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Abstract. The goal of this work is to introduce the two-parameter conformable fractional semigroups
and provide a definition of its infinitesimal generator. For such generators, we develop multiple results.
In addition, we show that the two-parameter conformable fractional semigroups provide a solution for
two-parameter conformable fractional abstract Cauchy problems.

1. Introduction

Fractional differential equations are well known for their importance in the exploration of many phe-
nomena and processes in various branches of science such as physics, chemistry, control systems, electro-
dynamics and aerodynamics (see [7],[8],[12],[13],[14],[17] and [20]). For more history on fractional calculus
and recent developments we refer to [15], [16] and [18].

In [11], Khalil introduced a derivative called the conformable fractional derivative, which is a natural
extension of the classical derivative. It is defined as follows:

Given a function f : [0,+∞[→ R. Then the conformable fractional derivative of order α ∈ ]0, 1] at t > 0
(abbreviated α-derivative) is defined by

Tα
(

f
)

(t) = lim
ε→0

f
(
t + εt1−α

)
− f (t)

ε
.

If this limit exists, then the function f is called α-differentiable at t. If f is α-differentiable in some ]0, b[
where b > 0 and the limit lim

t→0+
Tα

(
f
)

(t) exists, then theα-derivative at 0 is defined as Tα
(

f
)

(0) = lim
t→0+

Tα
(

f
)

(t).

This topic has sparked a lot of debate in the scientific community, and a lot of research papers (see
[1],[16]).

In [2], Abdeljawad, Al Horani and Khalil introduced a one-parameter semigroup called the conformable
fractional semigroup (abbreviated α-semigroup) associated with the α-derivative. They showed that this
semigroup is a solution for the one-parameter conformable abstract Cauchy problems (abbreviated α-ACP).

Throughout this paper, we take α ∈ ]0, 1].
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Let X be a Banach space on a field K (K = R or K = C) with norm ∥.∥, we will denote by L (X) the
Banach algebra of all bounded linear operators on X. A two-parameter family (T (s, t))s,t≥0 of bounded
linear operators inL (X) is called a two-parameter semigroup of bounded linear operators on X if it satisfies
the following conditions:

1. T (0, 0) = I (I is the identity operator on X).
2. T ((s1, t1) + (s2, t2)) = T (s1, t1) T (s2, t2) for all s1,s2,t1,t2 ≥ 0.

The theory of two-parameter semigroups was studied in [4]. The authors considered in [5] and [6] a
special class of two-parameter semigroups. Two-parameter semigroups proved to be an effective tool to
solve the two-parameter abstract Cauchy problems (see [10]).

In this paper, we introduce the two-parameter conformable fractional semigroups (Tα (s, t))s,t≥0. The
problem is to define the infinitesimal generator for such semigroups and develop multiple proprieties
for such generators, which will permit in the following to treat the two-parameter conformable fractional
Cauchy problems.

To resolve this problem, we have organized our paper as follows:
In section 2, we present some preliminaries about the theory of the one-parameter conformable fractional

semigroups of operators.
In section 3, we review the multi-variable conformable fractional calculus of vector-valued functions

with values in Banach space. We also define the α-differentiability at 0 and present a relation between the
α-derivative and the corresponding partial α-derivatives.

The two-parameter α-semigroup is defined in section 4, and multiple continuity relations are examined
in this section.

In section 5, we define the α-infinitesimal generator of the two-parameter α-semigroups as the α-
derivative at (0, 0) of Tα (., .) x for a given x ∈ X. We use two methods to describe this generator, and we
develop some essential properties regarding the α-generators.

In section 6, we apply the previous results to study the two-parameter α-ACP. We show that the two-
parameter α-semigroup provides a solution for the two-parameter α-ACP.

2. Preliminaries

Definition 2.1 ([2]). Let f be a vector-valued function defined by f : [0,+∞[→ X where X is a Banach space. Then
the conformable fractional derivative of order α ∈ ]0, 1] at t > 0 is defined by

Dα f (t) = lim
ε→0

f
(
t + εt1−α

)
− f (t)

ε
.

If this limit exists then we say that f is α-differentiable at t, Dα f (t) is called the α-derivative of f at the point t.
If f is α-differentiable in some ]0, a[ where a > 0, and lim

t→0+
Dα f (t) exists, then Dα f (0) = lim

t→0+
Dα f (t).

For more details about the conformable fractional derivative see [3].
Now we give some reminders on the α-semigroups of one parameter (see [2] for more details).

Definition 2.2 ([2]). Let α ∈ ]0, a] for any a > 0. For a Banach space X, a family (Tα (t))t≥0 ⊆ L (X) is called a
one-parameter conformable fractional semigroup (or α-semigroup) of operators if

1. Tα (0) = I,
2. Tα

(
(s + t)

1
α

)
= Tα

(
s

1
α

)
Tα

(
t

1
α

)
for all t, s ∈ [0,∞).

If α = 1, then 1-semigroups are just the usual semigroups.

Definition 2.3 ([2]). A α-semigroup (Tα (t))t≥0 is called a C0-α-semigroup, if for each x ∈ X,Tα (t) x→ x as t→ 0+.
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Proposition 2.4. 1. Let (Tα (t))t≥0 be a C0-α-semigroup. For any t ≥ 0, we set

S (t) = Tα
(
t

1
α

)
,

then (S (t))s≥0 is a one-parameter C0-semigroup.
2. Let (T (t))t≥0 be a one-parameter C0-semigroup. For any t ≥ 0, we set

Tα (t) = T (tα) ,

then (Tα (t))t≥0 is a one-parameter C0-α-semigroup.
3. Let (Tα (t))t≥0 be a C0-α-semigroup. Then there exists constants ω ≥ 0 and M ≥ 1 such that for all t ≥ 0

∥Tα (t)∥ ≤Meωtα .

Proof. 1. and 2. are easily verified.
For 3. we notice that for all t ≥ 0

∥Tα (t)∥ =
∥∥∥∥Tα

(
(tα)

1
α

)∥∥∥∥ = ∥S (tα)∥ ,

but from 1. we have that (S (t))t≥0 is a one-parameter C0-semigroup, then there exist constants ω ≥ 0 and
M ≥ 1 such that for all t ≥ 0 ∥S (tα)∥ ≤Meωtα . Hence

∥Tα (t)∥ ≤Meωtα .

