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Abstract. The paper initially studies both the s-T3-separation and the semi-T3-separation axiom of Khalim-
sky (K- for brevity) topological spaces. To do this work, first we investigate some properties of semi-open
and semi-closed sets with respect to the operations of union or intersection and further, a homeomor-
phism, and a semi-homeomorphism. Next, we study various properties of semi-topological properties of
K-topological spaces such as simple K-paths. Finally, after introducing the notion of a semi-T3-separation
axiom which is broader than the s-T3-separation axiom, we find a sufficient and necessary condition for a
Khalimsky topological space to satisfy the semi-T3-separation axiom.

1. Introduction

Many concepts were involved in the study of semi-separation axioms such as a regular open set [45], a
semi-open set [32], a preopen set [37], an s-regular set [41, 42], a semi-regular set [10, 36], an irreducible set
[12], and so on. Furthermore, based on these notions, various types of mappings were also considered such
as an irresolute map [8], a semi-continuous mapping [43], a semi-homeomorphism (a bijection such that
the images of semi-open sets are semi-open and inverses of semi-open sets are semi-open) [8], and so forth.
Since both separation axioms and semi-separation axioms play important roles in modern mathematics
including pure and applied topology such as digital topology, computational topology, the paper studies
some properties of Khalimsky topological spaces with respect to the semi-separation axioms.

The notion of a T 1
2
-space with the property that every g-closed set is closed was developed in [32]. Then,

it turns out that a topological space X is T 1
2

if and only if each singleton of X is open or closed. Thus it
is obvious that a T 1

2
-space places between a T0- and a T1-space [11]. Meanwhile, the semi-Ti-separation

axioms, where i = 0, 1
2 , 1, etc (see [4, 6, 32, 34]), are obtained from the definitions of the typical Ti-separation

axioms after replacing open sets by semi-open ones. Hence the axiom Ti obviously implies the axiom
semi-Ti [9] but the converse does not hold. Moreover, in the case of i ≤ j, the semi-T j-separation axiom
implies the semi-Ti-separation axiom, and the converse does not hold [5]. Besides, it turns out that a space X
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satisfies the semi-T 1
2

separation axiom if for each point p of X at least one of the sets {p}, X \ {p} is semi-open,
i.e., for each point p of X the set {p} is either semi-open or semi-closed [9–11, 33]. As usual, a property
is called a semi-topological property if the property is preserved by a semi-homeomorphism. Then the
semi-Ti-separation axioms, i ∈ {0, 1

2 , 1, 2}, are proved to have the semi-topological property [34].
Now we may pose the following query. In the case of i ⪇ j, what relationship exists between Ti-space

and a semi-T j-space ? In relation to this query, the recent paper [5] proved that a semi-T 1
2
-space does not

imply a T0-space (see Example 2.7 of [5]) and not vice versa (see also Example 2.8 of [5]). Besides, a locally
finite T 1

2
-space does not imply a semi-T1-space either (see Example 2.6 of [5]). In addition, whereas a

T 1
2
-space (resp. a T1-space) obviously implies a semi-T0-space (resp. a semi-T 1

2
-space), the converse does

not hold.
The aim of this paper is initially to propose that the n-dimensional Khalimsky (or K-, for brevity)

topological space, (Zn, κn), satisfies the semi-T3-separation axiom. In order to carry out this work, we need
to investigate the following topics strongly.
• Study of some properties of the union and intersection of semi-closed and semi-open sets. In detail, under
what condition is the union of two semi-closed sets semi-closed ?
• Assume two homeomorphic subspaces (Y,TY) and (Z,TZ) induced by a topological space (X,T), where
Y,Z ⊂ X. Then we examine the semi-openness and semi-closedness of Y and Z in (X,T) and further, a
comparison between two subspaces (Y,TY) and (Z,TZ) with respect to a semi-homeomorphism.
•What condition makes a simple K-path semi-closed ?
• Study of various properties of the union and intersection of semi-closed and semi-open sets in the n-
dimensional Khalimsky topological space.
• Establishment of a semi-T3-separation axiom and a comparison between a semi-T3-separation axiom and
an s-T3-separation axiom.
• Examination of the semi-T3-separation axiom of the n-dimensional Khalimsky topological space.
• Comparison between the semi-T3-separation axiom and the typical T1-separation axiom.

Hereinafter, we will often use the notationsN,Zo (resp. Ze) to indicate the sets of natural numbers, i.e.,
positive integers, odd (resp. even) integers.

Besides, we use the notation “ ⊂” (resp. |X |) to indicate a ‘proper subset or equal’ (resp. the cardinality
of the given set X). The symbol ℵ0 means the cardinality of an (infinite) denumerable set. In addition, for
distinct integers a, b ∈ Z, we use the notations [a, b]Z = {x ∈ Z | a ≤ x ≤ b}, (−∞, b]Z = {x ∈ Z | x ≤ b}, and
[a,∞)Z = {x ∈ Z | a ≤ x}. Finally, the notation “ :=” will be used to introduce new notions without proving
the fact.

This paper is organized as follows. Section 2 provides some basic notions related to the K-topology
and Alexandroff topological structure. Section 3 studies various properties of semi-closed and semi-open
sets in the K-topological space. Section 4 examines semi-open and semi-closed properties of Y and Z in
(X,T), where (Y,TY) and (Z,TZ) are homeomorphic subspaces induced by a topological space (X,T), where
Y,Z ⊂ X. Section 5 first proves the semi-closedness of a simple K-path with some hypothesis. Section 6
finds a sufficient and necessary condition for Khalimsky topological spaces to satisfy the semi-T3-separation.
Section 7 concludes the paper with summary and a further work.

2. Some Khalimsky topological properties with respect to the Alexandroff structure

Let us recall some properties of K-topological spaces with respect to the Alexandroff (A-, for brevity)
structure which will be used in studying semi-topological properties of K-topological spaces. Besides, we
will refer to some advantages of the K-topological spaces in the fields of digital topology, digital geometry,
rough set theory, and so on (see Remark 2.4).

A topological space (X,T) is called an Alexandroff space [1, 2] if for each x ∈ X, the intersection of
all open sets of X containing x (denoted by SNT(x)) is T-open in X. As an example of the A-space, the
n-dimensional K-topological space, denoted by (Zn, κn) as a product topological space of the K-topological
line space, can be considered because (Zn, κn) is locally finite. There is now a considerable literature on the
space (Zn, κn) including its various properties obtained from [15–17, 20–25, 28, 29, 31, 36, 38, 40]. Besides,
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for X ⊂ Zn,n ∈ N \ {1}, we will denote by (X, (κn)X) a subspace induced by (Zn, κn). Hence let us now
recall basic notions of the n-dimensional Khalimsky space, n ≥ 1. Khalimsky line topology κ onZ, denoted
by (Z, κ), is induced by the set {[2n − 1, 2n + 1]Z |n ∈ Z} as a subbase [28]. In the present paper we call
([a, b]Z, κ[a,b]Z ) (or for short [a, b]Z if there is no danger of ambiguity) a Khalimsky (or K-) interval. Moreover,
for a subset X ⊂ Zn, the subspace induced by (Zn, κn) is obtained, denoted by (X, (κn)X) and called a
K-topological space.

Let us now investigate some structures of (Zn, κn). A point x = (xi)i∈[1,n]Z ∈ Z
n is pure open if all

coordinates are odd, and pure closed if each of the coordinates is even and the other points in Zn are called
mixed [29]. These points are shown like the following symbols: The symbols ■ (resp. •) means a pure closed
point (resp. a mixed point) (see Figures 1, 2, 3, 4, 5, and 6) and further, a black jumbo dot represents a pure
open point. In addition, in the present paper we denote by (Zn)o (resp. (Zn)e) the set of all pure open (resp.
pure closed) points of (Zn, κn). Besides, (Zn)m = Zn

\ ((Zn)e ∪ (Zn)o) stands for the set of all mixed points
of (Zn, κn),n ∈N \ {1}.

In relation to the study of digital objects in Zn, let us recall some basic notations named by digital
k-neighborhood of the given point p ∈ Z2, as follows:
For a point p = (x, y) ∈ Z2 we follow the notations [44].{

N4(p) = {(x ± 1, y), p, (x, y ± 1)}
N8(p) = {(x ± 1, y), p, (x, y ± 1), (x ± 1, y ± 1)}

}
(2.1)

which is respectively called the 4-neighborhood and the 8-neighborhood of a given point p = (x, y) ∈ Z2.
Motivated by the digital k-connectivity for low dimensional digital images (X, k),X ⊂ Zn,n ∈ [1, 3]Z

[30, 44], as a generalization of this approach, the papers [14, 19] initially developed some k-adjacency
relations for high dimensional digital images (X, k),X ⊂ Zn (see also (2.2) below), as follows: For a natural
number t ∈ [1,n]Z, the distinct points p = (p1, p2, · · · , pn) and q = (q1, q2, · · · , qn) ∈ Zn are k(t,n)-adjacent if at
most t of their coordinates differ by ±1 and the others coincide.

