The (l, r)-Stirling numbers: a combinatorial approach

Hacène Belbachir ${ }^{\text {a,c }}$, Yahia Djemmada ${ }^{\text {a,b }}$
${ }^{a}$ USTHB, Faculty of Mathematics, RECITS Laboratory, BP 32, El Alia, 16111, Bab Ezzouar, Algiers, Algeria.
${ }^{b}$ National Higher School of Mathematics, P.O. Box 75, Mahelma, 16093, Sidi Abdellah, Algiers, Algeria.
${ }^{c}$ Research Center on Scientific and Technical Information (CERIST), 05 Rue des 3 frères Aissou, Ben Aknoun, Algiers, Algeria.

Abstract

This work deals with a new generalization of r-Stirling numbers using l-tuple of permutations and partitions called (l, r)-Stirling numbers of both kinds. We study various properties of these numbers using combinatorial interpretations and symmetric functions. Also, we give a limit representation of the multiple zeta function using (l, r)-Stirling of the first kind.

1. Introduction

Let σ be a permutation of the set $[n]=\{1,2, \ldots, n\}$ having k cycles $c_{1}, c_{2}, \ldots, c_{k}$. A cycle leaders set of σ, denoted $c l(\sigma)$, is the set of the smallest elements on their cycles, i. e.

$$
c l(\sigma)=\left\{\min c_{1}, \min c_{2}, \ldots, \min c_{k}\right\}
$$

As the same way, let π be a partition of the set $[n]=\{1,2, \ldots, n\}$ into k blocks $b_{1}, b_{2}, \ldots, b_{k}$. A block leaders set of π, denoted $b l(\pi)$, is the set of the smallest elements on their blocks, i. e.

$$
b l(\pi)=\left\{\min b_{1}, \min b_{2}, \ldots, \min b_{k}\right\}
$$

Example 1.1.

- For $n=6$, the permutation $\sigma=(13)(245)(6)$ have the set of cycle leaders $\operatorname{cl}(\sigma)=\{1,2,6\}$.
- For $n=7$, the partition $\pi=1,2,4|3,5,7| 6$ have the set of block leaders $b l(\pi)=\{1,3,6\}$.

It is well known that the Stirling numbers of the first kind, denoted $\left[\begin{array}{l}n \\ k\end{array}\right]$, count the number of all permutations of $[n]$ having exactly k cycles, and Stirling numbers of the second kind, denoted $\left\{\begin{array}{l}n \\ k\end{array}\right\}$, count the number of all partitions of $[n$] having exactly k blocks.

One of the most interesting generalization of Stirling numbers was the r-Stirling numbers of both kind introduced By Broder [6]. Analogously to the classical Stirling numbers of both kinds, the author considered

[^0]that r-Stirling numbers of the first kind $\left[\begin{array}{l}n \\ k\end{array}\right]_{r}$ (resp. the second kind $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{r}$) counts the number of permutations σ (resp. partitions π) having exactly k cycles (resp. k blocks) such that the r first elements $1,2, \ldots, r$ lead.

Dumont, in [8], gives the first interpretation for the "central factorial" numbers of the second kind $U(n, k)$ given by the recurrence

$$
\begin{equation*}
U(n, k)=U(n-1, k-1)+k^{2} U(n-1, k), \quad \text { for } 0<k \leq n \tag{1}
\end{equation*}
$$

Then, using the notion of quasi-permutations, Foata and Han [9] , showed that $U(n, k)$ counts the number of pair $\left(\pi_{1}, \pi_{2}\right)$-partitions of $[n]$ into k blocks such that $b l\left(\pi_{1}\right)=b l\left(\pi_{2}\right)$.

In this work, we give an extension of the r-Stirling numbers of both kinds with considering l-tuple partitions (and permutations) of Dumont's partition model [8, 9].

This paper is organized as follows. In Section 2 and Section 4, we introduce the (l, r)-Stirling numbers of both kinds. Some properties are given as recurrences, orthogonality, generating functions, a relation between (l, r)-Stirling numbers and Bernoulli polynomials via Faulhaber sums and symmetric functions. In Section 7, we show the relations between multiple-zeta function and the (l, r)-Stirling numbers. Finally, in Section 8, we discuss some remarks which connect this numbers to the rooks polynomials [3].

2. The (l, r)-Stirling numbers of both kinds

Let us consider the following generalization,
Definition 2.1. The (l, r)-Stirling number of the first kind $\left[\begin{array}{l}n \\ k\end{array}\right]_{r}^{(l)}$ counts the number of l-tuple of permutations $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{l}\right)$ of $[n]$ having exactly k cycles such that $1,2, \ldots, r$ first elements lead, and

$$
c l\left(\sigma_{1}\right)=\operatorname{cl}\left(\sigma_{2}\right)=\cdots=\operatorname{cl}\left(\sigma_{l}\right) .
$$

Definition 2.2. The (l, r)-Stirling number of the second kind $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{r}^{(l)}$ counts the number of l-tuple of partitions $\left(\pi_{1}, \pi_{2}, \ldots, \pi_{l}\right)$ of $[n]$ having exactly k blocks such that $1,2, \ldots, r$ first elements lead, and

$$
b l\left(\pi_{1}\right)=b l\left(\pi_{2}\right)=\cdots=b l\left(\pi_{l}\right)
$$

