Filomat 37:8 (2023), 2633–2645 https://doi.org/10.2298/FIL2308633L

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Some notes on integrable Teichmüller space on the real line

Qingqing Li^a, Yuliang Shen^a

^aDepartment of Mathematics, Soochow University, Suzhou 215006, People's Republic of China.

Abstract. We will introduce and discuss various models of the integrable Teichmüller space T_p in the real line case, extending some known results on the Weil-Petersson Teichmüller space T_2 to the general space T_p for p > 1.

1. Introduction and statement of main results

We first fix some basic notations. Let $\mathbb{U} = \{z = x + iy : y > 0\}$ and $\mathbb{U}^* = \{z = x + iy : y < 0\}$ denote the upper and lower half plane in the complex plane \mathbb{C} , respectively. $\mathbb{R} = \partial \mathbb{U} = \partial \mathbb{U}^*$ is the real line, and $\hat{\mathbb{R}} = \mathbb{R} \cup \{\infty\}$ is the extended real line in the Riemann sphere $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$. Let $\Delta = \{z : |z| < 1\}$ denote the unit disk. $\Delta^* = \hat{\mathbb{C}} - \overline{\Delta}$ is the exterior of Δ , and $S^1 = \partial \Delta = \partial \Delta^*$ is the unit circle. \mathbb{D} will always denote the unit disk Δ or the upper half plane \mathbb{U} so that $\mathbb{S} = \partial \mathbb{D}$ is the unit circle S^1 or the real line \mathbb{R} . Similarly, \mathbb{D}^* will always denote the exterior Δ^* of the unit disk or the lower half plane \mathbb{U}^* . The notation $A \leq B$ ($A \geq B$) means that there is a positive constant *C* independent of *A* and *B* such that $A \leq CB$ ($A \geq CB$), while $A \prec B$ means both $A \leq B$ and $A \geq B$.

One of the models of the universal Teichmüller space *T* can be defined as the right coset space T = QS(S)/Möb(S). Here, QS(S) denotes the group of all quasisymmetric homeomorphisms of S onto itself, and Möb(S) the subgroup of QS(S) which consists of Möbius transformations keeping S fixed. Recall that a sense preserving self-homeomorphism *h* of S is quasisymmetric if there exists a (least) positive constant *C*(*h*), called the quasisymmetric constant of *h*, such that $|h(I_1)| \leq C(h)|h(I_2)|$ for all pairs of adjacent arcs I_1 and I_2 on S with the same arc-length $|I_1| = |I_2| (\leq |S|/2)$. Beurling-Ahlfors [3] proved that a self-homeomorphism *h* of \mathbb{R} is quasisymmetric if and only if there exists some quasiconformal homeomorphism of \mathbb{U} onto itself which has boundary values *h*. Later Douady-Earle [12] gave a quasiconformal extension of a quasisymmetric homeomorphism of S^1 to the unit disk which is conformally invariant.

Let p > 1 be a fixed number. A quasisymmetric homeomorphism $h \in QS(S)$ is said to be a *p*-integrable asymptotic affine homeomorphism if it has a quasiconformal extension f to \mathbb{D} whose Beltrami coefficient μ is *p*-integrable in the Poincaré metric $\lambda_{\mathbb{D}}$, namely,

$$\iint_{\mathbb{D}} |\mu(z)|^p \lambda_{\mathbb{D}}^2(z) dx dy < \infty.$$

²⁰²⁰ Mathematics Subject Classification. Primary 30C62; Secondary 30F60, 32G15

Keywords. universal Teichmüller space, *p*-integrable Teichmüller space, quasi-symmetric homeomorphism, quasiconformal mapping, Besov space

Received: 20 February 2022; Revised: 03 August 2022; Accepted: 09 October 2022 Communicated by Miodrag Mateljević

Research supported by the National Natural Science Foundation of China (Grant No. 12171346)

Email addresses: lqqsyx@163.com (Qingqing Li), ylshen@suda.edu.cn (Yuliang Shen)

Let $QS_p(S)$ denote the set of *p*-integrable asymptotic affine homeomorphisms of S. The right coset space $T_p = QS_p(S)/Möb(S)$ is called the *p*-integrable Teichmüller space. The class $QS_2(S^1)$ was first introduced by Cui [10] and was much investigated in recent years (see [17], [32], [33], [35], [36], [40], [48]), and nowadays T_2 is usually called the Weil-Petersson Teichmüller space. For a general $p \ge 2$, $QS_p(S^1)$ was first introduced and investigated by Guo [18] (see also [26], [41], [42], [47]).

The first goal of the paper is to give the following intrinsic characterization of a quasisymmetric homeomorphism in the class $QS_p(\mathbb{R})$ ($p \ge 2$) without using quasiconformal extensions. Recall that the Besov space $\mathcal{B}_p(\mathbb{S})$ is the collection of locally integrable functions u on \mathbb{S} such that

$$||u||_{\mathcal{B}_{p}(\mathbb{S})}^{p} \doteq \frac{1}{4\pi^{2}} \int_{\mathbb{S}} \int_{\mathbb{S}} \frac{|u(\zeta) - u(\eta)|^{p}}{|\zeta - \eta|^{2}} |d\zeta| |d\eta| < +\infty.$$

We denote by $\mathcal{B}_{p,\mathbb{R}}(\mathbb{S})$ the real-valued functions in $\mathcal{B}_p(\mathbb{S})$.

