Filomat 37:8 (2023), 2531–2538 https://doi.org/10.2298/FIL2308531L

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

The quasi-Rothberger property of Pixley–Roy hyperspaces

Zuquan Li^a

^aSchool of Mathematics, Hangzhou Normal University, Hangzhou 311121, P.R.China

Abstract. Let PR(X) denote the hyperspace of non-empty finite subsets of a topological space *X* with Pixley–Roy topology. In this paper, we investigate the quasi-Rothberger property in hyperspace PR(X). We prove that for a space *X*, the followings are equivalent:

(1) PR(*X*) is quasi-Rothberger;

(2) *X* satisfies $S_1(\prod_{rcf-h}, \prod_{wrcf-h})$;

(3) X is separable and each co-finite subset of X satisfies $S_1(\prod_{pcf-h}, \prod_{wpcf-h})$;

(4) X is separable and PR(Y) is quasi-Rothberger for each co-finite subset Y of X.

We also characterize the quasi-Menger property and the quasi-Hurewicz property of PR(X). These answer the questions posted in [8].

1. Introduction

Throughout the paper all spaces are assumed to be infinite and T_1 . N denotes the set of natural numbers. ω is the first infinite ordinal.

Let PR(X) be the family of all non-empty finite subsets of a space *X*. For $A \in PR(X)$ and an open set $U \subset X$, let

 $[A, U] = \{B \in PR(X) : A \subset B \subset U\}.$

The family

 $\{[A, U] : A \in PR(X), U \text{ is open in } X\}$

is a base of PR(*X*) for the *Pixley–Roy topology* [9] on PR(*X*).

We recall two very known concepts defined in a general form in 1996 by M. Scheepers [10]. Let \mathcal{A} and \mathcal{B} be collections of sets of an infinite set *X*.

 $S_1(\mathcal{A}, \mathcal{B})$ denotes the selection principle: For each sequence $\{A_n : n \in \mathbb{N}\}$ of elements of \mathcal{A} there is a sequence $\{b_n : n \in \mathbb{N}\}$ such that $b_n \in A_n$ for each $n \in \mathbb{N}$ and $\{b_n : n \in \mathbb{N}\}$ is an element of \mathcal{B} .

 $S_{fin}(\mathcal{A}, \mathcal{B})$ denotes the selection principle: For each sequence $\{A_n : n \in \mathbb{N}\}$ of elements of \mathcal{A} there is a sequence $\{B_n : n \in \mathbb{N}\}$ such that B_n is a finite subset of A_n for each $n \in \mathbb{N}$ and $\bigcup_{n \in \mathbb{N}} B_n \in \mathcal{B}$.

G. Di Maio and Lj.D.R. Kočinac [3] introduced the following quasi-version of selection principles stronger than the weakly-version of selection principles:

²⁰²⁰ Mathematics Subject Classification. Primary 54B20; Secondary 54D20

Keywords. Pixley–Roy topology, selection principle, quasi-Rothberger, quasi-Menger, quasi-Hurewicz, *rcf*-network on a hit-family, weakly *rcf*-network on a hit-family

Received: 29 March 2022; Revised: 10 August 2022; Accepted: 11 August 2022

Communicated by Ljubiša D.R. Kočinac

Email address: hzsdlzq@sina.com (Zuquan Li)

Definition 1.1. ([3, Definition 2.1]) 1. A space *X* is said to be quasi-Rothberger if for each closed set $F \subset X$ and each sequence $\{\mathcal{U}_n : n \in \mathbb{N}\}$ of covers of *F* by sets open in *X* there is a $U_n \in \mathcal{U}_n$ for each $n \in \mathbb{N}$ such that $F \subset \bigcup_{n \in \mathbb{N}} \overline{U_n}$.

2. A space X is said to be quasi-Menger if for each closed set $F \subset X$ and each sequence $\{\mathcal{U}_n : n \in \mathbb{N}\}$ of covers of *F* by sets open in X there is a finite subset $\mathcal{V}_n \subset \mathcal{U}_n$ for each $n \in \mathbb{N}$ such that $F \subset \bigcup_{n \in \mathbb{N}} \bigcup \mathcal{V}_n$.

3. A space *X* is said to be quasi-Hurewicz if for each closed set $F \subset X$ and each sequence $\{\mathcal{U}_n : n \in \mathbb{N}\}$ of covers of *F* by sets open in *X* there is a finite subset $\mathcal{V}_n \subset \mathcal{U}_n$ for each $n \in \mathbb{N}$ such that for every nonempty open *U* of *X* with $U \cap F \neq \emptyset$, $U \cap (\bigcup \mathcal{V}_n) \neq \emptyset$ for all but finitely many $n \in \mathbb{N}$.