According to this statement, the k(t,n)-adjacency relations of Zn,n ∈ N, are formulated [14] (see also
[19]) as follows:

k = k(t,n) =
t∑

i=1

2iCn
i ,where Cn

i =
n!

(n − i)! i!
. (2.2)

For instance, the following are obtained in [14, 19]:

(n, t, k) ∈
{

(4, 1, 8), (4, 2, 32), (4, 3, 64), (4, 4, 80); and
(5, 1, 10), (5, 2, 50), (5, 3, 130), (5, 4, 210), (5, 5, 242).

}
Using these k-adjacency relations of Zn in (2.2), n ∈N, we will call the pair (X, k) a digital image on Zn,

X ⊂ Zn, as usual. Besides, these k-adjacency relations can be essential to studying digital products with
normal adjacencies [14] and pseudo-normal adjacencies [27] and calculating digital k-fundamental groups
of digital products [14]. Hereafter, (X, k) is assumed in Zn,n ∈N, with one of the k-adjacency of (2.2).

In relation to the further statement of a mixed point in (Z2, κ2), for the point p = (2m, 2n + 1)(resp.
p = (2m + 1, 2n)), we call the point p closed-open (resp. open-closed). In terms of this perspective, we clearly
observe that the smallest (open) neighborhood of the point p = (p1, p2) of Z2, denoted by SNK(p) ⊂ Z2, is
the following [15, 29]:

SNK(p) =


{p} if p is pure open,
{(p1, p2 ± 1), p} if p is open-closed,
{(p1 ± 1, p2), p} if p is closed-open,
N8(p) if p is pure closed

 (2.3)

Hereafter, in (X, (κ2)X), for a point p ∈ X we use the notation SNX(p) = SNK(p) ∩ X [15, 25] for short. Based
on (2.3), for a point p in (Zn, κn), we can establish SNK(p) in (Zn, κn). Using the smallest open set of (2.3),



S.-E. Han, S. Özçağ / Filomat 37:8 (2023), 2539–2559 2542

the notion of a K-adjacency in (Zn, κn) is defined, as follows: For distinct points p, q ∈ (Zn, κn), we say that
p is K-adjacent to q [25, 29] if

p ∈ SNK(p) or q ∈ SNK(q).

Based on the structure of the smallest open set of a point p in (Z2, κ2), we obtain the following:
Given the point p = (p1, p2) of Z2, denoted by ClK({p}) ⊂ Z2, is the following [17, 20, 28]:

ClK({p}) =


{p} if p is pure closed,
{(p1, p2 ± 1), p} if p is closed-open,
{(p1 ± 1, p2), p} if p is open-closed,
N8(p) if p is pure open

 (2.4)

Based on (2.4), for a point p in (Zn, κn), we can establish ClK({p}) in (Zn, κn). Hereinafter, in relation to
the study of K-topological space, we will use the term ‘Cl’ for brevity instead of “ClK” if there is no danger
of confusion.

Definition 2.1. ([25]) For X := (X, (κn)X) we define the following.
(1) For distinct points x, y in X, if there is the sequence (or a path) (x0, x1, · · · , xl) on X such that x = x0

and y = xl and further, xi and xi+1 are K-adjacent, i ∈ [0, l − 1]Z, l ∈ N, then we say that the sequence is
the K-path connecting the given points x and y. Furthermore, the number l is the length of this K-path. In
addition, a singleton is assumed to be a K-path.

(2) For any two points x, y ∈ X, there is a K-path connecting the two points, then X is said to be K-path
connected (or connected).

(3) A simple K-path in X is the K-path (xi)i∈[0,l]Z in X such that xi and x j are K-adjacent if and only if
| i − j | = 1.

According to the properties (2.1), using some properties of the closure and the interior operator, we
obviously obtain the following:

Lemma 2.2. ([17]) A subset B of (Z2, κ2) is open if and only if
N8(p) ⊂ B whenever p = (2m, 2n) ∈ B, or
{2m + 1} × [2n − 1, 2n + 1]Z ⊂ B whenever (2m + 1, 2n) ∈ B, or
[2m − 1, 2m + 1]Z × {2n + 1} ⊂ B whenever (2m, 2n + 1) ∈ B.

 (2.5)

Based on the property (2.4) and the notion of closure of a given set [39], we obtain the following:

Corollary 2.3. ([17]) A subset C of (Z2, κ2) is closed if and only if
N8(q) ⊂ C whenever q = (2m + 1, 2n + 1) ∈ C, or
[2m, 2m + 2]Z × {2n} ⊂ C whenever (2m + 1, 2n) ∈ C, or
{2m} × [2n, 2n + 2]Z ⊂ C whenever (2m, 2n + 1) ∈ C.

 (2.6)

In view of the property (2.6), under (Z2, κ2), for the point p = (2m + 1, 2n + 1), m,n ∈ Z, the closure of
the singleton {p} is the set

Cl(SNK(p)) = Cl({p}) = N8(p) = [2m, 2m + 2]Z × [2n, 2n + 2]Z. (2.7)

In view of (2.3)–(2.7), we obviously obtain that (Zn, κn) is a semi-T 1
2

space n ∈N [5].
When studying digital objects in Zn, the properties of (2.3) and (2.4) enable us to get the following

advantages of the K-topological structure of X induced by (Zn, κn).
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Remark 2.4. (Utility of the K-topological structure)
(1) When studying a self-homeomorphism of (Zn, κn), we should consider the following map

h : (Zn, κn)→ (Zn, κn) defined by:
for each point x := (x1, x2, · · · , xn) ∈ Zn,

h(x) = (x1 + 2m1, x2 + 2m2, · · · , xn + 2mn),
with some mi ∈ Z, i ∈M ⊂ [1,n]Z

 (2.8)

For instance, it is clear that the map h : (Z, κ)→ (Z, κ) defined by h(x) = x+2m,m ∈ Z, is a homeomorphism.
Meanwhile, note that the following map 1 cannot be a homeomorphism, where

1 : (Zn, κn)→ (Zn, κn) defined by:
for each point x := (x1, x2, · · · , xn) ∈ Zn,

1(x) = (x1 + t1, x2 + t2, · · · , xn + tn)
such that there is at least ti ∈ Zo, i ∈ [1,n]Z.

 (2.9)

For instance, 1 : (Z, κ)→ (Z, κ) defined by 1(x) = x + 2m + 1,m ∈ Z cannot be a homeomorphism.
(2) Since the K-topological structure is one of the fundamental frames for studying digital images onZn,

motivated by this structure, some more generalized topological structures onZn can be established [23, 24].
(3) Based on the K-topological structure of Zn, we can obtain a digital adjacency induced by the given

topological structure [25, 29].
(4) When digitizing a set X in the n-dimensional real space with respect to the K-topological structure,

we can use some local rule in [18] to obtain its digitized set DK(X) ⊂ Zn and finally use it in the fields of
rough set theory, mathematical morphology, digital geometry, and so on [18, 21].

(5) Since the modern electronic devices are usually operated on the finite digital planes with more than
twenty million pixels, some restriction of the given map h of (2.8) on a finite digital image can be used in the
fields of pattern recognition and image processing in a K-topological setting. In particular, as introduced in
[18], when studying digital rough set theory, the K-topological structure can be essential to digitizing some
real objects.

3. Some properties of semi-open and semi-closed sets

This section first recalls the notions of a semi-open and semi-closed set. Namely, a subset A of a
topological space (X,T) is said to be semi-open if there is an open set O in (X,T) such that O ⊂ A ⊂ Cl(O).
Besides, we say that a subset B of a topological space (X,T) is semi-closed if the complement of B in X, i.e., Bc,
is semi-open in (X,T). Then we see that a subset A of (X,T) is semi-open if and only if A ⊂ Cl(Int(A)) [32]
and a subset B of (X,T) is semi-closed if and only if Int(Cl(B)) ⊂ B [7]. It is clear that “open” (resp. “closed”)
is stronger than “semi-open” (resp. “semi-closed”). Besides, an empty set is clearly both a semi-open and
semi-closed. The notion of semi-openness and semi-closedness enable us to get the following [10, 32, 41]:

Now let us investigate some semi-topological properties of some subsets of (Z, κ) which correct some
errors in some literature [13, 40].

Lemma 3.1. In (Z, κ), for any x ∈ Z, we obtain the following: (1) Each singleton {x} is semi-closed.
(2) Each singleton {x} is not semi-open if x ∈ Ze [40]. For any a, b ∈ Z, we have the following:
(3) Any set [a, b]Z is semi-closed.
(4) A set [a, b]Z is semi-open if a , b.
(5) For any a ∈ Z, each of the sets (−∞, a]Z and [a,∞)Z is both semi-open and semi-closed.