Theorem 2.3. The (l, r)-Stirling numbers of the first satisfy the following recurrences

$$
\left[\begin{array}{l}
n \tag{2}\\
k
\end{array}\right]_{r}^{(l)}=\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{r}^{(l)}+(n-1)^{l}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{r}^{(l)}, \quad \text { for } n>r
$$

and

$$
\left[\begin{array}{l}
n \tag{3}\\
k
\end{array}\right]_{r}^{(l)}=\frac{1}{(r-1)^{l}}\left(\left[\begin{array}{c}
n \\
k-1
\end{array}\right]_{r-1}^{(l)}-\left[\begin{array}{c}
n \\
k-1
\end{array}\right]_{r}^{(l)}\right), \quad \text { for } n \geq r>1
$$

with boundary conditions $\left[\begin{array}{c}n \\ k\end{array}\right]_{r}^{(l)}=0$, for $n<r$; and $\left[\begin{array}{l}n \\ k\end{array}\right]_{r}^{(l)}=\delta_{k, r}$, for $n=r$.
Proof. The $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{l}\right)$-permutations of the set $[n]$ having k cycles such that $1,2, \ldots, r$ first elements are in distinct cycles and $\operatorname{cl}\left(\sigma_{1}\right)=\operatorname{cl}\left(\sigma_{2}\right)=\cdots=c l\left(\sigma_{l}\right)$ is either obtained from:

- Inserting the nth elements after any element in each permutation of $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{l}\right)$-permutations of the set $[n-1]$ having k cycles such that $1,2, \ldots, r$ first elements are in distinct cycles and $\operatorname{cl}\left(\sigma_{1}\right)=\operatorname{cl}\left(\sigma_{2}\right)=$ $\cdots=c l\left(\sigma_{l}\right)$, hence there are $(n-1)^{l}\left[\begin{array}{c}n-1 \\ k\end{array}\right]_{r}^{(l)}$ choices.
- The nth element forms a cycle in each permutation of $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{l}\right)$-permutations, the remaining [$n-1$] have to be $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{l}\right)$-permuted in $(k-1)$ cycles under the preceding conditions, hence there are $\left[\begin{array}{c}n-1 \\ k-1\end{array}\right]_{r}^{(l)}$.

This correspondence yields the first recurrence.
For the second recurrence, we use the double counting principle. Let us count the numbers of $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{l}\right)$-permutations of the set $[n]$ having $(k-1)$ cycles such that $1, \ldots, r-1$ are cycle leaders but r is not, with $\operatorname{cl}\left(\sigma_{1}\right)=\operatorname{cl}\left(\sigma_{2}\right)=\cdots=\operatorname{cl}\left(\sigma_{l}\right)$, this is either obtained from:

- We count the $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{l}\right)$-permutations of the set $[n]$ having $(k-1)$ cycles such that $1, \ldots, r-1$ are cycle leaders then we exclude from them the ($\sigma_{1}, \sigma_{2}, \ldots, \sigma_{l}$)-permutations having r as cycle leader. That gives

$$
\left[\begin{array}{c}
n \\
k-1
\end{array}\right]_{r-1}^{(l)}-\left[\begin{array}{c}
n \\
k-1
\end{array}\right]_{r}^{(l)},
$$

- Or we count the $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{l}\right)$-permutations of the set $[n$] having k cycles such that $1, \ldots, r$ are cycle leaders then we appending the cycle having r as leader at the end of a cycle having a smaller leader. We have $(r-1)$ choices to do in each permutation. That gives

$$
(r-1)^{l}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{r}^{(l)}
$$

from the two ways of counting we get the result.
Theorem 2.4. The (l,r)-Stirling numbers of the second satisfy the following recurrences

$$
\left\{\begin{array}{l}
n \tag{4}\\
k
\end{array}\right\}_{r}^{(l)}=\left\{\begin{array}{l}
n-1 \\
k-1
\end{array}\right\}_{r}^{(l)}+k^{l}\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}_{r}^{(l)}, \quad \text { for } n>r
$$

and

$$
\left\{\begin{array}{l}
n \tag{5}\\
k
\end{array}\right\}_{r}^{(l)}=\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{r-1}^{(l)}-(r-1)^{l}\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}_{r-1}^{(l)}, \quad \text { for } n \geq r>1
$$

with boundary conditions $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{r}^{(l)}=0$, for $n<r$; and $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{r}^{(l)}=\delta_{k, r}$, for $n=r$.
Proof. As in Theorem 2.3, the $\left(\pi_{1}, \pi_{2}, \ldots, \pi_{l}\right)$-partitions of the set $[n$] into k blocks such that $1,2, \ldots, r$ first elements are in distinct blocks and $b l\left(\pi_{1}\right)=b l\left(\pi_{2}\right)=\cdots=b l\left(\pi_{l}\right)$ is either obtained from:

- Inserting the nth elements in a block of each partition of $\left(\pi_{1}, \pi_{2}, \ldots, \pi_{l}\right)$-partitions of the set $[n-1]$ into k blocks such that $1,2, \ldots, r$ first elements are in distinct blocks and $b l\left(\pi_{1}\right)=b l\left(\pi_{2}\right)=\cdots=b l\left(\pi_{l}\right)$, hence there are $k^{l}\left\{\begin{array}{c}n-1 \\ k\end{array}\right\}_{r}^{(l)}$ choices (the position of the nth element in a block doesn't matter).
- The nth element forms a block in each partition of $\left(\pi_{1}, \pi_{2}, \ldots, \pi_{l}\right)$-partitions, the remaining [$n-1$] have to be ($\left.\pi_{1}, \pi_{2}, \ldots, \pi_{l}\right)$-partitioned into $(k-1)$ blocks under the preceding conditions, hence there are $\left\{\begin{array}{l}n-1 \\ k-1\end{array}\right\}_{r}^{(l)}$.