Using 3. of the previous Proposition, we get the following result.

Corollary 2.5. Let (Tα (t))t≥0 be a C0-α-semigroup. Then for any x ∈ X, the map t 7→ Tα (t) x is continuous, that is
(Tα (t))t≥0 is strongly continuous.

Definition 2.6 ([2]). Let (Tα (t))t≥0 be a α-semigroup. The α-infinitesimal generator of (Tα (t))t≥0 is defined on

D (A) =
{
x ∈ X : lim

t→0+
Dα (Tα (t) x) exists

}
,

by setting

Ax = lim
t→0+

Dα (Tα (t) x) ,

for all x ∈ D (A) .

Theorem 2.7 ([2]). Let (Tα (t))t≥0 be a C0-α-semigroup, where α ∈ ]0, 1] and let A be its infinitesimal generator.
Then for x ∈ D (A), Tα (t) x ∈ D (A) and

Dα (Tα (t) x) = ATα (t) x = Tα (t) Ax.

3. Multivariable conformable fractional calculus

Definition 3.1 ([9]). Let f be a vector-valued function defined by f : R+
2
→ X where X is a Banach space and let

α ∈ ]0, 1]. We say that f is α-differentiable at (s, t), s, t > 0 if there is a linear transformation L : R2
→ X such that

lim
(h,k)→(0,0)

∥∥∥∥ f
(
s + hs1−α, t + kt1−α

)
− f (s, t) − L (h, k)

∥∥∥∥
∥(h, k)∥

= 0.

The linear transformation L if it exists, is unique and we shall denote it by Dα f (s, t) and called the conformable
fractional derivative (or α-derivative) of f of order α ∈ ]0, 1] at (s, t) .
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Definition 3.2. Let f be a vector-valued function defined by f : R+
2
→ X where X is a Banach space and let

α ∈ ]0, 1]. We say that f is α-differentiable at (0, 0) if the following assertions are satisfied

1. Dα f (s, t) exists in an open of the form ]0, a[ × ]0, b[, a, b > 0 and lim
(s,t)→(0+,0+)

Dα f (s, t) exists.

2. The one-parameter vector valued functions defined by s 7→ f (s, 0) and t 7→ f (0, t) are α-differentiable in ]0, a[
and ]0, b[ respectively.
In this case, we will take

Dα f (0, 0) = lim
(s,t)→(0+,0+)

Dα f (s, t) .

The following two theorems are proved with the same method as theorems 3.8 and 3.9 in [9].

Theorem 3.3. If a vector valued function f : R+
2
→ X is α-differentiable at (s, t) with s, t > 0 then f is continuous

at (s, t).

Theorem 3.4. Let f : R+ → R+
2 be a vector valued function defined by f (t) =

(
f1 (t) , f2 (t)

)
and let 1 : R+

2
→ X

be a vector valued function. If f is α-differentiable at a > 0 and if 1 is α-differentiable at f (a) with fi (a) > 0, i = 1, 2.
Then the composition 1 ◦ f is α-differentiable at a and

Dα1 ◦ f (a) = Dα1
(

f (a)
)
◦ f (a)α−1

◦Dα f (a)

where f (a)α−1 is the linear transformation defined by

f (a)α−1 (
x, y

)
=

(
x
[

f1 (a)
]α−1 , y

[
f2 (a)

]α−1
)

.

Definition 3.5 ([9]). Let f : R+
n
→ X be a vector valued fuction with n variables and a = (a1, .., an) be a point whose

ith component ai > 0, then the limit

lim
ε→0

f
(
a1, ..., ai−1, ai + ε (ai)

1−α , ..., an

)
− f (a)

ε

if it exists, is denoted by ∂α

∂tαi
f (a) and called the ith conformable partial derivative (partial α-derivative) of f of order

α ∈ ]0, 1] at a.

Theorem 3.6 ([9]). Let f : R+
2
→ X be a vector valued function. If f is α-differentiable at (a, b) where a, b > 0 then

∂α

∂tαi
f (a, b) exist for i = 1, 2 and

Dα f (a, b) =
(
∂α

∂tα1
f (a, b) ,

∂α

∂tα2
f (a, b)

)
.

4. Continuity of the two-parameter conformable fractional semigroups

Definition 4.1. Let X be a Banach space, and let α ∈ ]0, a] for any a > 0. A family (Tα (s, t))s,t≥0 ⊂ L (X) is called
a two-parameter conformable fractional semigroup or simply a two-parameter α-semigroup on the Banach space X if
the following conditions are satisfied.

1. Tα (0, 0) = I with I is the identity operator in L (X).
2. Tα

(
(s1 + s2)

1
α , (t1 + t2)

1
α

)
= Tα

(
(s1)

1
α , (t1)

1
α

)
Tα

(
(s2)

1
α , (t2)

1
α

)
for all s1,s2,t1,t2 ≥ 0.

Example 4.2. Let (Fα (s))s≥0 and (Gα (t))t≥0 be two commuting one-parameter α-semigroups, we easily verify that
the family (Tα (s, t))s,t≥0 ⊂ L (X) defined by

Tα (s, t) = Fα (s) Gα (t) , s, t ≥ 0

is a two-parameter α-semigroup. Indeed we have
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1. Tα (0, 0) = Fα (0) Gα (0) = I ◦ I = I.
2. We have for all s1,s2,t1,t2 ≥ 0.

Tα
(
(s1 + s2)

1
α , (t1 + t2)

1
α

)
= Fα

(
(s1 + s2)

1
α

)
Gα

(
(t1 + t2)

1
α

)
= Fα

(
(s1)

1
α

)
Fα

(
(s2)

1
α

)
Gα

(
(t1)

1
α

)
Gα

(
(t2)

1
α

)
= Fα

(
(s1)

1
α

)
Gα

(
(t1)

1
α

)
Fα

(
(s2)

1
α

)
Gα

(
(t2)

1
α

)
= Tα

(
(s1)

1
α , (t1)

1
α

)
Tα

(
(s2)

1
α , (t2)

1
α

)
.

