# Further inequalities related to synchronous and asynchronous functions 

Mahdi Ghasvareh ${ }^{\text {a }}$, Mohsen Erfanian Omidvar ${ }^{\text {a,* }}$<br>${ }^{a}$ Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran


#### Abstract

This paper intends to show some operator and norm inequalities involving synchronous and asynchronous functions. Among other inequalities, it is shown that if $A, B \in \mathcal{B}(\mathcal{H})$ are two positive operators and $f, g: J \rightarrow \mathbb{R}$ are asynchronous functions, then


$f(A) g(A)+f(B) g(B) \leq \frac{1}{2}\left(f^{2}(A)+g^{2}(A)+f^{2}(B)+g^{2}(B)\right)$.

## 1. Introduction

Let $\mathcal{B}(\mathcal{H})$ denote the $C^{*}$-algebra of bounded linear operators on a complex Hilbert space $\mathcal{H}$. An operator $A \in \mathcal{B}(\mathcal{H})$ is called positive if $\langle A x, x\rangle \geq 0$ for all $x \in \mathcal{H}$, and we then write $A \geq 0$. For self-adjoint operators $A, B \in \mathcal{B}(\mathcal{H})$ we say that $A \leq B$ if $B-A \geq 0$. The Gelfand map establishes an isometrically *-isomorphism $\phi$ between the set $C(s p(A))$ of all continuous functions on the spectrum of $A$, denoted $s p(A)$, and the $C^{*}$-algebra generated by $A$ and the identity operator $I$ on $\mathcal{H}$. For any $f, g \in C(s p(A))$ and any $\alpha, \beta \in \mathbb{C}$ we have

- $\phi(\alpha f+\beta g)=\alpha \phi(f)+\beta \phi(g)$;
- $\phi(f g)=\phi(f) \phi(g)$;
- $\|\phi(f)\|=\|f\|:=\sup _{t \in s p(A)}|f(t)| ;$
- $\phi\left(f_{0}\right)=I$ and $\phi\left(f_{1}\right)=A$, where $f_{0}(t)=1$ and $f_{1}(t)=t$, for $t \in s p(A)$.

With this notation we define $f(A)=\phi(f)$ for all $f \in C(s p(A))$ and we call it the continuous functional calculus for a self-adjoint operator $A$. It is well known that, if $A$ is a self-adjoint operator and $f \in C(s p(A))$, then $f(t) \geq 0$ for any $t \in s p(A)$ implies that $f(A) \geq 0$. It is extendable for two real valued functions on $s p(A)$. A linear map $\Phi$ is positive if $\Phi(A) \geq 0$ whenever $A \geq 0$. It said to be normalized if $\Phi(I)=I$.

[^0]We say that the functions $f, g: J \rightarrow \mathbb{R}$ are synchronous (asynchronous) on the interval $J \subseteq \mathbb{R}$ if they satisfy the following condition:

$$
\begin{equation*}
(f(t)-f(s))(g(t)-g(s)) \geq(\leq) 0 \tag{1}
\end{equation*}
$$

for all $s, t \in J$.
The inequalities involving synchronous (asynchronous) functions have been of special interest; see e.g., $[6,8]$.

In [1, Theorem 1], it is shown that if $A \in \mathcal{B}(\mathcal{H})$ is a self-adjoint operator and $x \in \mathcal{H}$ is a unit vector, then for any synchronous functions $f, g: J \rightarrow \mathbb{R}$,

$$
\begin{equation*}
\langle f(A) x, x\rangle\langle g(A) x, x\rangle \leq\langle f(A) g(A) x, x\rangle \tag{2}
\end{equation*}
$$

holds. More precisely, the following more general result is proved

$$
\langle f(A) x, x\rangle\langle g(B) y, y\rangle+\langle f(B) y, y\rangle\langle g(A) x, x\rangle \leq\langle f(A) g(A) x, x\rangle+\langle f(B) g(B) y, y\rangle,
$$

where $A, B \in \mathcal{B}(\mathcal{H})$ are two self-adjoint operators and $x, y \in \mathcal{H}$ are unit vectors.
Let $\lambda_{j}(A)$ to denote the $j$-th eigenvalue of Hermitian matrix $A$ in the set of $n \times n$ complex matrices, when arranged in a non-increasing order, counting multiplicities. That is $\lambda_{1}(A) \geq \lambda_{2}(A) \geq \cdots \geq \lambda_{n}(A)$.