We have the following implications:

Rothberger \Rightarrow quasi-Rothberger \Rightarrow weakly Rothberger

There are very few papers which deal with the quasi-Rothberger (resp., quasi-Menger and quasi-Hurewicz) properties. G. Di Maio and Lj.D.R. K0činac [3] pointed that a space *X* is quasi-Rothberger (resp., quasi-Menger and quasi-Hurewicz) if and only if every closed subspace of *X* is weakly Rothberger (resp., weakly Menger and weakly Hurewicz) and proved that every hereditarily separable space *X* is quasi-Rothberger [3, Proposition 2.2]. Z. Li studied the quasi-Rothberger property of linearly ordered spaces [6].

In [8], we investigated the weakly Rothberger property of PR(X) and posted following questions:

Question 1.2. ([8, Question 2.22]) For a space X, find the collections \mathcal{A} and \mathcal{B} of subsets of X such that:

PR(X) is quasi-Rothberger if and only if X satisfies $S_1(\mathcal{A}, \mathcal{B})$; PR(X) is quasi-Menger if and only if X satisfies $S_{fin}(\mathcal{A}, \mathcal{B})$;

PR(X) is quasi-Hurewicz if and only if X satisfies $S_{fin}(\mathcal{A}, \mathcal{B})$.

This paper is organized as follows. In the second section, we obtained some interesting properties of quasi-Rothberger property of PR(X). In the third section, we introduced a new kind of hit-and-miss networks to study the quasi-version of selection principles of PR(X) and characterize the quasi-Rothberger property, the quasi-Menger property and the quasi-Hurewicz property of PR(X).

2. Some properties of PR(X) being quasi-Rothberger

Recall that a space *X* is said to be *quasi-Lindelöf* [1] if for each closed subset *F* of *X* and each cover \mathcal{U} of *F* by sets open in *X*, there is a countable set $\{U_n : n \in \mathbb{N}\} \subset \mathcal{U}$ such that $F \subset \bigcup \{U_n : n \in \mathbb{N}\}$.

Theorem 2.1. *If PR*(X) *is quasi-Lindelöf, then* X *is hereditarily separable.*

Proof. Suppose that *F* is a subset of *X*, then $\mathcal{F} = \{\{x\} : x \in F\}$ is a closed subset of PR(*X*). Let $\mathcal{U} = \{[\{x\}, X] : x \in F\}$, then \mathcal{U} is a cover of \mathcal{F} open in PR(*X*). There exists $[\{x_n\}, X] \in \mathcal{U}$ for each $n \in \mathbb{N}$ such that

$$\mathcal{F} \subset \overline{\bigcup_{n \in \mathbb{N}} [\{x_n\}, X]}$$

We prove that $\{x_n : n \in \mathbb{N}\}$ is a dense subset of *F*. In fact, for each open subset *V* of *X* with $F \cap V \neq \emptyset$, pick $y \in F \cap V$, then $[\{y\}, V]$ is a neighbourhood of $\{y\} \in \mathcal{F}$. There exists $k \in \mathbb{N}$ such that $[\{y\}, V] \cap [\{x_k\}, X] \neq \emptyset$. Thus $x_k \in V$; moreover, *F* is separable. So *X* is hereditarily separable. \Box

Since the quasi-Rothberger property is stronger than the quasi-Lindelöf property, we can prove the following corollary.

Corollary 2.2. *If PR(X) is quasi-Rothberger, then X is hereditarily separable.*

An open cover \mathcal{U} of a space *X* is called an ω -cover if every finite subset of *X* is contained in a member of \mathcal{U} and *X* is not a member of \mathcal{U} . We write Ω the collection of ω -covers of *X* and *O* the collection of open covers of *X*.

Theorem 2.3. If PR(X) is quasi-Rothberger, then each subset of X satisfies $S_1(\Omega, \Omega)$.

Proof. Let *F* be a subset of *X* and $\{\mathcal{U}_n : n \in \mathbb{N}\}$ a sequence of ω -covers of *F* sets open in *F*. Put

$$\mathcal{F} = [F]^{<\omega} \setminus \{\emptyset\}$$
, where $[F]^{<\omega} = \{A \subset F : A \text{ is finite}\}.$

Then \mathcal{F} is a closed subset of PR(X). Indeed, if $D \notin \mathcal{F}$, then there exists $x \in D$ such that $x \notin A$ for any $A \in \mathcal{F}$. Note that $[\{x\}, X]$ is a neighbourhood of D in PR(X) and $[\{x\}, X] \cap \mathcal{F} = \emptyset$. For every $A \in \mathcal{F}$, take $U_A^{(n)} \in \mathcal{U}_n$ such that

$$A \subset U_A^{(n)}$$
, where $U_A^{(n)}$ is open in F.