Example 4.3. Let A and B be two bounded commuting linear operators on X, a, b ∈ R\ {0} and define for any s, t ≥ 0
T (s, t) = ea

√
sA+b

√
tB. Then (T (s, t))s,t≥0 is a 1

2 -semigroup with two parameters. In fact

1. T (0, 0) = ea
√

0A+b
√

0B = I.
2. For all s1,s2,t1,t2 ≥ 0 and a, b ∈ R\ {0},

T
(
(s1 + s2)2 , (t1 + t2)2

)
= ea
√

(s1+s2)2A+b
√

(t1+t2)2B

= eas1A+bt1B+as2A+bt2B = eas1A+bt1Beas2A+bt2B

= T
(
(s1)2 , (t1)2

)
T
(
(s2)2 , (t2)2

)
.

Remark 4.4. 1. Let (Tα (s, t))s,t≥0 be a two-parameter α-semigroup. For any s, t ≥ 0 we set

S (s, t) = Tα
(
s

1
α , t

1
α

)
,

then (S (s, t))s,t≥0 is a two-parameter semigroup.
2. Let (T (s, t))s,t≥0 be a two-parameter semigroup. For any s, t ≥ 0 we set

Tα (s, t) = T (sα, tα)

then (Tα (s, t))s,t≥0 is a two-parameter α-semigroup.
3. Let (Tα (s, t))s,t≥0 be a two-parameter α-semigroup. Then (Tα (s, 0))s≥0 and (Tα (0, t))t≥0 are one-parameter
α-semigroups.

Definition 4.5. Let (Tα (s, t))s,t≥0 be a two-parameter α-semigroup on a Banach space X, then

1. We say that (Tα (s, t))s,t≥0 is uniformly continuous if we have

lim
(s,t)→(0+,0+)

∥Tα (s, t) − I∥ = 0.

2. We say that (Tα (s, t))s,t≥0 is a two-parameter C0-α-semigroup if for all x ∈ X we have

lim
(s,t)→(0+,0+)

∥Tα (s, t) x − x∥ = 0

Proposition 4.6. 1. Let (Tα (s, t))s,t≥0 be a two-parameter α-semigroup. Then (Tα (s, t))s,t≥0 is a C0-α-semigroup
if and only if (Tα (s, 0))s≥0 and (Tα (0, t))s,t≥0 are one-parameter C0-α-semigroups.

2. Let (Tα (s, t))s,t≥0 be a two-parameter C0-α-semigroup. For any s, t ≥ 0 we set

S (s, t) = Tα
(
s

1
α , t

1
α

)
,

then (S (s, t))s,t≥0 is a two-parameter C0-semigroup.
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3. Let (T (s, t))s,t≥0 be a two-parameter C0-semigroup. For any s, t ≥ 0 we set

Tα (s, t) = T (sα, tα)

then (Tα (s, t))s,t≥0 is a two-parameter C0-α-semigroup.

Proof. 1. If (Tα (s, t))s,t≥0 is a two-parameter C0-α-semigroup, then in particular if s = 0 and t = 0 we get
that (Tα (s, 0))s≥0 and (Tα (0, t))t≥0 are one-parameter C0-α-semigroups.
For the converse, we observe that for any s, t ≥ 0

Tα (s, t) = Tα
(
(sα + 0)

1
α , (0 + tα)

1
α

)
= Tα

(
(sα)

1
α , 0

1
α

)
Tα

(
0

1
α , (tα)

1
α

)
= Tα

(
0

1
α , (tα)

1
α

)
Tα

(
(sα)

1
α , 0

1
α

)
= Tα (s, 0) Tα (0, t) = Tα (0, t) Tα (s, 0) .

If we suppose that (Tα (s, 0))s≥0 and (Tα (0, t))t≥0 are one-parameter C0-α-semigroups, then for any
s, t ≥ 0 and x ∈ X, we have

∥Tα (s, t) x − x∥ = ∥Tα (s, 0) Tα (0, t) x − Tα (s, 0) x + Tα (s, 0) x − x∥
= ∥Tα (s, 0) (Tα (0, t) x − x) + Tα (s, 0) x − x∥
≤ ∥Tα (s, 0)∥ ∥Tα (0, t) x − x∥ + ∥Tα (s, 0) x − x∥ .

We apply the uniform boundedness principle, and we get that there exist a > 0 and M > 0 such that
∥Tα (s, 0)∥ ≤M for all s ∈ ]0, a[. Then for any t ≥ 0, s ∈ ]0, a[ and x ∈ X, we have

∥Tα (s, t) x − x∥ ≤M ∥Tα (0, t) x − x∥ + ∥Tα (s, 0) x − x∥

which tends towards zero when (s, t)→ (0+, 0+), and this shows that (Tα (s, t))s,t≥0 is a two-parameter
C0-α-semigroup.

2. It is clear that (S (s, t))s,t≥0 is a two-parameter semigroup. Let α ∈ ]0, a] for any a > 0 and let (h, k) =(
s

1
α , t

1
α

)
with s, t > 0, we have (h, k) → (0+, 0+) as (s, t) → (0+, 0+). Let x ∈ X, from the preceding

disscussion we obtain

lim
(s,t)→(0+,0+)

S (s, t) x = lim
(s,t)→(0+,0+)

Tα
(
s

1
α , t

1
α

)
x

= lim
(h,k)→(0+,0+)

Tα (h, k) x = x

3. Similar to 2.

Proposition 4.7. Let (Tα (s, t))s,t≥0 be a two-parameter C0-α-semigroup on a Banach space X. Then there exist
constants ω ≥ 0 and M ≥ 1 such that

∥Tα (s, t)∥ ≤Meω(sα+tα).

