F-geodesics on the second order tangent bundle over a Riemannian manifold

Nour Elhouda Djaa ${ }^{\text {a }}$, Aydin Gezer ${ }^{\text {b }}$, Kubra Karaca ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Faculty of Sciences and Technology, Relizane University, BP 48000 City Bourmadia, Relizane, Algeria.
${ }^{b}$ Department of Mathematics, Faculty of Science, Ataturk University, 25240, Erzurum, Turkey.

Abstract

Let (M, g) be a Riemannian manifold and $T^{2} M$ be its second order tangent bundle. In this paper, we deal with certain characterizations of F-geodesics (which generalize both classical geodesics and magnetic curves) on the second order tangent bundle $T^{2} M$ and the hypersurface $T_{1,1}^{2} M$ with respect to some natural metrics.

1. Introduction

Magnetic curves represent, in physics, the trajectories of the charged particles moving on a Riemannian manifold under the action of the magnetic fields. A magnetic field F on a Riemannian manifold (M, g) is a closed 2 -form and the Lorentz force associated to F is a $(1,1)$-tensor field ρ such that

$$
F(X, Y)=g(\rho X, Y)
$$

for all vector fields X, Y on M. A magnetic trajectory in such a magnetic field is thus modeled by a second order differential equation, that is,

$$
\nabla_{\dot{\gamma}} \dot{\gamma}=\rho \dot{\gamma},
$$

usually known as the Lorentz equation. Such curves are sometimes called also magnetic geodesics since the Lorentz equation generalizes the equation of geodesics under arc-length parametrization, namely, $\nabla_{\dot{\gamma}} \dot{\gamma}=0$. Here, ∇ denotes the Levi-Civita connection of the Riemannian metric g.

A smooth curve γ on a Riemannian manifold (M, g) endowed with a $(1,1)$-tensor field F and with Levi-Civita connection ∇ is called an F-geodesic if γ satisfies

$$
\nabla_{\dot{\gamma}} \dot{\gamma}=F \dot{\gamma}
$$

F-geodesics are strictly related to F-planar curves and extended magnetic curves and hence, geodesics. Note that the notion of F-geodesic is slightly different from F-planar curve (see [12]). Inspired by the

[^0]Lorentz force, the electro-magnetic tensor field, as well as some special forces involved in the EulerLagrange equations from Lagrangian mechanics, Bejan and Druţă-Romaniuc [2] defined F-geodesics on a manifold with a linear connection. They presented several examples of F-geodesics; for instance, they constructed F-geodesics on the tangent bundle of a manifold by using lifts. Also, they characterized F-geodesics according to some special connections such as Vranceanu connection on foliated manifolds and adapted connections on almost contact manifolds. Finally, they found conditions for a pair of symmetric connections to have the same system of F-geodesics. In this paper, we deal with certain characterizations of F-geodesics on the second order tangent bundle $T^{2} M$ and the hypersurface $T_{1,1}^{2} M$.

1.1. Whitney tangent fiber bundle $T M \oplus T M$

Let M be an n-dimensional Riemannian manifold with a Riemannian metric g and $T M$ be its tangent bundle denoted by $\pi: T M \rightarrow M$. We refer to $[6,16]$ for all the necessary background for the tangent bundle. The Whitney tangent fiber bundle $T M \oplus T M$ is defined by

$$
T M \oplus T M=\{(u, \omega) \in T M \times T M ; \quad \pi(u)=\pi(\omega)\}=\bigcup_{x \in M} T_{x} M \times T_{x} M
$$

where π_{\oplus} is denoted by

$$
\begin{aligned}
& \pi_{\oplus}: T M \oplus T M \rightarrow M \\
&(u, \omega) \mapsto \\
& \pi_{\oplus}(u, \omega)=\pi(u)=\pi(\omega) .
\end{aligned}
$$

A local chart $(U, \varphi)=\left(U, x^{i}\right)$ on M induces a chart $\left(\pi^{-1}(U), \widetilde{\varphi}\right)=\left(\pi^{-1}(U), x^{i}, y^{i}\right)$ on $T M$ and $\left(\pi_{\oplus}^{-1}(U), \bar{\varphi}\right)=$ $\left(\pi_{\oplus}^{-1}(U), x^{i}, y^{i}, z^{i}\right)$ on $T M \oplus T M$ such

$$
\bar{\varphi}(x, u, \omega)=\left(\varphi(x), \widetilde{\varphi}_{x}(u), \widetilde{\varphi}_{x}(\omega)\right)=(\varphi(x), y, z) .
$$

Let $\widetilde{X}, \widetilde{Y}$ be vector fields on $T M$. Then $(\widetilde{X}, \widetilde{Y})$ is a vector field on $T M \oplus T M$ if and only if

$$
d \pi(\widetilde{X})=d \pi(\widetilde{Y})
$$

Relative to the chart $\left(\pi_{\oplus}^{-1}(U), \bar{\varphi}\right)=\left(\pi_{\oplus}^{-1}(U), x^{i}, y^{i}, z^{i}\right)$, the local frame vector fields given in [5] are

$$
\begin{aligned}
\frac{\partial}{\partial x^{i}} & =\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{i}}\right) \\
\frac{\partial}{\partial y^{i}} & =\left(\frac{\partial}{\partial y^{i}}, 0\right) \\
\frac{\partial}{\partial z^{i}} & =\left(0, \frac{\partial}{\partial z^{i}}\right)
\end{aligned}
$$

For any vector field X on M and $f \in C^{\infty}(M)$, we have

$$
\begin{aligned}
\left(X^{V}, 0\right) & =X^{i} \frac{\partial}{\partial y^{i}},\left(0, X^{V}\right)=X^{i} \frac{\partial}{\partial z^{i}}, \\
\left(X^{H}, X^{H}\right) & =X^{i} \frac{\partial}{\partial x^{i}}-\Gamma_{i j}^{k} X^{i} y^{j} \frac{\partial}{\partial y^{k}}-\Gamma_{i j}^{k} X^{i} z^{j} \frac{\partial}{\partial z^{k}}, \\
\left(X^{V}, 0\right)(f \circ \pi) & =\left(0, X^{V}\right)(f \circ \pi)=0, \\
\left(X^{H}, X^{H}\right)(f \circ \pi) & =X(f) \circ \pi .
\end{aligned}
$$

If (M, g) is a Riemannian manifold, ∇ its Levi-Civita connection and $\gamma_{1}, \gamma_{2}: 0 \in I \subset \mathbb{R} \rightarrow M$ are two smooth curves, then we have

$$
\left[\gamma_{1} \sim \gamma_{2}\right] \Leftrightarrow\left[\gamma_{1}(0)=\gamma_{2}(0), \quad \frac{d \gamma_{1}}{d t}(0)=\frac{d \gamma_{2}}{d t}(0) \quad \text { and } \quad \frac{d^{2} \gamma_{1}}{d t^{2}}(0)=\frac{d^{2} \gamma_{2}}{d t^{2}}(0)\right]
$$

$$
j_{0}^{2} \gamma=\{\bar{\gamma} ; \quad \bar{\gamma} \sim \gamma\} .
$$

The second order tangent bundle is the natural bundle of 2 -jets of differentiable curves defined by

$$
T^{2} M=\left\{j_{0}^{2} \gamma ; \gamma: I \rightarrow M, \text { is a smooth curve at } 0 \in \mathbb{R}\right\} .
$$

The canonical projection P on $T^{2} M$ is given by

$$
\begin{aligned}
P: T^{2} M & \rightarrow M \\
j_{0}^{2} \gamma & \mapsto \gamma(0) .
\end{aligned}
$$

A local chart (U, φ) induces a chart $\left(P^{-1}(U), \phi\right)$ on $T^{2} M$ given by

$$
\phi\left(j_{0}^{2} \gamma\right)=\left(\varphi(\gamma(0)), \frac{d \varphi \circ \gamma}{d t}(0), \frac{d^{2} \varphi \circ \gamma}{d t^{2}}(0)\right) .
$$

Proposition 1.1. [5] If $T M \oplus T M$ denotes the Whitney sum, then

$$
S: T^{2} M \rightarrow T M \oplus T M, \quad j_{0}^{2} \gamma \mapsto\left(\dot{\gamma}(0),\left(\nabla_{\dot{\gamma}(0)} \dot{\gamma}\right)(0)\right)
$$

is a diffeomorphism of natural bundles.
In the induced coordinates, we have

$$
S:\left(x^{i}, y^{i}, z^{i}\right) \mapsto\left(x^{i}, y^{i}, z^{i}+y^{j} y^{k} \Gamma_{j k}^{i}\right)
$$

Proposition 1.2. [5] Let $T^{2} M$ be a second order tangent bundle endowed with the vectorial structure induced by the diffeomorphism S. For any section $\sigma \in \Gamma\left(T^{2} M\right)\left(\Gamma\left(T^{2} M\right)\right.$ is the set of all sections from M onto $\left.T^{2} M\right)$, if we define two vector fields on M by

$$
X_{\sigma}=P_{1} \circ S \circ \sigma, \quad Y_{\sigma}=P_{2} \circ S \circ \sigma,
$$

then $\sigma=S^{-1}\left(X_{\sigma}, Y_{\sigma}\right)$, where P_{1} and P_{2} denote the first and the second projection from TM \oplus TM onto TM.