Let $V_A^{(n)}$ be open in *X* such that $U_A^{(n)} = F \cap V_A^{(n)}$. Then

$$\mathcal{W}_n = \{ [A, V_A^{(n)}] : A \in \mathcal{F} \}$$

is an open cover of \mathcal{F} in PR(X). Since PR(X) is quasi-Rothberger, there exists $[A_n, V_{A_n}^{(n)}] \in \mathcal{W}_n$ such that

$$\mathcal{F} \subset \overline{\bigcup_{n \in \mathbb{N}} [A_n, V_{A_n}^{(n)}]}.$$

Then $U_{A_n}^{(n)} \in \mathcal{U}_n$ with $U_{A_n}^{(n)} = F \cap V_{A_n}^{(n)}$ and $\{U_{A_n}^{(n)} : n \in \mathbb{N}\}$ is an ω -cover of F. In fact, for each $A \in \mathcal{F}$, [A, X] is a neighbourhood of A in PR(X). There exists $k \in \mathbb{N}$ such that $[A, X] \cap [A_k, V_{A_k}^{(n)}] \neq \emptyset$. Thus $A \subset V_{A_k}^{(k)}$. Hence $A \subset F \cap V_{A_k}^{(k)} = U_{A_k}^{(k)}$. So F satisfies $S_1(\Omega, \Omega)$. \Box

Example 2.4. The real line \mathbb{R} does not satisfy $S_1(O, O)$ [2, Proposition 2.3]. So \mathbb{R} does not satisfy $S_1(\Omega, \Omega)$ since $S_1(\Omega, \Omega)$ is stronger than $S_1(O, O)$ [5, Fig 2]. By Theorem 2.3, PR(\mathbb{R}) is not quasi-Rothberger. So the converse of Corollary 2.2 is not true since \mathbb{R} is hereditarily separable.

Theorem 2.5. *If* PR(X) *is quasi-Rothberger, then* X *is quasi-Rothberger.*

Proof. From Corollary 2.2, X is hereditarily separable. By Proposition 2.2 in [3], X is quasi-Rothberger.

Example 2.6. By the following two examples, we shall show that the converse of Theorem 2.5 is not true. 1. From Proposition 2.2 of [3], the real line \mathbb{R} is quasi-Rothberger since it is hereditarily separable. But

 $PR(\mathbb{R})$ is not quasi-Rothberger by Example 2.4.

2. Denote τ the usual topology of \mathbb{R} . Put

$$\mathcal{B} = \{ V - A : V \in \tau, A \subset \mathbb{R}, |A| \le \omega \}.$$

The collection \mathcal{B} is a base for a new topology τ' on \mathbb{R} . From Example 1.5 of [6], (\mathbb{R}, τ') is quasi-Rothberger. By Example 14.7 in [4], (\mathbb{R}, τ') is not separable; moreover, (\mathbb{R}, τ') is not hereditarily separable. By Corollary 2.2, PR[(\mathbb{R}, τ')] is not quasi-Rothberger.

3. Main results

Recall that a subset *U* of *X* is called a *co-finite subset of X* [7] if $0 < |X - U| < \omega$. A family \mathcal{U} consisting of co-finite subsets of *X* is said to be a co-finite family of *X*. Let $Y \subsetneq X$. A subset *U* of *Y* is called a *co-finite subset of Y* [7] if $0 \le |Y - U| < \omega$. A family \mathcal{U} consisting of co-finite subsets of *Y* is called a co-finite family of *Y*.

A subset pair (*C*, *F*) of *X* is called a *closed-miss-finite pair of X* [7], if *C* is closed and *F* is non-empty finite with $C \cap F = \emptyset$. A *closed-miss-finite family of X* is a family of closed-miss-finite pairs of *X*.

First, we define hit-families of X to study closed sets in PR(X).

Definition 3.1. A co-finite family \mathcal{U} of a space *X* is said to be a hit-family of *X*, for any co-finite subset *W* of *X* with $W \notin \mathcal{U}$, there exists a closed-miss-finite pair (*C*, *F*) of *X* with $W^c \cap C = \emptyset$ and $W \cap F = \emptyset$ such that $U^c \cap C \neq \emptyset$ or $U \cap F \neq \emptyset$ for each $U \in \mathcal{U}$.

