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Abstract. This work deals with a new generalization of r-Stirling numbers using I-tuple of permutations
and partitions called (I, r)-Stirling numbers of both kinds. We study various properties of these numbers

using combinatorial interpretations and symmetric functions. Also, we give a limit representation of the
multiple zeta function using (I, r)-Stirling of the first kind.

1. Introduction
Let 0 be a permutation of the set [n] = {1,2,...,n} having k cycles ¢y, ¢a, ..., ck. A cycle leaders set of o,
denoted cl(0), is the set of the smallest elements on their cycles, i. e.
cl(o) = {min ¢y, minc,, ..., min ¢}
As the same way, let 7t be a partition of the set [11] = {1,2,...,n} into k blocks by, by, ..., by. A block leaders
set of 1t, denoted bl(7), is the set of the smallest elements on their blocks, i. e.
bl(n) = {min by, min b,, ..., min by}.

Example 1.1.

o For n = 6, the permutation ¢ = (13)(245)(6) have the set of cycle leaders cl(c) = {1,2, 6}.
e Forn =7, the partition = = 1,2,4|3,5,7|6 have the set of block leaders bl(r) = {1, 3, 6}.

It is well known that the Stirling numbers of the first kind, denoted [;], count the number of all
permutations of [n] having exactly k cycles, and Stirling numbers of the second kind, denoted {Z}, count
the number of all partitions of [#] having exactly k blocks.

One of the most interesting generalization of Stirling numbers was the r-Stirling numbers of both kind
introduced By Broder [6]. Analogously to the classical Stirling numbers of both kinds, the author considered
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that r-Stirling numbers of the first kind []  (resp. the second kind {}} ) counts the number of permutations
o (resp. partitions 1) having exactly k cycles (resp. k blocks) such that the r first elements 1,2,...,rlead.
Dumont, in [8], gives the first interpretation for the “central factorial” numbers of the second kmd U(n, k)
given by the recurrence

U, k)= Umn -1,k-1)+KUMn - 1,k), for 0 <k < n. (1)

Then, using the notion of quasi-permutations, Foata and Han [9] , showed that U(n, k) counts the number
of pair (711, Ttp)-partitions of [n] into k blocks such that bi(rt;) = bl(m).

In this work, we give an extension of the r-Stirling numbers of both kinds with considering I-tuple
partitions (and permutations) of Dumont’s partition model [8, 9].

This paper is organized as follows. In Section 2 and Section 4, we introduce the (/, )-Stirling numbers
of both kinds. Some properties are given as recurrences, orthogonality, generating functions, a relation
between (I, r)-Stirling numbers and Bernoulli polynomials via Faulhaber sums and symmetric functions. In
Section 7, we show the relations between multiple-zeta function and the (I, r)-Stirling numbers. Finally, in
Section 8, we discuss some remarks which connect this numbers to the rooks polynomials [3].

2. The (I, r)-Stirling numbers of both kinds
Let us consider the following generalization,

Definition 2.1. The (I, r)-Stirling number of the first kind [Z]y) counts the number of I-tuple of permutations
(01,02, ...,01) of [n] having exactly k cycles such that 1,2, ..., first elements lead, and

Cl(()'l) = Cl(Gz) == Cl((f[).

Definition 2.2. The (I,r)-Stirling number of the second kind {} }(l) counts the number of I-tuple of partitions
(71, 102, . .., ) of [n] having exactly k blocks such that 1,2, . rﬁrst elements lead, and

bl(my) = bl(mp) = --- = bl(m).

Theorem 2.3. The (I, r)-Stirling numbers of the first satisfy the following recurrences

0 0 (0]
[Z] :[Z:ﬂ +(n—1)’[n;1] , forn>r (2)

r

n(l) 1 n () n U]
RN CA S A P

with boundary conditions [';] =0,forn <rand [} ](I) Ok, forn =r.

and

Proof. The (01,09, ...,01)-permutations of the set [1] having k cycles such that 1,2, ..., r first elements are in
distinct cycles and cl(o1) = cl(02) = - - - = cl(0y) is either obtained from:

o Inserting the nth elements after any element in each permutation of (o1, 02, ..., 0;)-permutations of the
set [n — 1] having k cycles such that 1,2, ..., r first elements are in distinct cycles and cl(01) = cl(02) =
_140 .

