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Some notes on integrable Teichmüller space on the real line
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Abstract. We will introduce and discuss various models of the integrable Teichmüller space Tp in the real
line case, extending some known results on the Weil-Petersson Teichmüller space T2 to the general space
Tp for p > 1.

1. Introduction and statement of main results

We first fix some basic notations. Let U = {z = x + iy : y > 0} and U∗ = {z = x + iy : y < 0} denote
the upper and lower half plane in the complex plane C, respectively. R = ∂U = ∂U∗ is the real line, and
R̂ = R ∪ {∞} is the extended real line in the Riemann sphere Ĉ = C ∪ {∞}. Let ∆ = {z : |z| < 1} denote the
unit disk. ∆∗ = Ĉ − ∆ is the exterior of ∆, and S1 = ∂∆ = ∂∆∗ is the unit circle. D will always denote the
unit disk ∆ or the upper half plane U so that S = ∂D is the unit circle S1 or the real line R. Similarly, D∗

will always denote the exterior ∆∗ of the unit disk or the lower half plane U∗. The notation A ≲ B (A ≳ B)
means that there is a positive constant C independent of A and B such that A ≤ CB (A ≥ CB), while A ≍ B
means both A ≲ B and A ≳ B.

One of the models of the universal Teichmüller space T can be defined as the right coset space T =
QS(S)/Möb(S). Here, QS(S) denotes the group of all quasisymmetric homeomorphisms of S onto itself,
and Möb(S) the subgroup of QS(S) which consists of Möbius transformations keeping S fixed. Recall that a
sense preserving self-homeomorphism h of S is quasisymmetric if there exists a (least) positive constant C(h),
called the quasisymmetric constant of h, such that |h(I1)| ≤ C(h)|h(I2)| for all pairs of adjacent arcs I1 and I2 on
Swith the same arc-length |I1| = |I2|(≤ |S|/2). Beurling-Ahlfors [3] proved that a self-homeomorphism h ofR
is quasisymmetric if and only if there exists some quasiconformal homeomorphism ofU onto itself which
has boundary values h. Later Douady-Earle [12] gave a quasiconformal extension of a quasisymmetric
homeomorphism of S1 to the unit disk which is conformally invariant.

Let p > 1 be a fixed number. A quasisymmetric homeomorphism h ∈ QS(S) is said to be a p-integrable
asymptotic affine homeomorphism if it has a quasiconformal extension f to D whose Beltrami coefficient
µ is p-integrable in the Poincaré metric λD, namely,"

D

|µ(z)|pλ2
D(z)dxdy < ∞.
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Let QSp(S) denote the set of p-integrable asymptotic affine homeomorphisms of S. The right coset space
Tp = QSp(S)/Möb(S) is called the p-integrable Teichmüller space. The class QS2(S1) was first introduced by
Cui [10] and was much investigated in recent years (see [17], [32], [33], [35], [36], [40], [48]), and nowadays
T2 is usually called the Weil-Petersson Teichmüller space. For a general p ≥ 2, QSp(S1) was first introduced
and investigated by Guo [18] (see also [26], [41], [42], [47]).

The first goal of the paper is to give the following intrinsic characterization of a quasisymmetric homeo-
morphism in the class QSp(R) (p ≥ 2) without using quasiconformal extensions. Recall that the Besov space
Bp(S) is the collection of locally integrable functions u on S such that

∥u∥p
Bp(S) �

1
4π2

∫
S

∫
S

|u(ζ) − u(η)|p

|ζ − η|2
|dζ||dη| < +∞.

We denote by Bp,R(S) the real-valued functions in Bp(S).

Theorem 1.1. Let p ≥ 2 be a fixed number and h be an increasing homeomorphism on the real line R. Then h is a
p-integrable asymptotic affine homeomorphism if and only if h is locally absolutely continuous and log h′ belongs to
the Besov class Bp(R).

It is known that an analogous result is true in the unit circle setting, namely, a sense-preserving home-
omorphism h on the unit circle is a p-integrable asymptotic affine homeomorphism if and only if h is
absolutely continuous and log h′ belongs to the Besov class Bp(S1). For p = 2, this was first proved Shen
[35], answering a question explicitly proposed by Takhtajan-Teo (see Remark II.1.2 of [40]), and reproved
later by Wu-Hu-Shen [46]. Very recently, Bishop ([4], [5]) gave a more geometric approach for p = 2. For a
general p ≥ 2, this was proved by Tang-Shen [42].

It should be pointed out that Theorem 1.1 can not be deduced directly from the unit circle case since the
pre-logarithmic derivative is not invariant under a Möbius transformation. On the other hand, Theorem
1.1 has been proved in the special case p = 2. Actually, when p = 2, the if part of Theorem 1.1 was
proved by Shen-Tang ([36], [37]) by means of a construction due to Semmes (see [34]), while the only if part
was proved by Shen-Tang-Wu [38] by considering the pre-logarithmic derivative models of the little and
Weil-Petersson Teichmüller spaces of the half plane. Theorem 1.1 generalizes the corresponding results in
these two papers. After this research was completed in a previous version of this paper, the authors got to
know that Wei-Matsuzaki ([44], [45]) gave a proof of Theorem 1.1 independently. Instead of using Semmes’
construction, Wei-Matsuzaki used a variant of the Beurling-Ahlfors extension by the heat kernel introduced
by Fefferman-Kenig-Pipher [13].