Proof. (1) (Case 1-1) Assume x ∈ Ze. Then we have Int(Cl({x})) = ∅ ⊂ {x}.
(Case 1-2) Assume x ∈ Zo. Then we have Cl({x}) = {x1, x, x + 1} so that Int(Cl({x})) = {x}.

(2) For x ∈ Ze, since Cl(Int({x})) = ∅, the proof is completed.
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(3) According to the numbers a, b of A = [a, b]Z, we have the following several cases.
(Case 3-1) Assume A = [2m, 2n]Z. Then, we have Int(Cl(A)) = [2m + 1, 2n − 1]Z, which implies the semi-
closedness of A in (Z, κ).
(Case 3-2) Assume A = [2m + 1, 2n]Z. Then, we have Int(Cl(A)) = [2m + 1, 2n − 1]Z, which implies the
semi-closedness of A in (Z, κ).
(Case 3-3) Assume A = [2m, 2n + 1]Z. Then, using a method similar to the proof of (Case 3-2), we see the
semi-closedness of A in (Z, κ).
(Case 3-4) Assume A = [2m + 1, 2n + 1]Z. Then, we have Int(Cl(A)) = A, which implies the semi-closedness
of A in (Z, κ).

(4)-(5) Using a method similar to the proof of (3), the assertions are proved.

Lemma 3.2. (1) Given two semi-open sets, the intersection of them need not be semi-open.
(2) Given two semi-closed sets, the union of them may not be semi-closed.

To support Lemma 3.2, it suffices to suggest the following two counterexamples in (Z, κ).
(1) For an even number a ∈ Ze, assume A1 = (−∞, a]Z and A2 = [a,∞)Z. While each of Ai, i ∈ {1, 2}, is semi-
open, the intersection of them, i.e., A1∩A1 = {a}, is proved not to be semi-open because {a} ⊈ Cl(Int({a}) = ∅.
(2) Assume X = {4n + 1 |n ∈ Z} and Y = {4n + 3 |n ∈ Z}which are semi-closed. Then the union X ∪ Y is not
semi-closed because Int(Cl(X ∪ Y)) = {4n + 1, 4n + 2, 4n + 3} ⊈ X ∪ Y.

Based on the notions of a semi-open and a semi-closed set, we obviously obtain the following.

Remark 3.3. (1) Given two semi-open sets, the union of them is semi-open.
(2) Given two semi-closed sets, the intersection of them is semi-closed.

By Lemma 3.1(2) and (4), we obtain the following:

Corollary 3.4. A connected subset X of (Z, κ) with |X | ≥ 2 is semi-open.

Theorem 3.5. In (Z, κ), a connected subset is semi-closed. However, the converse does not hold.

Proof. After denoting a connected subset of (Z, κ) by A, we have the following three cases.
(Case 1) Assume the case of |A | = ℵ0. Then, consider the following:

(1-1) In the case of A = Z, the assertion is clearly proved.
(1-2) In the case of A = (−∞, b]Z for some b ∈ Z, by Lemma 3.1(5), the assertion is obviously proved.
(1-3) In the case of A = [a,∞)Z for some a ∈ Z, by Lemma 3.1(5), the assertion is also proved.

(Case 2) Assume the set A such that 2 ≤ |A | ⪇ ℵ0. Then A is a kind of a finite K-interval. By Lemma
3.1(3), the proof is completed.

(Case 3) Assume the set A such that |A | = 1, then by Lemma 3.1, the proof is completed.
Conversely, to prove that a semi-closed subset need not be connected in (Z, κ), we have the following
counterexample. While the set {2n, 2n + 2} is semi-closed in (Z, κ), it is not connected in (Z, κ).

In view of Lemma 3.1, Corollary 3.4, and Theorem 3.5, we have the following:

Remark 3.6. In (Z, κ), assume a connected subset A with |A | ≥ 2. Then it is both semi-open and semi-closed.

Unlike Lemma 3.2(2), we obtain the following property of the union of two semi-closed sets in (Zn, κn).

Theorem 3.7. In a subspace (X, κn
X) of (Zn, κn), assume two semi-closed sets Ai, i ∈ {1, 2}, such that Cl(A1)∩Cl(A2) =

∅. Then the union of them is semi-closed in (X, κn
X). The converse does not hold.
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Proof. While we have the properties{
Int(Cl(A1 ∪ A2)) = Int(Cl(A1) ∪ Cl(A2)) and
Int(Cl(A1)) ∪ Int(Cl(A2)) ⊂ Int(Cl(A1) ∪ Cl(A2)),

}
(3.1)

we see the following [39]:

Int(Cl(A1) ∪ Cl(A2)) need not be a subset of Int(Cl(A1)) ∪ Int(Cl(A2)).

For instance, in (Z, κ), let A1 = {1} and A2 = {3}. Then, we obviously obtain{
Cl(A1) = {0, 1, 2} and Cl(A2) = {2, 3, 4}, and
Int(Cl(A1)) = {1} and Int(Cl(A2)) = {3}.

}
Meanwhile, we obtain{

Int(Cl(A1) ∪ Cl(A2)) = {1, 2, 3}
so that Int(Cl(A1) ∪ Cl(A2)) ⊈ Int(Cl(A1)) ∪ Int(Cl(A2)).

}
However, in the case of Cl(A1) ∩ Cl(A2) = ∅, we now prove the identity

Int(Cl(A1) ∪ Cl(A2)) = Int(Cl(A1)) ∪ Int(Cl(A2)). (3.2)

To be specific, with the given hypothesis, in view of (3.1), we only need to prove the following:

Int(Cl(A1) ∪ Cl(A2)) ⊂ Int(Cl(A1)) ∪ Int(Cl(A2)). (3.3)

To do this work, we have the following two cases.
(Case 1) Assume the case Int(Cl(A1) ∪ Cl(A2)) = ∅. Then the property of (3.3) clearly holds.
(Case 2) Assume the case Int(Cl(A1) ∪ Cl(A2)) , ∅. Take an arbitrary point

p ∈ Int(Cl(A1) ∪ Cl(A2)). (3.4)

Then there is the smallest open set O(p)(∋ p) in (X,T) such that p ∈ O(p) ⊂ Cl(A1) ∪ Cl(A2). Owing to the
given hypothesis, i.e.,

Cl(A1) ∩ Cl(A2) = ∅ (3.5)

and the connectedness of O(p), we have

O(p) ⊂ Cl(A1) or O(p) ⊂ Cl(A2). (3.6)

The former implies p ∈ Int(Cl(A1)) and the latter supports p ∈ Int(Cl(A2)). Thus we have

p ∈ Int(Cl(A1)) ∪ Int(Cl(A2)).

By (3.1) and (3.3), we have the identity as in (3.2).
As for the property of (3.6), by contrary, suppose that the property of (3.6) does not hold. Then we

certainly come across the disconnectedness of O(p).
Finally, owing to the identity of (3.2), we have

Int(Cl(A1 ∪ A2)) = Int(Cl(A1)) ∪ Int(Cl(A2)) ⊂ A1 ∪ A2,

which leads to the semi-closedness of A1 ∪ A2.
To prove the converse, consider the following counterexample. Let A1 = {0, 1} and A2 = {2, 3}. By Lemma

3.1 and Corollary 3.4, while the union of them, A := A1 ∪ A2, is semi-closed, we obtain Cl(A1) ∩ Cl(A2) , ∅
because Cl(A1) = {0, 1, 2} and Cl(A2) = {2, 3, 4}.
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Example 3.8. (1) In (Z, κ), consider the two sets A1 = (−∞, 0]Z and A2 = [2,∞)Z. Then these are semi-closed
and since

Int(Cl(Ai)) ⊂ Ai, i ∈ {1, 2} and Cl(A1) ∩ Cl(A2) = ∅,

we have Int(Cl(A1 ∪ A2)) ⊂ A1 ∪ A2.
(2) In (Z, κ), while each of the singletons {2n+1} and {2n+3} is semi-closed, Cl({2n+1}) = {2n, 2n+1, 2n+2}

and Cl({2n + 3}) = {2n + 2, 2n + 3, 2n + 4} so that Cl({2n + 1}) ∩ Cl({2n + 3}) , ∅. Then we observe that the
union of them, {2n + 1, 2n + 3}, is not semi-closed because

Int(Cl({2n + 1, 2n + 3})) = {2n + 1, 2n + 2, 2n + 3} ⊈ {2n + 1, 2n + 3}.

Theorem 3.9. ([36]) A subset B of (Z, κ) is semi-open if and only if p − 1 ∈ B or p + 1 ∈ B whenever p ∈ B, where
p ∈ Ze.