Proof. Let (Tα (s, t))s,t≥0 be a two-parameter C0-α-semigroup on a Banach space X, then by the previous result
(Tα (s, 0))s≥0 and (Tα (0, t))t≥0 are one-parameter C0-α-semigroups, so there exist constants ω1, ω2 ≥ 0 and
M1,M2 ≥ 1 such that ∥Tα (s, 0)∥ ≤ M1eω1sα and ∥Tα (0, t)∥ ≤ Meω2tα . Let ω = max (ω1, ω2) and M = M1M2.
Thus

∥Tα (s, t)∥ = ∥Tα (s, 0) Tα (0, t)∥

≤Meω(sα+tα).
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Definition 4.8. Let (Tα (s, t))s,t≥0 be a two-parameter α-semigroup on a Banach space X. We say that (Tα (s, t))s,t≥0
is strongly continuous if

lim
(s,t)→(s0,t0)

∥Tα (s, t) x − Tα (s0, t0) x∥ = 0

for all x ∈ X and s0, t0 > 0 with (s, t)→ (0+, 0+) if (s0, t0) = (0, 0) .

Corollary 4.9. Let (Tα (s, t))s,t≥0 be a two-parameter α-semigroup on a Banach space X, then (Tα (s, t))s,t≥0 is strongly
continuous if and only if (Tα (s, t))s,t≥0 is a C0-α-semigroup.

Proof. If (Tα (s, t))s,t≥0 is strongly continuous, then it is clear that (Tα (s, t))s,t≥0 is a C0-α-semigroup.
Conversely, let s0, t0 ≥ 0,we have to show that

∀x ∈ X, lim
(s,t)→(s0,t0)

∥Tα (s, t) x − Tα (t0, s0) x∥ = 0.

Let (s, t) ∈ [0, s0[ × [0, t0[ and x ∈ X,

∥Tα (s, t) x − Tα (t0, s0) x∥ ≤ ∥Tα (s, t)∥ ∥x − Tα (t0 − t, s0 − s) x∥

≤Meω(sα+tα)
∥x − Tα (t0 − t, s0 − s) x∥ ,

but

lim
(s,t)→(s0,t0)

eω(sα+tα)
∥x − Tα (t0 − t, s0 − s) x∥ = 0.

Hence lim
(s,t)→(s0,t0)

∥Tα (s, t) x − Tα (t0, s0) x∥ = 0.

Now, let (s, t) ∈ ]s0, s0 + 1] × ]t0, t0 + 1] and x ∈ X,

∥Tα (s, t) x − Tα (t0, s0) x∥ ≤ ∥Tα (s0, t0)∥ ∥Tα (t − t0, s − s0) x − x∥

≤Meω((s0)α+(t0)α) ∥Tα (t − t0, s − s0) x − x∥ ,

and

lim
(s,t)→(s0,t0)

∥Tα (t − t0, s − s0) x − x∥ = 0.

Hence lim
(s,t)→(s0,t0)

∥Tα (s, t) x − Tα (t0, s0) x∥ = 0.

5. The α-infinitesimal generator of a two-parameter C0-α-semigroup

Definition 5.1. Let (Tα (s, t))s,t≥0 be a two-parameter α-semigroup on the Banach space X. The α-infinitesimal
generator of (Tα (s, t))s,t≥0 is defined on

D (A) =
{
x ∈ X : Tα (., .) x is α-differentiable at (0, 0)

}
by setting for all x ∈ D (A)

Ax = Dα (Tα (0, 0) x) .

Lemma 5.2. Let (Tα (s, t))s,t≥0 be a two-parameter C0-α-semigroup on the Banach space X and let x ∈ D (A), then
we have

Ax =
(

lim
s→0+

∂α

∂sα
Tα (s, 0) x, lim

t→0+

∂α

∂tα
Tα (0, t) x

)
.
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Proof. Let x ∈ D (A), then Tα (., .) x is α-differentiable at (0, 0)

1. Dα (Tα (s, t) x) exists in some ]0, a[ × ]0, b[, a, b > 0 and

Dα (Tα (0, 0) x) = lim
(s,t)→(0+,0+)

Dα (Tα (s, t) x)

exists.
2. ∂α

∂sα (Tα (s, 0) x) and ∂α

∂tα (Tα (0, t) x) exist in ]0, a[ and ]0, b[ respectively.

Let (s, t) ∈ ]0, a[ × ]0, b[, then ∂α

∂sα (Tα (s, t) x) and ∂α

∂tα (Tα (s, t) x) exist, and we have

Dα (Tα (0, 0) x) = lim
(s,t)→(0+,0+)

Dα (Tα (s, t) x)

= lim
(s,t)→(0+,0+)

(
∂α

∂sα
(Tα (s, t) x) ,

∂α

∂tα
(Tα (s, t) x)

)
= (l1, l2) ∈ X × X

with

lim
(s,t)→(0+,0+)

∂α

∂sα
(Tα (s, t) x) = l1 and lim

(s,t)→(0+,0+)

∂α

∂tα
(Tα (s, t) x) = l2.

We have to show that

lim
s→0+

∂α

∂sα
(Tα (s, 0) x) = l1 and lim

t→0+

∂α

∂tα
(Tα (0, t) x) = l2.

First, we remark that for any (s, t) ∈ ]0, a[ × ]0, b[,

∂α

∂sα
(Tα (s, t) x) = lim

ε→0

Tα
(
s + εs1−α, t

)
x − Tα (s, t) x

ε

= lim
ε→0

Tα (0, t)
(
Tα

(
s + εs1−α, 0

)
x − Tα (s, 0) x

)
ε

= Tα (0, t)

limε→0

Tα
(
s + εs1−α, 0

)
x − Tα (s, 0) x

ε


= Tα (0, t)

[
∂α

∂sα
(Tα (s, 0) x)

]
.

Similarly

∂α

∂tα
(Tα (s, t) x) = Tα (s, 0)

[
∂α

∂tα
(Tα (0, t) x)

]
.

We have (Tα (s, t))s,t≥0 is a two-parameter C0-α-semigroup, then Proposition 4.6 gives that (Tα (0, t))t≥0 is
a one-parameter C0-α-semigroup. Thus for any s ∈ ]0, a[

lim
t→0+

∂α

∂sα
(Tα (s, t) x) = lim

t→0+
Tα (0, t)

[
∂α

∂sα
(Tα (s, 0) x)

]
=
∂α

∂sα
(Tα (s, 0) x) .