It is an open problem to determine whether Theorem 1.1 remains true when 1 < p < 2. We will prove a
result which holds for any p > 1 and is precisely Theorem 1.1 when p ≥ 2. To make this precise, we recall
the notion of strong p-integrable asymptotic affine homeomorphism, which was discussed on the unit circle
in our companion paper [24] (see also [20]). A quasisymmetric homeomorphism h ∈ QS(S) is said to be a
strong p-integrable asymptotic affine homeomorphism if it has a quasiconformal extension f toD such that
f is quasi-isometric under the Poincaré metric, that is,

λD( f (z))|d f (z)| ≍ C( f )λD(z)|dz|, z ∈ D,

and has Beltrami coefficient µ being p-integrable in the Poincaré metric. By means of a recent result in
[24] (see Theorem 2.1 there), we conclude that a quasisymmetric homeomorphism h ∈ QS(S) is a strong
p-integrable asymptotic affine homeomorphism if and only if it has a quasiconformal extension f to D
such that both the Beltrami coefficients of f and the inverse mapping f−1 are p-integrable in the Poincaré
metric. Let SQSp(S) denote the set of strong p-integrable asymptotic affine homeomorphisms of S. Clearly,
SQSp(S) ⊂ QSp(S), and SQSp(S) = QSp(S) when p ≥ 2 (see [10], [41]). It is also clear that SQSp(S) is a sub-
group of QS(S). The right coset space Ts

p = SQSp(S)/Möb(S) is called the strong p-integrable Teichmüller
space.

Theorem 1.2. Let p > 1 be a fixed number and h be an increasing homeomorphism on the real line R. Then h is
a strong p-integrable asymptotic affine homeomorphism if and only if h is locally absolutely continuous and log h′

belongs to the Besov class Bp(R).
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As stated above, Theoem 1.2 contains Theorem 1.1 since SQSp(S) = QSp(S) when p ≥ 2. The proof
of Theorem 1.2 is based on the investigation in our two papers [36] and [38], where the case p = 2 was
considered. For completeness we will repeat the details here. In particular, we will discuss the pre-
logarithmic derivative model and the Schwarzian derivative model of the strong p-integrable Teichmüller
space Ts

p. LetΓbe a closed Jordan curve through the point at infinity with complementary domainsΩ andΩ∗.
Then there exists a pair of conformal mappings f : U→ Ω and 1 : U∗ → Ω∗ with f (∞) = 1(∞) = ∞, which
can be continuously extended toR and thus determine an increasing homeomorphism h � 1−1

◦ f : R→ R,
known as a conformal sewing mapping for Γ. It is known that h is quasisymmetric if and only if Γ is a
quasicircle (see [1]).

Theorem 1.2 can be expanded to the following result.

Theorem 1.3. Let p > 1 and h = 1−1
◦ f be a quasisymmetric conformal sewing for a quasicircle Γ through∞. Then

the following statements are equivalent:
(1) h is a strong p-integrable asymptotic affine homeomorphism;
(2) The Schwarzian derivative S f belongs to the Bergman space Bp(U), namely,"

U

|S f (z)|py2p−2dxdy < ∞.

(3) The pre-logarithmic derivative log f ′ belongs to the Besov space Bp(U), that is,"
U

|(log f ′)′(z)|pyp−2dxdy < ∞.

(4) h is locally absolutely continuous and log h′ belongs to the Besov class Bp(R).

In order to prove Theorem 1.3, we also need to consider the quasicircle model of the strong p-integrable
Teichmüller space Ts

p. A quasicircle Γ is said to be a p-integrable quasicircle if a conformal mapping f which
mapsD onto the left domain bounded by Γ satisfies the condition log f ′ ∈ Bp(D). A 2-integrable quasicircle
is usually called a Weil-Petersson quasicircle (see [4], [5], [39]). A natural question is to give a geometric
characterization of a p-integrable quasicircle without using the Riemann mapping. This question was
explicitly proposed by Takhtajan-Teo for (bounded) Weil-Petersson quasicircles (see Remark II.1.2 of [40]).
By means of a result of Pommerenke [30], it can be shown that a p-integrable quasicircle must be a chord-arc
curve (see Lemma 6.1 below). Recall that a locally rectifiable closed Jordan curve Γ is called a chord-arc curve
with constant k if length(ζ̃z) ≤ (1 + k)|ζ − z| for the smaller (i.e., with less length) subarc ζ̃z of Γ joining any
finite two points z and ζ of Γ (see [22], [30], [31]). Recently, Bishop ([4], [5]) gave various characterizations
for bounded Weil-Petersson curves from the points of harmonic analysis, geometric measure theory and
hyperbolic geometry. A question was invited to extend those characterizations to other curve families, say,
p-integrable quasicircles (see [4-6]). When dealing with the dependence of the Riemann mapping f on a
curve Γ, we gave a geometric characterization for unbounded Weil-Petersson quasicircles (see [39]). We
now extend this characterization to general unbounded p-integrable quasicircles.

Theorem 1.4. Let p > 1 and h = 1−1
◦ f be a quasisymmetric conformal sewing for a quasicircle Γ through∞. Then

the following statements are equivalent:
(1) Γ is a p-integrable quasicircle, that is, log f ′ ∈ Bp(U);
(2) log 1′ ∈ Bp(U∗);
(3) Γ is a chord-arc curve and an arclength parameterization z : R → Γ satisfies the condition z′(s) = eib(s) for

some b ∈ Bp,R(R);
(4) Γ is a chord-arc curve and the unit tangent direction τ to Γ satisfies the condition τ(z) = eiu(z) for some

real-valued function u ∈ Bp(Γ), namely, ∫
Γ

∫
Γ

|u(z) − u(w)|p

|z − w|2
|dz||dw| < ∞.
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2. Preliminaries

In this section, we give some basic definitions and results on the universal Teichmüller space T and its
two subspaces, the little Teichmüller space T0 and the integrable Teichmüller space Tp. In particular, we
will recall the Schwarzian derivative models of these Teichmüller spaces.