Moradi and Sababheh [7, Theorem 4.1] proved that if $f, g: J \rightarrow \mathbb{R}$ are two asynchronous functions and $A, B$ are $n \times n$ Hermitian matrices whose spectra are contained in $J$, then for every normalized positive linear $\operatorname{map} \Phi$

$$
\begin{equation*}
\lambda_{j}(\Phi(f(A) g(A)+f(B) g(B))) \leq \frac{1}{2} \lambda_{j}\left(\Phi\left(f^{2}(A)+g^{2}(A)+f^{2}(B)+g^{2}(B)\right)\right) \tag{3}
\end{equation*}
$$

for $j=1,2, \ldots, n$.
In this paper, we present refinement and reverse for inequality (2). Further, we extend inequality (3) to Hilbert space operators. A related inequality for the numerical radius of Hilbert space operators is also given as well.

## 2. Main Results

The following lemma will be useful in the proof of our results.
Lemma 2.1. [2, Theorem 1.4] Let $A \in \mathcal{B}(\mathcal{H})$ be a positive operator and let $x \in \mathcal{H}$ be a unit vector. Then

$$
\begin{aligned}
& \langle A x, x\rangle^{r} \leq\left\langle A^{r} x, x\right\rangle, \quad(r \geq 1) \\
& \left\langle A^{r} x, x\right\rangle \leq\langle A x, x\rangle^{r}, \quad(0 \leq r \leq 1)
\end{aligned}
$$

We start this section by refining and reversing (2).
Theorem 2.2. Let $A \in \mathcal{B}(\mathcal{H})$ be a self-adjoint operator and let $x \in \mathcal{H}$ be a unit vector. If $f, g: J \rightarrow \mathbb{R}$ are synchronous functions, then

$$
\begin{aligned}
& \min \left\{\left\langle f^{2}(A) x, x\right\rangle-\langle f(A) x, x\rangle^{2},\left\langle g^{2}(A) x, x\right\rangle-\langle g(A) x, x\rangle^{2}\right\} \\
& \leq\langle f(A) g(A) x, x\rangle-\langle f(A) x, x\rangle\langle g(A) x, x\rangle \\
& \leq \max \left\{\left\langle f^{2}(A) x, x\right\rangle-\langle f(A) x, x\rangle^{2},\left\langle g^{2}(A) x, x\right\rangle-\langle g(A) x, x\rangle^{2}\right\} .
\end{aligned}
$$

Proof. Following an idea arising in [9, Theorem 5.1], we have

$$
\begin{aligned}
& f(t) g(t)+f(s) g(s)-(f(t) g(s)+f(s) g(t)) \\
& \geq \min \left\{\left(f^{2}(t)+f^{2}(s)-2 f(t) f(s)\right), g^{2}(t)+g^{2}(s)-2 g(t) g(s)\right\} .
\end{aligned}
$$

Applying the continuous functional calculus for the self-adjoint operator $A$, we get

$$
\begin{aligned}
& f(A) g(A)+f(s) g(s) I-(g(s) f(A)+f(s) g(A)) \\
& \geq \min \left\{f^{2}(A)+f^{2}(s) I-2 f(s) f(A), g^{2}(A)+g^{2}(s) I-2 g(s) g(A)\right\} .
\end{aligned}
$$

