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Abstract. Let (M, 1) be a Riemannian manifold and T2M be its second order tangent bundle. In this
paper, we deal with certain characterizations of F−geodesics (which generalize both classical geodesics and
magnetic curves) on the second order tangent bundle T2M and the hypersurface T2

1,1M with respect to some
natural metrics.

1. Introduction

Magnetic curves represent, in physics, the trajectories of the charged particles moving on a Riemannian
manifold under the action of the magnetic fields. A magnetic field F on a Riemannian manifold (M, 1) is a
closed 2−form and the Lorentz force associated to F is a (1, 1)−tensor field ρ such that

F(X,Y) = 1(ρX,Y)

for all vector fields X,Y on M. A magnetic trajectory in such a magnetic field is thus modeled by a second
order differential equation, that is,

∇γ̇γ̇ = ργ̇,

usually known as the Lorentz equation. Such curves are sometimes called also magnetic geodesics since the
Lorentz equation generalizes the equation of geodesics under arc-length parametrization, namely, ∇γ̇γ̇ = 0.
Here, ∇ denotes the Levi-Civita connection of the Riemannian metric 1.

A smooth curve γ on a Riemannian manifold (M, 1) endowed with a (1, 1)−tensor field F and with
Levi-Civita connection ∇ is called an F−geodesic if γ satisfies

∇γ̇γ̇ = Fγ̇.

F−geodesics are strictly related to F−planar curves and extended magnetic curves and hence, geodesics.
Note that the notion of F-geodesic is slightly different from F−planar curve (see [12]). Inspired by the
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Lorentz force, the electro-magnetic tensor field, as well as some special forces involved in the Euler-
Lagrange equations from Lagrangian mechanics, Bejan and Druţă-Romaniuc [2] defined F−geodesics on
a manifold with a linear connection. They presented several examples of F−geodesics; for instance, they
constructed F−geodesics on the tangent bundle of a manifold by using lifts. Also, they characterized
F−geodesics according to some special connections such as Vranceanu connection on foliated manifolds
and adapted connections on almost contact manifolds. Finally, they found conditions for a pair of symmetric
connections to have the same system of F−geodesics. In this paper, we deal with certain characterizations
of F−geodesics on the second order tangent bundle T2M and the hypersurface T2

1,1M .

1.1. Whitney tangent fiber bundle TM ⊕ TM
Let M be an n−dimensional Riemannian manifold with a Riemannian metric 1 and TM be its tangent

bundle denoted by π : TM→M. We refer to [6, 16] for all the necessary background for the tangent bundle.
The Whitney tangent fiber bundle TM ⊕ TM is defined by

TM ⊕ TM =
{

(u, ω) ∈ TM × TM; π(u) = π(ω)
}
=

⋃
x∈M

TxM × TxM,

where π⊕ is denoted by

π⊕ : TM ⊕ TM → M
(u, ω) 7→ π⊕ (u, ω) = π(u) = π(ω).

A local chart
(
U, φ

)
=

(
U, xi

)
on M induces a chart

(
π−1(U), φ̃

)
=

(
π−1(U), xi, yi

)
on TM and

(
π−1
⊕

(U), φ
)
=(

π−1
⊕

(U), xi, yi, zi
)

on TM ⊕ TM such

φ (x,u, ω) =
(
φ(x), φ̃x(u), φ̃x(ω)

)
=

(
φ(x), y, z

)
.

Let X̃, Ỹ be vector fields on TM. Then
(
X̃, Ỹ

)
is a vector field on TM ⊕ TM if and only if

dπ
(
X̃
)
= dπ

(
Ỹ
)
.

Relative to the chart
(
π−1
⊕

(U), φ
)
=

(
π−1
⊕

(U), xi, yi, zi
)
, the local frame vector fields given in [5] are

∂

∂xi =

(
∂

∂xi ,
∂

∂xi

)
,

∂

∂yi =

(
∂

∂yi , 0
)
,

∂

∂zi =

(
0,
∂

∂zi

)
.

For any vector field X on M and f ∈ C∞(M), we have

(XV, 0) = Xi ∂

∂yi , (0,XV) = Xi ∂

∂zi ,

(XH,XH) = Xi ∂

∂xi − Γ
k
i jX

iy j ∂

∂yk
− Γk

i jX
iz j ∂

∂zk
,

(XV, 0)( f ◦ π) = (0,XV)( f ◦ π) = 0,
(XH,XH)( f ◦ π) = X( f ) ◦ π.

If (M, 1) is a Riemannian manifold, ∇ its Levi-Civita connection and γ1, γ2 : 0 ∈ I ⊂ R → M are two
smooth curves, then we have[

γ1 ∼ γ2
]
⇔

[
γ1(0) = γ2(0),

dγ1

dt
(0) =

dγ2

dt
(0) and

d2γ1

dt2 (0) =
d2γ2

dt2 (0)
]
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j20γ =
{
γ; γ ∼ γ

}
.

The second order tangent bundle is the natural bundle of 2−jets of differentiable curves defined by

T2M =
{
j20γ; γ : I→M, is a smooth curve at 0 ∈ R

}
.

The canonical projection P on T2M is given by

P : T2M → M
j20γ 7→ γ(0).

A local chart (U, φ) induces a chart (P−1(U), ϕ) on T2M given by

ϕ( j20γ) = (φ(γ(0)),
dφ ◦ γ

dt
(0),

d2φ ◦ γ

dt2 (0)).

Proposition 1.1. [5] If TM ⊕ TM denotes the Whitney sum, then

S : T2M→ TM ⊕ TM, j20γ 7→ (γ̇(0), (∇γ̇(0)γ̇)(0))

is a diffeomorphism of natural bundles.