Theorem 1.1. Let $p \ge 2$ be a fixed number and h be an increasing homeomorphism on the real line \mathbb{R} . Then h is a *p*-integrable asymptotic affine homeomorphism if and only if h is locally absolutely continuous and $\log h'$ belongs to the Besov class $\mathcal{B}_p(\mathbb{R})$.

It is known that an analogous result is true in the unit circle setting, namely, a sense-preserving homeomorphism h on the unit circle is a p-integrable asymptotic affine homeomorphism if and only if h is absolutely continuous and log h' belongs to the Besov class $\mathcal{B}_p(S^1)$. For p = 2, this was first proved Shen [35], answering a question explicitly proposed by Takhtajan-Teo (see Remark II.1.2 of [40]), and reproved later by Wu-Hu-Shen [46]. Very recently, Bishop ([4], [5]) gave a more geometric approach for p = 2. For a general $p \ge 2$, this was proved by Tang-Shen [42].

It should be pointed out that Theorem 1.1 can not be deduced directly from the unit circle case since the pre-logarithmic derivative is not invariant under a Möbius transformation. On the other hand, Theorem 1.1 has been proved in the special case p = 2. Actually, when p = 2, the if part of Theorem 1.1 was proved by Shen-Tang ([36], [37]) by means of a construction due to Semmes (see [34]), while the only if part was proved by Shen-Tang-Wu [38] by considering the pre-logarithmic derivative models of the little and Weil-Petersson Teichmüller spaces of the half plane. Theorem 1.1 generalizes the corresponding results in these two papers. After this research was completed in a previous version of this paper, the authors got to know that Wei-Matsuzaki ([44], [45]) gave a proof of Theorem 1.1 independently. Instead of using Semmes' construction, Wei-Matsuzaki used a variant of the Beurling-Ahlfors extension by the heat kernel introduced by Fefferman-Kenig-Pipher [13].

It is an open problem to determine whether Theorem 1.1 remains true when 1 . We will prove a result which holds for any <math>p > 1 and is precisely Theorem 1.1 when $p \ge 2$. To make this precise, we recall the notion of strong *p*-integrable asymptotic affine homeomorphism, which was discussed on the unit circle in our companion paper [24] (see also [20]). A quasisymmetric homeomorphism $h \in QS(S)$ is said to be a strong *p*-integrable asymptotic affine homeomorphism if it has a quasiconformal extension *f* to \mathbb{D} such that *f* is quasi-isometric under the Poincaré metric, that is,

$$\lambda_{\mathbb{D}}(f(z))|df(z)| \asymp C(f)\lambda_{\mathbb{D}}(z)|dz|, \ z \in \mathbb{D},$$

and has Beltrami coefficient μ being *p*-integrable in the Poincaré metric. By means of a recent result in [24] (see Theorem 2.1 there), we conclude that a quasisymmetric homeomorphism $h \in QS(\mathbb{S})$ is a strong *p*-integrable asymptotic affine homeomorphism if and only if it has a quasiconformal extension f to \mathbb{D} such that both the Beltrami coefficients of f and the inverse mapping f^{-1} are *p*-integrable in the Poincaré metric. Let $SQS_p(\mathbb{S})$ denote the set of strong *p*-integrable asymptotic affine homeomorphisms of \mathbb{S} . Clearly, $SQS_p(\mathbb{S}) \subset QS_p(\mathbb{S})$, and $SQS_p(\mathbb{S}) = QS_p(\mathbb{S})$ when $p \ge 2$ (see [10], [41]). It is also clear that $SQS_p(\mathbb{S})$ is a subgroup of QS(\mathbb{S}). The right coset space $T_p^s = SQS_p(\mathbb{S})/Möb(\mathbb{S})$ is called the strong *p*-integrable Teichmüller space.

Theorem 1.2. Let p > 1 be a fixed number and h be an increasing homeomorphism on the real line \mathbb{R} . Then h is a strong p-integrable asymptotic affine homeomorphism if and only if h is locally absolutely continuous and log h' belongs to the Besov class $\mathcal{B}_p(\mathbb{R})$.

As stated above, Theorem 1.2 contains Theorem 1.1 since $SQS_p(S) = QS_p(S)$ when $p \ge 2$. The proof of Theorem 1.2 is based on the investigation in our two papers [36] and [38], where the case p = 2 was considered. For completeness we will repeat the details here. In particular, we will discuss the prelogarithmic derivative model and the Schwarzian derivative model of the strong *p*-integrable Teichmüller space T_p^s . Let Γ be a closed Jordan curve through the point at infinity with complementary domains Ω and Ω^* . Then there exists a pair of conformal mappings $f : \mathbb{U} \to \Omega$ and $g : \mathbb{U}^* \to \Omega^*$ with $f(\infty) = g(\infty) = \infty$, which can be continuously extended to \mathbb{R} and thus determine an increasing homeomorphism $h \doteq g^{-1} \circ f : \mathbb{R} \to \mathbb{R}$, known as a conformal sewing mapping for Γ . It is known that h is quasisymmetric if and only if Γ is a quasicircle (see [1]).

Theorem 1.2 can be expanded to the following result.

