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Abstract. This work deals with a new generalization of r-Stirling numbers using l-tuple of permutations
and partitions called (l, r)-Stirling numbers of both kinds. We study various properties of these numbers
using combinatorial interpretations and symmetric functions. Also, we give a limit representation of the
multiple zeta function using (l, r)-Stirling of the first kind.

1. Introduction

Let σ be a permutation of the set [n] = {1, 2, . . . ,n} having k cycles c1, c2, . . . , ck. A cycle leaders set of σ,
denoted cl(σ), is the set of the smallest elements on their cycles, i. e.

cl(σ) = {min c1,min c2, . . . ,min ck}.

As the same way, let π be a partition of the set [n] = {1, 2, . . . ,n} into k blocks b1, b2, . . . , bk. A block leaders
set of π, denoted bl(π), is the set of the smallest elements on their blocks, i. e.

bl(π) = {min b1,min b2, . . . ,min bk}.

Example 1.1.

• For n = 6, the permutation σ = (13)(245)(6) have the set of cycle leaders cl(σ) = {1, 2, 6}.

• For n = 7, the partition π = 1, 2, 4|3, 5, 7|6 have the set of block leaders bl(π) = {1, 3, 6}.

It is well known that the Stirling numbers of the first kind, denoted
[n

k
]
, count the number of all

permutations of [n] having exactly k cycles, and Stirling numbers of the second kind, denoted
{n

k
}
, count

the number of all partitions of [n] having exactly k blocks.
One of the most interesting generalization of Stirling numbers was the r-Stirling numbers of both kind

introduced By Broder [6]. Analogously to the classical Stirling numbers of both kinds, the author considered

2020 Mathematics Subject Classification. Primary 11B73, 11B83; Secondary 05A05, 05A18, 05E05.
Keywords. Permutations, Set partitions, Stirling numbers, Symmetric functions, r-Stirling numbers.
Received: 09 April 2022; Accepted: 03 June 2022
Communicated by Paola Bonacini
The paper was partially supported by the DGRSDT grant C0656701.
Email addresses: hacenebelbachir@gmail.com, hbelbachir@usthb.dz (Hacène Belbachir), yahia.djem@gmail.com,

yahia.djemmada@nhsm.edu.dz (Yahia Djemmada)



H. Belbachir, Y. Djemmada / Filomat 37:8 (2023), 2587–2598 2588

that r-Stirling numbers of the first kind
[n

k
]

r (resp. the second kind
{n

k
}
r) counts the number of permutations

σ (resp. partitions π) having exactly k cycles (resp. k blocks) such that the r first elements 1, 2, . . . , r lead.
Dumont, in [8], gives the first interpretation for the ”central factorial” numbers of the second kind U(n, k)

given by the recurrence

U(n, k) = U(n − 1, k − 1) + k2U(n − 1, k), for 0 < k ≤ n. (1)

Then, using the notion of quasi-permutations, Foata and Han [9] , showed that U(n, k) counts the number
of pair (π1, π2)-partitions of [n] into k blocks such that bl(π1) = bl(π2).

In this work, we give an extension of the r-Stirling numbers of both kinds with considering l-tuple
partitions (and permutations) of Dumont’s partition model [8, 9].

This paper is organized as follows. In Section 2 and Section 4, we introduce the (l, r)-Stirling numbers
of both kinds. Some properties are given as recurrences, orthogonality, generating functions, a relation
between (l, r)-Stirling numbers and Bernoulli polynomials via Faulhaber sums and symmetric functions. In
Section 7, we show the relations between multiple-zeta function and the (l, r)-Stirling numbers. Finally, in
Section 8, we discuss some remarks which connect this numbers to the rooks polynomials [3].

2. The (l, r)-Stirling numbers of both kinds

Let us consider the following generalization,

Definition 2.1. The (l, r)-Stirling number of the first kind
[n

k
](l)

r counts the number of l-tuple of permutations
(σ1, σ2, . . . , σl) of [n] having exactly k cycles such that 1, 2, . . . , r first elements lead, and

cl(σ1) = cl(σ2) = · · · = cl(σl).

Definition 2.2. The (l, r)-Stirling number of the second kind
{n

k
}(l)
r counts the number of l-tuple of partitions

(π1, π2, . . . , πl) of [n] having exactly k blocks such that 1, 2, . . . , r first elements lead, and

bl(π1) = bl(π2) = · · · = bl(πl).