In the induced coordinates, we have

S : (xi, yi, zi) 7→ (xi, yi, zi + y jykΓi
jk).

Proposition 1.2. [5] Let T2M be a second order tangent bundle endowed with the vectorial structure induced by the
diffeomorphism S. For any section σ ∈ Γ(T2M) (Γ(T2M) is the set of all sections from M onto T2M), if we define two
vector fields on M by

Xσ = P1 ◦ S ◦ σ, Yσ = P2 ◦ S ◦ σ,

then σ = S−1(Xσ,Yσ), where P1 and P2 denote the first and the second projection from TM ⊕ TM onto TM.

1.2. Lifts to T2M
If (U, φ) is a local chart on M, then the diffeomorphism S induces a local chart ((π⊕ ◦ S)−1(U), φ ◦ S) on

T2M such that

∂

∂xi = S−1
∗

(
∂

∂xi ,
∂

∂xi

)
,
∂

∂yi = S−1
∗

(
∂

∂yi , 0
)
,
∂

∂zi = S−1
∗

(
0,
∂

∂zi

)
, (1)

where π⊕ : (u, ω) ∈ TM ⊕ TM 7→ π(u) = π(ω) = x.

Definition 1.3. [3, 4] Let (M, 1) be a Riemannian manifold, X and F respectively be a vector field and a (1, 1)−tensor
field on M. For λ = 0, 1, 2, the λ-lift of X to T2M is defined by

X(0) = S−1
∗ (XH,XH),

X(1) = S−1
∗ (XV, 0),

X(2) = S−1
∗ (0,XV),

F(0)(X(λ)) = (FX)(λ), (λ = 0, 1, 2)
F(λ)(X(0)) = (FX)(λ), (λ = 1, 2)
F(1)(X(λ)) = 0 = F(2)(X(λ)), (λ = 1, 2).

From the formulae (1) and Definition 1.3, we obtain the following lemma.
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Lemma 1.4. For any vector field X on M and any smooth function f ∈ C∞(M), we have

X(1) = Xi ∂

∂yi ,

X(2) = Xi ∂

∂zi ,

X(0) = Xi ∂

∂xi − Γ
k
i jX

iy j ∂

∂yk
− Γk

i jX
iz j ∂

∂zk
,

X(1)( f ◦ π) = X(2)( f ◦ π) = 0,
X(0)( f ◦ π) = X( f ) ◦ π.

From Definition 1.3 and the Lie bracket operations of the horizontal and vertical lifts of any vector field
X to the tangent bundle (see [6, 16]), we obtain the following proposition.

Proposition 1.5. [5] Let (M, 1) be a Riemannian manifold. If R denotes the Riemannian curvature tensor of (M, 1),
then for all vector fields X,Y on M and p ∈ T2M we have

1. [X(0),Y(0)]p = [X,Y](0)
p − (Rx(X,Y)u)(1)

p − (Rx(X,Y)ω)(2)
p ,

2. [X(0),Y(i)]p = (∇XY)(i)
p ,

3. [X(i),Y( j)]p = 0,

where (x,u, ω) = S(p) and i, j = 1, 2.

Lemma 1.6. Let (M, 1) be a Riemannian manifold. For all x ∈ M, u = ui ∂
∂xi , ω = ωi ∂

∂xi ∈ TxM and any smooth
function f : R→ R, we have the following

1. X(0)(1(Y,u))p = 1(∇XY,u)x,
2. X(0)(1(Y, ω))p = 1(∇XY, ω)x,
3. X(0)( f (r2

1))p = X(0)( f (r2
2))p = 0 = X(0)(1(u,u))p = X(0)(1(ω,ω))p,

4. X(1)(1(u,u))p = 21(X,u)x,
5. X(1)(1(ω,ω))p = 0 = X(2)(1(u,u))p,
6. X(2)(1(ω,ω))p = 21(X, ω)x,
7. X(1)(1(Y,u))p = 1(X,Y)x = X(2)(1(Y, ω))p,
8. X(1)(1(Y, ω))p = 0 = X(2)(1(Y,u))p,
9. X(1)( f (r2

1))p = 2 f ′(r2
1)1 (X,u) ,

10. X(1)( f (r2
2))p = 0 = X(2)( f (r2

1)),
11. X(2)( f (r2

2))p = 2 f ′(r2
2)1 (X, ω) ,

where p = S−1(x,u, ω), r2
1 = 1(u,u) = |u|2, r2

2 = 1(ω,ω) = |ω|2.

2. F−geodesics on T2M

Definition 2.1. Let (M, 1) be a Riemannian manifold. We define the Sasaki metric GS on the second order tangent
bundle T2M by

GS = S−1
∗ (1S ⊕ 1S),

where 1S is the Sasaki metric on the tangent bundle of (M, 1) (for Sasaki metric, see [15, 16]).

Thus, we obtain the following definition.

Definition 2.2. Let (M, 1) be a Riemannian manifold. If p ∈ T2M, then for all vector fields X,Y on M and
i, j ∈ {0, 1, 2} (i , j), we obtain
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1 GS

(
X(0),Y(0)

)
p
= 1(X,Y)x,

2 GS(X(i),Y( j))p = 0, f or i , j

3 GS(X(1),Y(1))p = 1(X,Y)x,

4 GS(X(2),Y(2))p = 1(X,Y)x, where S(p) = (x,u, ω) ∈ TxM ⊕ TxM (also see [13]).

From Lemma 1.6 and Definition 2.2, standard calculations give the following lemma.