For the Identity (5), we use the double counting principle to count the numbers of $\left(\pi_{1}, \pi_{2}, \ldots, \pi_{l}\right)$ partitions of $[n]$ into k blocks such that $1,2, \ldots,(r-1)$ are block leaders but r is not, with $b l\left(\pi_{1}\right)=b l\left(\pi_{2}\right)=$ $\cdots=b l\left(\pi_{l}\right)$, this is either obtained from:

- We count the $\left(\pi_{1}, \pi_{2}, \ldots, \pi_{l}\right)$-partitions of the set $[n]$ into k blocks such that $1, \ldots, r-1$ are block leaders then we exclude from them the $\left(\pi_{1}, \pi_{2}, \ldots, \pi_{l}\right)$-partitions having r as block leader, with $b l\left(\pi_{1}\right)=b l\left(\pi_{2}\right)=$ $\cdots=b l\left(\pi_{l}\right)$. That gives

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{r-1}^{(l)}-\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{r}^{(l)}
$$

- Or we count the $\left(\pi_{1}, \pi_{2}, \ldots, \pi_{l}\right)$-partitions of the set $[n] \backslash\{r\}$ into k blocks such that $1, \ldots, r-1$ are block leaders then we include the element $\{r\}$ in any block having a smaller leader then r. We have $(r-1)$ choices to do in each partition of $\left(\pi_{1}, \pi_{2}, \ldots, \pi_{l}\right)$-partitions, that gives

$$
(r-1)^{l}\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}_{r-1}^{(l)},
$$

from the two ways of counting we get the result.

Remark 2.5. Using the previous recurrences it is easy to get the following special cases

$$
\left[\begin{array}{l}
n \tag{6}\\
r
\end{array}\right]_{r}^{(l)}=r^{l}(r+1)^{l} \cdots(n-2)^{l}(n-1)^{l}=\left(r^{\overline{n-r}}\right)^{l}, \quad \text { for } n \geq r
$$

and

$$
\left\{\begin{array}{l}
n \tag{7}\\
r
\end{array}\right\}_{r}^{(l)}=r^{l(n-r)}, \quad \text { for } n \geq r
$$

3. Orthogonality of (l, r)-Stirling numbers pair

Theorem 3.1. For $n \geq k \geq 0$, for all positive integer l, we have the two orthogonality relations bellow

$$
\sum_{j}\left[\begin{array}{l}
n \tag{8}\\
j
\end{array}\right]_{r}^{(l)}\left\{\begin{array}{ll}
j \\
k
\end{array}\right\}_{r}^{(l)}(-1)^{j}= \begin{cases}(-1)^{n} \delta_{n, k,} & \text { for } n \geq r \\
0, & \text { for } n<r\end{cases}
$$

and

$$
\sum_{j}\left[\begin{array}{l}
j \tag{9}\\
n
\end{array}\right]_{r}^{(l)}\left\{\begin{array}{l}
k \\
j
\end{array}\right\}_{r}^{(l)}(-1)^{j}= \begin{cases}(-1)^{n} \delta_{n, k}, & \text { for } n \geq r \\
0, & \text { for } n<r\end{cases}
$$

Proof. Let us start by Identity (8). The proof goes by induction on n

- For $n<r$ the assertion is obvious.
- For $n=r$,

$$
\sum_{j}\left[\begin{array}{l}
r \\
j
\end{array}\right]_{r}^{(l)}\left\{\begin{array}{l}
j \\
k
\end{array}\right\}_{r}^{(l)}(-1)^{j}=\left\{\begin{array}{l}
r \\
k
\end{array}\right\}_{r}^{(l)}(-1)^{r}=(-1)^{r} \delta_{k, r} .
$$

- For $n>r$, Theorem 2.3 and the induction hypothesis implies that

$$
\begin{aligned}
\sum_{j}\left[\begin{array}{c}
n \\
j
\end{array}\right]_{r}^{(l)}\left\{\begin{array}{l}
j \\
k
\end{array}\right\}_{r}^{(l)}(-1)^{j} & =\sum_{j}\left(\left[\begin{array}{c}
n-1 \\
j-1
\end{array}\right]_{r}^{(l)}+(n-1)^{l}\left[\begin{array}{c}
n-1 \\
j
\end{array}\right]_{r}^{(l)}\right)\left\{\begin{array}{l}
j \\
k
\end{array}\right\}_{r}^{(l)}(-1)^{j} \\
& =(n-1)^{l}(-1)^{n-1} \delta_{n-1, k}+\sum_{j}\left[\begin{array}{c}
n-1 \\
j-1
\end{array}\right]_{r}^{(l)}\left\{\begin{array}{l}
j \\
k
\end{array}\right\}_{r}^{(l)}(-1)^{j},
\end{aligned}
$$

and from Theorem 2.4, we get

$$
\sum_{j}\left[\begin{array}{c}
n \\
j
\end{array}\right]_{r}^{(l)}\left\{\begin{array}{l}
j \\
k
\end{array}\right\}_{r}^{(l)}(-1)^{j}=(n-1)^{l}(-1)^{n-1} \delta_{n-1, k}-(-1)^{n-1} \delta_{n-1, k-1}-(k)^{l}(-1)^{n-1} \delta_{n-1, k}=(-1)^{n} \delta_{n, k}
$$

For the Identity (9), we go by induction on k as same as the previous proof.