-+ = cl(0;), hence there are (n — 1)’[”,(1]9 choices.

e The nth element forms a cycle in each permutation of (01,02, ...,0;)-permutations, the remaining
[n—1] have to be (01,07, ...,01)-permuted in (k — 1) cycles under the preceding conditions, hence there

1
are [Zj]i)
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This correspondence yields the first recurrence.

For the second recurrence, we use the double counting principle. Let us count the numbers of
(01,02, ...,01)-permutations of the set [n] having (k — 1) cycles such that 1,...,r — 1 are cycle leaders but r is
not, with cl(o1) = cl(02) = - - - = cl(0y), this is either obtained from:

e We count the (01,07, ...,01)-permutations of the set [1] having (k — 1) cycles such that1,...,r — 1 are
cycle leaders then we exclude from them the (01,09, ..., 0;)-permutations having r as cycle leader.

That gives
|: n ](1) B [ n }(l)
k=1],_, k-1~

e Or we count the (01,07, ...,07)-permutations of the set [11] having k cycles such that 1, ..., r are cycle
leaders then we appending the cycle having r as leader at the end of a cycle having a smaller leader.
We have (r — 1) choices to do in each permutation. That gives

0]
(r— 1)’[’;]7 ,

from the two ways of counting we get the result. [J

Theorem 2.4. The (I, r)-Stirling numbers of the second satisfy the following recurrences

0 0 U]
n| _ |n-1 jn—-1
{k}, _{k—l}r +k{ p }r, forn>r 4)

U] (U] 0)
n|" _|n o ayn-1
{k}r - {k}rl (r 1) { k }rll for nEr>l (5)

with boundary conditions {Z}g) =0, forn <r;and {Z}il) = Oy forn=r.

and

Proof. As in Theorem 2.3, the (71, 712, ..., Ty)-partitions of the set [n] into k blocks such that 1,2, ..., r first
elements are in distinct blocks and bl(7t1) = bl(my) = - - - = bl(m)) is either obtained from:

e Inserting the nth elements in a block of each partition of (71, 71, . . ., 717)-partitions of the set [n — 1] into
kblocks such that1,2,...,r first elements are in distinct blocks and bl(7t1) = bl(7t;) = - - - = bl(m;), hence

N . ipe .
there are k'{" kl}i) choices (the position of the nth element in a block doesn’t matter).

e The nth element forms a block in each partition of (111, 2, . . ., 7;)-partitions, the remaining [# — 1] have
to be (111, 7y, . .., Ty)-partitioned into (k — 1) blocks under the preceding conditions, hence there are
n-1,(D)
{k—%}r '
For the Identity (5), we use the double counting principle to count the numbers of (11,7, ..., 7)-
partitions of [#] into k blocks such that 1,2,...,(r — 1) are block leaders but r is not, with bl(r1) = bl(mz) =
-+« = bl(m;), this is either obtained from:

e We count the (111, 71, . . ., 717)-partitions of the set [#] into k blocks such that 1, ...,r—1 are block leaders
then we exclude from them the (111, 7y, . . ., 71;)-partitions having r as block leader, with bl(m1) = bl(m2) =

-++ = bl(r;). That gives
{n}(l) _{n}(l)
k r—1 k r ’
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e Or we count the (1, 712, . .., Ty)-partitions of the set [n]\{r} into k blocks such that 1, ...,7 — 1 are block
leaders then we include the element {r} in any block having a smaller leader then r. We have (r — 1)
choices to do in each partition of (711, 7y, . . ., 71;)-partitions, that gives

U]
(r 1) { k }r—ll

from the two ways of counting we get the result.

O

Remark 2.5. Using the previous recurrences it is easy to get the following special cases

(U]
-

and

0
{n} = -
r
r

r+ 1) =2 -1 =", forn>r

forn>r.

3. Orthogonality of (I, r)-Stirling numbers pair

Theorem 3.1. For n > k > 0, for all positive integer I, we have the two orthogonality relations bellow

10
ViR

j,_r

and

1
~.
J

]’..1’

0
Re)

]-}(l) } (=1)"onk, forn>r;
(1) =
r 0, forn<r
k}(l> [ ED ok fornzr
o (1) =

0, forn <r.

Proof. Let us start by Identity (8). The proof goes by induction on n

e Forn<r

e Forn=r,

X

i

e Forn>r,

X

j

and from

i

the assertion is obvious.

