.25]. In particular,
the Stone–Čech compactification βΓ of a discrete space Γ is a compact F-space. The following example
generalizes the example given in (2) after Definition 1 of [3] with a more detailed proof.

Example 3.14. For any infinite compact F-space K, the function space Cp(K) does not have the JNP.

Proof. Let S = {µn}n∈ω ⊆ Cp(K)′w∗ be a null sequence. Then S is a weak∗ null sequence in the dual space M(K)
of all regular Borel sign-measures on K of the Banach space C(K). By Corollary 4.5.9 of [8], the Banach space
C(K) has the Grothendieck property, which implies that µn → 0 in the weak topology of the Banach space
M(K). But since S contains only sign-measures with finite support, it is contained in the Banach subspace
ℓ1(K) of M(K). Now the Schur property of ℓ1(K) implies that S converges to zero in ℓ1(K), i.e. ∥µn∥ → 0. By
Corollary 3.10, the function space Cp(K) does not have the JNP.

By Corollary 3.6, if the space Cp(X) has the JNP, then also the space Ck(X) has the JNP. However, the
converse is not true in general as Example 3.14 shows. So the JNP is not equivalent for Cp(X) and Ck(X).
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