Therefore, for any unit vector $x \in \mathcal{H}$, we get

$$
\begin{aligned}
& \langle f(A) g(A) x, x\rangle+f(s) g(s)-(g(s)\langle f(A) x, x\rangle+f(s)\langle g(A) x, x\rangle) \\
& \geq \min \left\{\left\langle f^{2}(A) x, x\right\rangle+f^{2}(s)-2 f(s)\langle f(A) x, x\rangle\right. \\
& \left.,\left\langle g^{2}(A) x, x\right\rangle+g^{2}(s)-2 g(s)\langle g(A) x, x\rangle\right\}
\end{aligned}
$$

Applying again the continuous functional calculus for the self-adjoint operator $A$, we obtain

$$
\begin{aligned}
& \langle f(A) g(A) x, x\rangle I+f(A) g(A)-(\langle f(A) x, x\rangle g(A)+\langle g(A) x, x\rangle f(A)) \\
& \geq \min \left\{\left\langle f^{2}(A) x, x\right\rangle I+f^{2}(A)-2\langle f(A) x, x\rangle f(A)\right. \\
& \left.,\left\langle g^{2}(A) x, x\right\rangle I+g^{2}(A)-2\langle g(A) x, x\rangle g(A)\right\}
\end{aligned}
$$

which implies,

$$
\begin{aligned}
& \langle f(A) g(A) x, x\rangle-\langle f(A) x, x\rangle\langle g(A) x, x\rangle \\
& \geq \min \left\{\left\langle f^{2}(A) x, x\right\rangle-\langle f(A) x, x\rangle^{2},\left\langle g^{2}(A) x, x\right\rangle-\langle g(A) x, x\rangle^{2}\right\}
\end{aligned}
$$

for any unit vector $x \in \mathcal{H}$.
Since

$$
\begin{aligned}
& f(t) g(t)+f(s) g(s)-f(t) g(s)-f(s) g(t) \\
& \leq \max \left\{f^{2}(t)+f^{2}(s)-2 f(t) f(s), g^{2}(t)+g^{2}(s)-2 g(t) g(s)\right\}
\end{aligned}
$$

we get the second inequality.
Remark 2.3. In the same way, we can obtain a more general result. Indeed, if $A, B \in \mathcal{B}(\mathcal{H})$ are self-adjoint operator and $x, y \in \mathcal{H}$ are two unit vectors, then

$$
\begin{aligned}
& \min \left\{\left\langle f^{2}(A) x, x\right\rangle+\left\langle f^{2}(B) y, y\right\rangle-2\langle f(A) x, x\rangle\langle f(B) y, y\rangle\right. \\
& \left.\quad,\left\langle g^{2}(A) x, x\right\rangle+\left\langle g^{2}(B) y, y\right\rangle-2\langle g(A) x, x\rangle\langle g(B) y, y\rangle\right\} \\
& \leq\langle f(A) g(A) x, x\rangle+\langle f(B) g(B) y, y\rangle-(\langle f(A) x, x\rangle\langle g(B) y, y\rangle+\langle f(B) y, y\rangle\langle g(A) x, x\rangle) \\
& \leq \max \left\{\left\langle f^{2}(A) x, x\right\rangle+\left\langle f^{2}(B) y, y\right\rangle-2\langle f(A) x, x\rangle\langle f(B) y, y\rangle\right. \\
& \left.\quad,\left\langle g^{2}(A) x, x\right\rangle+\left\langle g^{2}(B) y, y\right\rangle-2\langle g(A) x, x\rangle\langle g(B) y, y\rangle\right\} .
\end{aligned}
$$

Lemma 2.4. [5] Let $A, B \in \mathcal{B}(\mathcal{H})$ be two positive invertible operators, then for any unit vector $x \in \mathcal{H}$,

$$
\langle A \sharp B x, x\rangle \leq \sqrt{\langle A x, x\rangle\langle B x, x\rangle}
$$

where $A \sharp B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\frac{1}{2}} A^{\frac{1}{2}}$ is the operator geometric mean.