Similarly, we obtain for all t ∈ ]0, b[

lim
s→0+

∂α

∂tα
(Tα (s, t) x) =

∂α

∂tα
(Tα (0, t) x) .
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Let ε > 0, there exist 0 < δ1 ≤ a and 0 < δ2 ≤ b such that if (s, t) ∈ ]0, δ1[ × ]0, δ2[ then∥∥∥∥∥ ∂α∂sα (Tα (s, t) x) − l1

∥∥∥∥∥ ≤ ε2
and there exist 0 < η1 ≤ b such that if t ∈

]
0, η1

[
we have for all s ∈ ]0, a[∥∥∥∥∥ ∂α∂sα (Tα (s, t) x) −

∂α

∂tα
(Tα (s, 0) x)

∥∥∥∥∥ ≤ ε2 .

Let γ1 = inf
(
δ1, η1

)
and let t ∈

]
0, γ1

[
, then we have for all s ∈ ]0, δ1[∥∥∥∥∥ ∂α∂sα (Tα (s, 0) x) − l1

∥∥∥∥∥ ≤ ∥∥∥∥∥ ∂α∂sα (Tα (s, 0) x) −
∂α

∂sα
(Tα (s, t) x)

∥∥∥∥∥ + ∥∥∥∥∥ ∂α∂sα (Tα (s, t) x) − l1

∥∥∥∥∥
≤
ε
2
+
ε
2
= ε,

then

lim
s→0+

∂α

∂sα
(Tα (s, 0) x) = l1.

Hence

lim
(s,t)→(0+,0+)

∂α

∂sα
(Tα (s, t) x) = lim

s→0+
lim
t→0+

∂α

∂sα
(Tα (s, t) x)

= lim
s→0+

∂α

∂sα
(Tα (s, 0) x) .

Similarly, we obtain

lim
(s,t)→(0+,0+)

∂α

∂tα
(Tα (s, t) x) = lim

t→0+
lim
s→0+

∂α

∂tα
(Tα (s, t) x)

= lim
t→0+

∂α

∂tα
(Tα (0, t) x) .

Let (Tα (s, t))s,t≥0 be a two-parameter C0-α-semigroup, then (Tα (s, 0))s≥0 and (Tα (0, t))t≥0 are one-parameter
C0-α-semigroups.

Let A1 and A2 the linear operators defined by

D (A1) =
{

x ∈ X : lim
s→0+

∂α

∂sα
(Tα (s, 0) x) exists

}
,

D (A2) =
{

x ∈ X : lim
t→0+

∂α

∂tα
(Tα (0, t) x) exists

}
and

A1x = lim
s→0+

∂α

∂sα
(Tα (s, 0) x) for all x ∈ D (A1) ,

A2x = lim
t→0+

∂α

∂tα
(Tα (0, t) x) for all x ∈ D (A2) .

It is clear that A1 and A2 are the α-infinitesimal generators of the one-parameter C0-α-semigroups
(Tα (s, 0))s≥0 and (Tα (0, t))t≥0 respectively.
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Theorem 5.3. Let (Tα (s, t))s,t≥0 be a two-parameter C0-α-semigroup and let A be its α-infinitesimal generator, then
we have

D (A) = D (A1) ∩D (A2) ,

and we can consider the α-infinitesimal generator as a linear operator A : D (A) ⊂ X→ X × X defined by

∀x ∈ D (A) , Ax = (A1x,A2x) .

Proof. Let x ∈ D (A), then by the previous lemma lim
s→0+

∂α

∂sα (Tα (s, 0) x) and lim
t→0+

∂α

∂tα (Tα (0, t) x) exist and

Ax =
(

lim
s→0+

∂α

∂sα
Tα (s, 0) x, lim

t→0+

∂α

∂tα
Tα (0, t) x

)
= (A1x,A2x) .

Therefore, D (A) ⊂ D (A1) ∩D (A2) and Ax = (A1x,A2x) for all x ∈ D (A).
Now, let x ∈ D (A1) ∩D (A2) then lim

s→0+
∂α

∂sα (Tα (s, 0) x) and lim
t→0+

∂α

∂tα (Tα (0, t) x) exist, then ∂α

∂sα (Tα (s, 0) x) and
∂α

∂tα (Tα (0, t) x) exist on an open of the form ]0, a[, a > 0 and ]0, b[, b > 0 respectively, but we have for any
(s, t) ∈ ]0, a[ × ]0, b[,

∂α

∂sα
(Tα (s, t) x) = Tα (0, t)

[
∂α

∂sα
(Tα (s, 0) x)

]
and

∂α

∂tα
(Tα (s, t) x) = Tα (s, 0)

[
∂α

∂tα
(Tα (0, t) x)

]
,

then ∂α

∂sα (Tα (s, t) x) exists for all s ∈ ]0, a[ and t ≥ 0 and ∂α

∂tα (Tα (s, t) x) exists for all t ∈ ]0, a[ and s ≥ 0.
Let (s, t) ∈ ]0, a[ × ]0, b[ and h, k > 0, we set

J (h, k) = Tα
(
s + hs1−α, t + kt1−α

)
x − Tα (s, t) x −

(
∂α

∂sα
(Tα (s, t) x) ,

∂α

∂tα
(Tα (s, t) x)

) (
h
k

)
.

We have

J (h, k) = Tα (0, t)
(
Tα

(
s + hs1−α, 0

)
x − Tα (s, 0) x − h

∂α

∂sα
(Tα (s, 0) x)

)
+ Tα

(
s + hs1−α, 0

) (
Tα

(
0, t + kt1−α

)
x − Tα (0, t) x − k

∂α

∂tα
(Tα (0, t) x)

)
+ k

(
Tα

(
s + hs1−α, 0

)
− Tα (s, 0)

) ∂α
∂tα

(Tα (0, t) x) .