Lemma 2.3. Let
(
M, 1

)
be a Riemannian manifold and T2M its second order tangent bundle with the Sasaki metric

GS. Then

X(0)(GS(Y(0),Z(0)))p = X(1(Y,Z))x,

X(0)(GS(Y(1),Z(1)))p = GS((∇XY)(1),Z(1))p + GS(Y(1), (∇XZ)(1))p,

X(0)(GS(Y(2),Z(2)))p = GS((∇XY)(2),Z(2))p + GS(Y(2), (∇XZ)(2))p,

X(1)(GS(Y(0),Z(0)))p = 0 = X(2)(GS(Y(0),Z(0))p,

X(1)(GS(Y(1),Z(1)))p = 0,

X(2)(GS(Y(2),Z(2)))p = 0,

X(1)(GS(Y(2),Z(2)))p = 0 = X(2)(GS(Y(1),Z(1))p

for all vector fields X,Y,Z on M and p ∈ T2M.

Proposition 2.4. [5] Let (M, 1) be a Riemannian manifold and T2M be its second order tangent bundle equipped
with the Sasaki metric GS. If ∇̃ denotes the Levi-Civita connection of T2M, then for p ∈ T2M and vector fields X,Y
on M we have

1. (∇̃X(0) Y(0))p = (∇XY)(0)
−

1
2

(
R(X,Y)u

)(1)
−

1
2

(
R(X,Y)ω

)(2)
,

2. (∇̃X(0) Y(1))p = (∇XY)(1) +
1
2

(
R(u,Y)X

)(0)
,

3. (∇̃X(0) Y(2))p = (∇XY)(2) +
1
2

(
R(ω,Y)X

)(0)
,

4. (∇̃X(1) Y(0))p =
1
2

(
R(u,X)Y

)(0)
,

5. (∇̃X(2) Y(0))p =
1
2

(
R(ω,X)Y

)(0)
,

6. (∇̃X(i) Y( j))p = 0 i, j = 1, 2,

where S(p) = (x,u, ω), ∇ and R denote the Levi-Civita connection and the Riemannian curvature tensor of (M, 1),
respectively.

Definition 2.5. Let M be a smooth manifold, F be a (1,1)-tensor field on M, ∇ be a linear connection on M and
γ : I→M be a smooth curve. Then

1. γ is said to be a magnetic curve with respect to (F,∇), if γ satisfies : ∇γ̇γ̇(t) = F γ̇(t) ([1, 7]),

2. γ is said to be an F−planar curve with respect to ∇ if γ satisfies : ∇γ̇γ̇(t) = ϱ1(t)γ̇(t) + ϱ2(t)F γ̇(t) ([11, 12]),

where ϱ1, ϱ2 are some smooth real functions.
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Definition 2.6. [2] Let M be a smooth manifold, F be a (1,1)-tensor field on M, ∇ be a linear connection, and
γ : I→M be a smooth curve. We say that γ is an F−geodesic with respect to ∇ if γ(u) satifies

∇γ̇(u)γ̇(u) = F(γ̇(u)). (2)

If t is another parameter for the same curve γ(u) then the relation (2) becomes

∇γ̇(t)γ̇(t) = α(t)γ̇(t) + β(t)F(γ̇(t)), (3)

where α and β are some functions on the curve γ(t).
A curve γ(t) satisfying the relation (3) describes an F−geodesic up to a reparameterization.

One can easily see that an F−geodesic is an F−planar curve, but in general an F−planar curve is not
always an F-geodesic.

Definition 2.7. Let (M, 1) be a Riemannian manifold and x : I → M be a curve on M. We define a curve
C : I→ T2M by C(t) = S−1(x(t), y(t), z(t)) for all t ∈ I, where y(t) ∈ Tx(t)M, i.e., y(t), z(t) are vector fields along x(t).

(1) The curve C(t) = S−1(x(t), ẋ(t), ẋ(t)) is called a natural lift of the curve x(t).

(2) The curve C(t) = S−1(x(t), y(t), z(t)) is said to be a horizontal lift of the cure x(t) if and only if ∇ẋy = 0
and ∇ẋz = 0.

Lemma 2.8 ([14]). Let (M, 1) be a Riemannian manifold. If X,Y are vector fields on M and (x,u) ∈ TM such that
Xx = u, then we have

dxX(Yx) = YH
(x,u) + (∇YX)V

(x,u).

Lemma 2.9. Let (M, 1) be a Riemannian manifold. If Z is a vector field on M and σ ∈ Γ(T2M) then for all x ∈M, we
have

dxσ(Zx) = Z(0)
p + (∇ZXσ)

(1)
p + (∇ZYσ)

(2)
p ,

where p = σ(x).

Proof. Using Lemma 2.8, it follows that

dxσ(Z) = dS−1(dXσ(Z), dYσ(Z))S(p)

= dS−1(ZH,ZH)S(p) + dS−1((∇ZXσ)V, (∇ZYσ)V)S(p)

= Z(0)
p + (∇ZXσ)

(1)
p + (∇ZYσ)

(2)
p .

Lemma 2.10. Let (M, 1) be a Riemannian manifold and let (T2M,GS) be its second order tangent bundle equipped
with the Sasaki metric and let x : I → M be a curve on M. If C : t ∈ I → C(t) = S−1(x(t), y(t), z(t)) is a curve on
T2M such that y(t), z(t) are vector fields along x(t) (i.e., y(t), z(t) ∈ Tx(t)M), then

Ċ = ẋ(0) + (∇ẋy)(1) + (∇ẋz)(2),

where ẋ = d x
d t and Ċ = d C

d t .
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Proof. If Y,Z are vector fields such Y(x(t)) = y(t) and Z(x(t)) = z(t), then we have

Ċ(t) = dC(t) = dσ(ẋ(t)),

where σ = S−1(Y,Z). Using Lemma 2.9 we obtain

Ċ(t) = dσ(ẋ(t)) = ẋ(0) + (∇ẋy)(1) + (∇ẋz)(2). (4)

Theorem 2.11. Let (M, 1) be a Riemannian manifold and let (T2M,GS) be its second order tangent bundle equipped
with the Levi-Civita connection ∇̃ and let C(t) = S−1(x(t), y(t), z(t)) be a curve on T2M such that y(t), z(t) are vector
fields along x(t). Then we have

∇̃ĊĊ =
[
∇ẋẋ + R(y,∇ẋy)ẋ + R(z,∇ẋz)ẋ

](0)
+

[
∇ẋ∇ẋy

](1)
+

[
∇ẋ∇ẋz

](2)
. (5)

Proof. The proof follows immediately from Proposition 2.4 and the formula (4).