4. Properties via symmetric functions

Let $x_{1}, x_{2}, \ldots, x_{n}$ be n random variables. We denote, respectively, by $e_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $h_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ the elementary symmetric function and the complete homogeneous symmetric function of degree k in n-variables given for $n \geq k \geq 1$, by

$$
\begin{equation*}
e_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} x_{i_{1}} \cdots x_{i_{k}} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k} \leq n} x_{i_{1}} \cdots x_{i_{k}} . \tag{11}
\end{equation*}
$$

In particular $e_{0}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=h_{0}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\delta_{0, n}$.
The generating functions of the symmetric functions are given by

$$
\begin{equation*}
E(t)=\sum_{k \geq 0} e_{k}\left(x_{1}, x_{2}, \cdots, x_{n}\right) t^{k}=\prod_{i=1}^{n}\left(1+x_{i} t\right) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
H(t)=\sum_{k \geq 0} h_{k}\left(x_{1}, x_{2}, \cdots, x_{n}\right) t^{k}=\prod_{i=1}^{n}\left(1-x_{i} t\right)^{-1} . \tag{13}
\end{equation*}
$$

For more details about symmetric functions we refer readers to $[2,13,15]$ and the references therein. Let us now give some results linked to the symmetric functions and their generating functions.

Theorem 4.1. The (l, r)-Stirling of the first kind and the elementary symmetric function are linked as

$$
\left[\begin{array}{c}
n+1 \tag{14}\\
n+1-k
\end{array}\right]_{r}^{(l)}=e_{k}\left(r^{l}, \ldots, n^{l}\right),
$$

equivalently

$$
\left[\begin{array}{l}
n \tag{15}\\
k
\end{array}\right]_{r}^{(l)}=e_{n-k}\left(r^{l}, \ldots,(n-1)^{l}\right) .
$$

Proof. It is clear that in each $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{l}\right)$-permutation having $(n-k)$ cycles with $\{1, \ldots, r\}$ lead, we have $\left\{1,2, \ldots, r, y_{r+1}, \ldots, y_{n-k}\right\}$ lead a cycle and $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ elements don't lead where $r<y_{r+1}<y_{n-k}<\cdots \leq n$ and $r<x_{1}<x_{2}<\cdots \leq n$.

To construct all $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{l}\right)$-permutations having $(n-k)$ cycles where $\{1, \ldots, r\}$ lead, we proceed as follows

- Construct $(n-k)$ cycles having only one element from $\left\{1,2, \ldots, r, y_{r+1}, \ldots, y_{n-k}\right\}$, i. e.

$$
\sigma=(1)(2) \ldots(r)\left(y_{r+1}\right) \ldots\left(y_{n-k}\right),
$$

- Insert x_{1} after an element of cycles smaller than x_{1}, we have $\left(x_{1}-1\right)$ ways of inserting x_{1}. Then Insert x_{2} after an element of cycles smaller than x_{2}, we have $\left(x_{2}-1\right)$ choices, and so on. We have $\left(x_{1}-1\right)\left(x_{2}-1\right) \cdots\left(x_{k}-1\right)$ ways to construct a permutation.
- Repeat the process with each permutation $\sigma \in\left\{\sigma_{1}, \ldots, \sigma_{l}\right\}$, so we have $\left(x_{1}-1\right)^{l}\left(x_{2}-1\right)^{l} \cdots\left(x_{k}-1\right)^{l}$ ways of construction.
- Summing over all possible set of numbers $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$, hence the total number of ways to construct $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{l}\right)$-permutations having $(n-k)$ cycles with $\{1, \ldots, r\}$ lead is

$$
\begin{aligned}
{\left[\begin{array}{c}
n \\
n-k
\end{array}\right]_{r}^{(l)} } & =\sum_{r<x_{1}<x_{2}<\cdots \leq n}\left(x_{1}-1\right)^{l}\left(x_{2}-1\right)^{l} \cdots\left(x_{k}-1\right)^{l} \\
& =\sum_{r \leq x_{1}<x_{2}<\cdots<n} x_{1}^{l} x_{2}^{l} \cdots x_{k}^{l} \\
& =e_{k}\left(r^{l}, \ldots,(n-1)^{l}\right) .
\end{aligned}
$$

Theorem 4.2. The (l, r)-Stirling of the first kind and the complete homogeneous symmetric function are linked as

$$
\left\{\begin{array}{c}
n+k \tag{16}\\
n
\end{array}\right\}_{r}^{(l)}=h_{k}\left(r^{l}, \ldots, n^{l}\right)
$$

Proof. Let us count the number of $\left(\pi_{1}, \pi_{2}, \ldots, \pi_{l}\right)$-partitions of $[n+k]$ into n blocks with $\{1,2, \ldots, r\}$ are leaders. First, we denote, $\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}$ the elements that are not leaders where $y_{1}<y_{2}<\cdots<y_{k}$. Let x_{i} be the number of leaders smaller than $y_{i}, i \in\{1, \ldots, k\}$, it is clear that $r \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k} \leq n$.