We begin with the standard theory of the universal Teichmüller space (see [1], [14], [23] and [28] for
more details). Let M(D∗) denote the open unit ball of the Banach space L∞(D∗) of essentially bounded
measurable functions onD∗. For µ ∈M(D∗), let fµ be the quasiconformal mapping on the extended plane Ĉ
with complex dilatation equal to µ inD∗, conformal inD, normalized by fµ(0) = 0, fµ(1) = 1 and fµ(∞) = ∞.
Two elements µ and ν in M(D∗) are said to be equivalent, denoted by µ ∼ ν, if fµ|D = fν|D. Then T =M(D∗)/∼
is the Bers model of the universal Teichmüller space. We let Φ denote the natural projection from M(D∗)
onto T so that Φ(µ) is the equivalence class [µ]. [0] is called the base point of T.

It is known that the universal Teichmüller space T is an infinite dimensional complex Banach manifold.
To make this precise, we first recall some important Banach spaces. LetΩ be an arbitrary simply connected
domain in the extended complex plane Ĉ which is conformally equivalent to the upper half plane. Then
the hyperbolic metric λΩ (with curvature constantly equal to −4) in Ω can be defined by

λΩ( f (z))| f ′(z)| =
1

2y
, z = x + iy ∈ U,

where f : U → Ω is any conformal mapping. Let B(Ω) denote the Bers space of functions ϕ holomorphic
in Ωwith finite norm

∥ϕ∥B(Ω) � sup
z∈Ω
|ϕ(z)|λ−2

Ω (z),

and B0(Ω) the closed subspace of B(Ω) which consists of those functions ϕ such that

inf

 sup
z∈Ω\K

|ϕ(z)|λ−2
Ω (z) : K ⊂ Ω compact

 = 0.

We also denote by Bp(Ω) the Bergman space of functions ϕ holomorphic in Ωwith finite norm

∥ϕ∥Bp(Ω) �

(
1
π

"
Ω

|ϕ(z)|pλ2−2p
Ω

dxdy
) 1

p

.

It is easy to see that a conformal mapping 1 : Ω1 → Ω2 induces a map 1∗ : ϕ 7→ (ϕ ◦ 1)(1′)2, which are
isometric isomorphisms from B(Ω2) onto B(Ω1), from B0(Ω2) onto B0(Ω1), and from Bp(Ω2) onto Bp(Ω1).
Therefore, Bp(Ω) ⊂ B0(Ω), and the inclusion map is continuous (see [49]).

Now we consider the map S : M(D∗)→ B(D) which sends µ to the Schwarzian derivative of fµ|D. Recall
that for any locally univalent function f , its Schwarzian derivative S f is defined by

S f � N′f −
1
2

N2
f , N f � (log f ′)′.

S is a holomorphic split submersion onto its image, which descends down to a map β : T → B(D) known
as the Bers embedding. Via the Bers embedding, T carries a natural complex Banach manifold structure so
that Φ is a holomorphic split submersion.

Let L0(D∗) be the closed subspace of L∞(D∗) which consists of those functions µ such that

inf{∥µ|D∗\K∥∞ : K ⊂ D∗ compact} = 0.

Set M0(D∗) = M(D∗) ∩ L0(D∗). Then T0 = M0(D∗)/∼ is called the little Teichmüller space. Under the Bers
projection S : M(D∗)→ B(D), S(M0(D∗) = S(M(D∗)) ∩ B0(D) (see [14], [15], [31]).
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We proceed to consider the integrable Teichmüller space Tp. We denote by Lp(D∗) the Banach space of
all essentially bounded measurable functions µ onD∗ with norm

∥µ∥QSp(S) � ∥µ∥∞ +

(
1
π

"
D∗
|µ(z)|pλ2

D∗ (z)dxdy
) 1

p

.

Set Mp(D∗) = M(D∗) ∩ Lp(D∗). Then Tp = Mp(D∗)/∼ is the p-integrable Teichmüller space. Under the Bers
projection S : M(D∗) → B(D), S(Mp(D∗)) = S(M(D∗)) ∩ Bp(D) for p ≥ 2 (see [10], [18], [40]). Finally, we
denote by Ms

p(D∗) the subset of all µ in Mp(D∗) such that fµ|D∗ is quasi-isometric under the Poincaré metric,
that is,

λ fµ(D∗)( fµ(z))|d fµ(z)| ≍ C( fµ)λD∗ (z)|dz|, z ∈ D∗.

Then Ts
p = Ms

p(D∗)/∼ is the strong p-integrable Teichmüller space. Under the Bers projection S : M(D∗) →
B(D), S(Ms

p(D∗)) ⊂ S(M(D∗))∩Bp(D) for each p > 1. This result was proved very recently in our companion
paper [24] for D = ∆, which implies the case for D = U by Möbius invariance. Recall that S(Mp(D∗)) =
S(Ms

p(D∗)) when p ≥ 2.

3. Pre-logarithmic derivative models of Teichmüller spaces

In this section, we will prove the part (2)⇔ (3) in Theorem 1.3 (i.e., Theorem 3.3 below), which will be
used to prove Theorem 1.2. We will follow the lines in our paper [38], where p = 2 was considered.