Theorem 2.12. Let (M, 1) be a Riemannian manifold and let (T2M,GS) be its second order tangent bundle equipped
with the Levi-Civita connection ∇̃. A curve C(t) = S−1(x(t), y(t), z(t)) on T2M is an F(0)-planar curve if and only if

∇ẋẋ = −R(y,∇ẋy)ẋ − R(z,∇ẋz)ẋ + ϱ1(t) ẋ + ϱ2(t) F(ẋ),
∇ẋ∇ẋy = ϱ1(t)∇ẋy + ϱ2(t)F(∇ẋy),
∇ẋ∇ẋz = ϱ1(t)∇ẋz + ϱ2(t)F(∇ẋz).

Proof. From the formula (4), we have

∇̃ĊĊ = ϱ1(t) Ċ + ϱ2(t) F(0)(Ċ)

= ϱ1(t)
[
ẋ(0) + (∇ẋy)(1) + (∇ẋz)(2)

]
+ϱ2(t)

[
F(0)ẋ(0) + F(0)(∇ẋy)(1) + F(0)(∇ẋz)(2)

]
=

[
ϱ1(t)ẋ + ϱ2(t)Fẋ

](0)
+

[
ϱ1(t)∇ẋy + ϱ2(t)F∇ẋy

](1)

+
[
ϱ1(t)∇ẋz + ϱ2(t)F∇ẋz

](2)
.

Using the formula (5), the result immediately follows.

In the particular case when ϱ1 = 0 and ϱ2 = 1 in the Theorem 2.12 , we obtain the following result.

Theorem 2.13. Let (M, 1) be a Riemannian manifold and let (T2M,GS) be its second order tangent bundle equipped
with the Levi-Civita connection ∇̃. A curve C(t) = S−1(x(t), y(t), z(t)) on T2M is an F(0)-geodesic if and only if

∇ẋẋ = −R(y,∇ẋy)ẋ − R(z,∇ẋz)ẋ + F(ẋ),
∇ẋ∇ẋy = F(∇ẋy),
∇ẋ∇ẋz = F(∇ẋz).

Using Theorem 2.12 and Theorem 2.13, we obtain the following corollaries.

Corollary 2.14. Let (M, 1) be a locally flat Riemannian manifold and let (T2M,GS) be its second order tangent bundle
equipped with the Levi-Civita connection ∇̃. Then a curve C(t) = S−1(x(t), y(t), z(t)) on T2M is an F(0)-geodesic if
and only if

∇ẋẋ = F(ẋ),
∇ẋ∇ẋy = F(∇ẋy),
∇ẋ∇ẋz = F(∇ẋz).
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Corollary 2.15. Let (M, 1) be a locally flat Riemannian manifold and let (T2M,GS) be its second order tangent bundle
equipped with the Levi-Civita connection ∇̃. Then a curve C(t) = S−1(x(t), y(t), z(t)) on T2M is an F(0)-geodesic up
to a reparameterization (resp., F(0)-planar curve) if and only if

∇ẋẋ = ϱ1(t) ẋ + ϱ2(t) F(ẋ),
∇ẋ∇ẋy = ϱ1(t)∇ẋy + ϱ2(t)F(∇ẋy),
∇ẋ∇ẋz = ϱ1(t)∇ẋz + ϱ2(t)F(∇ẋz).

Proposition 2.16. Let (M, 1) be a Riemannian manifold and let (T2M,GS) be its second order tangent bundle
equipped with the Levi-Civita connection ∇̃. If C(t) = S−1(x(t), y(t), z(t)) is a horizontal lift of a curve x(t), then C(t)
is an F(0)-planar curve (resp., F(0)-geodesic) if and only if x(t) is an F-planar curve (resp., F-geodesic).

Proof. From the formulas (4) and (5), we have

Ċ(t) = (ẋ)(0)(t)

∇̃ĊĊ = ∇̃(ẋ)0 ẋ(0) = (∇ẋẋ)(0).

Let C(t) be an F(0)-planar curve. Then

∇̃ĊĊ = ϱ1(t) Ċ + ϱ2(t) F(0)(Ċ)
= ϱ1(t) ẋ(0) + ϱ2(t) F(0)(ẋ(0))

=
[
ϱ1(t) ẋ + ϱ2(t) F(ẋ)

](0)

= (∇ẋẋ)(0).

Hence, C(t) is an F(0)-planar curve if and only x(t) is an F-planar curve. In the case of ρ1 = 0 and ρ2 = 1, we
get that C(t) is an F(0)-geodesic if and only x(t) is an F-geodesic.

Remark 2.17. If C(t) = S−1(x(t), y(t), z(t)) is the horizontal lift of the curve x(t), then we have[
∇ẋy = 0

]
⇔

[dyk

dt
+ Γk

i jy
i dx j

dt
= 0

]
⇔

[
y(t) = e−(

∫
A(t)dt).K

]
,[

∇ẋz = 0
]
⇔

[dzk

dt
+ Γk

i jz
i dx j

dt
= 0

]
⇔

[
z(t) = e−(

∫
A(t)dt).K

]
,

where K,K ∈ Rn and A(t) = [aki], aki =

n∑
j=1

Γk
i j

dx j

dt
. Therefore, C(t) is an F(0)-geodesic (resp. F(0)-planar curve) if and

only if ∇ẋẋ = F(ẋ) (resp. ∇ẋẋ = ϱ1(t) ẋ + ϱ2(t) F(ẋ)).