Theorem 2.5. Let $A, B \in \mathcal{B}(\mathcal{H})$ be two positive invertible operators. If $f, g: J \rightarrow \mathbb{R}$ are asynchronous functions, then

$$
f(A) g(A) \sharp f(B) g(B) \leq \frac{1}{4}\left(f^{2}(A)+g^{2}(A)+f^{2}(B)+g^{2}(B)\right) .
$$

Proof. If $f, g: J \rightarrow \mathbb{R}$ are asynchronous on the interval $J$, then

$$
f(t) g(t)+f(s) g(s) \leq f(t) g(s)+f(s) g(t)
$$

for any $t, s \in J$. If we fix $s \in J$ and apply the functional calculus (with $t=A$ ), we get

$$
f(A) g(A)+f(s) g(s) \leq g(s) f(A)+f(s) g(A)
$$

Hence, for any unit vector $x \in \mathcal{H}$,

$$
\langle f(A) g(A) x, x\rangle+f(s) g(s) \leq g(s)\langle f(A) x, x\rangle+f(s)\langle g(A) x, x\rangle .
$$

Now apply again the functional calculus (with $s=B$ ), we have

$$
\langle f(A) g(A) x, x\rangle+f(B) g(B) \leq g(B)\langle f(A) x, x\rangle+f(B)\langle g(A) x, x\rangle .
$$

Therefore, for any unit vector $x \in \mathcal{H}$,

$$
\begin{aligned}
& \langle f(A) g(A) x, x\rangle+\langle f(B) g(B) x, x\rangle \\
& \leq\langle g(B) x, x\rangle\langle f(A) x, x\rangle+\langle f(B) x, x\rangle\langle g(A) x, x\rangle
\end{aligned}
$$

On the other hand, by the arithmetic-geometric mean inequality and Lemma 2.4, we have

$$
\begin{aligned}
2\langle f(A) g(A) \sharp f(B) g(B) x, x\rangle \\
\leq 2 \sqrt{\langle f(A) g(A) x, x\rangle\langle f(B) g(B) x, x\rangle} \\
\leq\langle f(A) g(A) x, x\rangle+\langle f(B) g(B) x, x\rangle \\
\leq\langle g(B) x, x\rangle\langle f(A) x, x\rangle+\langle f(B) x, x\rangle\langle g(A) x, x\rangle \\
\leq \frac{1}{2}\left(\langle g(B) x, x\rangle^{2}+\langle f(A) x, x\rangle^{2}+\langle f(B) x, x\rangle^{2}+\langle g(A) x, x\rangle^{2}\right) \\
\leq \frac{1}{2}\left(\left\langle g^{2}(B) x, x\right\rangle+\left\langle f^{2}(A) x, x\right\rangle+\left\langle f^{2}(B) x, x\right\rangle+\left\langle g^{2}(A) x, x\right\rangle\right) \\
=\frac{1}{2}\left\langle\left(f^{2}(A)+g^{2}(A)+f^{2}(B)+g^{2}(B)\right) x, x\right\rangle .
\end{aligned}
$$

Hence,

$$
\langle f(A) g(A) \sharp f(B) g(B) x, x\rangle \leq \frac{1}{4}\left\langle\left(f^{2}(A)+g^{2}(A)+f^{2}(B)+g^{2}(B)\right) x, x\right\rangle .
$$

By replacing $x$ by $\frac{y}{\|y\|}$, we get for vector $y \in \mathcal{H}$,

$$
\langle f(A) g(A) \sharp f(B) g(B) y, y\rangle \leq \frac{1}{4}\left\langle\left(f^{2}(A)+g^{2}(A)+f^{2}(B)+g^{2}(B)\right) y, y\right\rangle .
$$

Since the above inequality holds for any vector, we get

$$
f(A) g(A) \sharp f(B) g(B) \leq \frac{1}{4}\left(f^{2}(A)+g^{2}(A)+f^{2}(B)+g^{2}(B)\right) .
$$

The following result is an immediate consequence of the proof of Theorem 2.5 and presents the operator version of the inequality shown in [7].