Lemma 3.2. Let \mathcal{U} be a co-finite family of space X, then \mathcal{U} is a hit-family of X if and only if \mathcal{U}^c is closed in PR(X).

Proof. Let \mathcal{U} be a hit-family of X and $A \in PR(X) - \mathcal{U}^c$, then $A^c \notin \mathcal{U}$. There exists a closed-miss-finite pair (C, F) of X with $A \cap C = \emptyset$ and $A^c \cap F = \emptyset$ such that

$$U^c \cap C \neq \emptyset$$
 or $U \cap F \neq \emptyset$ for any $U \in \mathcal{U}$.

Thus [F, X - C] is a neighbourhood of *A* such that $[F, X - C] \cap \mathcal{U}^c = \emptyset$. So \mathcal{U}^c is closed in PR(*X*).

On the other hand, let \mathcal{U}^c be a closed subset of PR(X) and W be a co-finite subset of X with $W \notin \mathcal{U}$, then $W^c \notin \mathcal{U}^c$. There exists a neighbourhood [A, V] of W^c such that $[A, V] \cap \mathcal{U}^c = \emptyset$. Then (X - V, A) is a closed-miss-finite pair of X with

 $W^{c} \cap (X - V) = \emptyset$ and $W \cap A = \emptyset$.

From $[A, V] \cap \mathcal{U}^c = \emptyset$, it is easy to see that

$$U^{c} \cap (X - V) \neq \emptyset$$
 or $U \cap A \neq \emptyset$ for any $U \in \mathcal{U}$.

So \mathcal{U} is a hit-family of *X*. \Box

Next, in order to give characterizations of the quasi-Rothberger property of PR(X), we introduce *rcf*-networks of X on a hit-family and weakly *rcf*-networks of X on a hit-family.

Definition 3.3. Let \mathcal{U} be a hit-family of *X*. A closed-miss-finite family ξ of *X* is said to be an *rcf*-network of *X* on \mathcal{U} , if for each $U \in \mathcal{U}$, there exists $(C, F) \in \xi$ such that $C \subset U$ and $F \cap U = \emptyset$.

Definition 3.4. Let \mathcal{U} be a hit-family of X. A closed-miss-finite family ξ of X is said to be a weakly *rcf*-network of X on \mathcal{U} , if for each $U \in \mathcal{U}$ and $C \subset U$ closed in X, there exists $(C', F') \in \xi$ such that $C' \subset U$ and $F' \cap C = \emptyset$.

For a space *X*, we write

- Π_{rcf-h} : the collection of *rcf*-networks of X on a hit-family of X;
- Π_{wrcf-h} : the collection of weakly *rcf*-networks of X on a hit-family of X.

Theorem 3.5. For a space *X*, the following are equivalent:

- (1) PR(X) is quasi-Rothberger;
- (2) X satisfies $S_1(\prod_{rcf-h}, \prod_{wrcf-h})$.

Proof. (1) \Rightarrow (2) Let \mathcal{U} be a hit-family of X and $\{\xi_n : n \in \mathbb{N}\}$ a sequence of *rcf*-networks on \mathcal{U} . By Lemma 3.2, \mathcal{U}^c is closed in PR(X). For each $n \in \mathbb{N}$, let

$$\mathcal{U}_n = \{ [F, X - C] : (C, F) \in \xi_n \}.$$

Then { $\mathcal{U}_n : n \in \mathbb{N}$ } is a sequence of *rcf*-covers of \mathcal{U}^c in PR(X). In fact, for each $U^c \in \mathcal{U}^c$, there exists $(C, F) \in \xi_n$ such that $C \subset U$ and $F \cap U = \emptyset$. Thus $U^c \in [F, X - C] \in \mathcal{U}_n$. By (1), for each $n \in \mathbb{N}$, take $[F_n, X - C_n] \in \mathcal{U}_n$ such that

$$\mathcal{U}^c \subset \overline{\bigcup_{n \in \mathbb{N}} [F_n, X - C_n]}$$

Hence $(C_n, F_n) \in \xi_n$ and $\{(C_n, F_n) : n \in \mathbb{N}\}$ is a weakly *rcf*-network on \mathcal{U} . Indeed, let $U \in \mathcal{U}$ and $C \subset U$ closed in *X*, then $[U^c, X - C]$ is a neighbourhood of U^c . There is some $k \in \mathbb{N}$ such that

$$[U^c, X-C] \cap [F_k, X-C_k] \neq \emptyset.$$

So $C_k \subset U$ and $F_k \cap C = \emptyset$.