Since (Tα (s, t))s,t≥0 is a two-parameter C0-α-semigroup. Then Proposition 4.6 gives that (Tα (s, 0))s≥0 and
(Tα (0, t))t≥0 are one-parameter C0-α-semigroups, then there exist constants ω1, ω2 ≥ 0 and M1,M2 ≥ 1 such
that for any s, t ≥ 0 we have ∥Tα (s, 0)∥ ≤M1eω1sα and ∥Tα (0, t)∥ ≤M2eω2tα .
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Given the fact that we have h
∥(h,k)∥ ≤ 1 and k

∥(h,k)∥ ≤ 1, we obtain the following inequalities:

∥J (h, k)∥
∥(h, k)∥

≤
h

∥(h, k)∥
∥Tα (0, t)∥

∥∥∥∥∥∥∥Tα
(
s + hs1−α, 0

)
x − Tα (s, 0) x

h
−
∂α

∂sα
(Tα (s, 0) x)

∥∥∥∥∥∥∥
+

k
∥(h, k)∥

∥∥∥∥Tα
(
s + hs1−α, 0

)∥∥∥∥
∥∥∥∥∥∥∥Tα

(
0, t + kt1−α

)
x − Tα (0, t) x

k
−
∂α

∂tα
(Tα (0, t) x)

∥∥∥∥∥∥∥
+

k
∥(h, k)∥

∥∥∥∥∥(Tα (s + hs1−α, 0
)
− Tα (s, 0)

) ∂α
∂tα

(Tα (0, t) x)
∥∥∥∥∥

≤M1eω1tα

∥∥∥∥∥∥∥Tα
(
s + hs1−α, 0

)
x − Tα (s, 0) x

h
−
∂α

∂sα
(Tα (s, 0) x)

∥∥∥∥∥∥∥
+M2eω2(s+hs1−α)α

∥∥∥∥∥∥∥Tα
(
0, t + kt1−α

)
x − Tα (0, t) x

k
−
∂α

∂tα
(Tα (0, t) x)

∥∥∥∥∥∥∥
+

∥∥∥∥∥(Tα (s + hs1−α, 0
)
− Tα (s, 0)

) ∂α
∂tα

(Tα (0, t) x)
∥∥∥∥∥ .

We have for all (s, t) ∈ ]0, a[ × ]0, b[

lim
h→0

∥∥∥∥∥∥∥Tα
(
s + hs1−α, 0

)
x − Tα (s, 0) x

h
−
∂α

∂sα
(Tα (s, 0) x)

∥∥∥∥∥∥∥ = 0

and

lim
k→0

∥∥∥∥∥∥∥Tα
(
0, t + kt1−α

)
x − Tα (0, t) x

k
−
∂α

∂tα
(Tα (0, t) x)

∥∥∥∥∥∥∥ = 0.

If we put ε = hs1−α then ε→ 0 as h→ 0, and we have (Tα (s, 0))s≥0 is strongly continuous, so we get

lim
h→0

∥∥∥∥∥(Tα (s + hs1−α, 0
)
− Tα (s, 0)

) ∂α
∂tα

(Tα (0, t) x)
∥∥∥∥∥

= lim
ε→0

∥∥∥∥∥(Tα (s + ε, 0) − Tα (s, 0))
∂α

∂tα
(Tα (0, t) x)

∥∥∥∥∥ = 0.

Finally

lim
(h,k)→(0,0)

∥J (h, k)∥
∥(h, k)∥

= 0,

which means that Dα (Tα (s, t) x) exists for all x ∈ D (A1) ∩D (A2) and (s, t) ∈ ]0, a[ × ]0, a[ and

Dα (Tα (s, t) x) =
(
∂α

∂sα
(Tα (s, t) x) ,

∂α

∂tα
(Tα (s, t) x)

)
.

We have for any x ∈ D (A1) ∩D (A2)

lim
(s,t)→(0+,0+)

∂α

∂sα
(Tα (s, t) x) = A1x

Indeed, we have for all s ∈ ]0, a[

lim
t→0+

∂α

∂sα
(Tα (s, t) x) = lim

t→0+
Tα (0, t)

[
∂α

∂sα
(Tα (s, 0) x)

]
=
∂α

∂sα
(Tα (s, 0) x) exist,
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and we have for any x ∈ D (A1) ∩D (A2)

lim
s→0+

∂α

∂sα
(Tα (s, 0) x) = A1x.

Let ε > 0, there exists 0 < δ1 ≤ a such that if s ∈ ]0, δ1[ then∥∥∥∥∥ ∂α∂tα (Tα (s, 0) x) − A1x
∥∥∥∥∥ ≤ ε2 ,

and there exists 0 < δ2 ≤ b such that if t ∈ ]0, δ2[ we have for all s ∈ ]0, a[∥∥∥∥∥ ∂α∂sα (Tα (s, t) x) −
∂α

∂tα
(Tα (s, 0) x)

∥∥∥∥∥ ≤ ε2
Let (s, t) ∈ ]0, δ1[ × ]0, δ2[ then∥∥∥∥∥ ∂α∂sα (Tα (s, t) x) − A1x

∥∥∥∥∥ ≤ ∥∥∥∥∥ ∂α∂sα (Tα (s, t) x) −
∂α

∂tα
(Tα (s, 0) x)

∥∥∥∥∥ + ∥∥∥∥∥ ∂α∂tα (Tα (s, 0) x) − A1x
∥∥∥∥∥

≤
ε
2
+
ε
2

≤ ε.

Thus,

lim
(s,t)→(0+,0+)

∂α

∂sα
(Tα (s, t) x) = A1x.

Similarly, we show that for any x ∈ D (A1) ∩D (A2)

lim
(s,t)→(0+,0+)

∂α

∂tα
(Tα (s, t) x) = A2x.

Hence, we have

lim
(s,t)→(0+,0+)

Dα (Tα (s, t) x) = lim
(s,t)→(0+,0+)

(
∂α

∂sα
(Tα (s, t) x) ,

∂α

∂tα
(Tα (s, t) x)

)
=

(
lim

(s,t)→(0+,0+)

∂α

∂sα
(Tα (s, t) x) , lim

(s,t)→(0+,0+)

∂α

∂tα
(Tα (s, t) x)

)
= (A1x,A2x) .

Finally, we have shown that

1. Dα (Tα (s, t) x) exists in some ]0, a[ × ]0, b[, a, b > 0 and

Dα (Tα (0, 0) x) = lim
(s,t)→(0+,0+)

Dα (Tα (s, t) x)

exists.
2. ∂α

∂sα (Tα (s, 0) x) and ∂α

∂tα (Tα (0, t) x) exist in ]0, a[ and ]0, b[ respectively.