Theorem 1.3. Let p > 1 and $h = g^{-1} \circ f$ be a quasisymmetric conformal sewing for a quasicircle Γ through ∞ . Then the following statements are equivalent:

- (1) *h* is a strong *p*-integrable asymptotic affine homeomorphism;
- (2) The Schwarzian derivative S_f belongs to the Bergman space $B_{\nu}(\mathbb{U})$, namely,

$$\iint_{\mathbb{U}} |S_f(z)|^p y^{2p-2} dx dy < \infty.$$

(3) The pre-logarithmic derivative log f' belongs to the Besov space $\mathcal{B}_p(\mathbb{U})$, that is,

$$\iint_{\mathbb{U}} |(\log f')'(z)|^p y^{p-2} dx dy < \infty.$$

(4) *h* is locally absolutely continuous and log h' belongs to the Besov class $\mathcal{B}_{\nu}(\mathbb{R})$.

In order to prove Theorem 1.3, we also need to consider the quasicircle model of the strong *p*-integrable Teichmüller space T_p^s . A quasicircle Γ is said to be a *p*-integrable quasicircle if a conformal mapping *f* which maps \mathbb{D} onto the left domain bounded by Γ satisfies the condition $\log f' \in \mathcal{B}_p(\mathbb{D})$. A 2-integrable quasicircle is usually called a Weil-Petersson quasicircle (see [4], [5], [39]). A natural question is to give a geometric characterization of a *p*-integrable quasicircle without using the Riemann mapping. This question was explicitly proposed by Takhtajan-Teo for (bounded) Weil-Petersson quasicircles (see Remark II.1.2 of [40]). By means of a result of Pommerenke [30], it can be shown that a *p*-integrable quasicircle must be a chord-arc curve (see Lemma 6.1 below). Recall that a locally rectifiable closed Jordan curve Γ is called a chord-arc curve with constant *k* if length(ζz) $\leq (1 + k)|\zeta - z|$ for the smaller (i.e., with less length) subarc ζz of Γ joining any finite two points *z* and ζ of Γ (see [22], [30], [31]). Recently, Bishop ([4], [5]) gave various characterizations for bounded Weil-Petersson curves from the points of harmonic analysis, geometric measure theory and hyperbolic geometry. A question was invited to extend those characterizations to other curve families, say, *p*-integrable quasicircles (see [4-6]). When dealing with the dependence of the Riemann mapping *f* on a curve Γ , we gave a geometric characterization for unbounded Weil-Petersson quasicircles (see [39]). We now extend this characterization to general unbounded *p*-integrable quasicircles.

Theorem 1.4. Let p > 1 and $h = g^{-1} \circ f$ be a quasisymmetric conformal sewing for a quasicircle Γ through ∞ . Then the following statements are equivalent:

- (1) Γ is a *p*-integrable quasicircle, that is, $\log f' \in \mathcal{B}_p(\mathbb{U})$;
- (2) $\log g' \in \mathcal{B}_p(\mathbb{U}^*);$

(3) Γ is a chord-arc curve and an arclength parameterization $z : \mathbb{R} \to \Gamma$ satisfies the condition $z'(s) = e^{ib(s)}$ for some $b \in \mathcal{B}_{p,\mathbb{R}}(\mathbb{R})$;

(4) Γ is a chord-arc curve and the unit tangent direction τ to Γ satisfies the condition $\tau(z) = e^{iu(z)}$ for some real-valued function $u \in \mathcal{B}_{\nu}(\Gamma)$, namely,

$$\int_{\Gamma}\int_{\Gamma}\frac{|u(z)-u(w)|^p}{|z-w|^2}|dz||dw|<\infty.$$

2. Preliminaries

In this section, we give some basic definitions and results on the universal Teichmüller space T and its two subspaces, the little Teichmüller space T_0 and the integrable Teichmüller space T_p . In particular, we will recall the Schwarzian derivative models of these Teichmüller spaces.

We begin with the standard theory of the universal Teichmüller space (see [1], [14], [23] and [28] for more details). Let $M(\mathbb{D}^*)$ denote the open unit ball of the Banach space $L^{\infty}(\mathbb{D}^*)$ of essentially bounded measurable functions on \mathbb{D}^* . For $\mu \in M(\mathbb{D}^*)$, let f_{μ} be the quasiconformal mapping on the extended plane $\hat{\mathbb{C}}$ with complex dilatation equal to μ in \mathbb{D}^* , conformal in \mathbb{D} , normalized by $f_{\mu}(0) = 0$, $f_{\mu}(1) = 1$ and $f_{\mu}(\infty) = \infty$. Two elements μ and ν in $M(\mathbb{D}^*)$ are said to be equivalent, denoted by $\mu \sim \nu$, if $f_{\mu}|_{\mathbb{D}} = f_{\nu}|_{\mathbb{D}}$. Then $T = M(\mathbb{D}^*)/_{\sim}$ is the Bers model of the universal Teichmüller space. We let Φ denote the natural projection from $M(\mathbb{D}^*)$ onto T so that $\Phi(\mu)$ is the equivalence class $[\mu]$. [0] is called the base point of T.