 $(2) \Rightarrow (1)$ Let \mathcal{F} be a closed subset of PR(X), then \mathcal{F}^c is a hit-family of X by Lemma 3.2. Let $\{\mathcal{U}_n : n \in \mathbb{N}\}$ be a sequence of covers of \mathcal{F} open sets in PR(X). Suppose now that each \mathcal{U}_n is a family of basic open sets. Then

$$\xi_n = \{ (X - U, A) : [A, U] \in \mathcal{U}_n \}$$

is an *rcf*-network on \mathcal{F}^c . For each $n \in \mathbb{N}$, there exists $(X - U_n, A_n) \in \xi_n$ such that $\{(X - U_n, A_n) : n \in \mathbb{N}\}$ is a weakly *rcf*-network on \mathcal{F}^c . Hence each $[A_n, U_n] \in \mathcal{U}_n$ and $\mathcal{F} \subset \bigcup_{n \in \mathbb{N}} [A_n, U_n]$. \Box

Finally, in order to study the characteristic of $S_1(\prod_{rcf-h}, \prod_{wrcf-h})$, we define a hit-family of a subset *Y* of *X*, *pcf*-networks of *Y* on a hit-family and weakly *pcf*-networks of *Y* on a hit-family.

Let *Y* be a subset of *X*. A pair (*C*, *F*) of subsets of *Y* is called a *proper closed-miss-finite pair of Y*, if *C* is closed in *Y* and *F* is non-empty finite in *Y* with $C \cap F = \emptyset$. A family consisting of proper closed-miss-finite pairs of *Y* is said to be a *proper closed-miss-finite family of Y*.

Definition 3.6. Let *Y* be a subset of *X*. A co-finite family \mathcal{U} of *Y* is said to be a hit-family of *Y*, if *Y* is not a member of \mathcal{U} and for any co-finite *W* of *Y* with $W \neq Y$ and $W \notin \mathcal{U}$, there exists a proper closed-miss-finite pair (*C*, *F*) of *Y* with $W^c \cap C = \emptyset$ and $W \cap F = \emptyset$ such that $U^c \cap C \neq \emptyset$ or $U \cap F \neq \emptyset$ for each $U \in \mathcal{U}$.

Definition 3.7. Let *Y* be a subset of *X* and \mathcal{U} a hit-family of *Y*. A proper closed-miss-finite family ξ of *Y* is called a *pcf*-network of *Y* on \mathcal{U} , if for each $U \in \mathcal{U}$, there exists $(C, F) \in \xi$ such that $C \subset U$ and $F \cap U = \emptyset$.

Definition 3.8. Let *Y* be a subset of *X* and \mathcal{U} a hit-family of *Y*. A proper closed-miss-finite family ξ of *Y* is called a weakly *pcf*-network of *Y* on \mathcal{U} , if for each $U \in \mathcal{U}$ and $C \subset U$ closed in *Y*, there exists $(C', F') \in \xi$ such that $C' \subset U$ and $F' \cap C = \emptyset$.

For a space *X*, We write

- Π_{pcf-h} : the collection of *pcf*-networks of $Y \subset X$ on a hit-family of *Y*;
- Π_{wpcf-h} : the collection of weakly *pcf*-networks of $Y \subset X$ on a hit-family of Y.

Theorem 3.9. For a space *X*, the following are equivalent:

- (1) X satisfies $S_1(\prod_{rcf-h}, \prod_{wrcf-h});$
- (2) *X* is separable and each co-finite subset of *X* satisfies $S_1(\prod_{pcf-h}, \prod_{wpcf-h})$.

Proof. (1) \Rightarrow (2) By Corollary 2.2 and Theorem 3.5, X is hereditarily separable and, hence, X is separable. Let Y be a co-finite subset of X and \mathcal{U} a hit-family of Y, then

$$\mathcal{V} = \{ U \cup Y^c : U \in \mathcal{U} \}$$

is a hit-family of *X*. In fact, let *W* be a co-finite subset of *X* with $W \notin \mathcal{V}$.

Case 1. If $W = V \cup Y^c$, where *V* is a co-finite subset of *Y* with $V \neq Y$, then $V \notin U$. There exists a proper closed-miss-finite pair (C_0 , F_0) of *Y* with $V^c \cap C_0 = \emptyset$ and $V \cap F_0 = \emptyset$ such that

$$U^c \cap C_0 \neq \emptyset$$
 or $U \cap F_0 \neq \emptyset$ for any $U \in \mathcal{U}$.