We first recall the pre-logarithmic derivative model of the universal Teichmüller space (see [2], [50]).
Contrary to the Schwarzian derivative model, the pre-logarithmic derivative is not invariant under a Möbius
transformation. Therefore, we need to treat pre-logarithmic derivative models of subspaces of the little
Teichmüller space separately in the unit circle case and real line case (see [38]). In this section, we will deal
with the pre-logarithmic derivative model of the (strong) integrable Teichmüller space in the half plane
case.

Let B(Ω) denote the Bloch space of functions ϕ holomorphic in Ωwith semi-norm

∥ϕ∥B(Ω) � sup
z∈Ω
|ϕ′(z)|λ−1

D (z),

and B0(Ω) the subspace of B(Ω) which consists of those functions ϕ such that

inf

 sup
z∈Ω\K

|ϕ′(z)|λ−1
Ω (z) : K ⊂ Ω compact

 = 0.

We also denote by Bp(Ω) the Besov space of functions ϕ holomorphic in Ωwith semi-norm

∥ϕ∥Bp(Ω) �

(
1
π

"
Ω

|ϕ′(z)|pλ2−p
Ω

dxdy
) 1

p

.

It is known that Bp(Ω) ⊂ B0(Ω), and the inclusion map is continuous (see [49]). It is also known that for
each holomorphic function ϕ on Ω, ϕ′′ ∈ B(Ω) if ϕ ∈ B(Ω), ϕ′′ ∈ B0(Ω) if ϕ ∈ B0(Ω), and ϕ′′ ∈ Bp(Ω) if
ϕ ∈ Bp(Ω) (see [49]). The converse is also true, with some normalized conditions at∞whenever Ω is not a
bounded domain (see [36], [38]).

Koebe distortion theorem implies that log f ′µ|D ∈ B(D) for µ ∈ M(D∗). Furthermore, the map L induced
by the correspondence µ 7→ log f ′µ|D is a continuous map from M(D∗) into B(D) (see [23]). Actually,
L : M(D∗)→ B(D) is even holomorphic (see [19]). It is known that L(M0(D∗) = L(M(D∗)) ∩ B0(D) (see [14],
[15], [31], [38]), and L(Mp(∆∗)) = L(M(∆∗)) ∩ Bp(∆) for p ≥ 2 (see [10], [18], [40]). Theorem 3.3 below implies
that the latter result also holds in the half plane case.
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Lemma 3.1. ([21]) Let 1 < p ≤ q < ∞, and u(s), v(s) be two positive measurable functions in the interval (a, b). If

A � sup
a<x<b

(∫ x

a
u(s)ds

)1/q (∫ b

x
v(s)1−p′ds

)1/p′

< ∞,

where p′ = p/(p − 1). Then there is constant C(p, q) > 0 such that for all positive measurable functions f in the
interval (a, b), the following inequality holds∫ b

a

(∫ b

x
f (s)ds

)q

u(x)dx

1/q

≤ C(p, q)A
(∫ b

a
f (x)pv(x)dx

)1/p

.

Lemma 3.2. Letϕ be a holomorphic function on the upper half planeU such thatϕ′ ∈ B(U) and limy→∞ ϕ(x+iy) = 0
uniformly for x ∈ R. Then there exists some constant C(p) > 0 such that"

Ut

|ϕ(x + iy)|pyp−2dxdy ≤ C(p)
("

Ut

|ϕ′(x + iy)|py2p−2dxdy + ∥ϕ′∥pB(U)

)
,

where
U(t) = {x + iy : −1/t < x < 1/t, t < y < 1/t}, 0 < t < 1.

Proof. By assumption we have

ϕ(x + iy) = −i
∫
∞

y
ϕ′(x + iv)dv,

which implies that

|ϕ(x + iy)| ≤
∫
∞

y
|ϕ′(x + iv)|dv ≤

∫ 1/t

y
|ϕ′(x + iv)|dv +

∥ϕ′∥B(U)

4
t.

Noting that (a + b)p
≤ 2p−1(ap + bp) for positive a, b, we conclude that∫ 1/t

t
|ϕ(x + iy)|pyp−2dy ≤ 2p−1

∫ 1/t

t

(∫ 1/t

y
|ϕ′(x + iv)|dv

)p

yp−2dy +
∥ϕ′∥pB(U)

2p+1(p − 1)
t.

By Lemma 3.1 with u(s) = sp−2, v(s) = s2p−2, and q = p, we conclude that∫ 1/t

t

(∫ 1/t

y
|ϕ′(x + iv)|dv

)p

yp−2dy ≤ Cp(p, p) sup
t<x<1/t

A(x)
∫ 1/t

t
|ϕ′(x + iy)|py2p−2dy,

where

A(x) =
∫ x

t
sp−2ds

∫ 1
t

x
s(2p−2)(1−p′)ds

p−1

=
1

p − 1
(xp−1

− tp−1)
(1

x
− t

)p−1

.

A direct computation shows that the unique critical point of A(x) in (t, 1/t) is x0 = t1−2/p. Thus

sup
t<x<1/t

A(x) = A(x0) =
1

p − 1

(
1 − t2− 2

p
)p
≤

1
p − 1

.

Consequently, there exists some constant C(p) such that∫ 1/t

t
|ϕ(x + iy)|pyp−2dy ≤ C(p)

(∫ 1/t

t
|ϕ′(x + iy)|py2p−2dy + ∥ϕ′∥pB(U)t

)
.

Integrating both sides of the above inequality with respect to x from −1/t to 1/t, we get"
Ut

|ϕ(x + iy)|pyp−2dxdy ≤ C(p)
("

Ut

|ϕ′(x + iy)|py2p−2dxdy + ∥ϕ′∥pB(U)

)
.