Theorem 2.3. The (l, r)-Stirling numbers of the first satisfy the following recurrences[
n
k

](l)

r
=

[
n − 1
k − 1

](l)

r
+ (n − 1)l

[
n − 1

k

](l)

r
, for n > r (2)

and [
n
k

](l)

r
=

1
(r − 1)l

[ n
k − 1

](l)

r−1
−

[
n

k − 1

](l)

r

 , for n ≥ r > 1. (3)

with boundary conditions
[n

k
](l)

r = 0, for n < r; and
[n

k
](l)

r = δk,r, for n = r.

Proof. The (σ1, σ2, . . . , σl)-permutations of the set [n] having k cycles such that 1, 2, . . . , r first elements are in
distinct cycles and cl(σ1) = cl(σ2) = · · · = cl(σl) is either obtained from:

• Inserting the nth elements after any element in each permutation of (σ1, σ2, . . . , σl)-permutations of the
set [n − 1] having k cycles such that 1, 2, . . . , r first elements are in distinct cycles and cl(σ1) = cl(σ2) =

· · · = cl(σl), hence there are (n − 1)l[n−1
k
](l)

r choices.

• The nth element forms a cycle in each permutation of (σ1, σ2, . . . , σl)-permutations, the remaining
[n−1] have to be (σ1, σ2, . . . , σl)-permuted in (k−1) cycles under the preceding conditions, hence there

are
[n−1

k−1
](l)

r .



H. Belbachir, Y. Djemmada / Filomat 37:8 (2023), 2587–2598 2589

This correspondence yields the first recurrence.
For the second recurrence, we use the double counting principle. Let us count the numbers of

(σ1, σ2, . . . , σl)-permutations of the set [n] having (k − 1) cycles such that 1, . . . , r − 1 are cycle leaders but r is
not, with cl(σ1) = cl(σ2) = · · · = cl(σl), this is either obtained from:

• We count the (σ1, σ2, . . . , σl)-permutations of the set [n] having (k − 1) cycles such that 1, . . . , r − 1 are
cycle leaders then we exclude from them the (σ1, σ2, . . . , σl)-permutations having r as cycle leader.
That gives [

n
k − 1

](l)

r−1
−

[
n

k − 1

](l)

r
,

• Or we count the (σ1, σ2, . . . , σl)-permutations of the set [n] having k cycles such that 1, . . . , r are cycle
leaders then we appending the cycle having r as leader at the end of a cycle having a smaller leader.
We have (r − 1) choices to do in each permutation. That gives

(r − 1)l
[
n
k

](l)

r
,

from the two ways of counting we get the result.

Theorem 2.4. The (l, r)-Stirling numbers of the second satisfy the following recurrences{
n
k

}(l)

r
=

{
n − 1
k − 1

}(l)

r
+ kl

{
n − 1

k

}(l)

r
, for n > r (4)

and {
n
k

}(l)

r
=

{
n
k

}(l)

r−1
− (r − 1)l

{
n − 1

k

}(l)

r−1
, for n ≥ r > 1. (5)

with boundary conditions
{n

k
}(l)
r = 0, for n < r; and

{n
k
}(l)
r = δk,r, for n = r.

Proof. As in Theorem 2.3, the (π1, π2, . . . , πl)-partitions of the set [n] into k blocks such that 1, 2, . . . , r first
elements are in distinct blocks and bl(π1) = bl(π2) = · · · = bl(πl) is either obtained from:

• Inserting the nth elements in a block of each partition of (π1, π2, . . . , πl)-partitions of the set [n− 1] into
k blocks such that 1, 2, . . . , r first elements are in distinct blocks and bl(π1) = bl(π2) = · · · = bl(πl), hence
there are kl{n−1

k
}(l)
r choices (the position of the nth element in a block doesn’t matter).

• The nth element forms a block in each partition of (π1, π2, . . . , πl)-partitions, the remaining [n−1] have
to be (π1, π2, . . . , πl)-partitioned into (k − 1) blocks under the preceding conditions, hence there are{n−1

k−1
}(l)
r .