The construction of such partition goes as follows

- Construct a partition of n blocks with $[n+k] \backslash\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}$ where $1,2, \ldots, r$ are leaders, i. e.

$$
\{1\}\{2\} \ldots\{r\}\left\{z_{r+1}\right\} \ldots\left\{z_{n}\right\} .
$$

- Insert the $\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}$ elements to the n blocks. It is clear that y_{i} can belong only to a block having a leader smaller than y_{i}, we have $x_{1} \cdot x_{2} \cdots x_{k}$ ways to do.
- Repeat the process with each partition $\pi \in\left\{\pi_{1}, \ldots, \pi_{l}\right\}$, so we have $\left(x_{1}\right)^{l}\left(x_{2}\right)^{l} \ldots\left(x_{k}\right)^{l}$ ways of construction.
- Summing over all possible set of numbers $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$, hence the total number of ways to construct $\left(\pi_{1}, \pi_{2}, \ldots, \pi_{l}\right)$-partitions of $[n+k]$ having n blocks with $\{1, \ldots, r\}$ lead is

$$
\begin{aligned}
\left\{\begin{array}{c}
n+k \\
n
\end{array}\right\}_{r}^{(l)} & =\sum_{r \leq x_{1} \leq x_{2} \leq \cdots \leq n} x_{1}^{l} x_{2}^{l} \cdots x_{k}^{l} \\
& =h_{k}\left(r^{l}, \ldots, n^{l}\right) .
\end{aligned}
$$

5. Generating functions

Now, we can use the symmetric functions to construct the generating functions for the (l, r)-Stirling of both kinds.

Theorem 5.1. The generating function for the (l, r)-Stirling numbers of the first kind is

$$
\sum_{k}\left[\begin{array}{l}
n \tag{17}\\
k
\end{array}\right]_{r}^{(l)} z^{k}=z^{r} \prod_{i=r}^{n-1}\left(z+i^{l}\right)=z^{r}\left(z+r^{l}\right)\left(z+(r+1)^{l}\right) \cdots\left(z+(n-1)^{l}\right),
$$

Proof. From Theorem 4.1 and the generating function (12) we obtain

$$
\begin{align*}
\sum_{k}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{r}^{(l)} z^{k} & =z^{n} \sum_{k} e_{k}\left(r^{l}, \ldots,(n-1)^{l}\right)\left(z^{-1}\right)^{k} \\
& =z^{n} \prod_{i=r}^{n-1}\left(1+\frac{i^{l}}{z}\right) \tag{18}\\
& =z^{r} \prod_{i=r}^{n-1}\left(z+i^{l}\right)
\end{align*}
$$

Theorem 5.2. The generating function for the (l, r)-Stirling numbers of the second kind is

$$
\sum_{n=k}\left\{\begin{array}{l}
n \tag{19}\\
k
\end{array}\right\}_{r}^{(l)} z^{n}=z^{k}\left(\prod_{i=r}^{k}\left(1-z i^{l}\right)\right)^{-1}=\frac{z^{k}}{\left(1-z r^{l}\right)\left(1-z(r+1)^{l}\right)\left(1-z k^{l}\right)}
$$

Proof. From Theorem 4.2 and the generating function of homogeneous symmetric function (13), we obtain

$$
\sum_{n \geq k}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{r}^{(l)} z^{n}=\sum_{j \geq 0}\left\{\begin{array}{c}
k+j \\
k
\end{array}\right\} z^{k+j}=z^{k} \sum_{j \geq 0} h_{j}\left(r^{l}, \ldots, k^{l}\right) z^{j}=z^{k}\left(\prod_{i=r}^{k}\left(1-z i^{l}\right)\right)^{-1}
$$

In the following theorem we investigate the symmetric functions to obtain a convolution formula for the (l, r)-Stirling numbers of both kinds.

Theorem 5.3. For all positive integers l, n, k and r with ($n \geq k \geq r$), we have

$$
\sum_{\substack{i_{0}+2 i_{1} \cdots+2^{l} i_{l}=k \tag{20}\\
i_{0}, \cdots, i_{l} \geq 0}}\left\{\begin{array}{c}
n+i_{l} \\
n
\end{array}\right\}_{r}^{\left(2^{l}\right)} \prod_{s=0}^{l-1}\left[\begin{array}{c}
n+1 \\
n+1-i_{s}
\end{array}\right]_{r}^{\left(2^{s}\right)}=\left\{\begin{array}{c}
n+k \\
n
\end{array}\right\}_{r} .
$$

Proof. Let us consider the generating function of the complete homogeneous symmetric function (13). From that we have

$$
\begin{aligned}
\sum_{k \geq 0} h_{k}\left(x_{1}, \ldots, x_{n}\right) z^{k} & =\prod_{i=1}^{n} \frac{1}{\left(1-x_{i} z\right)} \\
& =\prod_{i=1}^{n} \frac{1}{\left(1-x_{i} z\right)} \prod_{s=0}^{l-1}\left(\frac{1+x_{i}^{2^{s}} z^{2^{s}}}{1+x_{i}^{2^{s}} z^{2^{s}}}\right) \\
& =\prod_{i=1}^{n} \frac{1}{\left(1-x_{i}^{2 l} z^{\left.2^{l}\right)}\right.} \prod_{s=0}^{l-1}\left(1+x_{i}^{2^{s}} z^{2^{s}}\right) \\
& =\sum_{k \geq 0} h_{k}\left(x_{1}^{2^{l}}, \ldots, x_{n}^{2^{l}}\right) z^{2^{l} k} \prod_{s=0}^{l-1} \sum_{k \geq 0} e_{k}\left(x_{1}^{2^{s}}, \ldots, x_{n}^{2^{s}}\right) z^{2^{s} k}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k \geq 0} h_{k}\left(x_{1}^{2^{l}}, \ldots, x_{n}^{2^{l}}\right) z^{2^{l} k} \sum_{k \geq 0} e_{k}\left(x_{1}, \ldots, x_{n}\right) z^{k} \sum_{k \geq 0} e_{k}\left(x_{1}^{2}, \ldots, x_{n}^{2}\right) z^{2 k} \cdots \sum_{k \geq 0} e_{k}\left(x_{1}^{2^{l-1}}, \ldots, x_{n}^{2^{l-1}}\right) z^{2^{l-1} k} \\
& =\sum_{k \geq 0}\left(\begin{array}{c}
\sum_{\substack{ \\
i_{0} \\
i_{0}+2 i_{1}+\cdots+2^{l} i_{l}=k \\
i_{0}, \ldots, i_{l} \geq 0 .}} h_{i_{l}\left(x_{1}^{2^{l}}, \ldots, x_{n}^{2^{l}}\right) \prod_{s=0}^{l-1} e_{i_{s}}\left(x_{1}^{2^{s}}, \ldots, x_{n}^{2^{s}}\right)}
\end{array}\right) z^{k} .
\end{aligned}
$$