It is known that the universal Teichmüller space *T* is an infinite dimensional complex Banach manifold. To make this precise, we first recall some important Banach spaces. Let Ω be an arbitrary simply connected domain in the extended complex plane $\hat{\mathbb{C}}$ which is conformally equivalent to the upper half plane. Then the hyperbolic metric λ_{Ω} (with curvature constantly equal to -4) in Ω can be defined by

$$\lambda_\Omega(f(z))|f'(z)|=\frac{1}{2y},\quad z=x+iy\in\mathbb{U},$$

where $f : \mathbb{U} \to \Omega$ is any conformal mapping. Let $B(\Omega)$ denote the Bers space of functions ϕ holomorphic in Ω with finite norm

$$\|\phi\|_{B(\Omega)} \doteq \sup_{z \in \Omega} |\phi(z)| \lambda_{\Omega}^{-2}(z),$$

and $B_0(\Omega)$ the closed subspace of $B(\Omega)$ which consists of those functions ϕ such that

$$\inf\left\{\sup_{z\in\Omega\setminus K} |\phi(z)|\lambda_{\Omega}^{-2}(z): K\subset\Omega \text{ compact}\right\}=0.$$

We also denote by $B_p(\Omega)$ the Bergman space of functions ϕ holomorphic in Ω with finite norm

$$\|\phi\|_{B_p(\Omega)} \doteq \left(\frac{1}{\pi} \iint_{\Omega} |\phi(z)|^p \lambda_{\Omega}^{2-2p} dx dy\right)^{\frac{1}{p}}.$$

It is easy to see that a conformal mapping $g : \Omega_1 \to \Omega_2$ induces a map $g^* : \phi \mapsto (\phi \circ g)(g')^2$, which are isometric isomorphisms from $B(\Omega_2)$ onto $B(\Omega_1)$, from $B_0(\Omega_2)$ onto $B_0(\Omega_1)$, and from $B_p(\Omega_2)$ onto $B_p(\Omega_1)$. Therefore, $B_p(\Omega) \subset B_0(\Omega)$, and the inclusion map is continuous (see [49]).

Now we consider the map $S : M(\mathbb{D}^*) \to B(\mathbb{D})$ which sends μ to the Schwarzian derivative of $f_{\mu}|_{\mathbb{D}}$. Recall that for any locally univalent function f, its Schwarzian derivative S_f is defined by

$$S_f \doteq N'_f - \frac{1}{2}N_f^2, \quad N_f \doteq (\log f')'.$$

S is a holomorphic split submersion onto its image, which descends down to a map β : $T \rightarrow B(\mathbb{D})$ known as the Bers embedding. Via the Bers embedding, *T* carries a natural complex Banach manifold structure so that Φ is a holomorphic split submersion.

Let $L_0(\mathbb{D}^*)$ be the closed subspace of $L^{\infty}(\mathbb{D}^*)$ which consists of those functions μ such that

$$\inf\{\|\mu\|_{\mathbb{D}^*\setminus K}\|_{\infty}: K \subset \mathbb{D}^* \text{ compact}\} = 0.$$

Set $M_0(\mathbb{D}^*) = M(\mathbb{D}^*) \cap L_0(\mathbb{D}^*)$. Then $T_0 = M_0(\mathbb{D}^*)/_{\sim}$ is called the little Teichmüller space. Under the Bers projection $S : M(\mathbb{D}^*) \to B(\mathbb{D}), S(M_0(\mathbb{D}^*) = S(M(\mathbb{D}^*)) \cap B_0(\mathbb{D})$ (see [14], [15], [31]).

We proceed to consider the integrable Teichmüller space T_p . We denote by $L_p(\mathbb{D}^*)$ the Banach space of all essentially bounded measurable functions μ on \mathbb{D}^* with norm

$$\|\mu\|_{\mathrm{QS}_{p}(\mathbb{S})} \doteq \|\mu\|_{\infty} + \left(\frac{1}{\pi} \iint_{\mathbb{D}^{*}} |\mu(z)|^{p} \lambda_{\mathbb{D}^{*}}^{2}(z) dx dy\right)^{\frac{1}{p}}.$$

Set $M_p(\mathbb{D}^*) = M(\mathbb{D}^*) \cap L_p(\mathbb{D}^*)$. Then $T_p = M_p(\mathbb{D}^*)/_{\sim}$ is the *p*-integrable Teichmüller space. Under the Bers projection $S : M(\mathbb{D}^*) \to B(\mathbb{D})$, $S(M_p(\mathbb{D}^*)) = S(M(\mathbb{D}^*)) \cap B_p(\mathbb{D})$ for $p \ge 2$ (see [10], [18], [40]). Finally, we denote by $M_p^s(\mathbb{D}^*)$ the subset of all μ in $M_p(\mathbb{D}^*)$ such that $f_{\mu}|_{\mathbb{D}^*}$ is quasi-isometric under the Poincaré metric, that is,

$$\lambda_{f_{\mu}(\mathbb{D}^{*})}(f_{\mu}(z))|df_{\mu}(z)| \asymp C(f_{\mu})\lambda_{\mathbb{D}^{*}}(z)|dz|, z \in \mathbb{D}^{*}$$

Then $T_p^s = M_p^s(\mathbb{D}^*)/_{\sim}$ is the strong *p*-integrable Teichmüller space. Under the Bers projection $S : M(\mathbb{D}^*) \to B(\mathbb{D}), S(M_p^s(\mathbb{D}^*)) \subset S(M(\mathbb{D}^*)) \cap B_p(\mathbb{D})$ for each p > 1. This result was proved very recently in our companion paper [24] for $\mathbb{D} = \Delta$, which implies the case for $\mathbb{D} = \mathbb{U}$ by Möbius invariance. Recall that $S(M_p(\mathbb{D}^*)) = S(M_p^s(\mathbb{D}^*))$ when $p \ge 2$.

3. Pre-logarithmic derivative models of Teichmüller spaces

In this section, we will prove the part (2) \Leftrightarrow (3) in Theorem 1.3 (i.e., Theorem 3.3 below), which will be used to prove Theorem 1.2. We will follow the lines in our paper [38], where p = 2 was considered.