Corollary 2.6. Let $A, B \in \mathcal{B}(\mathcal{H})$ be two positive operators. If $f, g: J \rightarrow \mathbb{R}$ are asynchronous functions, then

$$
f(A) g(A)+f(B) g(B) \leq \frac{1}{2}\left(f^{2}(A)+f^{2}(B)+g^{2}(A)+g^{2}(B)\right)
$$

Lemma 2.7. [4] Let $A \in \mathcal{B}(\mathcal{H})$ and let $x, y \in \mathcal{H}$ be any vectors. If $f, g$ are non-negative continuous functions on $[0, \infty)$ satisfying $f(t) g(t)=t,(t \geq 0)$, then

$$
|\langle A x, y\rangle| \leq\|f(|A|) x\|\left\|g\left(\left|A^{*}\right|\right) y\right\|
$$

The following numerical radius inequality involving synchronous functions may be stated as well. Recall that for $A \in \mathcal{B}(\mathcal{H})$, let

$$
\begin{aligned}
\|A\| & =\sup \{\|A x\|:\|x\|=1\} \\
\omega(A) & =\sup \{|\langle A x, x\rangle|:\|x\|=1\}
\end{aligned}
$$

denote the usual operator and the numerical radius of $A$, respectively. It is well-known that $\omega(\cdot)$ defines a norm on $\mathcal{B}(\mathcal{H})$, which is equivalent to the usual operator norm $\|\cdot\|$. Namely, for $A \in \mathcal{B}(\mathcal{H})$, we have

$$
\begin{equation*}
\frac{1}{2}\|A\| \leq \omega(A) \leq\|A\| \tag{4}
\end{equation*}
$$

The inequality (4) have been improved considerably by Kittaneh in [3]. It has been shown that, if $A \in \mathcal{B}(\mathcal{H})$, then

$$
\begin{equation*}
\omega^{2}(A) \leqslant \frac{1}{2}\left|\left\|\left.A\right|^{2}+\left|A^{*}\right|^{2}\right\| .\right. \tag{5}
\end{equation*}
$$

Now we establish a generalized version of (5).
Theorem 2.8. Let $A \in \mathcal{B}(\mathcal{H})$ and let $f, g$ be non-negative continuous functions on $[0, \infty)$ satisfying $f(t) g(t)=t$, $(t \geq 0)$. If $f^{2}, g^{2}: J \rightarrow \mathbb{R}$ are synchronous functions, then

$$
\omega^{2}(A) \leq \frac{1}{2}\left\|f^{2}(|A|) g^{2}(|A|)+f^{2}\left(\left|A^{*}\right|\right) g^{2}\left(\left|A^{*}\right|\right)\right\|
$$

Proof. From the relation (1), we obtain

$$
f^{2}(t) g^{2}(t)+f^{2}(s) g^{2}(s) \geq f^{2}(t) g^{2}(s)+f^{2}(s) g^{2}(t)
$$

for any $t, s \in J$. Applying the functional calculus for the positive operator $|A|$, we get

$$
f^{2}(|A|) g^{2}(|A|)+f^{2}(s) g^{2}(s) \geq g^{2}(s) f^{2}(|A|)+f^{2}(s) g^{2}(|A|)
$$

Hence, for any unit vector $x \in \mathcal{H}$,

$$
\left\langle f^{2}(|A|) g^{2}(|A|) x, x\right\rangle+f^{2}(s) g^{2}(s) \geq g^{2}(s)\left\langle f^{2}(|A|) x, x\right\rangle+f^{2}(s)\left\langle g^{2}(|A|) x, x\right\rangle
$$

Applying again the functional calculus for the positive operator $\left|A^{*}\right|$, we have

$$
\left\langle f^{2}(|A|) g^{2}(|A|) x, x\right\rangle+f^{2}\left(\left|A^{*}\right|\right) g^{2}\left(\left|A^{*}\right|\right) \geq g^{2}\left(\left|A^{*}\right|\right)\left\langle f^{2}(|A|) x, x\right\rangle+f^{2}\left(\left|A^{*}\right|\right)\left\langle g^{2}(|A|) x, x\right\rangle .
$$