1.2. Lifts to $T^{2} M$

If (U, φ) is a local chart on M, then the diffeomorphism S induces a local chart $\left(\left(\pi_{\oplus} \circ S\right)^{-1}(U), \bar{\varphi} \circ S\right)$ on $T^{2} M$ such that

$$
\begin{equation*}
\frac{\partial}{\partial x^{i}}=S_{*}^{-1}\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{i}}\right), \frac{\partial}{\partial y^{i}}=S_{*}^{-1}\left(\frac{\partial}{\partial y^{i}}, 0\right), \frac{\partial}{\partial z^{i}}=S_{*}^{-1}\left(0, \frac{\partial}{\partial z^{i}}\right), \tag{1}
\end{equation*}
$$

where $\pi_{\oplus}:(u, \omega) \in T M \oplus T M \mapsto \pi(u)=\pi(\omega)=x$.
Definition 1.3. [3, 4] Let (M, g) be a Riemannian manifold, X and F respectively be a vector field and $a(1,1)-$ tensor field on M. For $\lambda=0,1,2$, the λ-lift of X to $T^{2} M$ is defined by

$$
\begin{aligned}
X^{(0)} & =S_{*}^{-1}\left(X^{H}, X^{H}\right) \\
X^{(1)} & =S_{*}^{-1}\left(X^{V}, 0\right) \\
X^{(2)} & =S_{*}^{-1}\left(0, X^{V}\right), \\
F^{(0)}\left(X^{(\lambda)}\right) & =(F X)^{(\lambda)}, \quad(\lambda=0,1,2) \\
F^{(\lambda)}\left(X^{(0)}\right) & =(F X)^{(\lambda)}, \quad(\lambda=1,2) \\
F^{(1)}\left(X^{(\lambda)}\right) & =0=F^{(2)}\left(X^{(\lambda)}\right), \quad(\lambda=1,2) .
\end{aligned}
$$

From the formulae (1) and Definition 1.3, we obtain the following lemma.

Lemma 1.4. For any vector field X on M and any smooth function $f \in C^{\infty}(M)$, we have

$$
\begin{aligned}
X^{(1)} & =X^{i} \frac{\partial}{\partial y^{i}}, \\
X^{(2)} & =X^{i} \frac{\partial}{\partial z^{i}}, \\
X^{(0)} & =X^{i} \frac{\partial}{\partial x^{i}}-\Gamma_{i j}^{k} X^{i} y^{j} \frac{\partial}{\partial y^{k}}-\Gamma_{i j}^{k} X^{i} z^{j} \frac{\partial}{\partial z^{k}}, \\
X^{(1)}(f \circ \pi) & =X^{(2)}(f \circ \pi)=0, \\
X^{(0)}(f \circ \pi) & =X(f) \circ \pi .
\end{aligned}
$$

From Definition 1.3 and the Lie bracket operations of the horizontal and vertical lifts of any vector field X to the tangent bundle (see $[6,16]$), we obtain the following proposition.

Proposition 1.5. [5] Let (M, g) be a Riemannian manifold. If R denotes the Riemannian curvature tensor of (M, g), then for all vector fields X, Y on M and $p \in T^{2} M$ we have

1. $\left[X^{(0)}, Y^{(0)}\right]_{p}=[X, Y]_{p}^{(0)}-\left(R_{x}(X, Y) u\right)_{p}^{(1)}-\left(R_{x}(X, Y) \omega\right)_{p}^{(2)}$,
2. $\left[X^{(0)}, Y^{(i)}\right]_{p}=\left(\nabla_{X} Y\right)_{p}^{(i)}$,
3. $\left[X^{(i)}, Y^{(j)}\right]_{p}=0$,
where $(x, u, \omega)=S(p)$ and $i, j=1,2$.
Lemma 1.6. Let (M, g) be a Riemannian manifold. For all $x \in M, u=u^{i} \frac{\partial}{\partial x^{i}}, \omega=\omega^{i} \frac{\partial}{\partial x^{i}} \in T_{x} M$ and any smooth function $f: \mathbb{R} \rightarrow \mathbb{R}$, we have the following

$$
\begin{gathered}
X^{(0)}(g(Y, u))_{p}=g\left(\nabla_{X} Y, u\right)_{x}, \\
X^{(0)}(g(Y, \omega))_{p}=g\left(\nabla_{X} Y, \omega\right)_{x}, \\
X^{(0)}\left(f\left(r_{1}^{2}\right)\right)_{p}=X^{(0)}\left(f\left(r_{2}^{2}\right)\right)_{p}=0=X^{(0)}(g(u, u))_{p}=X^{(0)}(g(\omega, \omega))_{p}, \\
X^{(1)}(g(u, u))_{p}=2 g(X, u)_{x}, \\
X^{(1)}(g(\omega, \omega))_{p}=0=X^{(2)}(g(u, u))_{p}, \\
X^{(2)}(g(\omega, \omega))_{p}=2 g(X, \omega)_{x}, \\
X^{(1)}(g(Y, u))_{p}=g(X, Y)_{x}=X^{(2)}(g(Y, \omega))_{p}, \\
X^{(1)}(g(Y, \omega))_{p}=0=X^{(2)}(g(Y, u))_{p}, \\
X^{(1)}\left(f\left(r_{1}^{2}\right)\right)_{p}=2 f^{\prime}\left(r_{1}^{2}\right) g(X, u), \\
X^{(1)}\left(f\left(r_{2}^{2}\right)\right)_{p}=0=X^{(2)}\left(f\left(r_{1}^{2}\right)\right), \\
X^{(2)}\left(f\left(r_{2}^{2}\right)\right)_{p}=2 f^{\prime}\left(r_{2}^{2}\right) g(X, \omega),
\end{gathered}
$$

where $p=S^{-1}(x, u, \omega), r_{1}^{2}=g(u, u)=|u|^{2}, \quad r_{2}^{2}=g(\omega, \omega)=|\omega|^{2}$.

2. F-geodesics on $T^{2} M$

Definition 2.1. Let (M, g) be a Riemannian manifold. We define the Sasaki metric G_{S} on the second order tangent bundle $T^{2} M$ by

$$
G_{S}=S_{*}^{-1}\left(g_{S} \oplus g_{S}\right)
$$

where g_{S} is the Sasaki metric on the tangent bundle of (M, g) (for Sasaki metric, see $\left.[15,16]\right)$.
Thus, we obtain the following definition.
Definition 2.2. Let (M, g) be a Riemannian manifold. If $p \in T^{2} M$, then for all vector fields X, Y on M and $i, j \in\{0,1,2\}(i \neq j)$, we obtain
$1 G_{S}\left(X^{(0)}, Y^{(0)}\right)_{p}=g(X, Y)_{x}$,
$2 G_{S}\left(X^{(i)}, Y^{(j)}\right)_{p}=0$, for $i \neq j$
$3 G_{S}\left(X^{(1)}, Y^{(1)}\right)_{p}=g(X, Y)_{x}$,
$4 G_{S}\left(X^{(2)}, Y^{(2)}\right)_{p}=g(X, Y)_{x}$, where $S(p)=(x, u, \omega) \in T_{x} M \oplus T_{x} M$ (also see [13]).

From Lemma 1.6 and Definition 2.2, standard calculations give the following lemma.
Lemma 2.3. Let (M, g) be a Riemannian manifold and $T^{2} M$ its second order tangent bundle with the Sasaki metric Gs. Then

$$
\begin{aligned}
& X^{(0)}\left(G_{S}\left(Y^{(0)}, Z^{(0)}\right)\right)_{p}=X(g(Y, Z))_{x} \\
& X^{(0)}\left(G_{S}\left(Y^{(1)}, Z^{(1)}\right)\right)_{p}=G_{S}\left(\left(\nabla_{X} Y\right)^{(1)}, Z^{(1)}\right)_{p}+G_{S}\left(Y^{(1)},\left(\nabla_{X} Z\right)^{(1)}\right)_{p}, \\
& X^{(0)}\left(G_{S}\left(Y^{(2)}, Z^{(2)}\right)\right)_{p}=G_{S}\left(\left(\nabla_{X} Y\right)^{(2)}, Z^{(2)}\right)_{p}+G_{S}\left(Y^{(2)},\left(\nabla_{X} Z\right)^{(2)}\right)_{p}, \\
& X^{(1)}\left(G_{S}\left(Y^{(0)}, Z^{(0)}\right)\right)_{p}=0=X^{(2)}\left(G_{S}\left(Y^{(0)}, Z^{(0)}\right)_{p},\right. \\
& X^{(1)}\left(G_{S}\left(Y^{(1)}, Z^{(1)}\right)\right)_{p}=0, \\
& X^{(2)}\left(G_{S}\left(Y^{(2)}, Z^{(2)}\right)\right)_{p}=0, \\
& X^{(1)}\left(G_{S}\left(Y^{(2)}, Z^{(2)}\right)\right)_{p}=0=X^{(2)}\left(G_{S}\left(Y^{(1)}, Z^{(1)}\right)_{p}\right.
\end{aligned}
$$

for all vector fields X, Y, Z on M and $p \in T^{2} M$.
Proposition 2.4. [5] Let (M, g) be a Riemannian manifold and $T^{2} M$ be its second order tangent bundle equipped with the Sasaki metric G_{S}. If $\widetilde{\nabla}$ denotes the Levi-Civita connection of $T^{2} M$, then for $p \in T^{2} M$ and vector fields X, Y on M we have

1. $\left(\widetilde{\nabla}_{X^{(0)}} Y^{(0)}\right)_{p}=\left(\nabla_{X} Y\right)^{(0)}-\frac{1}{2}(R(X, Y) u)^{(1)}-\frac{1}{2}(R(X, Y) \omega)^{(2)}$,
2. $\left(\widetilde{\nabla}_{X^{(0)}} Y^{(1)}\right)_{p}=\left(\nabla_{X} Y\right)^{(1)}+\frac{1}{2}(R(u, Y) X)^{(0)}$,
3. $\left(\widetilde{\nabla}_{X^{(0)}} Y^{(2)}\right)_{p}=\left(\nabla_{X} Y\right)^{(2)}+\frac{1}{2}(R(\omega, Y) X)^{(0)}$,
4. $\left(\widetilde{\nabla}_{X^{(1)}} Y^{(0)}\right)_{p}=\frac{1}{2}(R(u, X) Y)^{(0)}$,
5. $\left(\widetilde{\nabla}_{X^{(2)}} Y^{(0)}\right)_{p}=\frac{1}{2}(R(\omega, X) Y)^{(0)}$,
6. $\left(\widetilde{\nabla}_{X^{(i)}} Y^{(j)}\right)_{p}=0 \quad i, j=1,2$,
where $S(p)=(x, u, \omega), \nabla$ and R denote the Levi-Civita connection and the Riemannian curvature tensor of (M, g), respectively.