From Theorem 4.1 and Theorem 4.2 and by comparing the coefficients of z^{k} of the two sides the result holds true.

The simplest case of the previous theorem is the corollary bellow which generalize the result of Broder [6].
Corollary 5.4. For $l=1$, we have

$$
\sum_{i=0}^{\lfloor k / 2\rfloor}\left\{\begin{array}{c}
n+i \tag{21}\\
n
\end{array}\right\}_{r}^{(2)}\left[\begin{array}{c}
n+1 \\
n+1+2 i-k
\end{array}\right]_{r}=\left\{\begin{array}{c}
n+k \\
n
\end{array}\right\}_{r}
$$

6. The (l, r)-Stirling numbers, the sum of powers, and Bernoulli polynomials

Recall, for every integer $n \geq 0$, the Bernoulli polynomials, denoted $B_{n}(x)$, are defined by

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n}=\frac{t e^{x t}}{e^{t}-1} \tag{22}
\end{equation*}
$$

The sum of the powers of natural numbers is closely related to the Bernoulli polynomials $B_{n}(x)$. Jacobi $[12,16]$ gives the following identity using the sum of powers and Bernoulli polynomials

$$
\begin{equation*}
\sum_{j=1}^{n} j^{m}=\frac{B_{m+1}(n+1)-B_{m+1}(0)}{m+1} \tag{23}
\end{equation*}
$$

The following theorem gives the relation between (l, r)-Stirling of both kinds and Bernoulli polynomials.
Theorem 6.1. For all positive integers n, k and l, we have

$$
\sum_{j=0}^{k}(-1)^{j}(j+1)\left[\begin{array}{l}
n+1 \tag{24}\\
n-j
\end{array}\right]^{(l)}\left\{\begin{array}{c}
n+k-j \\
n
\end{array}\right\}^{(l)}=\frac{B_{l k+l+1}(n+1)-B_{l k+l+1}(0)}{l k+l+1}
$$

Proof. In the first hand we have Jacobi's Identity (23)

$$
\begin{equation*}
\sum_{j=1}^{n}\left(j^{l}\right)^{k}=\frac{B_{l k+1}(n+1)-B_{l k+1}(0)}{l k+1} \tag{25}
\end{equation*}
$$

in the second hand, we have

$$
H(t)=\sum_{k \geq 0} h_{k}\left(1^{l}, 2^{l}, \ldots, n^{l}\right) t^{k}=\prod_{j=1}^{n} \frac{1}{\left(1-j^{s} t\right)}
$$

and

$$
E(t)=\sum_{k \geq 0} e_{k}\left(1^{l}, 2^{l}, \ldots, n^{l}\right) t^{k}=\prod_{j=1}^{n}\left(1+j^{s} t\right),
$$

from the obvious observation that $H(t)=1 / E(-t)$, we obtain

$$
\begin{equation*}
\frac{d}{d t} \ln H(t)=\frac{H^{\prime}(t)}{H(t)}=H(t) E^{\prime}(-t) \tag{26}
\end{equation*}
$$

but

$$
\begin{equation*}
\frac{d}{d t} \ln H(t)=\sum_{j=1}^{n} \frac{j^{l}}{\left(1-j^{l} t\right)}=\sum_{k \geq 0} \sum_{j=1}^{n} j^{s(k+1)} t^{k} . \tag{27}
\end{equation*}
$$

Then from equations (26) and (27), we get

$$
\begin{align*}
\sum_{k \geq 0} \sum_{j=1}^{n} j^{s(k+1)} t^{k} & =H(t) E^{\prime}(-t) \\
& =\left(\sum_{k \geq 0} h_{k}\left(1^{l}, \ldots, n^{l}\right) t^{k}\right)\left(\sum_{k \geq 1} k(-1)^{k-1} e_{k}\left(1^{l}, \ldots, n^{l}\right) t^{k-1}\right) \tag{28}
\end{align*}
$$

Cauchy product and equating coefficient of t^{k} gives

$$
\begin{equation*}
\sum_{j=1}^{n} j^{s(k+1)}=\sum_{j \geq 1}^{n}(j+1)(-1)^{j} e_{j+1}\left(1^{l}, \ldots, n^{l}\right) h_{k-j}\left(1^{l}, \ldots, n^{l}\right), \tag{29}
\end{equation*}
$$

replacing symmetric functions by stirling numbers from Theorem 4.1 and Theorem 4.2, and comparing with Equation (25) we get the result.