This completes the proof of the lemma.
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Now we can prove the main result ((2)⇔ (3) in Theorem 1.3) of this section. It is known that the same
result holds on the disk case (see [18]).

Theorem 3.3. Let p > 1 and µ ∈M(U∗) be given. Then L(µ) ∈ Bp(U) if and only if S(µ) ∈ Bp(U).

Proof. Recall that Bp(U) ⊂ B0(U), and for each holomorphic function ϕ on U, ϕ′′ ∈ Bp(U) if ϕ ∈ Bp(U).
Thus the only if part follows immediately from

S(µ) = L′′(µ) −
1
2

(L′(µ))2,

where L′(µ) and L′′(µ) are respectively the first and second order derivatives of L(µ). Precisely,

∥S(µ)∥pBp(U) ≤ 2p−1
∥L′′(µ)∥pBp(U) +

1
2
∥L(µ)∥p

B(U)∥L(µ)∥p
Bp(U) < +∞.

To prove the if part, we assume that S(µ) ∈ Bp(U) so that S(µ) ∈ B0(U), which implies that L(µ) ∈ B0(U).
Fix some ϵ > 0 so small such that ϵ < 1/C(p), where C(p) > 0 is the constant in Lemma 3.2. Then there is a
positive constant t0 < 1 such that for all z = x + iy ∈ U\U(t0),

yp
|L′(µ)(x + iy)|p < ϵ.

By Lemma 3.2 we have for 0 < t < t0 that

1
C(p)

"
U(t)
|L′(µ)(x + iy)|pyp−2dxdy

≤

"
U(t)
|L′′(µ)(x + iy)|py2p−2dxdy + ∥L′′(µ)∥pB(U)

≤ 2p−1
"
U(t)
|S(µ)(x + iy)|py2p−2dxdy +

1
2

"
U(t)
|L′(µ)(x + iy)|2py2p−2dxdy + ∥L′′(µ)∥pB(U)

≤
π

2p+1 ∥S(µ)∥pBp(U) +
1
2

"
U(t0)
|L′(µ)(x + iy)|2py2p−2dxdy

+
1
2

"
U(t)\U(t0)

|L′(µ)(x + iy)|2py2p−2dxdy + ∥L′′(µ)∥pB(U)

≤
1
2

"
U(t0)
|L′(µ)(x + iy)|2py2p−2dxdy +

ϵ
2

"
U(t)
|L′(µ)(x + iy)|pyp−2dxdy

+
π

2p+1 ∥S(µ)∥pBp(U) + ∥L
′′(µ)∥pB(U),

which implies that

(
1

C(p)
−
ϵ
2

)
"
U(t)
|L′(µ)(x + iy)|pyp−2dxdy

≤
1
2

"
U(t0)
|L′(µ)(x + iy)|2py2p−2dxdy +

π

2p+1 ∥S(µ)∥pBp(U) + ∥L
′′(µ)∥pB(U) < ∞.

Letting t→ 0 we obtain L(µ) ∈ Bp(U) as desired.

4. BMO functions and Semmes’ construction revisited

In order to prove (the if part of) Theorem 1.2, we need a construction concerning quasiconformal
extensions of strongly quasisymmetric homeomorphisms introduced by Semmes [34], which was used to
prove the if part of Theorem 1.2 for p = 2 in our paper [36].



Q. Li, Y. Shen / Filomat 37:8 (2023), 2633–2645 2640

A locally integrable function u ∈ L1
loc(S) is said to have bounded mean oscillation and belongs to the

space BMO(S) if

∥u∥BMO � sup
1
|I|

∫
I
|u(t) − uI ||dt| < +∞,

where the supremum is taken over all finite sub-intervals I of S, while uI is the average of u on the interval
I, namely,

uI =
1
|I|

∫
I
u(t)|dt|.

If u also satisfies the condition

lim
|I|→0

1
|I|

∫
I
|u(t) − uI ||dt| = 0,

we say u has vanishing mean oscillation and belongs to the space VMO(S). In the following, we denote by
BMOR(S) and VMOR(S) the set of all real-valued BMO and VMO functions, respectively. By the well-known
theorem of John-Nirenberg for BMO functions (see [16]), it is known that

1
|I|

∫
I
e|u−uI |dt ≲ ∥u∥BMO (1)

when ∥u∥BMO is small. It is also known that Bp(S) ⊂ VMO(S), and the inclusion map is continuous (see [24]
for a proof).

We next recall a basic result of Coifman-Meyer [9]. For u ∈ BMO(R), set

γu(x) =

∫ x

0 eu(t)dt∫ 1

0 eu(t)dt
, x ∈ R.

Coifman-Meyer [9] showed that γu is a strongly quasisymmetric homeomorphism from the real lineR onto
a chord-arc curve Γu = γu(R) when ∥u∥BMO is small. Recall that a sense preserving homeomorphism h on
R is strongly quasisymmetric if it is locally absolutely continuous so that |h′| is an A∞ weight introduced
by Muckenhoupt [27] (see also [16]) and it maps R onto a chord-arc curve (see [34]). Clearly, a strongly
quasisymmetric homeomorphism from the real line onto itself is quasisymmetric.