Definition 2.5. Let M be a smooth manifold, F be a (1,1)-tensor field on $M, \bar{\nabla}$ be a linear connection on M and $\gamma: I \rightarrow M$ be a smooth curve. Then

1. γ is said to be a magnetic curve with respect to $(F, \bar{\nabla})$, if γ satisfies : $\bar{\nabla}_{\dot{\gamma}} \dot{\gamma}(t)=F \dot{\gamma}(t)([1,7])$,
2. γ is said to be an F-planar curve with respect to $\bar{\nabla}$ if γ satisfies : $\bar{\nabla}_{\dot{\gamma}} \dot{\gamma}(t)=\varrho_{1}(t) \dot{\gamma}(t)+\varrho_{2}(t) F \dot{\gamma}(t)([11,12])$,
where ϱ_{1}, ϱ_{2} are some smooth real functions.

Definition 2.6. [2] Let M be a smooth manifold, F be a (1,1)-tensor field on $M, \bar{\nabla}$ be a linear connection, and $\gamma: I \rightarrow M$ be a smooth curve. We say that γ is an F-geodesic with respect to $\bar{\nabla}$ if $\gamma(u)$ satifies

$$
\begin{equation*}
\bar{\nabla}_{\dot{\gamma}(u)} \dot{\gamma}(u)=F(\dot{\gamma}(u)) . \tag{2}
\end{equation*}
$$

If t is another parameter for the same curve $\gamma(u)$ then the relation (2) becomes

$$
\begin{equation*}
\bar{\nabla}_{\dot{\gamma}(t)} \dot{\gamma}(t)=\alpha(t) \dot{\gamma}(t)+\beta(t) F(\dot{\gamma}(t)) \tag{3}
\end{equation*}
$$

where α and β are some functions on the curve $\gamma(t)$.
A curve $\gamma(t)$ satisfying the relation (3) describes an F-geodesic up to a reparameterization.
One can easily see that an F-geodesic is an F-planar curve, but in general an F-planar curve is not always an F-geodesic.

Definition 2.7. Let (M, g) be a Riemannian manifold and $x: I \rightarrow M$ be a curve on M. We define a curve $C: I \rightarrow T^{2} M$ by $C(t)=S^{-1}(x(t), y(t), z(t))$ for all $t \in I$, where $y(t) \in T_{x(t)} M$, i.e., $y(t), z(t)$ are vector fields along $x(t)$.
(1) The curve $C(t)=S^{-1}(x(t), \dot{x}(t), \dot{x}(t))$ is called a natural lift of the curve $x(t)$.
(2) The curve $C(t)=S^{-1}(x(t), y(t), z(t))$ is said to be a horizontal lift of the cure $x(t)$ if and only if $\nabla_{\dot{x}} y=0$ and $\nabla_{\dot{x}} z=0$.

Lemma 2.8 ([14]). Let (M, g) be a Riemannian manifold. If X, Y are vector fields on M and $(x, u) \in T M$ such that $X_{x}=u$, then we have

$$
d_{x} X\left(Y_{x}\right)=Y_{(x, u)}^{H}+\left(\nabla_{Y} X\right)_{(x, u)}^{V} .
$$

Lemma 2.9. Let (M, g) be a Riemannian manifold. If Z is a vector field on M and $\sigma \in \Gamma\left(T^{2} M\right)$ then for all $x \in M$, we have

$$
d_{x} \sigma\left(Z_{x}\right)=Z_{p}^{(0)}+\left(\nabla_{Z} X_{\sigma}\right)_{p}^{(1)}+\left(\nabla_{Z} Y_{\sigma}\right)_{p}^{(2)}
$$

where $p=\sigma(x)$.
Proof. Using Lemma 2.8, it follows that

$$
\begin{aligned}
d_{x} \sigma(Z) & =d S^{-1}\left(d X_{\sigma}(Z), d Y_{\sigma}(Z)\right)_{S(p)} \\
& =d S^{-1}\left(Z^{H}, Z^{H}\right)_{S(p)}+d S^{-1}\left(\left(\nabla_{Z} X_{\sigma}\right)^{V},\left(\nabla_{Z} Y_{\sigma}\right)^{V}\right)_{S(p)} \\
& =Z_{p}^{(0)}+\left(\nabla_{Z} X_{\sigma}\right)_{p}^{(1)}+\left(\nabla_{Z} Y_{\sigma}\right)_{p}^{(2)} .
\end{aligned}
$$

Lemma 2.10. Let (M, g) be a Riemannian manifold and let $\left(T^{2} M, G_{S}\right)$ be its second order tangent bundle equipped with the Sasaki metric and let $x: I \rightarrow M$ be a curve on M. If $C: t \in I \rightarrow C(t)=S^{-1}(x(t), y(t), z(t))$ is a curve on $T^{2} M$ such that $y(t), z(t)$ are vector fields along $x(t)\left(\right.$ i.e., $\left.y(t), z(t) \in T_{x(t)} M\right)$, then

$$
\dot{C}=\dot{x}^{(0)}+\left(\nabla_{\dot{x}} y\right)^{(1)}+\left(\nabla_{\dot{x}} z\right)^{(2)},
$$

where $\dot{x}=\frac{d x}{d t}$ and $\dot{C}=\frac{d C}{d t}$.

Proof. If Y, Z are vector fields such $Y(x(t))=y(t)$ and $Z(x(t))=z(t)$, then we have

$$
\dot{C}(t)=d C(t)=d \sigma(\dot{x}(t)),
$$

where $\sigma=S^{-1}(Y, Z)$. Using Lemma 2.9 we obtain

$$
\begin{equation*}
\dot{C}(t)=d \sigma(\dot{x}(t))=\dot{x}^{(0)}+\left(\nabla_{\dot{x}} y\right)^{(1)}+\left(\nabla_{\dot{x}} z\right)^{(2)} . \tag{4}
\end{equation*}
$$

Theorem 2.11. Let (M, g) be a Riemannian manifold and let $\left(T^{2} M, G_{S}\right)$ be its second order tangent bundle equipped with the Levi-Civita connection $\widetilde{\nabla}$ and let $C(t)=S^{-1}(x(t), y(t), z(t))$ be a curve on $T^{2} M$ such that $y(t), z(t)$ are vector fields along $x(t)$. Then we have

$$
\begin{equation*}
\widetilde{\nabla}_{\dot{C}} \dot{C}=\left[\nabla_{\dot{x}} \dot{x}+R\left(y, \nabla_{\dot{x}} y\right) \dot{x}+R\left(z, \nabla_{\dot{x}} z\right) \dot{x}\right]^{(0)}+\left[\nabla_{\dot{x}} \nabla_{\dot{x}} y\right]^{(1)}+\left[\nabla_{\dot{x}} \nabla_{\dot{x}} z\right]^{(2)} \tag{5}
\end{equation*}
$$

Proof. The proof follows immediately from Proposition 2.4 and the formula (4).

Theorem 2.12. Let (M, g) be a Riemannian manifold and let $\left(T^{2} M, G_{S}\right)$ be its second order tangent bundle equipped with the Levi-Civita connection $\widetilde{\nabla}$. A curve $C(t)=S^{-1}(x(t), y(t), z(t))$ on $T^{2} M$ is an $F^{(0)}$-planar curve if and only if

$$
\begin{aligned}
\nabla_{\dot{x}} \dot{x} & =-R\left(y, \nabla_{\dot{x}} y\right) \dot{x}-R\left(z, \nabla_{\dot{x}} z\right) \dot{x}+\varrho_{1}(t) \dot{x}+\varrho_{2}(t) F(\dot{x}), \\
\nabla_{\dot{x}} \nabla_{\dot{x}} y & =\varrho_{1}(t) \nabla_{\dot{x}} y+\varrho_{2}(t) F\left(\nabla_{\dot{x}} y\right), \\
\nabla_{\dot{x}} \nabla_{\dot{x}} z & =\varrho_{1}(t) \nabla_{\dot{x}} z+\varrho_{2}(t) F\left(\nabla_{\dot{x}} z\right) .
\end{aligned}
$$

Proof. From the formula (4), we have

$$
\begin{aligned}
\widetilde{\nabla}_{\dot{C}} \dot{C}= & \varrho_{1}(t) \dot{C}+\varrho_{2}(t) F^{(0)}(\dot{C}) \\
= & \varrho_{1}(t)\left[\dot{x}^{(0)}+\left(\nabla_{\dot{x}} y\right)^{(1)}+\left(\nabla_{\dot{x}} z\right)^{(2)}\right] \\
& \quad+\varrho_{2}(t)\left[F^{(0)} \dot{x^{(0)}}+F^{(0)}\left(\nabla_{\dot{x}} y\right)^{(1)}+F^{(0)}\left(\nabla_{\dot{x}} z\right)^{(2)}\right] \\
= & {\left[\varrho_{1}(t) \dot{x}+\varrho_{2}(t) F \dot{x}\right]^{(0)}+\left[\varrho_{1}(t) \nabla_{\dot{x}} y+\varrho_{2}(t) F \nabla_{\dot{x}} y\right]^{(1)} } \\
& +\left[\varrho_{1}(t) \nabla_{\dot{x}} z+\varrho_{2}(t) F \nabla_{\dot{x}} z\right]^{(2)} .
\end{aligned}
$$