Let $C_1 = \overline{C_0}$ and $F_1 = F_0$, where $\overline{C_0}$ is the closure of C_0 in X. Then $C_1 - C_0 \subset Y^c$ since $C_1 \cap Y = C_0$. Thus (C_1, F_1) is a closed-miss-finite pair of X with $W^c \cap C_1 = \emptyset$ and $W \cap F_1 = \emptyset$ such that

$$(U \cup Y^c)^c \cap C_1 = (U^c \cap Y) \cap C_1 = U^c \cap C_0 \neq \emptyset$$

or $(U \cup Y^c) \cap F_1 = U \cap F_0 \neq \emptyset$ for any $U \cup Y^c \in \mathcal{V}$.

Case 2. If $W = V \cup B$, where V is a co-finite subset of Y and $B \subset Y^c$ with $Y^c - B \neq \emptyset$. Take $C_1 = B$, $F_1 = Y^c - B$. Then (C_1, F_1) is closed-miss-finite pair of X with $W^c \cap C_1 = \emptyset$ and $W \cap F_1 = \emptyset$ such that

$$(U \cup Y^c) \cap F_1 = Y^c \cap F_1 = F_1 \neq \emptyset$$

for any $U \cup Y^c \in \mathcal{V}$.

Let $\{\xi_n : n \in \mathbb{N}\}$ be a sequence of *pcf*-networks of *Y* on \mathcal{U} . For each $n \in \mathbb{N}$, let

$$\zeta_n = \{(\overline{C}, A) : (C, A) \in \xi_n, \overline{C} \text{ is the closure of } C \text{ in } X\}$$

Then each ζ_n is a closed-miss-finite *rcf*-network of X on \mathcal{V} . Indeed, for every $U \cup Y^c \in \mathcal{V}$, there exists $(C, A) \in \xi_n$ such that $C \subset U$ and $A \cap U = \emptyset$. Thus

$$\overline{C} \subset U \cup Y^c$$
 and $A \cap (U \cup Y^c) = \emptyset$

since $\overline{C} \cap Y = C$ and $A \subset Y$. By (1), there exists $(\overline{C_n}, A_n) \in \zeta_n$ for $n \in \mathbb{N}$ such that $\{(\overline{C_n}, A_n) : n \in \mathbb{N}\}$ is a weakly *rcf*-network of *X* on \mathcal{V} . We show that $\{(C_n, A_n) : n \in \mathbb{N}\}$ is a weakly *pcf*-network of *Y* on \mathcal{U} . Let $U \in \mathcal{U}$ and $C \subset U$ closed in *Y*, then $\overline{C} \subset U \cup Y^c \in \mathcal{V}$. There exists some $(\overline{C_k}, A_k) \in \{(\overline{C_n}, A_n) : n \in \mathbb{N}\}$ such that

$$\overline{C_k} \subset U \cup Y^c$$
 and $A_k \cap \overline{C} = \emptyset$

Thus $C_k = \overline{C_k} \cap Y \subset (U \cup Y^c) \cap Y = U$ and $A_k \cap C = \emptyset$.

(2)⇒(1) Let \mathcal{U} be a hit-family of X and $\{\xi_n : n \in \mathbb{N}\}$ a sequence of *rcf*-networks of X on \mathcal{U} . Denote $\{x_m : m \in \mathbb{N}\}$ the countable dense subset of X and put $\mathbb{N}' = \{m \in \mathbb{N} : x_m \in \bigcup \mathcal{U}\}$. For each $m \in \mathbb{N}'$, let

$$\mathcal{U}_m = \{ U \cap (X - \{x_m\}) : U \in \mathcal{U} \text{ and } x_m \in U \}.$$

Then \mathcal{U}_m is a hit-family of $X - \{x_m\}$. Indeed, let W be a co-finite subset of $X - \{x_m\}$ with $W \neq X - \{x_m\}$ and $W \notin \mathcal{U}_m$. Denote

$$W = X - A - \{x_m\}$$
 with $x_m \notin A$.

Then X - A is a co-finite subset of X and $X - A \notin \mathcal{U}$. There exists a closed-miss-finite pair (C_0, F_0) of X with $(X - A)^c \cap C_0 = \emptyset$ and $(X - A) \cap F_0 = \emptyset$, i.e., $C_0 \subset X - A$ and $F_0 \subset A$ such that

$$U^c \cap C_0 \neq \emptyset$$
 or $U \cap F_0 \neq \emptyset$ for each $U \in \mathcal{U}$.