For the Identity (5), we use the double counting principle to count the numbers of (π1, π2, . . . , πl)-
partitions of [n] into k blocks such that 1, 2, . . . , (r − 1) are block leaders but r is not, with bl(π1) = bl(π2) =
· · · = bl(πl), this is either obtained from:

• We count the (π1, π2, . . . , πl)-partitions of the set [n] into k blocks such that 1, . . . , r−1 are block leaders
then we exclude from them the (π1, π2, . . . , πl)-partitions having r as block leader, with bl(π1) = bl(π2) =
· · · = bl(πl). That gives {

n
k

}(l)

r−1
−

{
n
k

}(l)

r
,
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• Or we count the (π1, π2, . . . , πl)-partitions of the set [n]\{r} into k blocks such that 1, . . . , r− 1 are block
leaders then we include the element {r} in any block having a smaller leader then r. We have (r − 1)
choices to do in each partition of (π1, π2, . . . , πl)-partitions, that gives

(r − 1)l
{

n − 1
k

}(l)

r−1
,

from the two ways of counting we get the result.

Remark 2.5. Using the previous recurrences it is easy to get the following special cases[
n
r

](l)

r
= rl(r + 1)l

· · · (n − 2)l(n − 1)l = (rn−r)l, for n ≥ r (6)

and {
n
r

}(l)

r
= rl(n−r), for n ≥ r. (7)

3. Orthogonality of (l, r)-Stirling numbers pair

Theorem 3.1. For n ≥ k ≥ 0, for all positive integer l, we have the two orthogonality relations bellow

∑
j

[
n
j

](l)

r

{
j
k

}(l)

r
(−1) j =


(−1)nδn,k, for n ≥ r;

0, for n < r
(8)

and ∑
j

[
j
n

](l)

r

{
k
j

}(l)

r
(−1) j =


(−1)nδn,k, for n ≥ r;

0, for n < r.
(9)

Proof. Let us start by Identity (8). The proof goes by induction on n

• For n < r the assertion is obvious.

• For n = r,∑
j

[
r
j

](l)

r

{
j
k

}(l)

r
(−1) j =

{
r
k

}(l)

r
(−1)r = (−1)rδk,r.

• For n > r, Theorem 2.3 and the induction hypothesis implies that∑
j

[
n
j

](l)

r

{
j
k

}(l)

r
(−1) j =

∑
j

[n − 1
j − 1

](l)

r
+ (n − 1)l

[
n − 1

j

](l)

r

 { j
k

}(l)

r
(−1) j

= (n − 1)l(−1)n−1δn−1,k +
∑

j

[
n − 1
j − 1

](l)

r

{
j
k

}(l)

r
(−1) j,

and from Theorem 2.4, we get∑
j

[
n
j

](l)

r

{
j
k

}(l)

r
(−1) j = (n − 1)l(−1)n−1δn−1,k − (−1)n−1δn−1,k−1 − (k)l(−1)n−1δn−1,k = (−1)nδn,k.

For the Identity (9), we go by induction on k as same as the previous proof.
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4. Properties via symmetric functions

Let x1, x2, . . . , xn be n random variables. We denote, respectively, by
ek(x1, x2, . . . , xn) and hk(x1, x2, . . . , xn) the elementary symmetric function and the complete homogeneous
symmetric function of degree k in n-variables given for n ≥ k ≥ 1, by

ek(x1, x2, . . . , xn) =
∑

1≤i1<i2<···<ik≤n

xi1 · · · xik (10)

and

hk(x1, x2, . . . , xn) =
∑

1≤i1≤i2≤···≤ik≤n

xi1 · · · xik . (11)

In particular e0(x1, x2, . . . , xn) = h0(x1, x2, . . . , xn) = δ0,n.
The generating functions of the symmetric functions are given by

E(t) =
∑
k≥0

ek(x1, x2, · · · , xn)tk =

n∏
i=1

(1 + xit) (12)

and

H(t) =
∑
k≥0

hk(x1, x2, · · · , xn)tk =

n∏
i=1

(1 − xit)−1. (13)

For more details about symmetric functions we refer readers to [2, 13, 15] and the references therein.
Let us now give some results linked to the symmetric functions and their generating functions.

Theorem 4.1. The (l, r)-Stirling of the first kind and the elementary symmetric function are linked as[
n + 1

n + 1 − k

](l)

r
= ek(rl, . . . ,nl), (14)

equivalently[
n
k

](l)

r
= en−k(rl, . . . , (n − 1)l). (15)

Proof. It is clear that in each (σ1, σ2, . . . , σl)-permutation having (n − k) cycles with {1, . . . , r} lead, we have
{1, 2, . . . , r, yr+1, . . . , yn−k} lead a cycle and {x1, x2, . . . , xk} elements don’t lead where r < yr+1 < yn−k < · · · ≤ n
and r < x1 < x2 < · · · ≤ n.