Using the formula (5), the result immediately follows.
In the particular case when $\varrho_{1}=0$ and $\varrho_{2}=1$ in the Theorem 2.12 , we obtain the following result.
Theorem 2.13. Let (M, g) be a Riemannian manifold and let $\left(T^{2} M, G_{S}\right)$ be its second order tangent bundle equipped with the Levi-Civita connection $\widetilde{\nabla}$. A curve $C(t)=S^{-1}(x(t), y(t), z(t))$ on $T^{2} M$ is an $F^{(0)}$-geodesic if and only if

$$
\begin{aligned}
\nabla_{\dot{x}} \dot{x} & =-R\left(y, \nabla_{\dot{x}} y\right) \dot{x}-R\left(z, \nabla_{\dot{x}} z\right) \dot{x}+F(\dot{x}), \\
\nabla_{\dot{x}} \nabla_{\dot{x}} y & =F\left(\nabla_{\dot{x}} y\right), \\
\nabla_{\dot{x}} \nabla_{\dot{x}} z & =F\left(\nabla_{\dot{x}} z\right) .
\end{aligned}
$$

Using Theorem 2.12 and Theorem 2.13, we obtain the following corollaries.
Corollary 2.14. Let (M, g) be a locally flat Riemannian manifold and let $\left(T^{2} M, G_{S}\right)$ be its second order tangent bundle equipped with the Levi-Civita connection $\widetilde{\nabla}$. Then a curve $C(t)=S^{-1}(x(t), y(t), z(t))$ on $T^{2} M$ is an $F^{(0)}$-geodesic if and only if

$$
\begin{aligned}
\nabla_{\dot{x}} \dot{x} & =F(\dot{x}), \\
\nabla_{\dot{x}} \nabla_{\dot{x}} y & =F\left(\nabla_{\dot{x}} y\right), \\
\nabla_{\dot{x}} \nabla_{\dot{x}} z & =F\left(\nabla_{\dot{x}} z\right) .
\end{aligned}
$$

Corollary 2.15. Let (M, g) be a locally flat Riemannian manifold and let $\left(T^{2} M, G_{S}\right)$ be its second order tangent bundle equipped with the Levi-Civita connection $\widetilde{\nabla}$. Then a curve $C(t)=S^{-1}(x(t), y(t), z(t))$ on $T^{2} M$ is an $F^{(0)}$-geodesic up to a reparameterization (resp., $F^{(0)}$-planar curve) if and only if

$$
\begin{aligned}
\nabla_{\dot{x}} \dot{x} & =\varrho_{1}(t) \dot{x}+\varrho_{2}(t) F(\dot{x}), \\
\nabla_{\dot{x}} \nabla_{\dot{x}} y & =\varrho_{1}(t) \nabla_{\dot{x}} y+\varrho_{2}(t) F\left(\nabla_{\dot{x}} y\right), \\
\nabla_{\dot{x}} \nabla_{\dot{x}} z & =\varrho_{1}(t) \nabla_{\dot{x}} z+\varrho_{2}(t) F\left(\nabla_{\dot{x}} z\right) .
\end{aligned}
$$

Proposition 2.16. Let (M, g) be a Riemannian manifold and let $\left(T^{2} M, G_{S}\right)$ be its second order tangent bundle equipped with the Levi-Civita connection $\widetilde{\nabla}$. If $C(t)=S^{-1}(x(t), y(t), z(t))$ is a horizontal lift of a curve $x(t)$, then $C(t)$ is an $F^{(0)}$-planar curve (resp., $F^{(0)}$-geodesic) if and only if $x(t)$ is an F-planar curve (resp., F-geodesic).

Proof. From the formulas (4) and (5), we have

$$
\begin{aligned}
\dot{C}(t) & =(\dot{x})^{(0)}(t) \\
\widetilde{\nabla}_{\dot{C}} \dot{C} & =\widetilde{\nabla}_{(\dot{x})^{0}} \dot{x}^{(0)}=\left(\nabla_{\dot{x}} \dot{x}\right)^{(0)}
\end{aligned}
$$

Let $C(t)$ be an $F^{(0)}$-planar curve. Then

$$
\begin{aligned}
\widetilde{\nabla}_{\dot{C}} \dot{C} & =\varrho_{1}(t) \dot{C}+\varrho_{2}(t) F^{(0)}(\dot{C}) \\
& =\varrho_{1}(t) \dot{x}^{(0)}+\varrho_{2}(t) F^{(0)}\left(\dot{x}^{(0)}\right) \\
& =\left[\varrho_{1}(t) \dot{x}+\varrho_{2}(t) F(\dot{x})\right]^{(0)} \\
& =\left(\nabla_{\dot{x}} \dot{x}\right)^{(0)} .
\end{aligned}
$$

Hence, $C(t)$ is an $F^{(0)}$-planar curve if and only $x(t)$ is an F-planar curve. In the case of $\rho_{1}=0$ and $\rho_{2}=1$, we get that $C(t)$ is an $F^{(0)}$-geodesic if and only $x(t)$ is an F-geodesic.

Remark 2.17. If $C(t)=S^{-1}(x(t), y(t), z(t))$ is the horizontal lift of the curve $x(t)$, then we have

$$
\begin{aligned}
{\left[\nabla_{\dot{x}} y=0\right] } & \Leftrightarrow\left[\frac{d y^{k}}{d t}+\Gamma_{i j}^{k} y^{i} \frac{d x^{j}}{d t}=0\right] \Leftrightarrow\left[y(t)=e^{-\left(\int A(t) d t\right)} \cdot K\right] \\
{\left[\nabla_{\dot{x}} z=0\right] } & \Leftrightarrow\left[\frac{d z^{k}}{d t}+\Gamma_{i j}^{k} z^{i} \frac{d x^{j}}{d t}=0\right] \Leftrightarrow\left[z(t)=e^{-\left(\int A(t) d t\right)} \cdot \bar{K}\right]
\end{aligned}
$$

where $K, \bar{K} \in \mathbb{R}^{n}$ and $A(t)=\left[a_{k i}\right], a_{k i}=\sum_{j=1}^{n} \Gamma_{i j}^{k} \frac{d x^{j}}{d t}$. Therefore, $C(t)$ is an $F^{(0)}$-geodesic (resp. $F^{(0)}$-planar curve) if and only if $\quad \nabla_{\dot{x}} \dot{x}=F(\dot{x})\left(r e s p . \quad \nabla_{\dot{x}} \dot{x}=\varrho_{1}(t) \dot{x}+\varrho_{2}(t) F(\dot{x})\right)$.

Using Remark 2.17, we can construct an infinity of examples of F-geodesics (resp. F-planar curve) on ($T^{2} M, G_{S}$).
Example 2.18. Let \mathbb{R}^{n} be equipped with the Riemannian metric $g=d s^{2}$ and $B \in \mathcal{M}_{n \times n}(\mathbb{R})$. If $F=B$ is an invertible matrix, then $C(t)=S^{-1}\left(B^{-1} \exp (B t) K_{1}+K_{2}\right.$, const., const.), $K_{1}, K_{2} \in \mathbb{R}^{n}$, is an $F^{(0)}$-geodesic.

Example 2.19. Let \mathbb{R} be equipped with the Riemannian metric $g=e^{x} d x^{2}$ and $F=a \in \mathbb{R}^{*}$. Then the Christoffel symbol of the Levi-Civita connection is given by

$$
\Gamma_{11}^{1}=\frac{1}{2} g^{11}\left(\frac{\partial g_{11}}{\partial x^{1}}+\frac{\partial g_{11}}{\partial x^{1}}-\frac{\partial g_{11}}{\partial x^{1}}\right)=\frac{1}{2}
$$

and $C(t)=S^{-1}(x(t), y(t), z(t))=S^{-1}\left(2 \ln \left(\frac{K_{1} e^{a t}+a K_{2}}{2 a}\right), \frac{2 a K_{3}}{K_{1} e^{a t}+a K_{2}}, \frac{2 a K_{4}}{K_{1} e^{t t}+a K_{2}}\right), K_{1}, \ldots, K_{4} \in \mathbb{R}$, is an $F^{(0)}$-geodesic such that $\nabla_{\dot{x}} y=0$ and $\nabla_{\dot{x}} z=0$.