To support Theorem 3.9, for the sake of a contradiction, suppose both p − 1 < B and p + 1 < B whenever
p ∈ B, where p ∈ Ze, i.e., SNK(p) ⊈ B. Then, for B = (B \ {p}) ∪ {p}, since Int({p}) = ∅, we have

Cl(Int(B)) = Cl(Int((B \ {p}) ∪ {p})) ⊂ B \ {p},

which means
B ⊈ Cl(Int(B))

so that B is not semi-open.
Conversely, assume that B is semi-open. Then, for any point p ∈ B, p ∈ Ze, we have the following three

cases
{p, p + 1} ⊂ B, {p − 1, p} ⊂ B, or {p − 1, p, p + 1} ⊂ B. (3.7)

For each case of (3.7), we see the property B ⊂ Cl(Int(B)), which completes the proof.
We say that a topological space (X,T) is a cut-point space [29] if there is a point p ∈ X such that X \ {p}

is not connected in (X,T). Then we call the point p a cut point in (X,T). For instance, the K-topological line
space (Z, κ) is a good example for a cut-point space [29]. In addition, it is clear that (Zn, κn),n ≥ 2, is not a
cut-point space.

The paper [36] proved that a subset A of (Z, κ) is semi-closed if and only if 2n−1 or 2n+1 < A whenever
2n < A. Motivated by this approach, we obtain the following:

Theorem 3.10. In (Z, κ), consider a set A ⊂ Z with |A | ≥ 3. For x, x + 2 ∈ Zo, x, x + 2 ∈ A implies x + 1 ∈ A if
and only if A is semi-closed.

Proof. With the hypothesis, assume that A is semi-closed in (Z, κ). By contrary, suppose x+1 < A whenever
{x, x + 2} ⊂ A and x, x + 2 ∈ Zo. Since Cl(A) contains the set {x, x + 1, x + 2} (see the property of (2.4) for the
case of (Z, κ)), i.e., {x, x + 1, x + 2} ⊂ Cl(A). Since the set {x, x + 1, x + 2} = SNK(x + 1) is an open set in (Z, κ),
we obtain Int(Cl(A)) ⊈ A, which invokes a contradiction to the semi-closedness of A.

Conversely, owing to the condition that x+ 1 ∈ A is assumed whenever x, x+ 2 ∈ A and x, x+ 2 ∈ Zo, we
have SNK(x + 1) ⊂ A. Since SNK(x + 1) is connected, A contains a connected subset. With this situation, let
us prove the property Int(Cl(A)) ⊂ A. To do this work, we consider the following two cases according to
either the connectedness or disconnectedness of A.
(Case 1) Assume that A is a connected subset of (Z, κ). Then, by Theorem 3.5, A is semi-closed.
(Case 2) Assume that A is not a connected subset of (Z, κ). Owing to the hypothesis of non-connectedness
of A, there are at least some cut points separating the given set A. Indeed, the number of the cut points
depends on the subspace (A, κA).

Let us assume the following two sets C and D and the union of them (see Figure 1)

C =
⋃
i∈M

Ci, where Cl(Ci1 ) ∩ Cl(Ci2 ) = ∅ if i1 , i2, i1, i2 in M,

D =
⋃
j∈M′

D j, where Cl(D j1 ) ∩ Cl(D j2 ) = ∅ if j1 , j2, j1, j2 in M′, and

A = C ∪D,


(3.8)
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where each Ci ⊂ A is a component in (Z, κ) relating to the property (see the given hypothesis)

“whenever x, x + 2 ∈ Zo, x, x + 2 ∈ A⇒ x + 1 ∈ A” (3.9)

and each D j ⊂ A is also a component in (Z, κ)) that is not related to the property of (3.9).
Indeed, by Theorem 3.5, we see that each Ci and D j is semi-closed in (Z, κ), i ∈M and j ∈M′. Besides, there
are some points p ∈ Zo separating the two sets C and D. Then we have

Cl(C) ∩ Cl(D) = ∅. (3.10)

By Theorems 3.5 and 3.7, and (3.8), we see that each of the sets C and D is semi-closed. Furthermore, by
Theorem 3.5 and (3.10), we have

Int(Cl(A)) = Int(Cl(C ∪D)) = Int(Cl(C)) ∪ Int(Cl(D)) ⊂ C ∪D = A,

which completes the proof.

C1 D1 D2 D3

(a)

Figure 1: Configuration of the set A which is a disconnected subset C ∪D referred to in the proof of Theorem 3.10 (see Case 2).

4. Some properties of semi-open and semi-closed sets with respect to a homeomorphism and a semi-
homeomorphism

We first state some properties which can play important roles in studying semi-open and semi-closed
sets. To support Lemma 3.2(2), we have the following:

Theorem 4.1. In a topological space (X,T), assume two semi-closed sets Ai, i ∈ {1, 2}. If there is an element
x ∈ X \ (A1 ∪ A2) such that O(x) ⊂ Cl(A1) ∪ Cl(A2), where O(x)(∈ T) means an open set containing the point x.
Then the union A1 ∪ A2 is not semi-closed in (X,T).

Proof. Given two semi-closed sets Ai, i ∈ {1, 2}, in a topological space (X,T), according to the hypothesis, let
us assume an element x ∈ X \ (A1 ∪ A2) and an open set O(x)(∈ T) such that O(x) ⊂ Cl(A1) ∪ Cl(A2). Then
we have the property

Int(Cl(A1 ∪ A2)) ⊈ A1 ∪ A2.

For instance, assume two semi-closed sets Ai, i ∈ {1, 2}, in (Z2, κ2), where{
A1 := {p1 = (0, 0), p2 = (1, 1)} and
A2 := {p3 = (1,−1)} (see Figure 2(1)(a)).

}
Then it is clear that both A1 and A2 are semi-closed sets in (Z2, κ2) (see Figure 2(1)(a)) and we obtain (see
Figure 2(1)(b))

Cl(A1) = N8(p2) and Cl(A2) = N8(p3),

i.e.,
Cl(A1) ∪ Cl(A2) = N8(p2) ∪N8(p3). (4.1)

Owing to (4.1), we see that there is a point c := (1, 0) < A1 ∪ A2 (see Figure 2(1)(b)) such that

SNK(c) ⊂ Cl(A1) ∪ Cl(A2).

Hence we have Int(Cl(A1 ∪ A2)) ⊈ A1 ∪ A2, which means that A1 ∪ A2 is not semi-closed in (Z2, κ2).
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(a)

(1, -1)

(b)

(1, 1)

(0, 0)

(1, 1)

(1, -1)

c

p
3

p1

p
2

p3

p2
A1

A2

(0, 0)(0, 0)

(2, 2)

(d)(c)

(0, 0) (-1, -1)

(e) (f)

(0, 2)

V W

X Y

x0 y0

x6 y6
x4

x2

y4

y2

(1)

(2)

(3) y
5

y
1

y
7

y3
x7

x5

x3

x1

Figure 2: Configuration of a non-semi-closed set of A1 ∪ A2 in (Z2, κ2) related to the proof of Theorem 4.1.

Let us now examine if a homeomorphism between two subspaces (Y,TY) and (Z,TZ) induced by a
topological space (X,T) preserves semi-openness or semi-closedness of Y and Z in (X,T).

Theorem 4.2. Assume two homeomorphic subspaces (Y,TY) and (Z,TZ) induced by a topological space (X,T), where
Y,Z ⊂ X. Then, we obtain the following:

(1) The semi-openness of Y in (X,T) need not imply that of Z in (X,T).
(2) The semi-closedness of Y in (X,T) may not imply that of Z in (X,T).

Proof. (1) To prove the assertions of (1) and (2), we suggest counterexamples (see Figure 2(2)(c) and (d), and
Figure 2(3)(e) and (f)), as follows: Consider the following sets in (Z2, κ2) (see Figure 2(2)(c) and (d)).{

V = {v0 = (0, 0), v1 = (1, 1), v2 = (2, 2)}, and
W = {w0 = (0, 0),w1 = (0, 1),w2 = (0, 2)}.

}
(4.2)

Even though there is a homeomorphism h from (V, (κ2)V) to (W, (κ2)W) defined by h(vi) = wi, i ∈ [0, 2]Z,
the sets V and W have their own features in (Z2, κ2) from the viewpoint of semi-open or semi-closed
properties. Namely, while V is semi-open in (Z2, κ2), W is not semi-open in (Z2, κ2). To be specific,

Cl(Int(V)) = Cl({v1}) = N8(v1) so that V ⊂ Cl(Int(V)),

which supports the semi-openness of V in (Z2, κ2).
Meanwhile,

Cl(Int(W)) = Cl(∅) = ∅ so that W ⊈ Cl(Int(W)),

which implies a non-semi-open set of W in (Z2, κ2).