In an important paper [34], Semmes showed that, when ∥u∥BMO is small, γu can be extended to a
quasiconformal mapping to the whole plane whose Beltrami coefficient satisfies certain Carleson measure
condition. To be precise, let φ and ψ be two C∞ real-valued function on the real line supported on [−1, 1]
such that φ is even, ψ is odd and

∫
R
φ(x)dx = 1,

∫
R
ψ(x)xdx = −1. Define

ρ(x, y) = ρu(x, y) = φy ∗ γu(x) + iψy ∗ γu(x), z = x + iy ∈ U, (2)

where φy, y > 0, is defined by φy(x) = y−1φ(y−1x). ψy is defined by the same way. Semmes proved that
ρ is a quasiconformal mapping from the upper half plane U onto the left domain bounded by Γu when
∥u∥BMO is small. Furthermore, when u is real-valued, ρ is a quasiconformal mapping of U onto itself and
is quasi-isometric under the Poincaré metric |dz|/y. By the standard BMO estimates, Semmes [34] (see also
[36]) showed that the Beltrami coefficient µ = ∂ρ/∂ρ satisfies ∥µ∥∞ ≲ ∥u∥BMO if ∥u∥BMO is small.

5. Proof of Theorem 1.2

We first recall the following result due to Bourdaud [7] (see also [8], [43]).

Proposition 5.1. ([7]) Let p > 1 and h be a quasisymmetric homeomorphism on S. Then the pull-back operator Ph
defined by Phu = u ◦ h is a bounded operator from Bp(S) into itself.
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Proof of Theorem 1.2 (only if part) Let h be an increasing homeomorphism from the real line R onto
itself such that h ∈ SQSp(R). Then h can be extended to a quasiconformal mapping of the lower half plane
onto itself with Beltrami coefficient µ ∈ Ms

p(U∗). Without loss of generality, we may assume that h(0) = 0,
h(1) = 1. Then there exists a conformal mapping 1 on the lower half plane such that 1◦h = fµ on the real line.
Notice that J ◦ fµ ◦ J = J ◦ 1 ◦ J ◦ h on the real line, where J(z) = z̄ is the standard conformal reflection. Since
SQSp(R) is a group, there exists some ν ∈Ms

p(U∗) such that J ◦1◦ J = fν on the upper half plane. Noting that
S(Ms

p(U∗)) ⊂ S(M(U∗))∩Bp(U), we conclude by Theorem 3.3 that log f ′µ ∈ Bp(U), and log(J ◦ 1 ◦ J)′ ∈ Bp(U),
or equivalently, log 1′ ∈ Bp(U∗). Consequently, each of h, fµ and 1 is locally absolutely continuous on the
real line.

On the other hand, it is well known that each elementϕ ∈ Bp(U) has boundary values almost everywhere
on the real line, and the boundary function ϕ|R belongs to the Sobolev class Bp(R) (see [49]). We use log f ′µ
to denote the boundary function of log f ′µ|U. Then log f ′µ ∈ Bp(R). Similarly, log 1′ has boundary value
function on the real line, denoted by log 1′, also being in the Sobolev class Bp(R).

Now from 1 ◦ h = fµ we obtain
log h′ = log f ′µ − log 1′ ◦ h,

which implies by Proposition 5.1 that log h′ ∈ Bp(R) as required. □

The proof of if part will be given by repeating the reasoning from our papers ([36], [37]), where p = 2
was considered again. We first prove the following result.

Lemma 5.2. There exists some universal constant δ > 0 such that, for any u ∈ Bp(R) with ∥u∥Bp(R) < δ, the mapping
ρ = ρu defined by (2) is quasiconformal whose Beltrami coefficient µ satisfies ∥µ∥QSp(R) ≲ ∥u∥Bp(R) and thus belongs
to the class Mp(U)1).

Proof. By the continuity of the inclusion Bp(R) → BMO(R), we conclude that there exists some universal
constant δ > 0 such that, for any u ∈ Bp(R) with ∥u∥Bp(R) < δ, the mapping ρ = ρu defined by (2) is
quasiconformal. It remains to show that µ ∈Mp(U).

For z = x + iy ∈ U, set I = [x − y, x + y] so that

uI =
1

2y

∫ x+y

x−y
u(t)dt.

Then we have (see [36], [37])

|µ(z)| ≲
1
|I|

∫
I
|u(t) − uI |e|u(t)−uI |dt.

By Hölder’s inequality, we conclude by (1) that

|µ(z)|p ≲
1
|I|p

∫
I
|u(t) − uI |

pdt
(∫

I
ep′ |u(t)−uI |dt

) p
p′

≲
1
|I|

∫
I
|u(t) − uI |

pdt

≲
1
|I|

∫
I
|u(t) − u(x)|pdt + |u(x) − uI |

p.

On the other hand, we conclude by Hölder’s inequality again that

|u(x) − uI |
p =

∣∣∣∣∣ 1
|I|

∫
I
u(t)dt − u(x)

∣∣∣∣∣p
=

∣∣∣∣∣ 1
|I|

∫
I
(u(t) − u(x))dt

∣∣∣∣∣p
≲

1
|I|

∫
I
|u(t) − u(x)|pdt.

1)Mp(U) can be defined in the same manner as Mp(U∗).
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Consequently,

|µ(z)|p ≲
1
|I|

∫
I
|u(t) − u(x)|pdt ≍

1
y

∫ y

−y
|u(t + x) − u(x)|pdt.

Thus, we have "
U

|µ(z)|p

y2 dxdy ≲
"
U

∫ y

−y

|u(t + x) − u(x)|p

y3 dtdxdy

=

∫ +∞

−∞

dx
∫ +∞

0

dy
y3

∫ y

−y
|u(t + x) − u(x)|pdt

=

∫ +∞

−∞

dx
∫ +∞

−∞

|u(x + t) − u(x)|pdt
∫ +∞

|t|

dy
y3

=

∫ +∞

−∞

dx
∫ +∞

−∞

|u(x + t) − u(x)|p

2t2 dt

≍ ∥u∥p
Bp(R).