Example 2.20. Let \mathbb{R} be equipped with the Riemannian metric $g=e^{x} d x^{2}, F=a \in \mathbb{R}^{*}, \rho_{1}(t)=\frac{1}{t} \rho_{2}(t)=1$. Then we have $\Gamma_{11}^{1}=\frac{1}{2}$ and $x(t)$ is an F-planar curve if and only if it satisfies the following differential equation

$$
x^{\prime \prime}+\frac{1}{2} x^{\prime 2}=\frac{a t+1}{t} x^{\prime} .
$$

A solution of the previous equation is given by

$$
x(t)=2 \ln \frac{K_{1} e^{a t}(a t-1)+K_{2}}{2 a^{2}}
$$

So, from Remark 2.17 we obtain

$$
\begin{aligned}
y(t) & =\frac{2 a^{2} K_{3}}{K_{1} e^{a t}(a t-1)+K_{2}} \\
z(t) & =\frac{2 a^{2} K_{4}}{K_{1} e^{a t}(a t-1)+K_{2}}
\end{aligned}
$$

where $K_{1}, . ., K_{4} \in \mathbb{R}$. Then $C(t)=S^{-1}(x(t), y(t), z(t))$, is an $F^{(0)}$-planar curve such that $\nabla_{\dot{x}} y=0$ and $\nabla_{\dot{x}} z=0$.
Example 2.21. Let $(\mathbb{R} \backslash\{0\})^{2}$ be equipped with the Riemannian metric h defined by

$$
h_{11}=x^{2}, h_{22}=y^{2}, h_{12}=0
$$

and $F=\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)$. Then the Christoffel symbols of the Levi-Civita connection are given by

$$
\Gamma_{11}^{1}=\frac{1}{x}, \Gamma_{22}^{2}=\frac{1}{y}, \Gamma_{i j}^{k}=0 \forall(i, j, k) \in\{1,2\}^{3} \backslash\{(1,1),(2,2)\} .
$$

Let $C(t)=S^{-1}(x(t), y(t), z(t))$ be the horizontal lift of the curve $x(t)=\left(x_{1}(t), x_{2}(t)\right)$. From Remark 2.17, we have

$$
\begin{aligned}
& A(t)=\left(\begin{array}{cc}
\frac{x_{1}^{\prime}(t)}{x_{1}(t)} & 0 \\
0 & \frac{x_{2}^{\prime}(t)}{x_{2}(t)}
\end{array}\right), \\
& y(t)=\left(\frac{k_{1}}{x_{1}(t)}, \frac{k_{2}}{x_{2}(t)}\right) \text { and } z(t)=\left(\frac{k_{3}}{x_{1}(t)}, \frac{k_{4}}{x_{2}(t)}\right),
\end{aligned}
$$

where $k_{1}, k_{2}, k_{3}, k_{4} \in \mathbb{R} . x(t)=\left(x_{1}(t), x_{2}(t)\right)$ is an F-geodesic if and only if it satisfies the following differential equations

$$
\left\{\begin{array}{l}
x_{1}^{\prime \prime}+\frac{1}{x_{1}} x_{1}^{\prime 2}=a x_{1}^{\prime} \\
x_{2}^{\prime \prime}+\frac{1}{x_{2}} x_{2}^{\prime 2}=0
\end{array}\right.
$$

whose solution is given by

$$
x(t)=\left(x_{1}(t), x_{2}(t)\right)=\left(\exp \sqrt{\frac{a}{2}} t, \sqrt{2 k_{5} t+k_{6}}\right)
$$

where $k_{5}, k_{6} \in \mathbb{R}$. Therefore, $C(t)=S^{-1}\left(x_{1}(t), x_{2}(t), \frac{k_{1}}{x_{1}(t)}, \frac{k_{2}}{x_{2}(t)}, \frac{k_{3}}{x_{1}(t)}, \frac{k_{4}}{x_{2}(t)}\right)$ is an F - geodesic such that $\nabla_{\dot{x}} y=0$ and $\nabla_{\dot{x}} z=0$.

Proposition 2.22. Let (M, g) be a Riemannian manifold equipped with the Levi-Civita connection ∇ and let $\left(T^{2} M, G_{S}\right)$ be its second order tangent bundle equipped with the Levi-Civita connection $\widetilde{\nabla}$. Let F be a $(1,1)$-tensor field on M. If $C(t)=S^{-1}(x(t), y(t), z(t))$ is the horizontal lift of a curve $x(t)$, then we have

1. An integral curve of any vector field X on M is an F-geodesic with respect to ∇ if and only if the integral curve of $X^{(0)}$ is an $F^{(0)}$-geodesic with respect to $\widetilde{\nabla}$.
2. An integral curve of any vector field X on M is an F-geodesic up to a reparameterization, with respect to ∇ if and only if the integral curve of $X^{(0)}$ is an $F^{(0)}$-geodesic up to a reparameterization, with respect to $\widetilde{\nabla}$.
3. $C(t)$ is an $F^{(0)}$-geodesic with respect to $\widetilde{\nabla}$ if and only if the curve $x(t)$ is an F-geodesic with respect to ∇.
4. $C(t)$ is an $F^{(0)}$-geodesic up to a reparameterization with respect to $\widetilde{\nabla}$ if and only if the curve $x(t)$ is an F-geodesic up to a reparameterization with respect to ∇.

Proof. Let γ be an F-geodesic up to a reparameterization with respect to Levi-Civita connection ∇ on M. Then the relation (3) is satisfied and we obtain

$$
\widetilde{\nabla}_{\dot{\gamma}^{(0)}} \dot{\gamma}^{(0)}=\left(\nabla_{\dot{\gamma}} \dot{\gamma}\right)^{0}=\alpha \circ P \dot{\gamma}(t)^{(0)}+\beta \circ P F^{(0)} \dot{\gamma}(t)^{(0)},
$$

where P is the canonical projection on $T^{2} M$. In the case of $\alpha=0$ and $\beta=1$, one can easily obtain (1).
Remark 2.23. The Proposition 2.22 remains true, if we replace $\widetilde{\nabla}$ by $\nabla^{(0)}$, where $\nabla^{(0)}$ is defined by

$$
\begin{aligned}
& \nabla_{X^{(0)}}^{(0)} Y^{(\lambda)}=\left(\nabla_{X} Y\right)^{(\lambda)}, \\
& \nabla_{X^{(0)}}^{(0)} Y^{(\lambda)}=0
\end{aligned}
$$

for $i=1,2$ and $\lambda=0,1,2$.
Definition 2.24. Let (M, g) be a Riemannian manifold. We can define a natural diagonal metric G on the second tangent bundle $T^{2} M$ of (M, g) by

$$
\left\{\begin{array}{l}
G_{p}\left(X^{(0)}, Y^{(0)}\right)=b_{1} g_{x}(X, Y)+d_{1} g_{x}(X, u) g_{x}(Y, u)+c_{1} g_{x}(X, \omega) g_{x}(Y, \omega) \tag{6}\\
G_{p}\left(X^{(1)}, Y^{(1)}\right)=b_{2} g_{x}(X, Y)+d_{2} g_{x}(X, u) g_{x}(Y, u) \\
G_{p}\left(X^{(2)}, Y^{(2)}\right)=b_{3} g_{x}(X, Y)+d_{3} g_{x}(X, u) g_{x}(Y, u) \\
G_{p}\left(X^{(i)}, Y^{(j)}\right)=0, \quad i \neq j=0,1,2
\end{array}\right.
$$

where $p=S^{-1}(x, u, \omega), d_{1}, b_{2}, d_{2}$ (resp. $\left.c_{1}, b_{3}, d_{3}\right)$ are smooth functions depending on $r_{1}=g(u, u)\left(\right.$ resp $\left.r_{2}=g(\omega, \omega)\right)$ and b_{1} is a smooth function depending on $\left(r_{1}, r_{2}\right)$, such that $b_{1}, b_{2}, b_{3}>0$ and $b_{1}+r_{1} d_{1}, b_{2}+r_{1} d_{2}, b_{3}+r_{2} d_{3}>0$.

The Levi-Civita connection of G denoted by $\widehat{\nabla}$ has the following expressions on the horizontal and respectively on the vertical distributions of $T\left(T^{2} M\right)$

$$
\begin{align*}
\widehat{\nabla}_{X^{(0)}} Y^{(0)}= & \left(\nabla_{X} Y\right)^{(0)}-\frac{d_{1}}{2 b_{1}}\left[g(X, u) Y^{(1)}+g(Y, u) X^{(1)}\right]-\frac{\partial_{1} b_{1}}{b_{2}+r_{1} d_{2}} g(X, Y) u^{(1)} \tag{7}\\
& -\frac{b_{2} d_{1}^{\prime}-d_{1} d_{2}}{b_{2}\left(b_{2}+r_{1} d_{2}\right)} g(X, u) g(Y, u) u^{(1)}-\frac{1}{2}(R(X, Y) u)^{(1)} \\
& -\frac{c_{1}}{2 b_{1}}\left[g(X, \omega) Y^{(2)}+g(Y, \omega) X^{(2)}\right]-\frac{\partial_{2} b_{1}}{b_{3}+r_{2} d_{3}} g(X, Y) \omega^{(2)} \\
& -\frac{b_{3} c_{1}^{\prime}-c_{1} d_{3}}{b_{3}\left(b_{3}+r_{2} d_{3}\right)} g(X, \omega) g(Y, \omega) \omega^{(2)}-\frac{1}{2}(R(X, Y) \omega)^{(2)}
\end{align*}
$$

$$
\begin{aligned}
\widehat{\nabla}_{X^{(1)}} Y^{(1)}= & \frac{b_{2}^{\prime}}{b_{2}}\left[g(X, u) Y^{(1)}+g(Y, u) X^{(1)}\right]-\frac{b_{2}^{\prime}-d_{2}}{b_{2}+r_{1} d_{2}} g(X, Y) u^{(1)} \\
& +\frac{b_{2} d_{2}^{\prime}-b_{2}^{\prime} d_{2}}{b_{2}\left(b_{2}+r_{1} d_{2}\right)} g(X, u) g(Y, u) u^{(1)}, \\
\widehat{\nabla}_{X^{(2)}} Y^{(2)}= & \frac{b_{3}^{\prime}}{b_{3}}\left[g(X, \omega) Y^{(2)}+g(Y, \omega) X^{(2)}\right]-\frac{b_{3}^{\prime}-d_{3}}{b_{3}+r_{2} d_{3}} g(X, Y) u^{(2)} \\
& +\frac{b_{3} d_{3}^{\prime}-b_{3}^{\prime} d_{3}}{b_{3}\left(b_{3}+r_{2} d_{3}\right)} g(X, \omega) g(Y, \omega) \omega^{(2)},
\end{aligned}
$$