Therefore, Tα (s, t) x is α-differentiable at (0, 0), then x ∈ D (A).
Hence D (A1) ∩D (A2) ⊂ D (A) and ∀x ∈ D (A1) ∩D (A2), Ax = (A1x,A2x).
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Theorem 5.4. Let (Tα (s, t))s,t≥0 be a two-parameter C0-α-semigroup, then we can consider the α-infinitesimal gen-
erator of (Tα (s, t))s,t≥0 as a linear transformation
A : R+

2
→ L (D (A1) ∩D (A2) ,X) defined by

A (h, k) = hA1 + kA2,

where A1 and A2 are theα-infinitesimal generators of the one-parameter C0-α-semigroups (Tα (s, 0))s≥0 and (Tα (0, t))t≥0
respectively.

Proof. Let x ∈ D (A) = D (A1) ∩D (A2) then Dα (Tα (0, 0) x) exists as a linear transformation L (., .) : R+
2
→ X

defined by

L (h, k) = Dα (Tα (0, 0) x)
(
h
k

)
= hA1x + kA2x.

Let L̂ (., .) : R+
2
→ L (D (A1) ∩D (A2) ,X) defined by

L̂ (h, k) = hA1 + kA2,

then L̂ (., .) is a linear transformation and we have for any (h, k) ∈ R+
2

and x ∈ D (A1) ∩D (A2)

L (h, k) = L̂ (h, k) x,

then we have for all x ∈ D (A1) ∩D (A2)

L (., .) = L̂ (., .) x

therefore, for any x ∈ D (A1) ∩D (A2)

Ax = Dα (Tα (0, 0) x)
= L (., .)

= L̂ (., .) x.

Thus,

A = L̂ (., .) .

Therefore, we can consider the α-infinitesimal generator A as a linear transformation as follows

A : R+
2
→ L (D (A1) ∩D (A2) ,X)

defined by

A (h, k) = hA1 + kA2.

Remark 5.5. If (Tα (s, t))s,t≥0 is a two-parameter C0-α-semigroup and A is its α-infinitesimal generator, then in the
preceding results, we have seen two approaches to define A.

The first approach is to consider A as a linear operator A : D (A) ⊂ X→ X × X defined by

Ax = (A1x,A2x) for all x ∈ D (A) .

The second approach is to consider A as a linear transformation A : R+
2
→ L (D (A1) ∩D (A2) ,X) defined by

A (h, k) = hA1 + kA2.

Next, we will denote the α-infinitesimal generator of (Tα (s, t))s,t≥0 by (A1,A2), and this notation is adopted for
the two approaches of the definition, and we will write
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1. For the first approach :

(A1,A2) x = (A1x,A2x) for all x ∈ D (A1) ∩D (A2) .

2. For the second approach :(
(A1,A2)

(
h
k

))
x = hA1x + kA2x for all (h, k) ∈ R+

2
and all x ∈ D (A1) ∩D (A2) .

Theorem 5.6. Let (Tα (s, t))s,t≥0 be a two-parameter C0-α-semigroup, and let A be its α-infinitesimal generator then
for all x ∈ D (A)

1. For any t ≥ 0 we have Tα (0, t) x ∈ D (A1) and A1Tα (0, t) x = Tα (0, t) A1x.
2. For any s ≥ 0 we have Tα (s, 0) x ∈ D (A2) and A2Tα (s, 0) x = Tα (s, 0) A2x.
3. For all (s, t) ∈ R+2 , Tα (s, t) x ∈ D (A) and we have

∂α

∂sα
(T (s, t) x) = A1Tα (s, t) x = Tα (s, t) A1x

and

∂α

∂tα
(T (s, t) x) = A2Tα (s, t) x = Tα (s, t) A2x.

4. For all (s, t) ∈ R+2 , Tα (s, t) x ∈ D (A) and

Dα (Tα (s, t) x)
(
h
k

)
=

(
(A1,A2)

(
h
k

))
Tα (s, t) x = Tα (s, t)

(
(A1,A2)

(
h
k

))
x.

for all (h, k) ∈ R2.

Proof. 1. Let x ∈ D (A) ⊆ D (A1), then lim
s→0+

∂α

∂sα (Tα (s, 0) x) exists, so Dα (Tα (s, 0) x) exists in an open of the form

]0, a[, a > 0. Let s ∈ ]0, a[ and t ≥ 0, we have

∂α

∂sα
(Tα (s, 0) Tα (0, t) x) = Tα (0, t)

∂α

∂sα
(Tα (s, 0) x) .

Therefore,

lim
s→0+

∂α

∂sα
(Tα (s, 0) Tα (0, t) x) = Tα (0, t)

(
lim
s→0+

∂α

∂sα
(Tα (s, 0) x)

)
= Tα (0, t) A1x,

then for any t ≥ 0 we have Tα (0, t) x ∈ D (A1) and A1Tα (0, t) x = Tα (0, t) A1x.
2. The same method as 1.
3. Let (s, t) ∈ R+2

and x ∈ D (A), we have from 1. that Tα (0, t) x ∈ D (A1), then from Theorem 2.7 we have

∂α

∂sα
(Tα (s, 0) Tα (0, t) x) = A1Tα (s, 0) Tα (0, t) x = Tα (s, 0) A1Tα (0, t) x

and from 1. we have

Tα (s, 0) A1Tα (0, t) x = Tα (s, 0) Tα (0, t) A1x.

Finally, we get for any (s, t) ∈ R+2
and x ∈ D (A)

∂α

∂sα
(Tα (s, t) x) = A1Tα (s, t) x = Tα (s, t) A1x.
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With the same method, we show that

∂α

∂tα
(Tα (s, t) x) = A2Tα (s, t) x = Tα (s, t) A2x.