Corollary 5.3. Let h be an increasing and locally absolutely continuous homeomorphism from the real line onto itself
such that ∥ log h′∥Bp(R) < δ. Then h can be extended to a quasiconformal mapping to the upper half plane which is
quasi-isometric under the Poincaré metric |dz|/y and has Beltrami coefficient in Mp(U). In particular, h belongs the
class SQSp(R).

To prove (the if part of) Theorem 1.2, we will decompose a homeomorphism h with finite ∥ log h′∥Bp(R)
into homeomorphisms h j with small norms ∥ log h′j∥Bp(R). We need

Lemma 5.4. Let h be an increasing and locally absolutely continuous homeomorphism from the real line onto itself
such that ∥ log h′∥Bp(R) < ∞. Then log h′ is in the closure of L∞(R) under the BMO norm. In particular, h is strongly
quasisymmetric.

Proof. Consider the Cayley transformation γ(z) = z−i
z+i from the upper half plane U onto the unit disk ∆.

Since log h′ ∈ Bp(R), log h′ ◦ γ−1
∈ Bp(S1) ⊂ VMO(S1), which implies that log h′ ◦ γ−1 can be approximated

by a sequence of bounded functions (un) on the unit circle under the BMO norm (see [16]). Thus, log h′

can be approximated by the bounded functions un ◦ γ on the real line under the BMO norm. The second
statement follows immediately from Lemma 1.4 in [29].

Proof of Theorem 1.2 (if part) Let h be an increasing and locally absolutely continuous homeomorphism
from the real line onto itself such that log h′ belongs to the Sobolev class Bp(R). Without loss of generality,
we assume h(0) = 0. For each real number t ∈ [0, 1], set

ht(x) =
∫ x

0
(h′(s))tds, x ∈ R.

Then ht is an increasing and locally absolutely continuous homeomorphism from the real line onto itself
with h0 = id, h1 = h, and log h′t = t log h′, which implies by Lemma 5.4 that ht is strongly quasisymmetric.
Noting that for any fixed t ∈ [0, 1],

∥ log(hs ◦ h−1
t )′∥Bp(R) = ∥(log h′s − log h′t) ◦ h−1

t ∥Bp(R) = |s − t|∥P−1
ht

log h′∥Bp(R),

we conclude by Proposition 5.1 that there exists a neighbourhood It such that ∥ log(hs ◦ h−1
t )′∥Bp(R) < δwhen

s ∈ It. By compactness, we conclude that there exists a sequence of finite numbers 0 = t0 < t1 < t2 < · · · <
tn < tn+1 = 1 such that ∥ log(ht j ◦ h−1

t j+1
)′∥Bp(R) < δ for j = 0, 1, 2, · · · ,n − 1,n. Since SQSp(R) is a group, and

h−1 = (ht0 ◦ h−1
t1

) ◦ (ht1 ◦ h−1
t2

) ◦ · · · ◦ (htn ◦ h−1
tn+1

),

We conclude by Corollary 5.3 that h ∈ SQSp(R). □
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6. Proof of Theorems 1.3 and 1.4

We first prove the following result which was stated in section 1.

Lemma 6.1. A p-integrable quasicircle must be a chord-arc curve.

Proof. Let Γ be a p-integrable quasicircle. Choose a conformal mapping f from D onto the left domain Ω
bounded by Γ. Then log f ′ ∈ Bp(D) so that its boundary function log f ′ ∈ Bp(S) ⊂ VMO(S).

If Γ is a bounded curve, we let D = ∆ and then conclude by a Pommerenke’s result (see [30]) that Γ is
asymptotically smooth, which means that Γ is rectifiable, and

lim
|ζ−z|→0

length(ζ̃z)
|ζ − z|

= 1

for any two points z and ζ of Γ. Since Γ is a quasicircle, this already implies that Γ is a chord-arc curve.
If Γ passes through∞, we letD = U and consider again the Cayley transformation γ(z) = z−i

z+i from the
upper half plane U onto the unit disk ∆. Choose a point z0 ∈ Ω and set γ̃(z) = 1

z−z0
. Then f̃ � γ̃ ◦ f ◦ γ−1

is a conformal mapping from ∆ onto a bounded domain with boundary the quasicircle Γ̃ = γ̃(Γ). Since
log f ′ ∈ Bp(U), Theorem 3.3 implies that S( f ) ∈ Bp(U), which implies that S( f ) ◦ (γ)−1(γ−1)′2 ∈ Bp(∆), that
is, S( f̃ ) ∈ Bp(∆), which in turn implies that log f̃ ′ ∈ Bp(∆). Then Γ̃ is a chord-arc curve. By the Möbius
invariance of chord-arc curves (see [25]), we conclude that Γ is a chord-arc curve.

Now we begin to prove Theorems 1.3 and 1.4. Let Γ be a chord-arc curve passing through∞ and z = z(s)
be an arc-length parametrization of Γ. Let f map the upper half planeU conformally onto the left domain
Ω bounded by Γwith f (∞) = ∞. Set h1 : R→ R by z ◦ h1 = f . Then we have

Lemma 6.2. Under the above notations, the following statements are equivalent:
(1) Γ is a p-integrable quasicircle;
(2) h1 ∈ SQSp(R);
(3) arg z′ ∈ Bp(R).