where $\partial_{1} b_{1}=\frac{\partial b_{1}}{\partial r_{1}}$ and $\partial_{2} b_{1}=\frac{\partial b_{1}}{\partial r_{2}}$.
Proposition 2.25. Let (M, g) be a Riemannian manifold, $\left(T^{2} M, G\right)$ be its second order tangent bundle and let F be a (1,1)-tensor field on M. If $C(t)=S^{-1}(x(t), y(t), z(t))$ is the horizontal lift of a curve $x(t)$, then we have
(i) An integral curve of any vector field X on M is an F-geodesic with respect to the Levi-Civita connection ∇ of g if and only if the integral curve of the horizontal lift $X^{(0)}$ is an $F^{(0)}$-geodesic with respect to the Levi-Civita connection $\widehat{\nabla}$ of G defined by (6), provided $b_{1}=$ const. and $d_{1}=c_{1}=0$.
(ii) The curve $C(t)$ is an $F^{(0)}$-geodesic with respect to the Levi-Civita connection $\widehat{\nabla}$ if and only if the curve $x(t)$ is an F-geodesic with respect to the Levi-Civita connection ∇, provided $b_{1}=$ const. and $d_{1}=c_{1}=0$.
(iii) The above assertions (i) and (ii) remain true, if instead of an F-geodesic (resp., $F^{(0)}$ - geodesic), we take an F-geodesic up to a reparameterization (resp. an $F^{(0)}$-geodesic up to a reparameterization).

Proof. Let γ be an F-geodesic up to a reparameterization with respect to ∇, i.e.,

$$
\begin{equation*}
\nabla_{\dot{\gamma}} \dot{\gamma}=\alpha \dot{\gamma}+\beta F \dot{\gamma}, \tag{8}
\end{equation*}
$$

where α and β are some smooth functions on the curve. For $X=Y=\dot{\gamma}$ the relation (7) becomes

$$
\begin{aligned}
\widehat{\nabla}_{\dot{\gamma}^{(0)}} \dot{\gamma}^{(0)}= & \left(\nabla_{\dot{\gamma}} \dot{\gamma}\right)^{(0)}-\frac{d_{1}}{b_{1}} g(\dot{\gamma}, u) \dot{\gamma}^{(1)}-\frac{\partial_{1} b_{1}}{b_{2}+r_{1} d_{2}} g(\dot{\gamma}, \dot{\gamma}) u^{(1)} \\
& -\frac{b_{2} d_{1}^{\prime}-d_{1} d_{2}}{b_{2}\left(b_{2}+r_{1} d_{2}\right)} g(\dot{\gamma}, u)^{2} u^{(1)}-\frac{c_{1}}{b_{1}} g(\dot{\gamma}, \omega) \dot{\gamma}^{(2)} \\
& -\frac{\partial_{2} b_{1}}{b_{3}+r_{2} d_{3}} g(\dot{\gamma}, \dot{\gamma}) \omega^{(2)}-\frac{b_{3} c_{1}^{\prime}-c_{1} d_{3}}{b_{3}\left(b_{3}+r_{2} d_{3}\right)} g(\dot{\gamma}, \omega)^{2} \omega^{(2)} .
\end{aligned}
$$

Using the formula (8), we have that $\widehat{\nabla}_{\dot{\gamma}^{(0)}} \dot{\gamma}^{(0)}=\alpha \circ P \dot{\gamma}^{(0)}+\beta \circ P F^{(0)} \dot{\gamma}^{(0)}$ if and only if

$$
\begin{aligned}
0= & -\frac{d_{1}}{b_{1}} g(\dot{\gamma}, u) \dot{\gamma}^{(1)}-\frac{\partial_{1} b_{1}}{b_{2}+r_{1} d_{2}} g(\dot{\gamma}, \dot{\gamma}) u^{(1)} \\
& -\frac{b_{2} d_{1}^{\prime}-d_{1} d_{2}}{b_{2}\left(b_{2}+r_{1} d_{2}\right)} g(\dot{\gamma}, u)^{2} u^{(1)}-\frac{c_{1}}{b_{1}} g(\dot{\gamma}, \omega) \dot{\gamma}^{(2)} \\
& -\frac{\partial_{2} b_{1}}{b_{3}+r_{2} d_{3}} g(\dot{\gamma}, \dot{\gamma}) \omega^{(2)}-\frac{b_{3} c_{1}^{\prime}-c_{1} d_{3}}{b_{3}\left(b_{3}+r_{2} d_{3}\right)} g(\dot{\gamma}, \omega)^{2} \omega^{(2)} .
\end{aligned}
$$

Then, we get $d_{1}=c_{1}=\partial_{1} b_{1}=\partial_{2} b_{1}=0$. If we replace $\gamma(t)$ by $x(t)$, from the formula (4) we have $\dot{C}(t)=(x(t))^{(0)}$. Similarly, the item (iii) can be proved. In the particular case of $\alpha=0$ and $\beta=1$, we deduce that the items (i) and (ii) are also true.

3. F-Geodesics of the hypersurface $T_{1,1}^{2} M$

Let $T_{1,1}^{2} M$ be the hypersurface in $T^{2} M$ defined by

$$
\begin{equation*}
T_{1,1}^{2} M=\left\{p=S^{-1}(x, u, w) \in T^{2} M,|u|=|\omega|=1\right\} \tag{9}
\end{equation*}
$$

The unit normal vector fields to $T_{1,1}^{2} M$ are given by

$$
\begin{align*}
\mathcal{U}: T^{2} M & \rightarrow T\left(T^{2} M\right) \tag{10}\\
p=S^{-1}(x, u, \omega) & \mapsto \mathcal{U}_{p}=(u)^{(1)} \\
\mathcal{W}: T^{2} M & \rightarrow T\left(T^{2} M\right) \tag{11}\\
p=S^{-1}(x, u, \omega) & \mapsto \mathcal{W}_{p}=(\omega)^{(2)} .
\end{align*}
$$

Indeed, for $p=S^{-1}(x, u, \omega) \in T_{1,1}^{2} M$, we have

$$
\begin{aligned}
G_{S}(\mathcal{U}, \mathcal{U})_{p} & =g(u, u)=1 \\
G_{S}(\mathcal{W}, \mathcal{W})_{p} & =g(w, w)=1 \\
G_{S}(\mathcal{U}, \mathcal{W})_{p} & =0
\end{aligned}
$$

On the other hand, if we set

$$
\begin{aligned}
& F_{1}: T^{2} M \rightarrow \mathbb{R}, p=S^{-1}(x, u, \omega) \mapsto g(u, u), \\
& F_{2}: T^{2} M \rightarrow \mathbb{R}, p=S^{-1}(x, u, \omega) \mapsto g(\omega, \omega) \\
& F: T^{2} M \rightarrow \mathbb{R}^{2}, p \mapsto\left(F_{1}(p), F_{2}(p)\right)
\end{aligned}
$$

then the hypersurface $T_{1,1}^{2} M$ is given by

$$
T_{1,1}^{2} M=\left\{p=S^{-1}(x, u, \omega) \in T^{2} M, \quad\left(F_{1}(p), F_{2}(p)\right)=(1,1)\right\},
$$

where $\operatorname{grad}_{G_{s}}\left(F_{1}\right)$ and $\operatorname{grad}_{G_{s}}\left(F_{2}\right)$ are vector fields normal to $T_{1,1}^{2} M$. From Lemma 1.6, for any vector field X on M, we get

$$
\begin{aligned}
G_{S}\left(X^{(0)}, \operatorname{grad}_{G_{S}}\left(F_{1}\right)\right) & =X^{(0)}\left(F_{1}\right)=X^{(0)}(g(u, u)) \\
& =0=G_{S}\left(X^{(0)}, \mathcal{U}\right), \\
G_{S}\left(X^{(1)}, \operatorname{grad}_{G_{S}}\left(F_{1}\right)\right) & =X^{(1)}\left(F_{1}\right)=X^{(1)}(g(u, u)) \\
& =2 g(X, u)=2 G_{S}\left(X^{(1)}, \mathcal{U}\right), \\
G_{S}\left(X^{(2)}, \operatorname{grad}_{G_{S}}\left(F_{1}\right)\right) & =X^{(2)}\left(F_{1}\right)=X^{(2)}(g(u, u)) \\
& =0=2 G_{S}\left(X^{(2)}, \mathcal{U}\right) .
\end{aligned}
$$

So $\mathcal{U}=\frac{1}{2} \operatorname{grad}_{G_{S}}\left(F_{1}\right)$. By the same way, we obtain $\mathcal{W}=\frac{1}{2} \operatorname{grad}_{G_{s}}\left(F_{2}\right)$, therefore \mathcal{U} and \mathcal{W} are vector fields orthonormal to $T_{1,1}^{2} M$. If B (resp. $\dddot{\nabla}$) denotes the second fundamental form (resp. the Levi-Civita connection on $\left.T_{1,1}^{2} M\right)$, then we have

$$
\begin{align*}
& B(\widetilde{X}, \widetilde{Y})=G_{S}\left(\widetilde{\nabla}_{\widetilde{X}} \widetilde{Y}, \mathcal{U}\right) \mathcal{U}+G_{S}\left(\widetilde{\nabla}_{\widetilde{X}} \widetilde{Y}, \mathcal{W}\right) \mathcal{W}, \tag{12}\\
& \dddot{\nabla}_{\widetilde{X}} \widetilde{Y}=\widetilde{\nabla}_{\widetilde{X}} \widetilde{Y}-\rho_{1}(\widetilde{X}, \widetilde{Y}) \mathcal{U}-\rho_{2}(\widetilde{X}, \widetilde{Y}) \mathcal{W} \tag{13}
\end{align*}
$$

for all vector fields $\widetilde{X}, \widetilde{Y}$ on $T_{1,1}^{2} M$.
Subsequently, we denote $x^{\prime}=\dot{x}, x^{\prime \prime}=\nabla_{\dot{x}} \dot{x}, y^{\prime}=\nabla_{\dot{x}} y$ and $y^{\prime \prime}=\nabla_{\dot{x}} \nabla_{\dot{x}} y, z^{\prime}=\nabla_{\dot{x}} z$ and $z^{\prime \prime}=\nabla_{\dot{x}} \nabla_{\dot{x}} z$.