(2) Consider the sets X and Y in Figure 2(3)(e) and (f), where
X := {x0 = (0, 0), x1 = (1, 0), x2 = (2, 0), x3 = (2, 1),
x4 = (2, 2), x5 = (1, 2), x6 = (0, 2), x7 = (0, 1)} and
Y := {y0 = (−1,−1), y1 = (0,−1), y2 = (1,−1), y3 = (1, 0),
y4 = (1, 1), y5 = (0, 1), y6 = (−1, 1), y7 = (−1, 0)}.

 (4.3)
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Then it is clear that each of (X, (κ2)X) and (Y, (κ2)Y) is a kind of a simple closed K-curve with eight elements
in (Z2, κ2), say SC2,8

K , so that (X, (κ2)X) is K-homeomorphic to (Y, (κ2)Y) by using the map h : X→ Y defined
by h(xi) = yi+1(mod 8). However, while X is semi-closed in (Z2, κ2), Y is not semi-closed in (Z2, κ2). To be
specific, since X is a closed set in (Z2, κ2) and it does not contain any open subset in (Z2, κ2), we have{

Int(Cl(X)) = Int(X) = ∅ ⊂ X and
N8(p) ⊂ Int(Cl(Y)), where p = (0, 0) < Y,

}
because X is a closed set in (Z2, κ2) and

Cl(Y) =
⋃

i∈{0,2,4,6}

N8(yi).

Hence we have
Int(Cl(Y)) = N8(q) ⊈ Y, where q = (0, 0),

which implies the non-semi-closedness of Y in (Z2, κ2).

To study semi-homeomorphic properties of sets in (Zn, κn), let us now recall the following: A map
f : (X,T1) → (Y,T2) is said to be semi-continuous if and only if for each U ∈ T2, f−1(U) ∈ SO(X,T1) [32],
where SO(X,T1) means the set of semi-open sets in the given topological space (X,T1). Furthermore, in some
literature, the notion of a semi-homeomorphism was defined by taking two approaches, which are broader
than a homeomorphism. One of them is established in 1972 [7] by using the concepts of semi-open sets.
However, the present paper will follow the following version which is broader than a homeomorphism.

Definition 4.3. ([8]) A bijection h : (X,T1)→ (Y,T2) is said to be a semi-homeomorphism if h(U) ∈ SO(Y,T2)
for each U ∈ SO(X,T1) (or pre-semi-open) and h−1(V) ∈ SO(X,T1) for each V ∈ SO(Y,T2) (or irresolute or
semi-continuous).

In addition, another approach was taken in 1971 [3] in a slightly different way using a bijection, continu-
ity of h, and semi-openness of h. However, in the present paper, we will follow the semi-homeomorphism
of Definition 4.3.

Motivated by Theorem 4.2, let us now examine if a semi-homeomorphism between two subspaces
(X,TX) and (Y,TY) induced by a topological space (Z,T) supports semi-openness or semi-closedness of them
in (Z,T).

Corollary 4.4. Assume two semi-homeomorphic subspaces (X,TX) and (Y,TY) induced by a topological space (Z,T),
where X,Y ⊂ Z. Then, we obtain the following:

(1) The semi-openness of X in (Z,T) need not imply that of Y in (Z,T).
(2) The semi-closedness of X in (Z,T) may not imply that of Y in (Z,T).

Proof. To prove the assertion, let us first recall that a homeomorphism implies a semi-homeomorphism.
(1) While the two spaces (V, (κ2)V) and (W, (κ2)W) of (4.2) (see Figure 2(2)(c)-(d)) are semi-homeomorphic

to each other by using the map

h : (V, (κ2)V)→ (W, (κ2)W) defined by h(vi) = wi, i ∈ [0, 2]Z,

the two sets V and W in (Z2, κ2) have their own feature from the viewpoint of semi-topological structures.
Namely, as mentioned in Theorem 4.2, while V is semi-open, W is not semi-open in (Z2, κ2) (see the sets of
(4.2) and Figure 2(2)(c) and (d)).

(2) As stated in Theorem 4.2(2), the space (X, (κ2)X) is semi-homeomorphic to (Y, (κ2)Y) of (4.3), the two
sets X and Y have their own features in (Z2, κ2) (see the sets of (4.3) and Figure 2(3)(e) and (f)). Namely, as
referred to in Theorem 4.2, while X is semi-closed, Y is not semi-closed in (Z2, κ2).
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5. The semi-topological properties of simple K-paths

This section studies various properties of the semi-topological property of simple K-paths, which will
play an important role in studying the semi-T3-separation axiom in Section 6. Hereinafter, a K-path is
assumed to be a non-empty set.

Lemma 5.1. Assume a K-path P in (Zn, κn) such that |P | ≤ 2. Then P is semi-closed.

Proof. Let us consider the two cases, i.e., |P | = 1 or |P | = 2.
(Case 1) In the case of |P | = 1, we can assume P = (c0) is a singleton in (Zn, κn) consisting of a pure closed,
pure open, or mixed point. Then, according to the topological structure of (Zn, κn), it satisfies the property
Int(Cl(P)) ⊂ P.
To be specific, in case c0 is a pure closed or mixed point, since Int(Cl(P)) = ∅, it is clear that P is semi-closed
in (Zn, κn). In case c0 is a pure open point, since Int(Cl(P)) = P, it is clear that P is semi-closed in (Zn, κn).
(Case 2) In the case of |P | = 2, according to the topological structure of P := (c0, c1) in (Zn, κn), we have the
following several cases.
(2-1) c0 is pure closed and c1 is pure open (or c0 is pure open and c1 is pure closed), or
(2-2) c0 is pure closed and c1 is mixed (or c0 is mixed and c1 is pure closed), or
(2-3) c0 is pure open and c1 is mixed (or c0 is mixed and c1 is pure open).
According to these three cases, let us check the set Int(Cl(P)). In the case of (2-1), we obtain Int(Cl(P)) = {c1}

(or Int(Cl(P)) = {c0}) so that Int(Cl(P)) ⊂ P.
In the case of (2-2), we have Int(Cl(P)) = ∅ (or Int(Cl(P)) = ∅) so that Int(Cl(P)) ⊂ P.
In the case of (2-3), we have Int(Cl(P)) = {c0} (or Int(Cl(P)) = {c1}) so that Int(Cl(P)) ⊂ P.
In view of Cases 1 and 2, we see the semi-closedness of P in (Zn, κn).

Unlike Lemma 5.1, we obtain the following:

Remark 5.2. Assume a K-path P = (c0, c1) in (Zn, κn) such that P contains a pure open point. Then P is
semi-open in (Zn, κn).

Unlike the case of a K-path P in (Zn, κn) with |P | ≤ 2 in Lemma 5.1 and Remark 5.2, let us now consider
the case |P | ≥ 3. Then we can observe that semi-topological properties of P depend on the situation, as
follows:

Lemma 5.3. Assume a simple K-path P = (c0, c1, c2) in (Zn, κn).
In case each of c0 and c2 is a pure open point, c1 is a pure closed point or a mixed point, and there is another mixed
point c ∈ Zn

\ P such that c0, c2 ∈ SNK(c) ⊂ Cl({c0}) ∪ Cl({c2}), P is not semi-closed.

Proof. Since Cl({ci}) = N3n−1(ci), i ∈ {0, 2}, by the hypothesis, assume a mixed point c ∈ Zn
\ P such that

c0, c2 ∈ SNK(c) ⊂ Cl({c0}) ∪ Cl({c2}) (see Figure 3(1) in the 2-dimensional case and see Figure 4 in the
3-dimensional case). Then, we have (in detail, see Example 5.4 below)

Cl(P) = N3n−1(c0) ∪N3n−1(c2) and SNK(c) ⊂ Cl(P). (5.1)

Hence, owing to the property of SNK(c) ⊂ Int(Cl(P)) of (5.1), we obtain Int(Cl(P)) ⊈ P, which implies the
non-semi-closedness of P.

Example 5.4. (1) Let us consider the simple K-path P = (c0, c1, c2) in (Z2, κ2) such that each of c0 = (1,−1),
c1 = (0, 0), and c2 = (1, 1) (see Figure 3(1)(a)).

Cl(P) = N8(c0) ∪N8(c2) (see Figure 3(1)(a) and (b))
so that there is an element c = (1, 0) ∈ Cl(P)
such that c < P and SNK(c) ⊂ Cl(P).
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Hence, we have SNK(c) = {c0, c, c2} ⊂ Int(Cl(P)) (see Figure 3(1)(b) and (c)), which implies that Int(Cl(P)) ⊈ P,
i.e., P is not semi-closed.

(2) Assume the K-path A = {x0 = (1, 1), x1 = (2, 2), x3 = (3, 2)}(see Figure 3(2)(a)). Then we obtain
P ⊈ Cl(Int(P)) (see Figure 3(2)(a)-(b)), which implies the non-semi-openness of P.