10 (A0 U]
;] {}(} <—1>f={,:} (1) = (-1) by

Theorem 2.3 and the induction hypothesis implies that

(1 0 i (O] ‘ n_l(l) ln—l(l) i O] ‘
] i, v - ;([1— G | ]{k} —
a1\
j_ 1]r {k}r (_1)],

= (1= D)o+ )
i

Theorem 2.4, we get

r r

For the Identity (9), we go by induction on k as same as the previous proof.

AN
H {k} (1)) = (1= 1)(=1)16, 14 = (=1) 60140t = (O (=1 B = (=1)"Bus.

2|;

O
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4. Properties via symmetric functions

Let x1,x2,...,x, be n random variables. We denote, respectively, by
ex(x1,x2,...,x,) and hi(xq,x2,...,%,) the elementary symmetric function and the complete homogeneous
symmetric function of degree k in n-variables given for n > k > 1, by

ex(x1, X2, ..., X)) = Z Xiy + X, (10)
1<ii<ip<---<ix<n

and

I xo, . 0) =Y X (11)

In particular eg(x1, x2, ..., X)) = ho(x1, X2, ..., X,) = Oon-
The generating functions of the symmetric functions are given by

EM) =) elx, v, x)f = [ [ +xit) (12)
k>0 i=1
and
H(t) = Z hk(xlle/ T rxn)tk = H(1 - xz‘t)il. (13)
k>0 i=1

For more details about symmetric functions we refer readers to [2, 13, 15] and the references therein.
Let us now give some results linked to the symmetric functions and their generating functions.

Theorem 4.1. The (I, r)-Stirling of the first kind and the elementary symmetric function are linked as

1 |°

i+l k]r = ek(rl, ... ,n’), (14)
equivalently

1 (U]

k]r =e,x(r,...,(n=1)"). (15)

Proof. 1t is clear that in each (01,02, ..., 01)-permutation having (n — k) cycles with {1,...,r} lead, we have
{1,2,...,%,Yr1,. .., Yn-k} lead a cycle and {x1, xy, ..., xx} elements don’t lead where r < y41 < Yyt <--- <1
andr<x;<xp <--- <.

To construct all (01,09, ...,07)-permutations having (n — k) cycles where {1,...,r} lead, we proceed as
follows

e Construct (n — k) cycles having only one element from {1,2,...,7, Yre1,..., Yu-kl}, i. €.
o=M2)...("Yr+1) - - (Yn-k),

e Insert x; after an element of cycles smaller than x;, we have (x; — 1) ways of inserting x;. Then
Insert x; after an element of cycles smaller than x;, we have (x, — 1) choices, and so on. We have
(x1 = 1)(x2 = 1)--- (xx — 1) ways to construct a permutation.

e Repeat the process with each permutation o € {01, ...,0;}, so we have (x; — 1)'(xa — 1) - - - (x, — 1)! ways
of construction.
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e Summing over all possible set of numbers {x1, x, ..., x¢}, hence the total number of ways to construct
(01,02, ...,01)-permutations having (n — k) cycles with {1, ..., r} lead is

0
n
[ ] = E (1= = 1)+ (e = 1)
n r r<x1<xp<--<n

_ 1l
= Z X X

r<x) <xp<-<n

=e(r,...,(n=1).
O

Theorem 4.2. The (I, r)-Stirling of the first kind and the complete homogeneous symmetric function are linked as

U]
{” M k} = (..., (16)

n r

Proof. Let us count the number of (1, my, ..., 7y)-partitions of [n + k] into n blocks with {1,2,...,r} are
leaders. First, we denote, {1, 12, ..., yx} the elements that are not leaders where y; < y» < --- < y,. Let x; be
the number of leaders smaller than y;, i € {1,...,k},itis clear thatr <i; <ip <--- < i < m.

The construction of such partition goes as follows

e Construct a partition of n blocks with [n + k]\{y1, y2, ..., yx} where 1,2, ..., are leaders, i. e.
{IH2}. . {rHzra ) - za)

o Insert the {11, y2, ..., yx} elements to the n blocks. It is clear that y; can belong only to a block having
a leader smaller than y;, we have x; - x; - - - x; ways to do.

e Repeat the process with each partition © € {ry, ..., 7}, so we have (D))t () ways of construc-
tion.

e Summing over all possible set of numbers {x1, x, ..., x¢}, hence the total number of ways to construct
(m1, 112, ..., y)-partitions of [n + k] having n blocks with {1, ..., r} lead is

1
n+k|Y 1 .
fd Z xlxz e xk
n
r r<x1<xp<-<n

(..., 1.