Using Remark 2.17, we can construct an infinity of examples of F-geodesics (resp. F-planar curve) on
(T2M,GS).

Example 2.18. LetRn be equipped with the Riemannian metric 1 = ds2 and B ∈ Mn×n(R) . If F = B is an invertible
matrix, then C(t) = S−1(B−1 exp(B t) K1 + K2, const., const.),K1,K2 ∈ Rn, is an F(0)-geodesic.

Example 2.19. Let R be equipped with the Riemannian metric 1 = exdx2and F = a ∈ R∗. Then the Christoffel
symbol of the Levi-Civita connection is given by

Γ1
11 =

1
2
111

(
∂111

∂x1 +
∂111

∂x1 −
∂111

∂x1

)
=

1
2

and C(t) = S−1(x(t), y(t), z(t)) = S−1
(
2 ln

(
K1eat+aK2

2a

)
, 2aK3

K1eat+aK2
, 2aK4

K1eat+aK2

)
, K1, ...,K4 ∈ R, is an F(0)-geodesic such

that ∇ẋy = 0 and ∇ẋz = 0.
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Example 2.20. Let R be equipped with the Riemannian metric 1 = exdx2, F = a ∈ R∗, ρ1(t) = 1
t ρ2(t) = 1. Then we

have Γ1
11 =

1
2 and x(t) is an F-planar curve if and only if it satisfies the following differential equation

x′′ +
1
2

x′2 =
at + 1

t
x′.

A solution of the previous equation is given by

x(t) = 2 ln
K1eat(at − 1) + K2

2a2 .

So, from Remark 2.17 we obtain

y(t) =
2a2K3

K1eat(at − 1) + K2
,

z(t) =
2a2K4

K1eat(at − 1) + K2
,

where K1, ..,K4 ∈ R. Then C(t) = S−1(x(t), y(t), z(t)), is an F(0)-planar curve such that ∇ẋy = 0 and ∇ẋz = 0.

Example 2.21. Let
(
R ∖ {0}

)2
be equipped with the Riemannian metric h defined by

h11 = x2 , h22 = y2, h12 = 0

and F =
(

a 0
0 0

)
. Then the Christoffel symbols of the Levi-Civita connection are given by

Γ1
11 =

1
x
, Γ2

22 =
1
y
, Γk

i j = 0 ∀(i, j, k) ∈ {1, 2}3 ∖ {(1, 1), (2, 2)}.

Let C(t) = S−1(x(t), y(t), z(t)) be the horizontal lift of the curve x(t) = (x1(t), x2(t)). From Remark 2.17, we have

A(t) =


x′1(t)
x1(t)

0

0
x′2(t)
x2(t)

 ,
y(t) =

(
k1

x1(t)
,

k2

x2(t)

)
and z(t) =

(
k3

x1(t)
,

k4

x2(t)

)
,

where k1, k2, k3, k4 ∈ R. x(t) = (x1(t), x2(t)) is an F-geodesic if and only if it satisfies the following differential
equations{

x′′1 +
1
x1

x′21 = a x′1
x′′2 +

1
x2

x′22 = 0

whose solution is given by

x(t) = (x1(t), x2(t)) =
(
exp

√
a
2

t,
√

2k5 t + k6

)
,

where k5, k6 ∈ R. Therefore, C(t) = S−1
(
x1(t), x2(t), k1

x1(t) ,
k2

x2(t) ,
k3

x1(t) ,
k4

x2(t)

)
is an F- geodesic such that ∇ẋy = 0 and

∇ẋz = 0.
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Proposition 2.22. Let (M, 1) be a Riemannian manifold equipped with the Levi-Civita connection∇ and let (T2M,GS)
be its second order tangent bundle equipped with the Levi-Civita connection ∇̃. Let F be a (1,1)-tensor field on M. If
C(t) = S−1(x(t), y(t), z(t)) is the horizontal lift of a curve x(t), then we have

1. An integral curve of any vector field X on M is an F−geodesic with respect to ∇ if and only if the integral curve
of X(0) is an F(0)

−geodesic with respect to ∇̃.

2. An integral curve of any vector field X on M is an F−geodesic up to a reparameterization, with respect to ∇ if
and only if the integral curve of X(0) is an F(0)

−geodesic up to a reparameterization, with respect to ∇̃.

3. C(t) is an F(0)
−geodesic with respect to ∇̃ if and only if the curve x(t) is an F−geodesic with respect to ∇.

4. C(t) is an F(0)
−geodesic up to a reparameterization with respect to ∇̃ if and only if the curve x(t) is an F−geodesic

up to a reparameterization with respect to ∇.

Proof. Let γ be an F−geodesic up to a reparameterization with respect to Levi-Civita connection ∇ on M.
Then the relation (3) is satisfied and we obtain

∇̃γ̇(0) γ̇(0) =
(
∇γ̇γ̇

)0
= α ◦ P γ̇(t)(0) + β ◦ P F(0)γ̇(t)(0),

where P is the canonical projection on T2M. In the case of α = 0 and β = 1, one can easily obtain (1).

Remark 2.23. The Proposition 2.22 remains true, if we replace ∇̃ by ∇(0), where ∇(0) is defined by

∇
(0)
X(0) Y

(λ) = (∇XY)(λ),

∇
(0)
X(i) Y

(λ) = 0

for i = 1, 2 and λ = 0, 1, 2.