To construct all (σ1, σ2, . . . , σl)-permutations having (n − k) cycles where {1, . . . , r} lead, we proceed as
follows

• Construct (n − k) cycles having only one element from {1, 2, . . . , r, yr+1, . . . , yn−k}, i. e.

σ = (1)(2) . . . (r)(yr+1) . . . (yn−k),

• Insert x1 after an element of cycles smaller than x1, we have (x1 − 1) ways of inserting x1. Then
Insert x2 after an element of cycles smaller than x2, we have (x2 − 1) choices, and so on. We have
(x1 − 1)(x2 − 1) · · · (xk − 1) ways to construct a permutation.

• Repeat the process with each permutation σ ∈ {σ1, . . . , σl}, so we have (x1 − 1)l(x2 − 1)l
· · · (xk − 1)l ways

of construction.
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• Summing over all possible set of numbers {x1, x2, . . . , xk}, hence the total number of ways to construct
(σ1, σ2, . . . , σl)-permutations having (n − k) cycles with {1, . . . , r} lead is

[
n

n − k

](l)

r
=

∑
r<x1<x2<···≤n

(x1 − 1)l(x2 − 1)l
· · · (xk − 1)l

=
∑

r≤x1<x2<···<n

xl
1xl

2 · · · x
l
k

= ek(rl, . . . , (n − 1)l).

Theorem 4.2. The (l, r)-Stirling of the first kind and the complete homogeneous symmetric function are linked as{
n + k

n

}(l)

r
= hk(rl, . . . ,nl), (16)

Proof. Let us count the number of (π1, π2, . . . , πl)-partitions of [n + k] into n blocks with {1, 2, . . . , r} are
leaders. First, we denote, {y1, y2, . . . , yk} the elements that are not leaders where y1 < y2 < · · · < yk. Let xi be
the number of leaders smaller than yi, i ∈ {1, . . . , k}, it is clear that r ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ n.

The construction of such partition goes as follows

• Construct a partition of n blocks with [n + k]\{y1, y2, . . . , yk}where 1, 2, . . . , r are leaders, i. e.

{1}{2} . . . {r}{zr+1} . . . {zn}.

• Insert the {y1, y2, . . . , yk} elements to the n blocks. It is clear that yi can belong only to a block having
a leader smaller than yi, we have x1 · x2 · · · xk ways to do.

• Repeat the process with each partition π ∈ {π1, . . . , πl}, so we have (x1)l(x2)l . . . (xk)l ways of construc-
tion.

• Summing over all possible set of numbers {x1, x2, . . . , xk}, hence the total number of ways to construct
(π1, π2, . . . , πl)-partitions of [n + k] having n blocks with {1, . . . , r} lead is{

n + k
n

}(l)

r
=

∑
r≤x1≤x2≤···≤n

xl
1xl

2 · · · x
l
k

= hk(rl, . . . ,nl).

5. Generating functions

Now, we can use the symmetric functions to construct the generating functions for the (l, r)-Stirling of
both kinds.

Theorem 5.1. The generating function for the (l, r)-Stirling numbers of the first kind is

∑
k

[
n
k

](l)

r
zk = zr

n−1∏
i=r

(
z + il

)
= zr

(
z + rl

) (
z + (r + 1)l

)
· · ·

(
z + (n − 1)l

)
, (17)
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Proof. From Theorem 4.1 and the generating function (12) we obtain

∑
k

[
n
k

](l)

r
zk = zn

∑
k

ek(rl, . . . , (n − 1)l)(z−1)k

= zn
n−1∏
i=r

(
1 +

il

z

)

= zr
n−1∏
i=r

(z + il).

(18)

Theorem 5.2. The generating function for the (l, r)-Stirling numbers of the second kind is

∑
n=k

{
n
k

}(l)

r
zn = zk

 k∏
i=r

(1 − zil)


−1

=
zk

(1 − zrl)(1 − z(r + 1)l)(1 − zkl)
. (19)

Proof. From Theorem 4.2 and the generating function of homogeneous symmetric function (13), we obtain

∑
n≥k

{
n
k

}(l)

r
zn =

∑
j≥0

{
k + j

k

}
zk+ j = zk

∑
j≥0

h j(rl, . . . , kl)z j = zk

 k∏
i=r

(1 − zil)


−1

.

In the following theorem we investigate the symmetric functions to obtain a convolution formula for
the (l, r)-Stirling numbers of both kinds.