Lemma 3.1. Let (M, g) be a Riemannian manifold and let $\left(T^{2} M, G_{S}\right)$ be its second order tangent bundle equipped with the Sasaki metric and $C(t)=S^{-1}(x(t), y(t), z(t))$ be a curve on $T_{1,1}^{2} M$ such that $y(t), z(t)$ are vector fields along $x(t)$. Then, we have
(1) $g(y, y)=1=g(z, z)$,
(2) $g\left(y^{\prime}, y\right)=0=g\left(z^{\prime}, z\right)$,
(3) $g\left(y^{\prime \prime}, y\right)=-\left|y^{\prime}\right|^{2}=-g\left(y^{\prime}, y^{\prime}\right)$,
(4) $g\left(z^{\prime \prime}, z\right)=-\left|z^{\prime}\right|^{2}=-g\left(z^{\prime}, z^{\prime}\right)$.

As $T_{1,1}^{2} M$ is the hypersurface in $T^{2} M$, a curve on $T_{1,1}^{2} M$ is a geodesic if and only if its second covariant derivative in $T^{2} M$ is collinear to the unit normal vectors $(y)^{(1)}$ and $(z)^{(2)}$. From Theorem 2.13, the formula (12) and Lemma 3.1, we obtain the following lemma.

Lemma 3.2. Let (M, g) be a Riemannian manifold and $\left(T^{2} M, G_{S}\right)$ be its second order tangent bundle equipped with the Sasaki metric and let $C(t)=S^{-1}(x(t), y(t), z(t))$ be a curve on $T_{1,1}^{2} M$ such that $y(t)$ and $z(t)$ are vector fields along $x(t)$. Then, C is an $F^{(0)}$-geodesic on $T_{1,1}^{2} M$ if and only if

$$
\begin{align*}
& x^{\prime \prime}=-\left[R\left(y, y^{\prime}\right)+R\left(z, z^{\prime}\right)\right] x^{\prime}+F\left(x^{\prime}\right) \tag{14}\\
& y^{\prime \prime}=F\left(y^{\prime}\right)+\rho_{1} y \tag{15}\\
& z^{\prime \prime}=F\left(z^{\prime}\right)+\rho_{2} z \tag{16}
\end{align*}
$$

where ρ_{1}, ρ_{2} are some functions.
Definition 3.3. Let (M, F) be an almost complex manifold. A Riemannian metric g on M such that $g(F X, F Y)=$ $g(X, Y)$ or equivalently $g(F X, Y)=-g(X, F Y)$ for any vector fields X, Y is called an almost Hermitian metric. The triple (M, F, g) is called an almost Hermitian manifold [9]. Also, for any vector field X, it follows that

$$
\begin{equation*}
g(X, F X)=0 \tag{17}
\end{equation*}
$$

Lemma 3.4. Let (M, F, g) be an almost Hermitian manifold and $\left(T^{2} M, G_{S}\right)$ be its second order tangent bundle equipped with the Sasaki metric and let $C(t)=S^{-1}(x(t), y(t), z(t))$ be a curve on $T_{1,1}^{2} M$ such that $y(t)$ and $z(t)$ are vector fields along $x(t)$. If we put $c_{1}=\left|y^{\prime}\right|, \mu_{1}=g\left(y^{\prime}, F y\right), c_{2}=\left|z^{\prime}\right|, \mu_{2}=g\left(z^{\prime}, F z\right)$, then we have

$$
\begin{aligned}
\rho_{1} & =\mu_{1}-c_{1}^{2} \\
\rho_{2} & =\mu_{2}-c_{2}^{2} \\
c_{1}^{\prime} & =0=c_{2}^{\prime} \\
\mu_{1}^{\prime} & =0=\mu_{2}^{\prime} .
\end{aligned}
$$

Proof. From the formula (15), we obtain

$$
\begin{aligned}
& y^{\prime \prime}=\rho_{1} y+F\left(y^{\prime}\right) \\
& g\left(y^{\prime \prime}, y\right)=g\left(F\left(y^{\prime}\right), y\right)+\rho_{1} g(y, y) \\
& -\left|y^{\prime}\right|^{2}=-\mu_{1}+\rho_{1} .
\end{aligned}
$$

Using Lemma 3.1 (2) and the formula (17), we have

$$
\begin{aligned}
\frac{1}{2}\left(c_{1}^{2}\right)^{\prime} & =g\left(y^{\prime \prime}, y^{\prime}\right) \\
& =\rho_{1} g\left(y, y^{\prime}\right)+g\left(F\left(y^{\prime}\right), y^{\prime}\right) \\
& =\rho_{1} g\left(y, y^{\prime}\right) \\
& =0
\end{aligned}
$$

By Lemma 3.1 (2), Definition 3.3 and the formula (17), we obtain

$$
\begin{aligned}
\mu_{1}^{\prime} & =g\left(y^{\prime \prime}, F(y)\right)+g\left(y^{\prime}, F\left(y^{\prime}\right)\right) \\
& =g\left(y^{\prime \prime}, F(y)\right) \\
& =\rho_{1} g(y, F(y))+g\left(F y^{\prime}, F y\right) \\
& =0 .
\end{aligned}
$$

Similarly, we can obtain the other formulae.
Using Lemma 3.2 and Lemma 3.4, we get the following theorem.
Theorem 3.5. Let (M, F, g) be an almost Hermitian manifold and $\left(T^{2} M, G_{S}\right)$ be its second order tangent bundle equipped with the Sasaki metric and let $C(t)=S^{-1}(x(t), y(t), z(t))$ be a curve on $T_{1,1}^{2} M$ such that $y(t)$ and $z(t)$ are vector fields along $x(t)$. If we put $c_{1}=\left|y^{\prime}\right|, \mu_{1}=g\left(y^{\prime}, F y\right), c_{2}=\left|z^{\prime}\right|, \mu_{2}=g\left(z^{\prime}, F z\right)$, then the curve $C(t)=S^{-1}(x(t), y(t), z(t))$ is an $F^{(0)}$-geodesic on $T_{1,1}^{2} M$ if and only if

$$
\begin{aligned}
c_{1} & =\text { const., } \mu_{1}=\text { const. and } \rho_{1}=\mu_{1}-c_{1}^{2}=\text { const. } \\
c_{2} & =\text { const., } \mu_{2}=\text { const. and } \rho_{2}=\mu_{2}-c_{2}^{2}=\text { const., } \\
x^{\prime \prime} & =-\left[R\left(y, y^{\prime}\right)+R\left(z, z^{\prime}\right)\right] x^{\prime}+F\left(x^{\prime}\right), \\
y^{\prime \prime} & =F\left(y^{\prime}\right)+\left(\mu_{1}-c_{1}^{2}\right) y, \\
z^{\prime \prime} & =F\left(z^{\prime}\right)+\left(\mu_{2}-c_{2}^{2}\right) z .
\end{aligned}
$$

From Theorem 2.12 and Lemma 3.1, we obtain the following lemma.
Lemma 3.6. Let (M, g) be a Riemannian manifold, $\left(T^{2} M, G_{S}\right)$ its second order tangent bundle equipped with the Sasaki metric and let $C(t)=S^{-1}(x(t), y(t), z(t))$ be a curve on $T_{1,1}^{2} M$ such that $y(t)$ and $z(t)$ are vector fields along $x(t)$. Then, C is an $F^{(0)}$-planar curve on $T_{1,1}^{2} M$ if and only if

$$
\begin{aligned}
x^{\prime \prime} & =-\left[R\left(y, y^{\prime}\right)+R\left(z, z^{\prime}\right)\right] x^{\prime}+\eta_{1} x^{\prime}+\eta_{2} F\left(x^{\prime}\right) \\
y^{\prime \prime} & =\eta_{1} y^{\prime}+\eta_{2} F\left(y^{\prime}\right)+\rho_{1} y \\
z^{\prime \prime} & =\eta_{1} z^{\prime}+\eta_{2} F\left(z^{\prime}\right)+\rho_{2} z
\end{aligned}
$$

where η_{1}, η_{2} are smooth functions on \mathbb{R} and ρ_{1}, ρ_{2} are some functions.
Now, we will determine the functions ρ_{1} and ρ_{2}.
Lemma 3.7. Let (M, g, F) be an almost Hermitian manifold, $\left(T^{2} M, G_{S}\right)$ its second order tangent bundle equipped with the diagonal lift Sasaki metric and $C(t)=S^{-1}(x(t), y(t), z(t))$ be a curve on $T_{1,1}^{2} M$ such that $y(t)$ and $z(t)$ are vector fields along $x(t)$. If we put $c_{1}=\left|y^{\prime}\right|, \mu_{1}=g\left(y^{\prime}, F y\right), c_{2}=\left|z^{\prime}\right|, \mu_{2}=g\left(z^{\prime}, F z\right)$, then we have

$$
\begin{aligned}
& c_{1}=K_{1} \exp \left(\int \eta_{1} d t\right), \quad c_{2}=K_{3} \exp \left(\int \eta_{1} d t\right), \\
& \mu_{1}=K_{2} \exp \left(\int \eta_{1} d t\right), \quad \mu_{2}=K_{4} \exp \left(\int \eta_{1} d t\right), \\
& \rho_{1}=\eta_{2} \mu_{1}-c_{1}^{2}=\eta_{2} K_{2} \exp \left(\int \eta_{1} d t\right)-K_{1}^{2} \exp \left(2 \int \eta_{1} d t\right), \\
& \rho_{2}=\eta_{2} \mu_{2}-c_{2}^{2}=\eta_{2} K_{3} \exp \left(\int \eta_{1} d t\right)-K_{4}^{2} \exp \left(2 \int \eta_{1} d t\right),
\end{aligned}
$$

where η_{1}, η_{2} are smooth functions on \mathbb{R}.