Definition 2.24. Let (M, 1) be a Riemannian manifold. We can define a natural diagonal metric G on the second
tangent bundle T2M of (M, 1) by

Gp(X(0),Y(0)) = b11x(X,Y) + d11x(X,u)1x(Y,u) + c11x(X, ω)1x(Y, ω),
Gp(X(1),Y(1)) = b21x(X,Y) + d21x(X,u)1x(Y,u),
Gp(X(2),Y(2)) = b31x(X,Y) + d31x(X,u)1x(Y,u),
Gp(X(i),Y( j)) = 0, i , j = 0, 1, 2

(6)

where p = S−1(x,u, ω), d1, b2, d2 (resp. c1, b3, d3) are smooth functions depending on r1 = 1(u,u) (resp r2 = 1(ω,ω))
and b1 is a smooth function depending on (r1, r2), such that b1, b2, b3 > 0 and b1 + r1 d1, b2 + r1 d2, b3 + r2 d3 > 0.

The Levi-Civita connection of G denoted by ∇̂ has the following expressions on the horizontal and
respectively on the vertical distributions of T(T2M)

∇̂X(0) Y(0) = (∇XY)(0)
−

d1

2 b1

[
1(X,u)Y(1) + 1(Y,u)X(1)

]
−
∂1b1

b2 + r1d2
1(X,Y)u(1) (7)

−
b2 d′1 − d1 d2

b2(b2 + r1 d2)
1(X,u)1(Y,u)u(1)

−
1
2

(
R(X,Y)u

)(1)

−
c1

2 b1

[
1(X, ω)Y(2) + 1(Y, ω)X(2)

]
−
∂2b1

b3 + r2d3
1(X,Y)ω(2)

−
b3 c′1 − c1 d3

b3(b3 + r2 d3)
1(X, ω)1(Y, ω)ω(2)

−
1
2

(
R(X,Y)ω

)(2)
,
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∇̂X(1) Y(1) =
b′2
b2

[
1(X,u)Y(1) + 1(Y,u)X(1)

]
−

b′2 − d2

b2 + r1 d2
1(X,Y)u(1)

+
b2d′2 − b′2d2

b2(b2 + r1 d2)
1(X,u)1(Y,u)u(1),

∇̂X(2) Y(2) =
b′3
b3

[
1(X, ω)Y(2) + 1(Y, ω)X(2)

]
−

b′3 − d3

b3 + r2 d3
1(X,Y)u(2)

+
b3d′3 − b′3d3

b3(b3 + r2 d3)
1(X, ω)1(Y, ω)ω(2),

where ∂1b1 =
∂b1
∂r1

and ∂2b1 =
∂b1
∂r2

.

Proposition 2.25. Let (M, 1) be a Riemannian manifold, (T2M,G) be its second order tangent bundle and let F be a
(1,1)-tensor field on M. If C(t) = S−1(x(t), y(t), z(t)) is the horizontal lift of a curve x(t), then we have

(i) An integral curve of any vector field X on M is an F-geodesic with respect to the Levi-Civita connection ∇
of 1 if and only if the integral curve of the horizontal lift X(0) is an F(0)-geodesic with respect to the Levi-Civita
connection ∇̂ of G defined by (6), provided b1 = const. and d1 = c1 = 0.

(ii) The curve C(t) is an F(0)-geodesic with respect to the Levi-Civita connection ∇̂ if and only if the curve x(t) is
an F-geodesic with respect to the Levi-Civita connection ∇, provided b1 = const. and d1 = c1 = 0.

(iii) The above assertions (i) and (ii) remain true, if instead of an F− geodesic (resp., F(0)
− geodesic), we take an

F-geodesic up to a reparameterization (resp. an F(0)-geodesic up to a reparameterization).

Proof. Let γ be an F-geodesic up to a reparameterization with respect to ∇, i.e.,

∇γ̇γ̇ = α γ̇ + β Fγ̇, (8)

where α and β are some smooth functions on the curve. For X = Y = γ̇ the relation (7) becomes

∇̂γ̇(0) γ̇(0) = (∇γ̇γ̇)(0)
−

d1

b1
1(γ̇,u)γ̇(1)

−
∂1b1

b2 + r1d2
1(γ̇, γ̇)u(1)

−
b2 d′1 − d1 d2

b2(b2 + r1 d2)
1(γ̇,u)2u(1)

−
c1

b1
1(γ̇, ω)γ̇(2)

−
∂2b1

b3 + r2d3
1(γ̇, γ̇)ω(2)

−
b3 c′1 − c1 d3

b3(b3 + r2 d3)
1(γ̇, ω)2ω(2).

Using the formula (8), we have that ∇̂γ̇(0) γ̇(0) = α ◦ P γ̇(0) + β ◦ P F(0)γ̇(0) if and only if

0 = −
d1

b1
1(γ̇,u)γ̇(1)

−
∂1b1

b2 + r1d2
1(γ̇, γ̇)u(1)

−
b2 d′1 − d1 d2

b2(b2 + r1 d2)
1(γ̇,u)2u(1)

−
c1

b1
1(γ̇, ω)γ̇(2)

−
∂2b1

b3 + r2d3
1(γ̇, γ̇)ω(2)

−
b3 c′1 − c1 d3

b3(b3 + r2 d3)
1(γ̇, ω)2ω(2).

Then, we get d1 = c1 = ∂1b1 = ∂2b1 = 0. If we replace γ(t) by x(t), from the formula (4) we have Ċ(t) = (x(t))(0).
Similarly, the item (iii) can be proved. In the particular case of α = 0 and β = 1, we deduce that the items (i)
and (ii) are also true.
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3. F-Geodesics of the hypersurface T2
1,1

M

Let T2
1,1M be the hypersurface in T2M defined by

T2
1,1M = {p = S−1(x,u,w) ∈ T2M, |u| = |ω| = 1}. (9)

The unit normal vector fields to T2
1,1M are given by

U : T2M → T(T2M) (10)
p = S−1(x,u, ω) 7→ Up = (u)(1)

W : T2M → T(T2M) (11)
p = S−1(x,u, ω) 7→ Wp = (ω)(2).