Theorem 5.3. For all positive integers l, n, k and r with (n ≥ k ≥ r), we have

∑
i0 + 2i1 · · · + 2lil = k

i0, · · · , il ≥ 0

{
n + il

n

}(2l)

r

l−1∏
s=0

[
n + 1

n + 1 − is

](2s)

r
=

{
n + k

n

}
r
. (20)

Proof. Let us consider the generating function of the complete homogeneous symmetric function (13). From
that we have∑

k≥0

hk(x1, . . . , xn)zk =

n∏
i=1

1
(1 − xiz)

=

n∏
i=1

1
(1 − xiz)

l−1∏
s=0

1 + x2s

i z2s

1 + x2s

i z2s


=

n∏
i=1

1

(1 − x2l

i z2l )

l−1∏
s=0

(
1 + x2s

i z2s)
=

∑
k≥0

hk(x2l

1 , . . . , x
2l

n )z2lk
l−1∏
s=0

∑
k≥0

ek(x2s

1 , . . . , x
2s

n )z2sk
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=
∑
k≥0

hk(x2l

1 , . . . , x
2l

n )z2lk
∑
k≥0

ek(x1, . . . , xn)zk
∑
k≥0

ek(x2
1, . . . , x

2
n)z2k

· · ·

∑
k≥0

ek(x2l−1

1 , . . . , x
2l−1

n )z2l−1k

=
∑
k≥0


∑

i0 + 2i1 + · · · + 2lil = k;
i0, . . . , il ≥ 0.

hil (x
2l

1 , . . . , x
2l

n )
l−1∏
s=0

eis (x
2s

1 , . . . , x
2s

n )


zk.

From Theorem 4.1 and Theorem 4.2 and by comparing the coefficients of zk of the two sides the result holds
true.

The simplest case of the previous theorem is the corollary bellow which generalize the result of Broder [6].

Corollary 5.4. For l = 1, we have

⌊k/2⌋∑
i=0

{
n + i

n

}(2)

r

[
n + 1

n + 1 + 2i − k

]
r
=

{
n + k

n

}
r
. (21)

6. The (l, r)-Stirling numbers, the sum of powers, and Bernoulli polynomials

Recall, for every integer n ≥ 0, the Bernoulli polynomials, denoted Bn(x), are defined by

∞∑
n=0

Bn(x)
tn

n
=

text

et − 1
. (22)

The sum of the powers of natural numbers is closely related to the Bernoulli polynomials Bn(x). Jacobi
[12, 16] gives the following identity using the sum of powers and Bernoulli polynomials

n∑
j=1

jm =
Bm+1(n + 1) − Bm+1(0)

m + 1
. (23)

The following theorem gives the relation between (l, r)-Stirling of both kinds and Bernoulli polynomials.

Theorem 6.1. For all positive integers n, k and l, we have

k∑
j=0

(−1) j( j + 1)
[
n + 1
n − j

](l){n + k − j
n

}(l)

=
Blk+l+1(n + 1) − Blk+l+1(0)

lk + l + 1
, (24)

Proof. In the first hand we have Jacobi’s Identity (23)

n∑
j=1

( jl)k =
Blk+1(n + 1) − Blk+1(0)

lk + 1
, (25)

in the second hand, we have

H(t) =
∑
k≥0

hk(1l, 2l, . . . ,nl)tk =

n∏
j=1

1
(1 − jst)

and

E(t) =
∑
k≥0

ek(1l, 2l, . . . ,nl)tk =

n∏
j=1

(1 + jst),
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from the obvious observation that H(t) = 1/E(−t), we obtain

d
dt

ln H(t) =
H′(t)
H(t)

= H(t)E′(−t) (26)

but

d
dt

ln H(t) =
n∑

j=1

jl

(1 − jlt)
=

∑
k≥0

n∑
j=1

js(k+1)tk. (27)

Then from equations (26) and (27), we get∑
k≥0

n∑
j=1

js(k+1)tk = H(t)E′(−t)

=

∑
k≥0

hk(1l, . . . ,nl)tk


∑

k≥1

k(−1)k−1ek(1l, . . . ,nl)tk−1

 .
(28)

Cauchy product and equating coefficient of tk gives

n∑
j=1

js(k+1) =

n∑
j≥1

( j + 1)(−1) je j+1(1l, . . . ,nl)hk− j(1l, . . . ,nl), (29)

replacing symmetric functions by stirling numbers from Theorem 4.1 and Theorem 4.2, and comparing
with Equation (25) we get the result.