7. Multiple zeta function and (l, r)-Stirling numbers of the first kind

For any ordered sequence of positive integers $i_{1}, i_{2}, \ldots, i_{k}$, the multiple zeta function is introduced by Hoffman [11] and independently Zagier [17] by the following infinite sums

$$
\begin{equation*}
\zeta\left(i_{1}, i_{2}, \ldots, i_{k}\right)=\sum_{0<j_{1}<j_{2}<\cdots<j_{k}} \frac{1}{j_{1}^{i_{1}} j_{2}^{i_{2}} \cdots j_{k}^{i_{k}}} . \tag{30}
\end{equation*}
$$

Recently, the multiple zeta function has been studied quite intensively by many authors in various fields of mathematics and physics (see $[4,5,7,11,17,19]$). Here we give a relation between (l, r)-Stirling numbers of the first kind and the multiple zeta function.

Theorem 7.1. For all positive integers n, k, l and r with $(n \geq k \geq r)$, we have

$$
\begin{align*}
{\left[\begin{array}{l}
n+1 \\
k+1
\end{array}\right]_{r}^{(l)} } & =\left(\frac{n!}{(r-1)!}\right)^{l} \sum_{j_{k}=k}^{n} \sum_{j_{k-1}=k-1}^{j_{k}-1} \cdots \sum_{j_{r}=r}^{j_{(r+1)}-1} \frac{1}{\left(j_{r} j_{2} \cdots j_{k}\right)^{l}} \tag{31}\\
& =\left(\frac{n!}{(r-1)!}\right)^{l} \sum_{r-1<j_{1}<j_{2}<\cdots<j_{k} \leq n} \frac{1}{\left(j_{1} j_{2} \cdots j_{k}\right)^{l}} .
\end{align*}
$$

Proof. Since $\left[\begin{array}{c}n \\ k\end{array}\right]_{r}^{(l)}=\left[\begin{array}{c}n-1 \\ k-1\end{array}\right]_{r}^{(l)}+(n-1)^{l}\left[\begin{array}{c}n-1 \\ k\end{array}\right]_{r}^{(l)}$ from Theorem 2.3. If we proceed iteratively, we obtain that

$$
\left[\begin{array}{l}
n \tag{32}\\
k
\end{array}\right]_{r}^{(l)}=((n-1)!)^{l} \sum_{j=k-1}^{n-1} \frac{1}{(j!)^{l}}\left[\begin{array}{c}
j \\
k-1
\end{array}\right]_{r}^{(l)} .
$$

For $k=r$, from (6) and (32) we obtain

$$
\left[\begin{array}{l}
n \tag{33}\\
r
\end{array}\right]_{r}^{(l)}=\left(r^{\overline{n-r}}\right)^{l}=\left(\frac{(n-1)!}{(r-1)!}\right)^{l}
$$

For $k=r+1$, from (32) and (33) we obtain

$$
\begin{align*}
{\left[\begin{array}{c}
n \\
r+1
\end{array}\right]_{r}^{(l)} } & =((n-1)!)^{l} \sum_{j=r}^{n-1} \frac{1}{(j!)^{l}}\left[\begin{array}{c}
j \\
r
\end{array}\right]_{r}^{(l)} \\
& =\left(\frac{(n-1)!}{(r-1)!}\right)^{l} \sum_{j=r}^{n-1}\left(\frac{(j-1)!}{j!}\right)^{l} \tag{34}\\
& =\left(\frac{(n-1)!}{(r-1)!}\right)^{l} \sum_{j=r}^{n-1} \frac{1}{j^{l}}
\end{align*}
$$

For $k=r+2$, from (33) and (34) we obtain

$$
\left[\begin{array}{c}
n \tag{35}\\
r+2
\end{array}\right]_{r}^{(l)}=\left(\frac{(n-1)!}{(r-1)!}\right)^{l} \sum_{j=r+1}^{n-1} \sum_{i=r}^{j-1} \frac{1}{(i j)^{l}}
$$

iterating the process with $k \in\{r+3, r+4, \ldots\}$ and so on, then yields the result.
Proposition 7.2. For $r=1$, we have

$$
\lim _{n \rightarrow \infty} \frac{1}{(n!)^{l}}\left[\begin{array}{l}
n+1 \tag{36}\\
k+1
\end{array}\right]^{(l)}=\zeta\left(\{l\}_{k}\right),
$$

where $\{l\}_{n}=(\underbrace{l, l, \ldots, l}_{n \text { times }})$.
Proof. The proposition follows immediately from the definition of multiple zeta function (30) as an infinity sums and Theorem 7.1 for $r=1$.