Indeed, for p = S−1(x,u, ω) ∈ T2
1,1M, we have

GS(U,U)p = 1(u,u) = 1,
GS(W,W)p = 1(w,w) = 1,
GS(U,W)p = 0.

On the other hand, if we set

F1 : T2M→ R, p = S−1(x,u, ω) 7→ 1(u,u),

F2 : T2M→ R, p = S−1(x,u, ω) 7→ 1(ω,ω),

F : T2M→ R2, p 7→ (F1(p),F2(p)),

then the hypersurface T2
1,1M is given by

T2
1,1M = {p = S−1(x,u, ω) ∈ T2M, (F1(p),F2(p)) = (1, 1)},

where 1radGS (F1) and 1radGS (F2) are vector fields normal to T2
1,1M. From Lemma 1.6, for any vector field X

on M, we get

GS(X(0), 1radGS (F1)) = X(0)(F1) = X(0)(1(u,u))
= 0 = GS(X(0),U),

GS(X(1), 1radGS (F1)) = X(1)(F1) = X(1)(1(u,u))
= 21(X,u) = 2GS(X(1),U),

GS(X(2), 1radGS (F1)) = X(2)(F1) = X(2)(1(u,u))
= 0 = 2GS(X(2),U).

So U = 1
21radGS (F1). By the same way, we obtainW = 1

21radGS (F2), therefore U andW are vector fields
orthonormal to T2

1,1M. If B (resp.
...
∇ ) denotes the second fundamental form (resp. the Levi-Civita connection

on T2
1,1M), then we have

B(X̃, Ỹ) = GS(∇̃X̃Ỹ,U)U + GS(∇̃X̃Ỹ,W)W, (12)

...
∇ X̃ Ỹ = ∇̃X̃ Ỹ − ρ1(X̃, Ỹ)U − ρ2(X̃, Ỹ)W (13)

for all vector fields X̃, Ỹ on T2
1,1M.

Subsequently, we denote x′ = ẋ, x′′ = ∇ẋẋ, y′ = ∇ẋy and y′′ = ∇ẋ∇ẋy, z′ = ∇ẋz and z′′ = ∇ẋ∇ẋz.
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Lemma 3.1. Let (M, 1) be a Riemannian manifold and let (T2M,GS) be its second order tangent bundle equipped
with the Sasaki metric and C(t) = S−1(x(t), y(t), z(t)) be a curve on T2

1,1M such that y(t), z(t) are vector fields along
x(t). Then, we have

(1) 1(y, y) = 1 = 1(z, z),
(2) 1(y′, y) = 0 = 1(z′, z),

(3) 1(y′′, y) = −|y′|2 = −1(y′, y′),
(4) 1(z′′, z) = −|z′|2 = −1(z′, z′).

As T2
1,1M is the hypersurface in T2M, a curve on T2

1,1M is a geodesic if and only if its second covariant
derivative in T2M is collinear to the unit normal vectors (y)(1) and (z)(2). From Theorem 2.13, the formula
(12) and Lemma 3.1, we obtain the following lemma.

Lemma 3.2. Let (M, 1) be a Riemannian manifold and (T2M,GS) be its second order tangent bundle equipped with
the Sasaki metric and let C(t) = S−1(x(t), y(t), z(t)) be a curve on T2

1,1M such that y(t) and z(t) are vector fields along
x(t). Then, C is an F(0)-geodesic on T2

1,1M if and only if

x′′ = −
[
R(y, y′) + R(z, z′)

]
x′ + F(x′), (14)

y′′ = F(y′) + ρ1 y, (15)

z′′ = F(z′) + ρ2 z, (16)

where ρ1, ρ2 are some functions.

Definition 3.3. Let (M,F) be an almost complex manifold. A Riemannian metric 1 on M such that 1(FX,FY) =
1(X,Y) or equivalently 1(FX,Y) = −1(X,FY) for any vector fields X,Y is called an almost Hermitian metric. The
triple (M,F, 1) is called an almost Hermitian manifold [9]. Also, for any vector field X, it follows that

1(X,FX) = 0. (17)

Lemma 3.4. Let (M,F, 1) be an almost Hermitian manifold and (T2M,GS) be its second order tangent bundle equipped
with the Sasaki metric and let C(t) = S−1(x(t), y(t), z(t)) be a curve on T2

1,1M such that y(t) and z(t) are vector fields
along x(t). If we put c1 = |y′|, µ1 = 1(y′,Fy), c2 = |z′|, µ2 = 1(z′,Fz) , then we have

ρ1 = µ1 − c2
1,

ρ2 = µ2 − c2
2,

c′1 = 0 = c′2,
µ′1 = 0 = µ′2.

Proof. From the formula (15), we obtain

y′′ = ρ1 y + F(y′)

1(y′′, y) = 1(F(y′), y) + ρ1 1(y, y)
−|y′|2 = −µ1 + ρ1.

Using Lemma 3.1 (2) and the formula (17), we have

1
2

(c2
1)′ = 1(y′′, y′)

= ρ1 1(y, y′) + 1(F(y′), y′)
= ρ1 1(y, y′)
= 0.
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By Lemma 3.1 (2), Definition 3.3 and the formula (17), we obtain

µ′1 = 1(y′′,F(y)) + 1(y′,F(y′))
= 1(y′′,F(y))
= ρ1 1(y,F(y)) + 1(Fy′,Fy)
= 0.

Similarly, we can obtain the other formulae.