7. Multiple zeta function and (l, r)-Stirling numbers of the first kind

For any ordered sequence of positive integers i1, i2, . . . , ik, the multiple zeta function is introduced by
Hoffman [11] and independently Zagier [17] by the following infinite sums

ζ(i1, i2, . . . , ik) =
∑

0< j1< j2<···< jk

1

ji11 ji22 · · · j
ik
k

. (30)

Recently, the multiple zeta function has been studied quite intensively by many authors in various fields
of mathematics and physics (see [4, 5, 7, 11, 17, 19]). Here we give a relation between (l, r)-Stirling numbers
of the first kind and the multiple zeta function.

Theorem 7.1. For all positive integers n, k, l and r with (n ≥ k ≥ r), we have[
n + 1
k + 1

](l)

r
=

(
n!

(r − 1)!

)l n∑
jk=k

jk−1∑
jk−1=k−1

· · ·

j(r+1)−1∑
jr=r

1(
jr j2 · · · jk

)l

=

(
n!

(r − 1)!

)l ∑
r−1< j1< j2<···< jk≤n

1
( j1 j2 · · · jk)l

.

(31)

Proof. Since
[n

k
](l)

r =
[n−1

k−1
](l)

r + (n − 1)l[n−1
k
](l)

r from Theorem 2.3. If we proceed iteratively, we obtain that[
n
k

](l)

r
= ((n − 1)!)l

n−1∑
j=k−1

1
( j!)l

[
j

k − 1

](l)

r
. (32)
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For k = r, from (6) and (32) we obtain[
n
r

](l)

r
= (rn−r)l =

(
(n − 1)!
(r − 1)!

)l

. (33)

For k = r + 1, from (32) and (33) we obtain[
n

r + 1

](l)

r
= ((n − 1)!)l

n−1∑
j=r

1
( j!)l

[
j
r

](l)

r

=

(
(n − 1)!
(r − 1)!

)l n−1∑
j=r

(
( j − 1)!

j!

)l

=

(
(n − 1)!
(r − 1)!

)l n−1∑
j=r

1
jl
.

(34)

For k = r + 2, from (33) and (34) we obtain[
n

r + 2

](l)

r
=

(
(n − 1)!
(r − 1)!

)l n−1∑
j=r+1

j−1∑
i=r

1
(i j)l
, (35)

iterating the process with k ∈ {r + 3, r + 4, . . . } and so on, then yields the result.

Proposition 7.2. For r = 1, we have

lim
n→∞

1

(n!)l

[
n + 1
k + 1

](l)

= ζ({l}k), (36)

where {l}n = (l, l, . . . , l︸   ︷︷   ︸
n times

).

Proof. The proposition follows immediately from the definition of multiple zeta function (30) as an infinity
sums and Theorem 7.1 for r = 1.

Corollary 7.3. For k ≥ 1, we have

• For l = 2

lim
n→∞

1

(n!)2

[
n + 1
k + 1

](2)

=
π2k

(2k + 1)!
. (37)

• For l = 4

lim
n→∞

1

(n!)4

[
n + 1
k + 1

](4)

=
4(2π)4k

(4k + 2)!

(1
2

)2k+1

. (38)
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• For l = 6

lim
n→∞

1

(n!)6

[
n + 1
k + 1

](6)

=
6(2π)6k

(6k + 3)!
. (39)

• For l = 8

lim
n→∞

1

(n!)8

[
n + 1
k + 1

](8)

=
π8k

(8k + 4)!
28k+3

(1 + 1
√

2

)4k+2

+

(
1 −

1
√

2

)4k+2 . (40)

Proof. Authors in [7] give the following special values of multiple zeta function

ζ({2}n) =
π2n

(2n + 1)!
,

ζ({4}n) =
4(2π)4n

(4n + 2)!

(1
2

)2n+1

,

ζ({6}n) =
6(2π)6n

(6n + 3)!
,

ζ({8}n) =
π8n

(8n + 4)!
28n+3

(1 + 1
√

2

)4n+2

+

(
1 −

1
√

2

)4n+2 ,
the corollary is a consequence of the previous special cases and Proposition 7.2.

8. Remarks

• The (l, r)-Stirling gives another graphical view of Rooks polynomials of higher dimensions in triangle
boards [3, 18] using set partitions.

• In this work we gives a limit representation of multiple zeta function using (l, r)-Stirling numbers.

• We can obtain the well-known Euler identity ζ(2) = π
2

6 from Equation (37) for k = 1.
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