Corollary 7.3. For $k \geq 1$, we have

- For $l=2$

$$
\lim _{n \rightarrow \infty} \frac{1}{(n!)^{2}}\left[\begin{array}{l}
n+1 \tag{37}\\
k+1
\end{array}\right]^{(2)}=\frac{\pi^{2 k}}{(2 k+1)!}
$$

- For $l=4$

$$
\lim _{n \rightarrow \infty} \frac{1}{(n!)^{4}}\left[\begin{array}{l}
n+1 \tag{38}\\
k+1
\end{array}\right]^{(4)}=\frac{4(2 \pi)^{4 k}}{(4 k+2)!}\left(\frac{1}{2}\right)^{2 k+1}
$$

- For $l=6$

$$
\lim _{n \rightarrow \infty} \frac{1}{(n!)^{6}}\left[\begin{array}{l}
n+1 \tag{39}\\
k+1
\end{array}\right]^{(6)}=\frac{6(2 \pi)^{6 k}}{(6 k+3)!} .
$$

- For $l=8$

$$
\lim _{n \rightarrow \infty} \frac{1}{(n!)^{8}}\left[\begin{array}{l}
n+1 \tag{40}\\
k+1
\end{array}\right]^{(8)}=\frac{\pi^{8 k}}{(8 k+4)!} 2^{8 k+3}\left(\left(1+\frac{1}{\sqrt{2}}\right)^{4 k+2}+\left(1-\frac{1}{\sqrt{2}}\right)^{4 k+2}\right) .
$$

Proof. Authors in [7] give the following special values of multiple zeta function

$$
\begin{aligned}
& \zeta\left(\{2\}_{n}\right)=\frac{\pi^{2 n}}{(2 n+1)!^{\prime}} \\
& \zeta\left(\{4\}_{n}\right)=\frac{4(2 \pi)^{4 n}}{(4 n+2)!}\left(\frac{1}{2}\right)^{2 n+1}, \\
& \zeta\left(\{6\}_{n}\right)=\frac{6(2 \pi)^{6 n}}{(6 n+3)!}, \\
& \zeta\left(\{8\}_{n}\right)=\frac{\pi^{8 n}}{(8 n+4)!} 2^{8 n+3}\left(\left(1+\frac{1}{\sqrt{2}}\right)^{4 n+2}+\left(1-\frac{1}{\sqrt{2}}\right)^{4 n+2}\right),
\end{aligned}
$$

the corollary is a consequence of the previous special cases and Proposition 7.2.

8. Remarks

- The (l, r)-Stirling gives another graphical view of Rooks polynomials of higher dimensions in triangle boards $[3,18]$ using set partitions.
- In this work we gives a limit representation of multiple zeta function using (l, r)-Stirling numbers.
- We can obtain the well-known Euler identity $\zeta(2)=\frac{\pi^{2}}{6}$ from Equation (37) for $k=1$.

Acknowledgment

We would like to thank the anonymous reviewers for the overall positive and insightful comments on the manuscript.

References

[1] J. Ablinger, J. Blümlein, Harmonic sums, polylogarithms, special numbers, and their generalizations, Computer Algebra in Quantum Field Theory (2013) 1-32.
[2] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables (Vol. 55), US Government printing office, 1964.
[3] F. Alayont, N. Krzywonos, Rook polynomials in three and higher dimensions, Involve, a Journal of Mathematics 6(1) (2013) 35-52.
[4] T. Arakawa, M. Kaneko, Multiple zeta values, poly-Bernoulli numbers, and related zeta functions. Nagoya Mathematical Journal 153 (1999) 189-209.
[5] D. M. Bradley, Partition identities for the multiple zeta function. In Zeta functions, topology and quantum physics (2005) 19-29.
[6] A. Z. Broder, The r-Stirling numbers, Discrete Mathematics 49(3) (1984) 241-259.
[7] J. M. Borwein, D. M. Bradley, Evaluations of k-fold Euler/Zagier sums: a compendium of results for arbitrary k, the electronic journal of combinatorics 4(2) R5 (1997).
[8] D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Mathematical Journal 41(2) (1974) 305-318.
[9] D. Foata, G. N. Han, Principes de combinatoire classique, Lecture notes, Strasbourg 2000.
[10] Y. Gelineau, J. Zeng, Combinatorial interpretations of the Jacobi-Stirling numbers, the electronic journal of combinatorics 17(R70) 1 (2010).
[11] M. Hoffman, Multiple harmonic series, Pacific Journal of Mathematics 152(2) (1992) 275-290.
[12] C. G. J. Jacobi, De usu legitimo formulae summatoriae Maclaurinianae, Journal für die reine und angewandte Mathematik 1834(12) (1834) 263-272.
[13] I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford university press, 1998.
[14] M. Merca, A special case of the generalized Girard-Waring formula, Journal of Integer Sequences 15(2):3 (2012).
[15] M. Merca, New convolutions for complete and elementary symmetric functions, Integral Transforms and Special Functions 27(12) (2016) 965-973.
[16] H. M. Srivastava, Some formulas for the Bernoulli and Euler polynomials at rational arguments, Mathematical Proceedings of the Cambridge Philosophical Society Vol:129(1) (2000) 77-84.
[17] D. Zagier, Values of zeta functions and their applications, First European Congress of Mathematics Paris (July 6-10, 1992), (1994) 497-512.
[18] B. Zindle, Rook polynomials for chessboards of two and three dimensions, Master thesis, 2007.
[19] W. W. Zudilin, Algebraic relations for multiple zeta values, Russian Mathematical Surveys 58(1) (2003) 1-29.

[^0]: 2020 Mathematics Subject Classification. Primary 11B73, 11B83; Secondary 05A05, 05A18, 05 E05.
 Keywords. Permutations, Set partitions, Stirling numbers, Symmetric functions, r-Stirling numbers.
 Received: 09 April 2022; Accepted: 03 June 2022
 Communicated by Paola Bonacini
 The paper was partially supported by the DGRSDT grant C0656701.
 Email addresses: hacenebelbachir@gmail.com, hbelbachir@usthb.dz (Hacène Belbachir), yahia.djem@gmail.com, yahia.djemmada@nhsm.edu.dz (Yahia Djemmada)