We first recall the pre-logarithmic derivative model of the universal Teichmüller space (see [2], [50]). Contrary to the Schwarzian derivative model, the pre-logarithmic derivative is not invariant under a Möbius transformation. Therefore, we need to treat pre-logarithmic derivative models of subspaces of the little Teichmüller space separately in the unit circle case and real line case (see [38]). In this section, we will deal with the pre-logarithmic derivative model of the (strong) integrable Teichmüller space in the half plane case.

Let $\mathcal{B}(\Omega)$ denote the Bloch space of functions ϕ holomorphic in Ω with semi-norm

$$\|\phi\|_{\mathcal{B}(\Omega)} \doteq \sup_{z \in \Omega} |\phi'(z)| \lambda_{\mathbb{D}}^{-1}(z),$$

and $\mathcal{B}_0(\Omega)$ the subspace of $\mathcal{B}(\Omega)$ which consists of those functions ϕ such that

$$\inf\left\{\sup_{z\in\Omega\setminus K}|\phi'(z)|\lambda_{\Omega}^{-1}(z):K\subset\Omega\text{ compact}\right\}=0.$$

We also denote by $\mathcal{B}_p(\Omega)$ the Besov space of functions ϕ holomorphic in Ω with semi-norm

$$||\phi||_{\mathcal{B}_p(\Omega)} \doteq \left(\frac{1}{\pi} \iint_{\Omega} |\phi'(z)|^p \lambda_{\Omega}^{2-p} dx dy\right)^{\frac{1}{p}}.$$

It is known that $\mathcal{B}_p(\Omega) \subset \mathcal{B}_0(\Omega)$, and the inclusion map is continuous (see [49]). It is also known that for each holomorphic function ϕ on Ω , $\phi'' \in B(\Omega)$ if $\phi \in \mathcal{B}(\Omega)$, $\phi'' \in B_0(\Omega)$ if $\phi \in \mathcal{B}_0(\Omega)$, and $\phi'' \in B_p(\Omega)$ if $\phi \in \mathcal{B}_p(\Omega)$ (see [49]). The converse is also true, with some normalized conditions at ∞ whenever Ω is not a bounded domain (see [36], [38]).

Koebe distortion theorem implies that $\log f'_{\mu}|_{\mathbb{D}} \in \mathcal{B}(\mathbb{D})$ for $\mu \in M(\mathbb{D}^*)$. Furthermore, the map *L* induced by the correspondence $\mu \mapsto \log f'_{\mu}|_{\mathbb{D}}$ is a continuous map from $M(\mathbb{D}^*)$ into $\mathcal{B}(\mathbb{D})$ (see [23]). Actually, $L: M(\mathbb{D}^*) \to \mathcal{B}(\mathbb{D})$ is even holomorphic (see [19]). It is known that $L(M_0(\mathbb{D}^*) = L(M(\mathbb{D}^*)) \cap \mathcal{B}_0(\mathbb{D})$ (see [14], [15], [31], [38]), and $L(M_p(\Delta^*)) = L(M(\Delta^*)) \cap \mathcal{B}_p(\Delta)$ for $p \ge 2$ (see [10], [18], [40]). Theorem 3.3 below implies that the latter result also holds in the half plane case. **Lemma 3.1.** ([21]) Let 1 , and <math>u(s), v(s) be two positive measurable functions in the interval (*a*, *b*). If

$$A \doteq \sup_{a < x < b} \left(\int_a^x u(s) ds \right)^{1/q} \left(\int_x^b v(s)^{1-p'} ds \right)^{1/p'} < \infty,$$

where p' = p/(p-1). Then there is constant C(p,q) > 0 such that for all positive measurable functions f in the interval (a, b), the following inequality holds

$$\left(\int_a^b \left(\int_x^b f(s)ds\right)^q u(x)dx\right)^{1/q} \le C(p,q)A\left(\int_a^b f(x)^p v(x)dx\right)^{1/p}.$$

Lemma 3.2. Let ϕ be a holomorphic function on the upper half plane \mathbb{U} such that $\phi' \in B(\mathbb{U})$ and $\lim_{y\to\infty} \phi(x+iy) = 0$ uniformly for $x \in \mathbb{R}$. Then there exists some constant C(p) > 0 such that

$$\iint_{\mathbb{U}_t} |\phi(x+iy)|^p y^{p-2} dx dy \le C(p) \left(\iint_{\mathbb{U}_t} |\phi'(x+iy)|^p y^{2p-2} dx dy + ||\phi'||_{B(\mathbb{U})}^p \right),$$

where

$$\mathbb{U}(t) = \{x + iy : -1/t < x < 1/t, t < y < 1/t\}, \quad 0 < t < 1.$$

Proof. By assumption we have

$$\phi(x+iy)=-i\int_y^\infty \phi'(x+iv)dv,$$

which implies that

$$|\phi(x+iy)| \le \int_{y}^{\infty} |\phi'(x+iv)| dv \le \int_{y}^{1/t} |\phi'(x+iv)| dv + \frac{\|\phi'\|_{B(\mathbb{U})}}{4} t.$$

Noting that $(a + b)^p \le 2^{p-1}(a^p + b^p)$ for positive *a*, *b*, we conclude that

$$\int_{t}^{1/t} |\phi(x+iy)|^{p} y^{p-2} dy \leq 2^{p-1} \int_{t}^{1/t} \left(\int_{y}^{1/t} |\phi'(x+iv)| dv \right)^{p} y^{p-2} dy + \frac{||\phi'||_{B(\mathbb{U})}^{p}}{2^{p+1}(p-1)} t.$$