Let $C_1 = C_0 \cap (X - \{x_m\})$ and $F_1 = F_0$, then (C_1, F_1) is a proper closed-miss-finite pair of $X - \{x_m\}$ with $W^c \cap C_1 = \emptyset$ and $W \cap F_1 = \emptyset$. For each $U \cap (X - \{x_m\}) \in \mathcal{U}_m$, since $x_m \in U$, we have

$$[U \cap (X - \{x_m\})]^c \cap C_1 = (U^c \cup \{x_m\}) \cap [C_0 \cap (X - \{x_m\})] = U^c \cap C_0 \neq \emptyset$$

or

$$[U \cap (X - \{x_m\})] \cap F_1 = (U \cap A) \cap F_0 = U \cap F_0 \neq \emptyset.$$

Rearrange $\{\xi_n : n \in \mathbb{N}\}$ as $\{\xi_{n,m} : n, m \in \mathbb{N}\}$. For each $m \in \mathbb{N}$, let

$$\zeta_{n,m} = \{ (C \cap (X - \{x_m\}), A) : (C, A) \in \xi_{n,m} \text{ and } x_m \notin A \}.$$

Then $\{\zeta_{n,m} : n \in \mathbb{N}\}$ is a sequence of *pcf*-networks of $X - \{x_m\}$ on \mathcal{U}_m . In fact, for each $U \cap (X - \{x_m\}) \in \mathcal{U}_m$, there exists $(C, A) \in \xi_{n,m}$ such that

$$C \subset U$$
 and $A \cap U = \emptyset$.

Since $x_m \in U$, we have $x_m \notin A$. Then $(C \cap (X - \{x_m\}), A) \in \zeta_{n,m}$ such that

$$C \cap (X - \{x_m\}) \subset U \cap (X - \{x_m\}) \text{ and } A \cap [U \cap (X - \{x_m\})] = \emptyset.$$

By (2), there exists $(C_{n,m} \cap (X - \{x_m\}), A_{n,m}) \in \zeta_{n,m}$ such that $\{(C_{n,m} \cap (X - \{x_m\}), A_{n,m}) : n \in \mathbb{N}\}$ is a weakly *pcf*-network of $X - \{x_m\}$ on \mathcal{U}_m .

We have $(C_{n,m}, A_{n,m}) \in \xi_{n,m}$ for each $n, m \in \mathbb{N}$. We want to prove that $\{(C_{n,m}, A_{n,m}) : n \in \mathbb{N}, m \in \mathbb{N}'\}$ is a weakly *rcf*-network of *X* on \mathcal{U} . Indeed, let $U \in \mathcal{U}$ and $C \subset U$ closed in *X*. Take $x_m \in U$, then $C \cap (X - \{x_m\})$ is closed in $X - \{x_m\}$ and

$$C \cap (X - \{x_m\}) \subset U \cap (X - \{x_m\}) \in \mathcal{U}_m.$$

Since $\{(C_{n,m} \cap (X - \{x_m\}), A_{n,m}) : n \in \mathbb{N}\}$ is a weakly *pcf*-network of $X - \{x_m\}$ on \mathcal{U}_m , there exists

 $(C_{k,m} \cap (X - \{x_m\}), A_{k,m}) \in \{(C_{n,m} \cap (X - \{x_m\}), A_{n,m}) : n \in \mathbb{N}\}$

such that

$$C_{k,m} \cap (X - \{x_m\}) \subset U \cap (X - \{x_m\}) \text{ and } A_{k,m} \cap [C \cap (X - \{x_m\})] = \emptyset.$$

Thus $C_{k,m} \subset U$ and $A_{k,m} \cap C = \emptyset$ since $x_m \in U$ and $x_m \notin A_{k,m}$. So *X* satisfies $S_1(\prod_{r \in f}, \prod_{wr \in f})$. \Box

Theorem 3.10. For each co-finite subset Y of X, the following are equivalent:

(1) Y satisfies $S_1(\prod_{pcf-h}, \prod_{wpcf-h});$

(2) PR(Y) is quasi-Rothberger.

Proof. Note that a co-finite family \mathcal{U} of Y is a hit-family of Y if and only if $\mathcal{U}^c = \{Y - U : U \in \mathcal{U}\}$ is closed in PR(Y). It is easy to show that a proper closed-miss-finite family ξ of Y is a *pcf*-network of Y on a hit-family \mathcal{U} of Y if and only if $\mathcal{V} = \{[F, Y - C] : (C, F) \in \xi\}$ is an *rcf*-cover of \mathcal{U}^c in PR(Y). So the proof parallels that of Theorem 3.5. \Box

The following corollary is a consequence of Theorems 3.5, 3.9 and 3.10.