(2m+1, 2n+1)

(2m+1, 2n+3) (2m+3, 2n+3)

(2m+3, 2n+1) (2m+1, 2n+1)

(2m+1, 2n+3) (2m+3, 2n+3)

(2m+3, 2n+1) (2m+1, 2n+1)

(2m+1, 2n+3) (2m+3, 2n+3)

(2m+3, 2n+1)

c

(3)

(a) (b) (c)

(c)
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(b)
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Figure 3: (1) The objects of (a)-(c) are related to the proof of the semi-closedness of a simple K-path in (Z2, κ2) stated in Lemmas 5.3
and 5.5, Example 5.4, and Theorem 5.7.
(2) Configuration of the non-semi-openness of the given simple K-path A in Example 5.4(2)(see also Lemma 5.3). In detail, the object
of (b) is Cl(Int(A)) and the object of (c) is Cl(A).
(3) The objects of (a)-(c) are related to the proof of the semi-closedness of a simple K-path in (Z2, κ2) stated in Lemma 5.6 and Theorem
5.7. Namely, (a) Assume A as a simple K-path with seven elements in (Z2, κ2). (b) Cl(A) in (Z2, κ2). (c) Given A in (a), configuration
of Int(Cl(A)) in (Z2, κ2) showing that Int(Cl(A)) ⊈ A owing to the set SNK(p), where p = (2m + 2, 2n + 2).

As a generalization of Lemma 5.3, we have the following.

Lemma 5.5. Assume a simple K-path P = (c0, c1, · · · , cl−1) in (Zn, κn). In case P has the subsequence (c′1, c
′

2, c
′

3) of
P such that each of c′1 and c′3 is a pure open point, c′2 is a pure closed point, and there is a mixed point c ∈ Zn

\ P such
that c′1, c

′

3 ∈ SNK(c) ⊂ Cl({c′1}) ∪ Cl({c′3}), P is not semi-closed in (Zn, κn).

Proof. With the hypothesis, let us prove the assertion.
Consider Cl(P) (see Figure 3(1)(a)-(c)). Then, by hypothesis, there is a point c ∈ N3n−1(c′1) ∩ N3n−1(c′3)

such that SNK(c) ⊂ N3n−1(c′1) ∪ N3n−1(c′3), c ∈ Zn
\ P, and c ∈ (Zn)m. Thus, by Lemma 5.3, we obtain that

Int(Cl(P)) ⊈ P.
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Lemma 5.6. Assume a simple K-path P = (c0, c1, · · · , cl−1) in (Zn, κn). If P has the subsequence X1 := (c′1, c
′

2, c
′

3, c
′

4)
such that {

X1 ⊂ (Zn)o and
X1 ⊂ N3n−1(c), c ∈ Zn

\ P.

}
Then P is not semi-closed in (Zn, κn).

Before proving the assertion, it can be helpful to recognize the subsequence X1 of P with an example as
follows: In Figure 3(3)(a), given a K-path with seven elements (ci)i∈[0,6]Z , we can take the subsequence
X1 = (c0, c2, c4, c6) ⊂ P satisfying the condition of this lemma.

Proof. With the hypothesis, consider Cl(P)(see Figure 3(3)(a)-(c)). Then there is a point c ∈
⋂

i∈M
N3n−1(c′i ) such

that c′i ∈ X1 ⊂ P, i ∈M = [1, 4]Z, and

SNK(p) ⊂
⋃
i∈M

N3n−1(c′i ) ⊂ Cl(P) and c ∈ Zn
\ P and c ∈ (Zn)e.

Thus we see that Int(Cl(P)) ⊈ P because SNK(p) ⊈ P.

By Lemmas 5.5 and 5.6, we have the following:

Theorem 5.7. Assume a simple K-path P = (c0, c1, · · · , cl−1) in (Zn, κn) such that
(1) P does not have the subset {c′1, c

′

2, c
′

3} such that
(1-1) each of c′1 and c′3 is a pure open point and c′2 is a pure closed point or a mixed point and
(1-2) for some mixed point c ∈ Zn

\ P, the two points c′1 and c′3 satisfy the property

{c′1, c
′

3} ⊂ SNK(c) ⊂ Cl({c′1}) ∪ Cl({c′3}),

and
(2) P does not have the subsequence Y1 := (c′1, c

′

2, c
′

3, c
′

4) of P such that Y1 ⊂ (Zn)o and Y1 ⊂ N3n−1(c), c ∈ Zn
\ P.

Then P is semi-closed.

Before proving the assertion, we strongly need to recall the hypothesis of Lemma 5.5 and 5.6. Without the
hypothesis, as shown in Figure 2(3)(f), put Y2 = Y \ {y7}. Then the set Y2 cannot be semi-closed in (Z2, κ2).

Proof. Assume a simple K-path with l elements in Zn, say P = (c0, c1, · · · , cl−1). Then, depending on the
situation, P consists of pure closed, pure open, or mixed points. Using mathematical induction, we will
prove the assertion.
(Case 1) Assume |P | = 1. Then, it is obvious that P satisfies the conditions (1) and (2). Owing to the
n-dimensional cases of the properties of (2.3) and (2.4), it is clear that P is semi-closed in (Zn, κn). More
precisely, assume P = {c0}. According to c0 ∈ (Zn)o, c0 ∈ (Zn)e, or c0 ∈ (Zn)m, we obtain the following:
In the case of c0 ∈ (Zn)o, we have Int(Cl({c0})) = {c0} ⊂ {c0}.
In the case of c0 ∈ (Zn)e, we obtain Int(Cl({c0})) = ∅ ⊂ {c0}.
In the case of c0 ∈ (Zn)m, we have Int(Cl({c0})) = ∅ ⊂ {c0}.
In view of these three case, we now complete the proof.
(Case 2) For any l, with the hypothesis, assume that A = (c0, c1, · · · , cl−2) ⊂ P is semi-closed in (Zn, κn),
2 ≤ l ∈ N. Then we now prove that P = (c0, c1, · · · , cl−2, cl−1) is semi-closed. Owing to the n-dimensional
cases of properties of (2.3) and (2.4), we first examine the semi-closedness of the subset of P consisting of
the consecutive two elements cl−2 and cl−1 in P according to the topological properties of the points cl−2 and
cl−1. In particular, in case the subset {cl−2, cl−1} consists of mixed points, it is not connected in (Zn, κn). Hence
it suffices to investigate the other several cases. Namely, take the set {cl−2, cl−1} ⊂ P according to the several
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cases depending on the situation of P, as follows:
(Case 2-1) Assume the case that cl−2 is pure open and cl−1 is pure closed. Then we obtain

Int(Cl({cl−2, cl−1})) = {cl−2} ⊂ {cl−2, cl−1},

because Cl({cl−2, cl−1}) = N3n−1(cl−2) in (Zn, κn). Thus we see that the set {cl−2, cl−1} is semi-closed. Based on
this approach, denote the set (c0, c1, · · · , cl−2) by A. Then, for P = A ∪ {cl−1}, we have{

Int(Cl(P)) = Int(Cl(A ∪ {cl−1}))
= Int(Cl(A) ∪ Cl({cl−1})) = Int(Cl(A)) ⊂ A ⊂ P,

}
which implies the property Int(Cl(P)) ⊂ P.
(Case 2-2) Assume the case that cl−2 is pure closed and cl−1 is pure open (this case is related to the hypothesis,
see also Lemma 5.5). Then we obtain

Int(Cl({cl−2, cl−1})) = {cl−1} ⊂ {cl−2, cl−1},

because Cl({cl−2, cl−1}) = N3n−1(cl−1) in (Zn, κn). Thus we see that the set {cl−2, cl−1} is semi-closed. Based on
this approach, denote the set (c0, c1, · · · , cl−2) by A. Then, for P = A ∪ {cl−1}, we have{

Int(Cl(A ∪ {cl−1}))
= Int(Cl(A) ∪ Cl({cl−1})) = Int(Cl(P)) ⊂ P,

}
which implies the property Int(Cl(P)) ⊂ P.
(Case 2-3) Assume the case that cl−2 is pure open and cl−1 is mixed.
Then we obtain

Int(Cl({cl−2, cl−1})) = {cl−2} ⊂ {cl−2, cl−1},

because Cl({cl−2, cl−1}) = N3n−1(cl−2) in (Zn, κn). Thus we see that the set {cl−2, cl−1} is semi-closed. Based on
this feature, put A = (c0, c1, · · · , cl−2). Then, for P = A ∪ {cl−1}, we have{

Int(Cl(P)) = Int(Cl(A ∪ {cl−1}))
= Int(Cl(A) ∪ Cl({cl−1})) = Int(Cl(A)) ⊂ A ⊂ P,

}
which implies the property Int(Cl(P)) ⊂ P.
(Case 2-4) Assume the case that cl−2 is mixed and cl−1 is pure open (this case is related to the hypothesis, see
also Lemma 5.6).
Then we obtain