By Lemma 3.1 with $u(s) = s^{p-2}$, $v(s) = s^{2p-2}$, and q = p, we conclude that

$$\int_{t}^{1/t} \left(\int_{y}^{1/t} |\phi'(x+iv)| dv \right)^{p} y^{p-2} dy \le C^{p}(p,p) \sup_{t < x < 1/t} A(x) \int_{t}^{1/t} |\phi'(x+iy)|^{p} y^{2p-2} dy,$$

where

$$A(x) = \int_{t}^{x} s^{p-2} ds \left(\int_{x}^{\frac{1}{t}} s^{(2p-2)(1-p')} ds \right)^{p-1} = \frac{1}{p-1} (x^{p-1} - t^{p-1}) \left(\frac{1}{x} - t\right)^{p-1}.$$

A direct computation shows that the unique critical point of A(x) in (t, 1/t) is $x_0 = t^{1-2/p}$. Thus

$$\sup_{t < x < 1/t} A(x) = A(x_0) = \frac{1}{p-1} \left(1 - t^{2-\frac{2}{p}} \right)^p \le \frac{1}{p-1}$$

Consequently, there exists some constant C(p) such that

$$\int_{t}^{1/t} |\phi(x+iy)|^{p} y^{p-2} dy \leq C(p) \left(\int_{t}^{1/t} |\phi'(x+iy)|^{p} y^{2p-2} dy + ||\phi'||_{B(\mathbb{U})}^{p} t \right).$$

Integrating both sides of the above inequality with respect to x from -1/t to 1/t, we get

$$\iint_{\mathbb{U}_t} |\phi(x+iy)|^p y^{p-2} dx dy \le C(p) \left(\iint_{\mathbb{U}_t} |\phi'(x+iy)|^p y^{2p-2} dx dy + ||\phi'||_{B(\mathbb{U})}^p \right).$$

This completes the proof of the lemma. \Box

Now we can prove the main result ((2) \Leftrightarrow (3) in Theorem 1.3) of this section. It is known that the same result holds on the disk case (see [18]).

Theorem 3.3. Let p > 1 and $\mu \in M(\mathbb{U}^*)$ be given. Then $L(\mu) \in \mathcal{B}_p(\mathbb{U})$ if and only if $S(\mu) \in B_p(\mathbb{U})$.

Proof. Recall that $\mathcal{B}_p(\mathbb{U}) \subset \mathcal{B}_0(\mathbb{U})$, and for each holomorphic function ϕ on \mathbb{U} , $\phi'' \in B_p(\mathbb{U})$ if $\phi \in \mathcal{B}_p(\mathbb{U})$. Thus the only if part follows immediately from

$$S(\mu) = L''(\mu) - \frac{1}{2}(L'(\mu))^2,$$

where $L'(\mu)$ and $L''(\mu)$ are respectively the first and second order derivatives of $L(\mu)$. Precisely,

$$\|S(\mu)\|_{B_{p}(\mathbb{U})}^{p} \leq 2^{p-1} \|L''(\mu)\|_{B_{p}(\mathbb{U})}^{p} + \frac{1}{2} \|L(\mu)\|_{\mathcal{B}(\mathbb{U})}^{p} \|L(\mu)\|_{\mathcal{B}_{p}(\mathbb{U})}^{p} < +\infty.$$

To prove the if part, we assume that $S(\mu) \in B_p(\mathbb{U})$ so that $S(\mu) \in B_0(\mathbb{U})$, which implies that $L(\mu) \in \mathcal{B}_0(\mathbb{U})$. Fix some $\epsilon > 0$ so small such that $\epsilon < 1/C(p)$, where C(p) > 0 is the constant in Lemma 3.2. Then there is a positive constant $t_0 < 1$ such that for all $z = x + iy \in \mathbb{U} \setminus \mathbb{U}(t_0)$,

$$y^p |L'(\mu)(x+iy)|^p < \epsilon.$$

By Lemma 3.2 we have for $0 < t < t_0$ that

$$\begin{split} &\frac{1}{C(p)} \iint_{\mathbb{U}(t)} |L'(\mu)(x+iy)|^p y^{p-2} dx dy \\ &\leq \iint_{\mathbb{U}(t)} |L''(\mu)(x+iy)|^p y^{2p-2} dx dy + ||L''(\mu)||_{B(\mathbb{U})}^p \\ &\leq 2^{p-1} \iint_{\mathbb{U}(t)} |S(\mu)(x+iy)|^p y^{2p-2} dx dy + \frac{1}{2} \iint_{\mathbb{U}(t)} |L'(\mu)(x+iy)|^{2p} y^{2p-2} dx dy + ||L''(\mu)||_{B(\mathbb{U})}^p \\ &\leq \frac{\pi}{2^{p+1}} ||S(\mu)||_{B_p(\mathbb{U})}^p + \frac{1}{2} \iint_{\mathbb{U}(t_0)} |L'(\mu)(x+iy)|^{2p} y^{2p-2} dx dy \\ &+ \frac{1}{2} \iint_{\mathbb{U}(t)\setminus\mathbb{U}(t_0)} |L'(\mu)(x+iy)|^{2p} y^{2p-2} dx dy + ||L''(\mu)||_{B(\mathbb{U})}^p \\ &\leq \frac{1}{2} \iint_{\mathbb{U}(t_0)} |L'(\mu)(x+iy)|^{2p} y^{2p-2} dx dy + \frac{\epsilon}{2} \iint_{\mathbb{U}(t)} |L'(\mu)(x+iy)|^p y^{p-2} dx dy \\ &+ \frac{\pi}{2^{p+1}} ||S(\mu)||_{B_p(\mathbb{U})}^p + ||L''(\mu)||_{B(\mathbb{U})'}^p \end{split}$$