Using Lemma 3.2 and Lemma 3.4, we get the following theorem.

Theorem 3.5. Let (M,F, 1) be an almost Hermitian manifold and (T2M,GS) be its second order tangent bundle
equipped with the Sasaki metric and let C(t) = S−1(x(t), y(t), z(t)) be a curve on T2

1,1M such that y(t) and z(t) are vector
fields along x(t). If we put c1 = |y′|, µ1 = 1(y′,Fy), c2 = |z′|, µ2 = 1(z′,Fz), then the curve C(t) = S−1(x(t), y(t), z(t))
is an F(0)-geodesic on T2

1,1M if and only if

c1 = const., µ1 = const. and ρ1 = µ1 − c2
1 = const.,

c2 = const., µ2 = const. and ρ2 = µ2 − c2
2 = const.,

x′′ = −

[
R(y, y′) + R(z, z′)

]
x′ + F(x′),

y′′ = F(y′) + (µ1 − c2
1)y,

z′′ = F(z′) + (µ2 − c2
2)z.

From Theorem 2.12 and Lemma 3.1, we obtain the following lemma.

Lemma 3.6. Let (M, 1) be a Riemannian manifold, (T2M,GS) its second order tangent bundle equipped with the
Sasaki metric and let C(t) = S−1(x(t), y(t), z(t)) be a curve on T2

1,1M such that y(t) and z(t) are vector fields along x(t).
Then, C is an F(0)-planar curve on T2

1,1M if and only if

x′′ = −

[
R(y, y′) + R(z, z′)

]
x′ + η1x′ + η2F(x′),

y′′ = η1y′ + η2F(y′) + ρ1 y,
z′′ = η1z′ + η2F(z′) + ρ2 z,

where η1, η2 are smooth functions on R and ρ1, ρ2 are some functions.

Now, we will determine the functions ρ1 and ρ2.

Lemma 3.7. Let (M, 1,F) be an almost Hermitian manifold, (T2M,GS) its second order tangent bundle equipped
with the diagonal lift Sasaki metric and C(t) = S−1(x(t), y(t), z(t)) be a curve on T2

1,1M such that y(t) and z(t) are
vector fields along x(t). If we put c1 = |y′|, µ1 = 1(y′,Fy), c2 = |z′|, µ2 = 1(z′,Fz) , then we have

c1 = K1 exp
(∫
η1dt

)
, c2 = K3 exp

(∫
η1dt

)
,

µ1 = K2 exp
(∫
η1dt

)
, µ2 = K4 exp

(∫
η1dt

)
,

ρ1 = η2 µ1 − c2
1 = η2 K2 exp

(∫
η1dt

)
− K2

1 exp
(
2
∫
η1dt

)
,

ρ2 = η2 µ2 − c2
2 = η2 K3 exp

(∫
η1dt

)
− K2

4 exp
(
2
∫
η1dt

)
,

where η1, η2 are smooth functions on R.
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Proof. From the formula (15), we obtain

y′′ = ρ1 y + η1y′ + η2F(y′),

1(y′′, y) = η11(y′, y) + η21(F(y′), y) + ρ1 1(y, y),
−|y′|2 = −η2 µ1 + ρ1.

Then ρ1 = η2 µ1 − c2
1.

Using the formula (17), we get

1
2

(c2
1)′ = 1(y′′, y′)

= ρ1 1(y, y′) + η1 1(y′, y′) + η2 1(F(y′), y′)
= η1 1(y′, y′)
= η1 c2

1,

from which we get c1 = K1 exp
(∫
η1dt

)
.

On the other hand, we have

µ′1 = 1(y′′,Fy) + 1(y′,F(y′))
= 1(y′′,Fy)
= ρ1 1(y,Fy) + η11(y′,Fy) + η2 1(Fy′,Fy)
= η1 1(y′,Fy)
= η1 µ1,

from which we get µ1 = K2 exp
(∫
η1dt

)
.

By the same way, we obtain the other formulas.

Using Lemma 3.6 and Lemma 3.7, we obtain the following theorem.

Theorem 3.8. Let (M, 1,F) be an almost Hermitian manifold and let (T2M,GS) be its second order tangent bundle
equipped with the diagonal lift Sasaki metric and let C(t) = S−1(x(t), y(t), z(t)) be a curve on T2

1,1M such that y(t)
and z(t) are vector fields along x(t). If we put c1 = |y′|, µ1 = 1(y′,Fy), c2 = |z′|, µ2 = 1(z′,Fz), then the curve
C(t) = S−1(x(t), y(t), z(t)) is an F(0)-planar curve on T2

1,1M if and only if

c1 = K1 exp
(∫
η1dt

)
, c2 = K3 exp

(∫
η1dt

)
,

µ1 = K2 exp
(∫
η1dt

)
, µ2 = K4 exp

(∫
η1dt

)
,

ρ1 = η2 µ1 − c2
1 = η2 K2 exp

(∫
η1dt

)
− K2

1 exp
(
2
∫
η1dt

)
,

ρ2 = η2 µ2 − c2
2 = η2 K3 exp

(∫
η1dt

)
− K2

4 exp
(
2
∫
η1dt

)
,

x′′ = −

[
R(y, y′) + R(z, z′)

]
x′ + ϱ1(t)x′ + ϱ2(t)F(x′),

y′′ = ϱ1(t)y′ + ϱ2(t)F(y′) + (η2 µ1 − c2
1)y,

z′′ = ϱ1(t)z′ + ϱ2(t)F(z′) + (η2 µ2 − c2
2)z.
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Remark 3.9. 1) The Theorem 3.8 remains true if F(0)-planar curve is replaced by F(0)-geodesic up to reparameteri-
zation.

2) In the case of η1 = 0 and η2 = 1 we obtain Theorem 3.5.
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