Proof. From the formula (15), we obtain

$$
\begin{aligned}
& y^{\prime \prime}=\rho_{1} y+\eta_{1} y^{\prime}+\eta_{2} F\left(y^{\prime}\right), \\
& g\left(y^{\prime \prime}, y\right)=\eta_{1} g\left(y^{\prime}, y\right)+\eta_{2} g\left(F\left(y^{\prime}\right), y\right)+\rho_{1} g(y, y), \\
& -\left|y^{\prime}\right|^{2}=-\eta_{2} \mu_{1}+\rho_{1} .
\end{aligned}
$$

Then $\rho_{1}=\eta_{2} \mu_{1}-c_{1}^{2}$.
Using the formula (17), we get

$$
\begin{aligned}
\frac{1}{2}\left(c_{1}^{2}\right)^{\prime} & =g\left(y^{\prime \prime}, y^{\prime}\right) \\
& =\rho_{1} g\left(y, y^{\prime}\right)+\eta_{1} g\left(y^{\prime}, y^{\prime}\right)+\eta_{2} g\left(F\left(y^{\prime}\right), y^{\prime}\right) \\
& =\eta_{1} g\left(y^{\prime}, y^{\prime}\right) \\
& =\eta_{1} c_{1}^{2}
\end{aligned}
$$

from which we get $c_{1}=K_{1} \exp \left(\int \eta_{1} d t\right)$.
On the other hand, we have

$$
\begin{aligned}
\mu_{1}^{\prime} & =g\left(y^{\prime \prime}, F y\right)+g\left(y^{\prime}, F\left(y^{\prime}\right)\right) \\
& =g\left(y^{\prime \prime}, F y\right) \\
& =\rho_{1} g(y, F y)+\eta_{1} g\left(y^{\prime}, F y\right)+\eta_{2} g\left(F y^{\prime}, F y\right) \\
& =\eta_{1} g\left(y^{\prime}, F y\right) \\
& =\eta_{1} \mu_{1},
\end{aligned}
$$

from which we get $\mu_{1}=K_{2} \exp \left(\int \eta_{1} d t\right)$.
By the same way, we obtain the other formulas.
Using Lemma 3.6 and Lemma 3.7, we obtain the following theorem.
Theorem 3.8. Let (M, g, F) be an almost Hermitian manifold and let $\left(T^{2} M, G_{S}\right)$ be its second order tangent bundle equipped with the diagonal lift Sasaki metric and let $C(t)=S^{-1}(x(t), y(t), z(t))$ be a curve on $T_{1,1}^{2} M$ such that $y(t)$ and $z(t)$ are vector fields along $x(t)$. If we put $c_{1}=\left|y^{\prime}\right|, \mu_{1}=g\left(y^{\prime}, F y\right), c_{2}=\left|z^{\prime}\right|, \mu_{2}=g\left(z^{\prime}, F z\right)$, then the curve $C(t)=S^{-1}(x(t), y(t), z(t))$ is an $F^{(0)}$-planar curve on $T_{1,1}^{2} M$ if and only if

$$
\begin{aligned}
c_{1} & =K_{1} \exp \left(\int \eta_{1} d t\right), \quad c_{2}=K_{3} \exp \left(\int \eta_{1} d t\right), \\
\mu_{1} & =K_{2} \exp \left(\int \eta_{1} d t\right), \quad \mu_{2}=K_{4} \exp \left(\int \eta_{1} d t\right), \\
\rho_{1} & =\eta_{2} \mu_{1}-c_{1}^{2}=\eta_{2} K_{2} \exp \left(\int \eta_{1} d t\right)-K_{1}^{2} \exp \left(2 \int \eta_{1} d t\right), \\
\rho_{2} & =\eta_{2} \mu_{2}-c_{2}^{2}=\eta_{2} K_{3} \exp \left(\int \eta_{1} d t\right)-K_{4}^{2} \exp \left(2 \int \eta_{1} d t\right), \\
x^{\prime \prime} & =-\left[R\left(y, y^{\prime}\right)+R\left(z, z^{\prime}\right)\right] x^{\prime}+\varrho_{1}(t) x^{\prime}+\varrho_{2}(t) F\left(x^{\prime}\right), \\
y^{\prime \prime} & =\varrho_{1}(t) y^{\prime}+\varrho_{2}(t) F\left(y^{\prime}\right)+\left(\eta_{2} \mu_{1}-c_{1}^{2}\right) y, \\
z^{\prime \prime} & =\varrho_{1}(t) z^{\prime}+\varrho_{2}(t) F\left(z^{\prime}\right)+\left(\eta_{2} \mu_{2}-c_{2}^{2}\right) z .
\end{aligned}
$$

Remark 3.9. 1) The Theorem 3.8 remains true if $F^{(0)}$-planar curve is replaced by $F^{(0)}$-geodesic up to reparameterization.
2) In the case of $\eta_{1}=0$ and $\eta_{2}=1$ we obtain Theorem 3.5.

Acknowledgement

The authors express their sincere thanks to the Editor and anonymous referees for their valuable comments in the improvement of the paper.
The authors would like to thank Prof. Mustapha Djaa for his helpful suggestions and valuable comments which helped to improve the paper.

References

[1] M. Baros, J. L. Cabrerizob, M. Fernandez and A. Romerod, Magnetic vortex filament flows, J. Math. Phys. 48 (2007) 082904.
[2] C. L. Bejan and S. L. Druță-Romaniuc, F-geodesics on manifolds, Filomat 29 (10) (2015) 2367-2379.
[3] M. Djaa, J. Gancarzewicz, The geometry of tangent bundles of order r, Boletin Academia, Galega de Ciencias Espagne 4 (1985) 147-165.
[4] M. Djaa , J. Gancarzewicz, Prolongation des f-structure au fibre tangent d'order r, Maghreb Math. Rev. 4 (1) (1995) 23-28.
[5] N. E. H. Djaa, S. Ouakkas, and M. Djaa, Harmonic sections on the tangent bundle of order two, Ann. Math. Inform. 38 (2011) 15-25.
[6] P. Dombrowski, On the geometry of tangent bundle, J. Rrine Angew. Math. 210 (1962) 73-88.
[7] S. L. Druţă-Romaniuc, J. Inoguchi, M. I. Munteanu and A. I. Nistor, Magnetic curves in Sasakian manifolds, J. Nonlinear Math. Phys. 22 (3) (2015) 428-447.
[8] A. Gezer and A. Magden, Geometry of the second-order tangent bundles of Riemannian manifolds, Chin. Ann. Math. Ser. B 38 (4) (2017) 985-998.
[9] S. Koto, Some theorems on almost Kählerian spaces, J. Math. Soc. Japan 12 (1960) 422-433.
[10] A. Magden, A. Gezer and K. Karaca, Some problems concerning with Sasaki metric on the second-order tangent bundles, Int. Electron. J. Geom. 13 (2) (2020) 75-86.
[11] J. Mikes, E. Beresovski, E. Stepanova, and H. Chuda, Geodesic mappings and their generalizations, J. Math. Sci. 217 (5) (2016) 607-623.
[12] J. Mikes, A. Vanzurova and I. Hinterleitner, Geodesic mappings and some generalizations, Olomouc, 2009.
[13] S. Ishikawa, On Riemannian metrics of tangent bundles of order 2 of Riemannian manifolds, Tensor (N.S.) 34 (2) (1980) $173-178$.
[14] V. Opriou, Harmonic maps between tangent bundles, Rend. Sem. Mat. Univ. Politec. Torino, 47 (1) (1989) 47-55.
[15] S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. J. 10 (1958) 338-354.
[16] K. Yano, S. Ishihara , Tangent and cotangent bundles, Differential Geometry. Marcel Dekker, Inc., New York, 1973.
[17] A. Zagane and M. Djaa, Geometry of Mus-Sasaki metric, Commun. Math. 26 (2018) 113-126.

[^0]: 2020 Mathematics Subject Classification. Primary 53C07; Secondary 53C22, 53C15
 Keywords. F-geodesic, natural metrics, second order tangent bundle
 Received: 24 March 2022; Revised: 21 June 2022; Accepted: 12 August 2022
 Communicated by Mića S. Stanković
 The first named author is supported by L.G.A.C.A. Laboratory of Saida university and Algerian agency P.R.F.U project.
 Email addresses: djaanor@hotmail.fr (Nour Elhouda Djaa), aydingzr@gmail.com (Aydin Gezer), kubrakaraca91@gmail.com (Kubra Karaca)