which implies that

$$\begin{aligned} &(\frac{1}{C(p)} - \frac{\epsilon}{2}) \iint_{\mathbb{U}(t)} |L'(\mu)(x+iy)|^p y^{p-2} dx dy \\ &\leq \frac{1}{2} \iint_{\mathbb{U}(t_0)} |L'(\mu)(x+iy)|^{2p} y^{2p-2} dx dy + \frac{\pi}{2^{p+1}} ||S(\mu)||_{B_p(\mathbb{U})}^p + ||L''(\mu)||_{B(\mathbb{U})}^p < \infty. \end{aligned}$$

Letting $t \to 0$ we obtain $L(\mu) \in \mathcal{B}_p(\mathbb{U})$ as desired. \Box

4. BMO functions and Semmes' construction revisited

In order to prove (the if part of) Theorem 1.2, we need a construction concerning quasiconformal extensions of strongly quasisymmetric homeomorphisms introduced by Semmes [34], which was used to prove the if part of Theorem 1.2 for p = 2 in our paper [36].

A locally integrable function $u \in L^1_{loc}(S)$ is said to have bounded mean oscillation and belongs to the space BMO(S) if

$$||u||_{\text{BMO}} \doteq \sup \frac{1}{|I|} \int_{I} |u(t) - u_{I}||dt| < +\infty,$$

where the supremum is taken over all finite sub-intervals *I* of S, while u_I is the average of *u* on the interval *I*, namely,

$$u_I = \frac{1}{|I|} \int_I u(t) |dt|.$$

If u also satisfies the condition

$$\lim_{|I|\to 0} \frac{1}{|I|} \int_{I} |u(t) - u_{I}| |dt| = 0,$$

we say *u* has vanishing mean oscillation and belongs to the space VMO(\$). In the following, we denote by $BMO_{\mathbb{R}}(\$)$ and $VMO_{\mathbb{R}}(\$)$ the set of all real-valued BMO and VMO functions, respectively. By the well-known theorem of John-Nirenberg for BMO functions (see [16]), it is known that

$$\frac{1}{|I|} \int_{I} e^{|u-u_I|} dt \lesssim ||u||_{\text{BMO}} \tag{1}$$

when $||u||_{BMO}$ is small. It is also known that $\mathcal{B}_p(S) \subset VMO(S)$, and the inclusion map is continuous (see [24] for a proof).

We next recall a basic result of Coifman-Meyer [9]. For $u \in BMO(\mathbb{R})$, set

$$\gamma_u(x) = \frac{\int_0^x e^{u(t)} dt}{\int_0^1 e^{u(t)} dt}, \quad x \in \mathbb{R}$$

Coifman-Meyer [9] showed that γ_u is a strongly quasisymmetric homeomorphism from the real line \mathbb{R} onto a chord-arc curve $\Gamma_u = \gamma_u(\mathbb{R})$ when $||u||_{BMO}$ is small. Recall that a sense preserving homeomorphism h on \mathbb{R} is strongly quasisymmetric if it is locally absolutely continuous so that |h'| is an A^{∞} weight introduced by Muckenhoupt [27] (see also [16]) and it maps \mathbb{R} onto a chord-arc curve (see [34]). Clearly, a strongly quasisymmetric homeomorphism from the real line onto itself is quasisymmetric.

In an important paper [34], Semmes showed that, when $||u||_{BMO}$ is small, γ_u can be extended to a quasiconformal mapping to the whole plane whose Beltrami coefficient satisfies certain Carleson measure condition. To be precise, let φ and ψ be two C^{∞} real-valued function on the real line supported on [-1,1] such that φ is even, ψ is odd and $\int_{\mathbb{R}} \varphi(x) dx = 1$, $\int_{\mathbb{R}} \psi(x) x dx = -1$. Define

$$\rho(x,y) = \rho_u(x,y) = \varphi_y * \gamma_u(x) + i\psi_y * \gamma_u(x), \quad z = x + iy \in \mathbb{U},$$
(2)

where φ_y , y > 0, is defined by $\varphi_y(x) = y^{-1}\varphi(y^{-1}x)$. ψ_y is defined by the same way. Semmes proved that ρ is a quasiconformal mapping from the upper half plane \mathbb{U} onto the left domain bounded by Γ_u when $||u||_{BMO}$ is small. Furthermore, when u is real-valued, ρ is a quasiconformal mapping of \mathbb{U} onto itself and is quasi-isometric under the Poincaré metric |dz|/y. By the standard BMO estimates, Semmes [34] (see also [36]) showed that the Beltrami coefficient $\mu = \overline{\partial}\rho/\partial\rho$ satisfies $||\mu||_{\infty} \leq ||u||_{BMO}$ if $||u||_{BMO}$ is small.

5. Proof of Theorem 1.2

We first recall the following result due to Bourdaud [7] (see also [8], [43]).

Proposition 5.1. ([7]) Let p > 1 and h be a quasisymmetric homeomorphism on S. Then the pull-back operator P_h defined by $P_h u = u \circ h$ is a bounded operator from $\mathcal{B}_p(S)$ into itself.