5. Generating functions

Now, we can use the symmetric functions to construct the generating functions for the (I, r)-Stirling of
both kinds.

Theorem 5.1. The generating function for the (1, r)-Stirling numbers of the first kind is

) n-1
Z[Z] K=z (z+il) =z (z+rl) (z+ (r+ 1)1)---(z+(n—1)l), 17)

k

i=r
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Proof. From Theorem 4.1 and the generating function (12) we obtain

U]
Z [Z] ZF=2" Z e, ..., (n=1)HE
i n-1 i
H(” Z) (18)

O

Theorem 5.2. The generating function for the (I, r)-Stirling numbers of the second kind is

n|” ST " B zF
2. {k} z e (g(l - )] T A -z -2+ 1)1 — 2K’ 19)

n=k r
Proof. From Theorem 4.2 and the generating function of homogeneous symmetric function (13), we obtain
n| " K+ 7\ kej _ k I Noj — ok : 1 B
n _ +] — X ] — >
Z{k} z —Z{ P }z =z Zh](r,...,k)z =z H(l zi)| .
n>k r j=0 j=0 i=r

O

In the following theorem we investigate the symmetric functions to obtain a convolution formula for
the (I, r)-Stirling numbers of both kinds.

Theorem 5.3. For all positive integers I, n, k and v with (n > k > r), we have

Iy 1_ s
Z n+1i (Z)ﬁ n+1 (2)_ n+k (20)
o . n [ Aln+1-4) ~ | n [
io +2iy -+ 2 =k s=0
ig,*++,i1 =0

Proof. Let us consider the generating function of the complete homogeneous symmetric function (13). From
that we have

n

th(xlf---/xn)zk = H (1—1—sz')

k>0 i=1
l_l 25 25
_ ﬁ 1 H 1+xiz
L@ -xiz) L3 (142222
n 1 -1
= _ 1+x%2%
1:1[ 1 —xflzzl) Q( ! )

-1
2! 2h 2k 25 25\ 2%k
hi(x1, ..., x,)z HZek(xl,...,xn)z

k>0 s=0 k>0
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i I, ol -1 -1, nl-1
:th(x%,...,xﬁ)szZek(xl,...,xn)szek(x%,...,xﬁ)szmZek(x% ,...,xﬁ )z2 k

k>0 k>0 k>0 k>0

-1
2! 2! 25 2\ |k
:Z Z hil(xl,...,xn)l—[e,-s(xl,...,xn) z".
k=0 io +2i1+ -+ 211', = k,‘ s=0
ig, ..., i1 >0.

From Theorem 4.1 and Theorem 4.2 and by comparing the coefficients of z* of the two sides the result holds
true. O

The simplest case of the previous theorem is the corollary bellow which generalize the result of Broder [6].

Corollary 5.4. For | =1, we have
e n+i(2) n+1 n+k
Y, | = . @1)
—\n ), n+1+2i—k| n ),

6. The (I, r)-Stirling numbers, the sum of powers, and Bernoulli polynomials

Recall, for every integer n > 0, the Bernoulli polynomials, denoted B, (x), are defined by

- o et
ZBn(x); = (22)
n=0

The sum of the powers of natural numbers is closely related to the Bernoulli polynomials B, (x). Jacobi
[12, 16] gives the following identity using the sum of powers and Bernoulli polynomials
i 2 Brn@+1) =By 0)

m+1

(23)
=1

The following theorem gives the relation between (I, r)-Stirling of both kinds and Bernoulli polynomials.