Int(Cl({cl−2, cl−1})) = {cl−1} ⊂ {cl−2, cl−1},

because Cl({cl−2, cl−1}) = N3n−1(cl−1). Thus we see that the set {cl−2, cl−1} is semi-closed. Based on this feature,
put A = (c0, c1, · · · , cl−2). Then, for P = A ∪ {cl−1}, we have{

Int(Cl(A ∪ {cl−1}))
= Int(Cl(A) ∪ Cl({cl−1})) = Int(Cl(P)) ⊂ P,

}
which implies the property Int(Cl(P)) ⊂ P.
(Case 2-5) Assume the case that cl−2 is pure closed and cl−1 is mixed. Then, we obtain

Int(Cl({cl−2, cl−1})) = ∅ ⊂ {cl−2, cl−1},

because Cl({cl−2, cl−1}) = Cl({cl−1}) and Int(Cl({cl−1})) = ∅, which implies that the set {cl−2, cl−1} is semi-closed.
Based on the set A = (c0, c1, · · · , cl−2), for P = A ∪ {cl−1}, we have{

Int(Cl(P)) = Int(Cl(A ∪ {cl−1}))
= Int(Cl(A) ∪ Cl({cl−1})) ⊂ Int(Cl(A)) ⊂ A ⊂ P,

}
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which implies the property Int(Cl(P)) ⊂ P.
(Case 2-6) Assume the case that cl−2 is mixed and cl−1 is pure closed. Then we obtain

Int(Cl({cl−2, cl−1})) = ∅ ⊂ {cl−2, cl−1},

because Cl({cl−2, cl−1}) = Cl({cl−1}) and Int(Cl({cl−1})) = ∅, which implies that the set {cl−2, cl−1} is semi-closed.
After considering the set A = (c0, c1, · · · , cl−2), we have{

Int(Cl(P)) = Int(Cl(A ∪ {cl−1}))
= Int(Cl(A) ∪ Cl({cl−1})) ⊂ P,

}
which implies the property Int(Cl(P)) ⊂ P.

Based on these two cases above, the simple K-path P is proved to be semi-closed in (Zn, κn).

(a)

p

a
0

a
1

a
2

(b)

p

b0

b
1

b2

(c)

q

c0

c1

c2

Figure 4: The simple K-paths in (a)-(c) are related to the proof of the semi-closedness of a simple K-path in (Z3, κ3) stated in Lemma
5.3 and Theorem 5.7.

Example 5.8. Assume a simple K-path A in (Z2, κ2) satisfying the hypothesis of Theorem 5.7. Then we
show the semi-closedness of A in (Z2, κ2). To support this finding, consider the simple K-path A = (x0 =
(0, 0), x1 = (1, 1), x2 = (1, 2), x3 = (1, 3), x4 = (2, 4), x5 = (3, 4)) as a sequence with six elements in (Z2, κ2). Then
we observe that Int(A) = {x1, x2, x3} and Cl(A) is equal to the set N8(x1) ∪ N8(x3) ∪ {x5, (4, 4)}. Based on this
fact, we can confirm the semi-closedness of A in (Z2, κ2) because

Int(Cl(A)) =
Int(N8(x1) ∪N8(x3) ∪ {x5, (4, 4)})
= {x1, x2, x3} ⊂ A.


6. The semi-T3-separation axiom of Khalimsky topological spaces

This section proves that (Zn, κn) satisfies the semi-T3-separation axiom. Thus we need some efficient
tools to support this work. Namely, given a topological space (X,T) and a set A(⊂ X), to examine if A is
semi-open or semi-closed in (X,T), the paper [40] proposed some results related to this need, which can
be very interesting (see Theorems 2.2 and 2.3 in [40]). Although the ideas are significant, the author used
some unclear notations, concepts, and redundance associated with these assertions and their proofs. For
instance, see the equivalent condition of the semi-closedness in the last line of the Introduction in [40], the
condition “if ” which should be written by “if and only if”, Lemma 2.2, and (3n

−1)-adjacency instead of the
K-adjacency used in the proof of Theorem 2.2 of [40]. Besides, it has a mistake in Example 2.4(1). In detail,
in Example 2.4(1), even though the author claimed {2n+ 1} is not semi-closed in (Z, κ), it should be written
as semi-closed (see Lemma 3.3(1) in the present paper). Thus let us first make some errors occurred in [40]
fixed and improved. Then we can use the ideas in [40]. For our purpose, let us recall some notations and
concepts as follows: In (Zn, κn), given a set A ⊂ Zn, we will use the following notation as in [40]

Aop := {x | x is a pure open point in A}. (6.1)
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Besides, owing to the topological structure of (Zn, κn) as a product topology induced by (Z, κ), where (Z, κ)
generated by the setB = {{2n+1}, [2n−1, 2n+1]Z |n ∈ Z} as a base as mentioned in Section 2, we obviously
have the following:

Remark 6.1. In (Zn, κn), we have the following: (1) For x, y ∈ Zn, x ∈ SNK(y) if and only if y ∈ Cl({x}), i.e.,
y ∈ ClK({x}) [29](see the properties of (2.3) and (2.4) in the present paper).

(2) If A is an open set in (Zn, κn), then there is a pure open point x ∈ A (see the property of (2.3)).
However, the converse does not hold.

(3) The set Aop of (6.1) is an open set in (Zn, κn).

Proof. (1) The proof is straightforward.
(2) Owing to the product topology (Zn, κn) induced by (Z, κ) generated by the above setB as a base, the

proof is completed.
(3) Based on the product topological structure of (Zn, κn) induced by (Z, κ) generated by the above set

B as a base, the singleton {x} consisting of the pure open point x ∈ Zn is equal to SNK(x). Hence the set
Aop =

⋃
x∈Aop

{x} is an open set in (Zn, κn).

Let us now give the original version of Theorem 2.2 of [40] and its improved proof, as follows:

Lemma 6.2. ([40]) In (Zn, κn), a non-empty set A(⊂ Zn) is semi-open if and only if for each x ∈ A, SNK(x)∩Aop , ∅.

Before proving the assertion, in the case of A = ∅, the proof is straightforward.

Proof. (⇒) According to the choice of a point x ∈ A, we can consider the following two cases.
(Case 1) Assume that x(∈ A) is a pure open point. From the hypothesis, we have x ∈ A ⊂ Cl(Int(A)) so that
we obtain

SNK(x) ∩ Int(A) , ∅. (6.2)

Since SNK(x) = {x}, we obtain x ∈ Int(A) and further, x ∈ Aop. Hence, owing to (6.2), we have SNK(x)∩Aop , ∅.

(Case 2) Assume that x(∈ A) is not a pure open point. Owing to the hypothesis, we have x ∈ A ⊂ Cl(Int(A))
so that we obtain SNK(x)∩ Int(A) , ∅ as mentioned in (6.2). Since SNK(x)∩ Int(A) is an open set in (Zn, κn),
by Remark 6.1(2), we now take a pure open point z in (Zn, κn) such that

z ∈ SNK(x) ∩ Int(A), i.e., SNK(z) = {z} ⊂ SNK(x) ∩ Int(A). (6.3)

By the property of (6.3), since z ∈ Int(A) because of SNK(z) = {z}, we have z ∈ Aop so that z ∈ SNK(x)∩Aop , ∅.
In addition, we see that the point z is indeed K-adjacent to x.

(⇐) According to the choice of a point x ∈ A, we can consider the following two cases.
(Case 1) For a point x ∈ A, assume that x is a pure open point in (Zn, κn). Since {x} = SNK(x), owing to the
hypothesis of SNK(x) ∩ Aop , ∅, we have x ∈ Aop, i.e., {x} ∩ Aop , ∅. Furthermore, owing to the identity
SNK(x) = {x}, by Remark 6.1(3), it is clear that

x ∈ Aop ⇒ {x} ⊂ Int(A)⇒ x ∈ Cl(Int(A)). (6.4)

(Case 2) For a point x ∈ A, assume that x is not a pure open point in (Zn, κn). Owing to the hypothesis,
since SNK(x) ∩ Aop , ∅, by Remark 6.1(2) and (3), there is a pure open point z in (Zn, κn) such that
z ∈ SNK(x) ∩ Aop. Hence we get z ∈ SNK(x), by Remark 6.1(1), we have

x ∈ Cl({z}) ⊂ Cl(Int(A))⇒ x ∈ Cl(Int(A)). (6.5)

By (6.4) and (6.5), the proof is completed.
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Owing to the notion of semi-closedness, using Lemma 6.2, we obtain the following:

Lemma 6.3. ([40]) In (Zn, κn), A(⊂ Zn) is semi-closed if and only if each x ∈ Zn
\ A, SNK(x) ∩ (Zn

\ A)op , ∅.

To support Lemmas 6.2 and 6.3, we have the following examples as a generalization of Lemma 3.1.