Corollary 3.11. *Let X be a space, the following are equivalent:*

(1) PR(X) is quasi-Rothberger;

(2) X satisfies $S_1(\prod_{rcf-h}, \prod_{wrcf-h});$

(3) *X* is separable and each co-finite subset of *X* satisfies $S_1(\prod_{pcf-h}, \prod_{wpcf-h})$;

(4) X is separable and PR(Y) is quasi-Rothberger for each co-finite subset Y of X.

Similarly to the proofs of Theorems 3.5, 3.9 and 3.10, we have the following characterizations of PR(X) being quasi-Menger.

Theorem 3.12. For a space *X*, the following are equivalent:

(1) PR(X) is quasi-Menger;

(2) X satisfies $S_{fin}(\prod_{rcf-h}, \prod_{wrcf-h});$

(3) X is separable and each co-finite subset of X satisfies $S_{fin}(\Pi_{pcf-h}, \Pi_{wpcf-h});$

(4) *X* is separable and PR(*Y*) is quasi-Menger for each co-finite subset *Y* of *X*.

Definition 3.13. Let \mathcal{U} be a hit-family of X. A partitioned closed-miss-finite family $\xi = \bigcup_{n \in \mathbb{N}} \xi_n$ of X is said to be a weakly *p*-*rcf*-network of X on \mathcal{U} , if for each $U \in \mathcal{U}$ and subset $C \subset U$ closed in X, there exists $(C_n, F_n) \in \xi_n$ such that $C_n \subset U$ and $F_n \cap C = \emptyset$ for all but finitely many $n \in \mathbb{N}$.

Definition 3.14. Let *Y* be a subset of *X* and \mathcal{U} a hit-family of *Y*. A partitioned proper closed-miss-finite family $\xi = \bigcup_{n \in \mathbb{N}} \xi_n$ of *Y* is said to be a weakly *p*-*cf*-network on \mathcal{U} , if for each $U \in \mathcal{U}$ and subset $C \subset U$ closed in *Y*, there exists $(C_n, F_n) \in \xi_n$ such that $C_n \subset U$ and $F_n \cap C = \emptyset$ for all but finitely many $n \in \mathbb{N}$.

For a space *X*, we write

- Π_{wrcf-h}^{p} : the collection of weakly *p*-*rcf*-networks of *X* on a hit-family of *X*;
- Π^p_{wcf-h} : the collection of weakly *p*-*cf*-networks of $Y \subsetneq X$ on a hit-family of *Y*.

In a similar way, one can prove

Theorem 3.15. *For a space X, the following are equivalent:*

(1) PR(X) is quasi-Hurewicz;

(2) X satisfies $S_{fin}(\prod_{rcf-h}, \prod_{wrcf-h}^{p});$

(3) *X* is separable and each co-finite subset of *X* satisfies $S_{\text{fin}}(\Pi_{pcf-h}, \Pi_{wcf-h}^{\nu})$;

(4) X is separable and PR(Y) is quasi-Hurewicz for each co-finite subset Y of X.

References

- [1] A.V. Arhangel'skii, A generic theorem in the theory of cardinal invariants of topological spaces, Comment. Math. Univ. Carol. 36 (1995) 303-325.
- [2] M. Bonanzinga, F. Cammaroto, B.A. Pansera, B. Tsaban, Diagonalizations of dense families, Topol. Appl. 165 (2014) 12–25.
- [3] G. Di Maio, Lj.D.R. Kočinac, A note on quasi–Menger and similar spaces, Topol. Appl. 179 (2015) 148–155.
 [4] E.K. van Douwen, The integer and topology, in: K. Kunen, J. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, pp. 395–490.
- [5] W. Just, A.W. Miller, M. Scheepers, P.J. Szeptycki, Combinatorics of open covers (II), Topology Appl. 73 (1996) 241–266.
- [6] Z. Li, The quasi-Rothberger property of linearly ordered spaces, Topol. Appl. 247 (2018) 41–49.
- [7] Z. Li, Remarks on R-separability of Pixley-Roy hyperspaces, Filomat. 36:3 (2022) 881-886.
- [8] Z. Li, The weakly Rothberger property of Pixley–Roy hyperspaces, Filomat, in press.
- [9] C. Pixley, P. Roy, Uncompletable Moore spaces, in: Proc. Auburn Topology Conf. (1969) 75-85.
- [10] M. Scheepers, Combinatorics of open covers I: Ramsey theory, Topology Appl. 69 (1996) 31-62.