4. Let (h, k) ∈ R2, (s, t) ∈ R+2
and x ∈ D (A)

From 3. we have

Dα (Tα (s, t) x)
(
h
k

)
=

(
∂α

∂sα
(Tα (s, t) x) ,

∂α

∂tα
(Tα (s, t) x)

) (
h
k

)
= h
∂α

∂sα
(Tα (s, t) x) + k

∂α

∂tα
(Tα (s, t) x)

= hA1Tα (s, t) x + kA2Tα (s, t) x
= Tα (s, t) hA1x + Tα (s, t) kA2x
= (hA1 + kA2) Tα (s, t) x
= Tα (s, t) (hA1 + kA2) x

=

(
(A1,A2)

(
h
k

))
Tα (s, t) x

= Tα (s, t)
(
(A1,A2)

(
h
k

))
x.

6. Two-parameter α-Abstract Cauchy Problem

Let Ai : D (Ai) ⊆ X → X , i = 1, 2, be a linear operator. We consider the following two-parameter
α-Cauchy Problem

2-α-ACP


∂α

∂tαi
u (t1, t2) = Aiu (t1, t2) , ti > 0, i = 1, 2,

u (0, 0) = x, x ∈ D (A1) ∩D (A2) .

We mean by a solution a function u : [0,+∞[ × [0,+∞[→ X which satisfies the following :

1. u (., .) is continuous on [0,+∞[ × [0,+∞[.
2. u has continuous partial α-derivative.
3. ∀s, t ≥ 0, u (s, t) ∈ D (Ai) for i = 1, 2.
4. u satisfies the 2-α-ACP.

Theorem 6.1. Suppose that (A1,A2) is theα-infinitesimal generator of a two-parameter C0-α-semigroup (Tα (s, t))s,t≥0.
Then the 2-α-ACP has the unique solution u (s, t; x) = Tα (s, t) x for all x ∈ D (A1) ∩D (A2).

Proof. It is clear from Theorem 5.6 that u (s, t; x) = Tα (s, t) x is a solution of 2-α-ACP. It remains to show that
the 2-α-ACP has a unique solution, for that it is enough to show that the 2-α-ACP has a solution u (s, t) = 0,
for the initial value x = 0.

Based on the case of one parameter [2], we know that the systems

1-α-ACP
{
∂α

∂tα v (t) = A1v (t) , t > 0,
v (0) = 0,

and

1-α-ACP
{
∂α

∂tαw (t) = A2w (t) , t > 0,
w (0) = 0,
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have the unique solution v = 0 and w = 0.
Now, suppose that u (s, t; 0) is a solution of the 2-α-ACP for the initial value x = 0, then its clear that

v1 (s) = Tα (s, 0) u (0, t; 0) and v2 (s) = u (s, t; 0)

are two solutions of the 1-α-ACP

1-α-ACP
{
∂α

∂sα v (s) = A1v (s) , s > 0,
v (0) = u (0, t; 0) .

Indeed, we have

∂α

∂sα
v1 (s) =

∂α

∂sα
Tα (s, 0) u (0, t; 0)

= A1Tα (s, 0) u (0, t; 0)
= A1v1 (s)

and

v1 (0) = Tα (0, 0) u (0, t; 0)
= u (0, t; 0) .

On the other hand, we have

∂α

∂sα
v2 (s) =

∂α

∂sα
u (s, t; 0)

= A1u (s, t; 0)

and

v2 (0) = u (0, t; 0) .

By uniqueness of the solution, we get for any s, t ≥ 0

u (s, t; 0) = Tα (s, 0) u (0, t; 0) .

With the same method, we show that

w1 (t) = Tα (0, t) u (s, 0; 0) and v2 (t) = u (s, t; 0)

are two solutions of the 1-α-ACP

1-α-ACP
{
∂α

∂tαw (t) = A2w (t) , t > 0,
v (0) = u (s, 0; 0) .

Through the uniqueness of the solution, we obtain for all s, t ≥ 0

u (s, t; 0) = Tα (0, t) u (s, 0; 0) .

Finally, we have

u (s, t; 0) = Tα (s, 0) u (0, t; 0)
= Tα (s, 0) (Tα (0, t) u (0, 0; 0))
= Tα (s, 0) Tα (0, t) (0)
= 0.
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As an application of our discussion, we conclude with a simple example.

Example 6.2. Let A and B be two bounded commuting operators and consider the following two-parameter α-Cauchy
Problem

2-α-ACP*


∂α

∂sα u (s, t) = Au (s, t) , s, t > 0,

∂α

∂tα u (s, t) = Bu (s, t) , s, t > 0,

u (0, 0) = x, x ∈ D (A) ∩D (B) .

Then for all s, t ≥ 0 and x ∈ D (A) ∩D (B) the 2-α-ACP* has the unique solution u (s, t; x) = e
sα
α A+ tα

α Bx.
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[9] N. Y. Gözütok, U. Gözütok, Multi-variable conformable fractional calculus, Filomat 32(1) (2018) 45–53.

[10] M. Janfada, A. Niknam, On the n-parameter abstract Cauchy problem, Bull. Aust. Math. Soc. 69 (2004) 383-394.
[11] R. Khalil, M. Al Horani, A, Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014)

65–70.
[12] A. Kilbas, M. H. Srivastava, J. J. Trujillo, Theory and application of fractional differential equations, North-Holland Mathematics

Studies, Elsevier Science Inc., New York, NY, USA, 2006.
[13] R. L. Magin, Fractional Calculus in Bioengineering, Part 1, Crit. Rev. Biomed. Eng. 32 (2004) 1–104.
[14] R. L. Magin, Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl. 59 (2010) 1586-1593.
[15] Manuel D. Ortigueira, J. A. Tenreiro Machado, What is a fractional derivative?, J. Comput. Phys. 293 (2015) 4–13.
[16] G. Sales Teodoro, J. A. Tenreiro Machado, E. Capelas de Oliveira, A review of definitions of fractional derivatives and other

operators, J. Comput. Phys. 388 (2019) 195-208.
[17] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach

Science Publishers, Yverdon, Switzerland, 1993.
[18] J. Tenreiro Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul. 16

(2011) 1140-1153.
[19] Q. P. Vu, Stability and Asymptotic Behavior of Systems with Multi-time, Vietnam J. Math. 43 (2015) 417–437.
[20] D. Zhao, M, Luo, General conformable fractional derivative and its physical interpretation, Calcolo 54 (2017) 903–917.