Theorem 6.1. For all positive integers n, k and 1, we have

k 1) N
. n+1["[n+k—j Bigr141(n + 1) = Biy41(0)
Z -1/ = 24
j=0( 1)(]+1)[n—j] { n } k+1+1 ’ (24)
Proof. In the first hand we have Jacobi’s Identity (23)
< Bis1(n + 1) — By41(0)
Ink Ik+1
E = 2

in the second hand, we have

H(t) = th(ll,Zl,...,nl)tk =11 q _1]_st)
j=1

k>0

and
n

EM =) e(1,2,... nh = [Ja+7n,

k>0 j=1
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from the obvious observation that H(t) = 1/E(—t), we obtain

d H(t) _

G InH() = T = HOE (-1 (26)
but

d In H(f) = i ]’l‘ _ ' ]'S(k+1)tk' (27)

dt = (1-jt & =

Then from equations (26) and (27), we get

Y Z FEVE = HIOE' (1)

k>0 j=1 28)
= (Z he(1, .. .,nl)tk) [Z k(-1 ep(1, ..., )]
k=0 k>1
Cauchy product and equating coefficient of # gives
Z FD = Z(] F DD epa (1), (29)

21

replacing symmetric functions by stirling numbers from Theorem 4.1 and Theorem 4.2, and comparing
with Equation (25) we get the result.
O

7. Multiple zeta function and (I, r)-Stirling numbers of the first kind

For any ordered sequence of positive integers 1,1y, ..., i, the multiple zeta function is introduced by
Hoffman [11] and independently Zagier [17] by the following infinite sums

. . 1
Cliy, 1, .-, 0k) = T a (30)

O<jr<j<<je J1J2 7 Tk

Recently, the multiple zeta function has been studied quite intensively by many authors in various fields
of mathematics and physics (see [4, 5,7, 11, 17, 19]). Here we give a relation between (I, r)-Stirling numbers
of the first kind and the multiple zeta function.

Theorem 7.1. For all positive integers n, k, | and r with (n > k > r), we have

) I n il Jeren—1
n+1]" ( n! ) 1
N o
ka1l -1 ]Zz ,'k_;‘_l JZ‘ Grf2 "+ j#)

(81)

nt o\ 1
_((r—l)!) Z _(aja e b

r=1<j1<ja<--<jx<n

170

Proof. Since [k](l) =[- 1] +(n— 1)’[";1]?) from Theorem 2.3. If we proceed iteratively, we obtain that

(U]

n(l) 1 j
[k] = (-1 Z(—[k 1] (32)
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For k = r, from (6) and (32) we obtain

A (-1
Hr‘( Y = ((r—w)'

For k = r + 1, from (32) and (33) we obtain
n 0

[r+1] } 1)')20')“

_ (=D § (G D!

‘((r—l)!)z( )

-1\ 1
‘((r—m) i

j T

(U]

:\
H‘c

For k = r + 2, from (33) and (34) we obtain

o I n-1 j-1
_[(n=1)!
; _((7—1)1) Z‘Z‘(J)l'

j=r+1 i=r

n
r+2

iterating the process with k € {r + 3,7 + 4, ...} and so on, then yields the result.

Proposition 7.2. Forr =1, we have

(U]

L = (i),

n+1
lim —
n—oo (n|)

k+1

where {I}, = (I, 1,...,]).

n times

2596

(33)

(34)

(35)

(36)

Proof. The proposition follows immediately from the definition of multiple zeta function (30) as an infinity

sums and Theorem 7.1 forr=1. O

Corollary 7.3. For k > 1, we have
e Fori=2
1 [n+1]® %k
M |k+ 1] T @+
e Forl=4

1

m ——
= (nl)?

n+1

(4) ~ 4(2ﬂ)4k (1)2k+1
k+1

T (dk+2)\2

(37)

(38)
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e Fori=6
6) 6k
. 1 |n+1" _ 6(2n)
Jim (n1)° [k + 1] T (6k+3) (39)
e Fori=8
) sk 4k+2 4k+2
Lo L 1T T g 1 _1
Jim (n!)8|k+1] “wao (Tl ) ) (40)

Proof. Authors in [7] give the following special values of multiple zeta function

nZn

{21y = @nr )V

_ o A@nt 1y
C({4}) = m(z) ,

_6(2m)®"
c(el,) = G+

_ o . 1 4n+2 1 4n+2
{8l = Gt ) 4)!2 ((1 + $) + (1 - @) ,

the corollary is a consequence of the previous special cases and Proposition 7.2. O

8. Remarks

e The (I, r)-Stirling gives another graphical view of Rooks polynomials of higher dimensions in triangle
boards [3, 18] using set partitions.

¢ In this work we gives a limit representation of multiple zeta function using (I, r)-Stirling numbers.

e We can obtain the well-known Euler identity (2) = %2 from Equation (37) for k = 1.
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