Proof. From z ◦ h1 = f we obtain f ′ = (z′ ◦ h1)h′1, which implies that

ℜ log f ′ = log h′1, ℑ log f ′ = arg z′ ◦ h1 (3)

on the real line. Since Γ is a chord-arc curve, Γ is a p-integrable quasicircle if and only if

log f ′ ∈ Bp(U)⇔ℜ log f ′ ∈ Bp(R)⇔ ℑ log f ′ ∈ Bp(R).

By (3) and Theorem 1.2 we obtain that (1) ⇔ (2). On the other hand, since Γ is a chord-arc curve, a
classical result of Lavrentiev [22] implies that h1 is locally absolutely continuous so that h′1 belongs to the
class of weights A∞, or equivalently, h1 is a strongly quasisymmetric homeomorphism and consequently
quasisymmetric. By (3) and Proposition 5.1, we conclude that (1)⇔ (3).

Proof of Theorem 1.4 (1) ⇒ (3) Let Γ be a p-integrable quasicircle passing through ∞. Lemma 6.1
implies that Γ is a chord-arc curve. We conclude by David’s result (see [11]) that there exists a real-valued
BMO function b ∈ BMOR(R) such that an arc-length parametrization z = z(s) of Γ satisfies the condition
z′(s) = eib(s). Now Lemma 6.2 implies that b = arg z′ ∈ Bp,R(R).

(3) ⇒ (1) Suppose Γ is a chord-arc curve and an arclength parameterization z : R → Γ satisfies the
condition z′(s) = eib(s) for some b ∈ Bp,R(R). Since arg z′ = b ∈ Bp(R), we conclude by Lemma 6.2 again that
Γ is a p-integrable quasicircle.

(2)⇔ (3) Since h = 1−1
◦ f is the quasisymmetric conformal sewing for Γ, h−1 = f−1

◦ 1 = (J ◦ f ◦ J)−1
◦

(J ◦ 1 ◦ J) is the conformal sewing for J(Γ). Clearly, J(z(s)) is the arclength parameterization for J(Γ) and
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(J(z))′(s) = e−ib(s). By (1) ⇔ (3), we conclude that b ∈ Bp(R) if and only if log(J ◦ 1 ◦ J)′ ∈ Bp(U), which is
equivalent to log 1′ ∈ Bp(U∗).

(3) ⇔ (4) τ(z) and z(s) are related by τ ◦ z = z′, that is, u ◦ z = b. Since z : R → Γ is an arc-length
parameterization of the chord-arc curve Γ, z : R→ Γ is bi-Lipschitz, that is, |z(t)− z(s)| ≤ |t− s| ≤ C|z(t)− z(s)|
for some C ≥ 1. Thus b ∈ Bp(R) if and only if u ∈ Bp(Γ). □

Proof of Theorem 1.3 (1) ⇔ (4) follows from Theorem 1.2, while (2) ⇔ (3) from Theorem 3.3. (1) ⇒ (2)
follows from the relation S(Ms

p(U∗)) ⊂ S(M(U∗)) ∩ Bp(U), which has been used in the proof of the only if
part of Theorem 1.2. The same reasoning can be used to prove (3)⇒ (4). In fact, (3) implies log 1′ ∈ Bp(U∗)
by Theorem 1.4. Then from 1 ◦ h = f , we obtain log h′ = log f ′ − log 1′ ◦ h, which implies by Proposition 5.1
that log h′ ∈ Bp(R). This completes the proof of Theorem 1.3. □

7. Concluding remarks and questions

When p ≥ 2, Tp has a unique complex Banach manifold structure (via the Bers embedding β : Tp → Bp(U))
such that the natural projection Φ : Mp(U∗) → Tp is a holomorphic split submersion (see [42]). In [36]
we proved that the correspondence h 7→ log h′ induces a real analytic map from (the quasisymmetric
homeomorphism model of) T2 onto B2,R(R)/R whose inverse is also real analytic. By the same reasoning
we can show that this result still holds for a general p > 2, namely, the correspondence h 7→ log h′ induces a
real analytic map from (the quasisymmetric homeomorphism model of) Tp onto Bp,R(R)/R whose inverse
is also real analytic. A more general result can be found in Wei-Matsuzaki ([44], [45]).

A p-integrable quasicircleΓ is said to be normalized if it passes through 0 and∞, and the unique arclength
parameterization z : R → Γ with z(0) = 0 satisfies the condition z(1) > 0. Then the quasicircle model of Tp
is precisely the set of all normalized p-integrable quasicircles. For each normalized p-integrable quasicircle
Γ, Theorem 1.4 says that there exists some b ∈ Bp,R(R)/R such that z′(s) = eib(s). It is easy to see that for each
p > 1 the set T̂p of all these functions b is open in Bp,R(R)/R. In [39] we proved that the correspondence
Γ 7→ b induces a homeomorphism from (the quasicircle model of) T2 onto T̂2. Wei-Matsuzaki ([44], [45])
showed that this result remains true when p > 2.

The situation seems to be complicated when p < 2. We first need to endow the strong p-integrable
Teichmüller space Ts

p with a complex Banach manifold structure. Since β(Ts
p) is an open subset of Bp(U), a

natural complex Banach manifold structure is endowed by declaring β to be a biholomorphic isomorphism
from Ts

p onto β(Ts
p). Ts

p can also be endowed with two real Banach manifold structures, one is by the
correspondence h 7→ log h′ from (the quasisymmetric homeomorphism model of) Ts

p onto Bp,R(R)/R, the
other is by the correspondence Γ 7→ b from (the quasicircle model of) Ts

p onto T̂p. It is not clear whether these
manifold structures are well compatible with each other. Finally, it remains open whether a p-integrable
asymptotic affine homeomorphism is strong p-integrable asymptotic affine when p < 2.
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