Therefore, for any unit vector $x \in \mathcal{H}$,

$$
\begin{aligned}
& \left\langle f^{2}(|A|) g^{2}(|A|) x, x\right\rangle+\left\langle f^{2}\left(\left|A^{*}\right|\right) g^{2}\left(\left|A^{*}\right|\right) x, x\right\rangle \\
& \geq\left\langle g^{2}\left(\left|A^{*}\right|\right) x, x\right\rangle\left\langle f^{2}(|A|) x, x\right\rangle+\left\langle f^{2}\left(\left|A^{*}\right|\right) x, x\right\rangle\left\langle g^{2}(|A|) x, x\right\rangle .
\end{aligned}
$$

On the other hand, by Lemma 2.7, we have

$$
\left\langle g^{2}\left(\left|A^{*}\right|\right) x, x\right\rangle\left\langle f^{2}(|A|) x, x\right\rangle+\left\langle f^{2}\left(\left|A^{*}\right|\right) x, x\right\rangle\left\langle g^{2}(|A|) x, x\right\rangle \geq 2|\langle A x, x\rangle|^{2} .
$$

Whence,

$$
|\langle A x, x\rangle|^{2} \leq \frac{1}{2}\left\langle\left(f^{2}(|A|) g^{2}(|A|)+f^{2}\left(\left|A^{*}\right|\right) g^{2}\left(\left|A^{*}\right|\right)\right) x, x\right\rangle .
$$

Now, by taking supremum over all unit vector $x \in \mathcal{H}$, we get

$$
\omega^{2}(A) \leq \frac{1}{2}\left\|f^{2}(|A|) g^{2}(|A|)+f^{2}\left(\left|A^{*}\right|\right) g^{2}\left(\left|A^{*}\right|\right)\right\|
$$

## References

[1] S. S. Dragomir, Čebyšev's type inequalities for functions of self-adjoint operators in Hilbert spaces, Linear Multilinear Algebra. 58(7) (2010), 805-814.
[2] T. Furuta, J. Mićić, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities, Inequalities for Bounded Self-adjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
[3] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Pub1. Studia Math. 168 (2005), 73-80.
[4] F. Kittaneh, Notes on some inequalities for Hilbert Space operators, Publ. Res. Inst. Math. Sci., 24(2) (1988), 283-293.
[5] E.-Y. Lee, A matrix reverse Cauchy-Schwarz inequality, Linear Algebra Appl., 430(2) (2009), 805-810.
[6] B. Moosavi, H. R. Moradi and M. Shah Hosseini, Further results on Jensen-type inequalities, Probl. Anal. Issues Anal., 8(3) (2019), 112-124.
[7] H. R. Moradi and M. Sababheh, Eigenvalue inequalities for n-tuple of matrices, Linear Multilinear Algebra. 69(12) (2021), $2192-2203$.
[8] H. R. Moradi, M. E. Omidvar and S. S. Dragomir, An operator extension of Čebyšev inequality, An. Şt. Univ. Ovidius Constanţa., 25(2) (2017), 135-147.
[9] M. Sababheh, S. Sheybani and H. R. Moradi, Matrix Fejér and Levin-Stečkin Inequalities, arXiv:2102.07335 [math.FA].


[^0]:    2020 Mathematics Subject Classification. Primary 47A63 ; Secondary 47A64, 47B15
    Keywords. self adjoint operators; synchronous (asynchronous) functions; positive linear maps.
    Received: 18 March 2022; Revised: 27 August 2022; Accepted: 07 September 2022
    Communicated by Fuad Kittaneh

    * Corresponding author: Mohsen Erfanian Omidvar

    Email addresses: mghasvareh@gmail.com (Mahdi Ghasvareh), math.erfanian@gmail.com (Mohsen Erfanian Omidvar)