Example 6.4. Under (Zn, κn), we have the following:
(1) For a point p ∈ (Zn)e, the set Zn

\ {p} is not semi-closed but semi-open.
(2) For a point p ∈ (Zn)o, the set Zn

\ {p} is both semi-closed and semi-open.
(3) For a point p ∈ (Zn)m, the set Zn

\ {p} is not semi-closed but semi-open.

Let us now support the assertion of Example 6.4 more precisely.
(1) For a point p ∈ (Zn)e let Zn

\ {p} = F. Since Cl(F) = Zn, Int(Cl(F)) = Zn ⊊ F, which implies that F is
not semi-closed in (Zn, κn). In addition, using Lemmas 6.2 and 6.3, we find out that {p} is not semi-closed
but semi-open.

(2) For a point p ∈ (Zn)o let Zn
\ {p} = A. Then, since Cl(A) = A, Int(Cl(A)) ⊂ A, which implies that A is

semi-closed in (Zn, κn). In addition, when using Lemma 6.2, we find out that {p} is semi-closed so that {p}c

is semi-open.
(3) For a point p ∈ (Zn)m let Zn

\ {p} = B. Then, we prove not to hold the property Int(Cl(B)) ⊂ B. For
instance, under (Z2, κ2), for a point p = (x, y) ∈ (Z2)m letZ2

\ {p} = B. Then Cl(B) = Z2 so that Int(Cl(B)) ⊈ B.
In addition, by Lemmas 6.2 and 6.3, we find out that {p} is not semi-open but semi-closed.

Theorem 6.5. In (Zn, κn), for any point p ∈ Zn, SNK(p) is not closed but semi-closed.

Proof. It is clear that SNK(p) is not a closed set in (Zn, κn), let us prove the semi-closedness of SNK(p) for any
point p ∈ Zn. Indeed, we will prove the identity Int(Cl(SNK(p))) = SNK(p). To be specific, for an arbitrary
element x ∈ Int(Cl(SNK(p))) , ∅, we have SNK(x) in (Zn, κn) such that SNK(x) ⊂ Cl(SNK(p)), which implies
that x ∈ SNK(p).

Conversely, take an arbitrary element x ∈ SNK(p). Then, it is clear x ∈ Cl(SNK(p)). Owing to the property
of SNK(p), we see x ∈ Int(Cl(SNK(p))).

Unlike Theorem 5.7, as a generalization of Lemma 5.3 and Lemma 6.2, we have the following:

Remark 6.6. A simple K-path in (Zn, κn) may not be semi-open. To be specific, given a simple K-path P, if
there is a point x ∈ P such that SNK(x) ∩ Pop = ∅, then by Lemma 6.2, P is not semi-open.

Based on the above properties, let us now investigate some topological properties of (Zn, κn) with respect
to the s-T3-separation axiom and the semi-T3-separation axiom, and so on. The paper [42] defined the notion
of s-regular as follows: We say that a topological space (X,T) is s-regular if for each closed subset F of X
and point x ∈ Fc, there are U,V ∈ SO(X,T) such that F ⊂ U and x ∈ V and U ∩V = ∅. The paper [42] proved
that this s-regularity has the finite product property. Hence the paper [5] proved that s-regular spaces with
the T0-separation axiom also has the finite product property. Since (Z, κ) satisfies both the T0-separation
axiom and the s-regularity to establish the semi-T2-separation axiom of (Z, κ), we can conclude that (Zn, κn)
is an s-regular space [5]. Let us now generalize the notion of s-regularity instead of the Noiri’s approach,
as follows:

Definition 6.7. ([10]) A topological space (X,T) is said to be semi-regular if for each semi-closed set C and
each x < C there are two semi-open sets SO(C) and SO(q) in (Zn, κn) such that SO(C) ∩ SO(q) = ∅, where
SO(C) and SO(q) mean semi-open subsets of containing C and q, respectively.

In view of Definition 6.7, after comparing between the s-regularity of Noiri and the semi-regularity
of Dorsett (see Definition 6.7), it is clear that the latter is broader than the former. Thus, to evade from
some confusion and make a distinction between them, for our purpose hereinafter, the latter is called
semi-regularity.
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Definition 6.8. ([34]) A topological space (X,T) is said to be a semi-T1-space if any distinct points p, q ∈ X
have their own semi-open sets SO(p) and SO(q) such that q < SO(p) and p < SO(q).

Definition 6.9. ([34]) A topological space (X,T) is said to be a semi-T2-space if any distinct points p, q ∈ X
have their own semi-open sets SO(p) and SO(q) such that SO(p) ∩ SO(q) = ∅.

Based on the s-regularity and the semi-regularity, we now define the following:

Definition 6.10. (1) We say that a topological space (X,T) is an s-T3-space if it is both a semi-T1-space and
an s-regular space.

(2) We say that a topological space (X,T) is a semi-T3-space if it is both a semi-T1-space and a semi-regular
space.

Definition 6.10 enable us to get the following:

Remark 6.11. (1) An s-T3-space is more restrictive than a semi-T3-space.
(2) (Zn, κn) is an s-T3-space [5, 40].

Motivated by Remark 6.11, we need to prove the following:

Theorem 6.12. The n-dimensional K-topological space (Zn, κn) is a semi-T3-space.

Proof. In (Zn, κn), let C(, ∅) be semi-closed and x < C. According to the choice of the point x, we can
consider the following three cases.
(Case 1) Assume that x is pure open point. Since SNK(x) = {x}, we have the two sets U := Zn

\ {x} and
V := {x}, then we find out that U,V ∈ SO(Zn, κn) and by Example 6.4, C ⊂ U, x ∈ V,U∩V = ∅. Hence (Zn, κn)
is semi-regular. For instance, see the cases in Figure 5(a) as a one dimensional case and Figure 6(a) as a two
dimensional case.
(Case 2) Assume that x is a pure closed point. Since x < C and Cc is semi-open, by Lemma 6.2, for each
x ∈ Cc, we obtain the following property

SNK(x) ∩ (Cc)op , ∅. (6.6)

Namely, we may take p ∈ SNK(x) ∩ (Cc)op so that p ∈ (Zn)o and there is a simple K-path {x, p} because
p ∈ SNK(x). Besides, by Lemmas 5.1 and 5.2, the set {x, p} is both semi-open and semi-closed (see also
Lemma 5.1). Then, consider the set Zn

\ {x, p} so that this set is semi-open because {x, p} is semi-closed
(see Lemmas 5.1 and 6.2) and C ⊂ Zn

\ {x, p}. Hence, after putting U := Zn
\ {x, p},V := {x, p}, we have

U,V ∈ SO(Zn, κn) such that U ∩ V = ∅. For instance, see the cases in Figure 5(b) as a one dimensional case
and Figure 6(b) as a two dimensional case.
(Case 3) Assume that x is a mixed point. By using a method similar to the proof of (Case 2), the proof is
completed, To be specific, assume that x is a mixed point. Since x < C and Cc is semi-open, by Lemma 6.2,
for each x ∈ Cc, we obtain the following:

SNK(x) ∩ (Cc)op , ∅.

Then there is a pure open point q ∈ (Cc)op such that the set {x, q} is a simple K-path in (Zn, κn) because
q ∈ SNK(x) so that {x, q} is also a semi-open set (see Lemma 6.2) containing the point x. Then consider the
sets U := Zn

\ {x, q} and V := {x, q}. Indeed, by Lemma 6.2, the sets U and V are semi-open sets containing
C and x, respectively. Finally, it is clear that U ∩ V = ∅. For instance, see the case in Figure 6(c) as a two
dimensional case.
In view of the above three cases, we now complete the proof that (Zn, κn) is a semi-regular space.

In the papers [5, 40], it turns out that (Zn, κn) is s-regular. Owing to Theorem 6.12, we obtain the
following result because (Zn, κn) does not satisfy the T1-separation axiom.

Corollary 6.13. The semi-T3-separation axiom is not stronger than the T1-separation axiom.
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x

(a)

x

(b)

Figure 5: (a) Configuration of x related to the proof of (Case 1) of Theorem 6.12. (b) Configuration of x related to the proof of (Case 2)
of Theorem 6.12.

(b)

x

p

(c)

x

q

(a)

x

Figure 6: In (Z2, κ2), according to the choice of the point x ∈ Z2, configuration of the corresponding semi-open sets SO(x). (a)
Configuration of SO(x), where x is a pure open point. (b) Configuration of SO(x), where x is a pure closed point. (c) Configuration of
SO(x), where x is mixed.

7. Concluding remark and further work

After having studied various properties of the s-T3-separation axiom and the semi-T3-separation axiom,
we finally proved that (Zn, κn) is a semi-T3-space. This finding facilitates to the study in the fields of pure
and applied topology. As a further work, we can investigate these properties of the infinite K-circle and
K-sphere, i.e., one point compactifications of the K-topological line and K-topological plane.
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