Proof of Theorem 1.2 (only if part) Let *h* be an increasing homeomorphism from the real line \mathbb{R} onto itself such that $h \in SQS_p(\mathbb{R})$. Then *h* can be extended to a quasiconformal mapping of the lower half plane onto itself with Beltrami coefficient $\mu \in M_p^s(\mathbb{U}^*)$. Without loss of generality, we may assume that h(0) = 0, h(1) = 1. Then there exists a conformal mapping *g* on the lower half plane such that $g \circ h = f_\mu$ on the real line. Notice that $J \circ f_\mu \circ J = J \circ g \circ J \circ h$ on the real line, where $J(z) = \overline{z}$ is the standard conformal reflection. Since $SQS_p(\mathbb{R})$ is a group, there exists some $v \in M_p^s(\mathbb{U}^*)$ such that $J \circ g \circ J = f_v$ on the upper half plane. Noting that $S(M_p^s(\mathbb{U}^*)) \subset S(M(\mathbb{U}^*)) \cap B_p(\mathbb{U})$, we conclude by Theorem 3.3 that $\log f'_\mu \in \mathcal{B}_p(\mathbb{U})$, and $\log(J \circ g \circ J)' \in \mathcal{B}_p(\mathbb{U})$, or equivalently, $\log g' \in \mathcal{B}_p(\mathbb{U}^*)$. Consequently, each of *h*, f_μ and *g* is locally absolutely continuous on the real line.

On the other hand, it is well known that each element $\phi \in \mathcal{B}_p(\mathbb{U})$ has boundary values almost everywhere on the real line, and the boundary function $\phi|_{\mathbb{R}}$ belongs to the Sobolev class $\mathcal{B}_p(\mathbb{R})$ (see [49]). We use $\log f'_{\mu}$ to denote the boundary function of $\log f'_{\mu}|_{\mathbb{U}}$. Then $\log f'_{\mu} \in \mathcal{B}_p(\mathbb{R})$. Similarly, $\log g'$ has boundary value function on the real line, denoted by $\log g'$, also being in the Sobolev class $\mathcal{B}_p(\mathbb{R})$.

Now from $g \circ h = f_{\mu}$ we obtain

$$\log h' = \log f'_{\mu} - \log g' \circ h,$$

which implies by Proposition 5.1 that $\log h' \in \mathcal{B}_p(\mathbb{R})$ as required. \Box

The proof of if part will be given by repeating the reasoning from our papers ([36], [37]), where p = 2 was considered again. We first prove the following result.

Lemma 5.2. There exists some universal constant $\delta > 0$ such that, for any $u \in \mathcal{B}_p(\mathbb{R})$ with $||u||_{\mathcal{B}_p(\mathbb{R})} < \delta$, the mapping $\rho = \rho_u$ defined by (2) is quasiconformal whose Beltrami coefficient μ satisfies $||\mu||_{QS_p(\mathbb{R})} \leq ||u||_{\mathcal{B}_p(\mathbb{R})}$ and thus belongs to the class $M_p(\mathbb{U})^{1}$.

Proof. By the continuity of the inclusion $\mathcal{B}_p(\mathbb{R}) \to BMO(\mathbb{R})$, we conclude that there exists some universal constant $\delta > 0$ such that, for any $u \in \mathcal{B}_p(\mathbb{R})$ with $||u||_{\mathcal{B}_p(\mathbb{R})} < \delta$, the mapping $\rho = \rho_u$ defined by (2) is quasiconformal. It remains to show that $\mu \in M_p(\mathbb{U})$.

For $z = x + iy \in \mathbb{U}$, set I = [x - y, x + y] so that

$$u_I = \frac{1}{2y} \int_{x-y}^{x+y} u(t) dt.$$

Then we have (see [36], [37])

$$|\mu(z)| \leq \frac{1}{|I|} \int_{I} |u(t) - u_{I}| e^{|u(t) - u_{I}|} dt.$$

By Hölder's inequality, we conclude by (1) that

$$\begin{split} |\mu(z)|^{p} &\lesssim \frac{1}{|I|^{p}} \int_{I} |u(t) - u_{I}|^{p} dt \left(\int_{I} e^{p'|u(t) - u_{I}|} dt \right)^{\frac{1}{p'}} \\ &\lesssim \frac{1}{|I|} \int_{I} |u(t) - u_{I}|^{p} dt \\ &\lesssim \frac{1}{|I|} \int_{I} |u(t) - u(x)|^{p} dt + |u(x) - u_{I}|^{p}. \end{split}$$

On the other hand, we conclude by Hölder's inequality again that

$$|u(x) - u_I|^p = \left| \frac{1}{|I|} \int_I u(t) dt - u(x) \right|^p$$
$$= \left| \frac{1}{|I|} \int_I (u(t) - u(x)) dt \right|^p$$
$$\lesssim \frac{1}{|I|} \int_I |u(t) - u(x)|^p dt.$$

 $^{^{(1)}}M_p(\mathbb{U})$ can be defined in the same manner as $M_p(\mathbb{U}^*)$.

Consequently,

$$|\mu(z)|^{p} \lesssim \frac{1}{|I|} \int_{I} |u(t) - u(x)|^{p} dt \approx \frac{1}{y} \int_{-y}^{y} |u(t+x) - u(x)|^{p} dt.$$

Thus, we have

$$\begin{split} \iint_{\mathbb{U}} \frac{|\mu(z)|^p}{y^2} dx dy &\lesssim \iint_{\mathbb{U}} \int_{-y}^{y} \frac{|u(t+x) - u(x)|^p}{y^3} dt dx dy \\ &= \int_{-\infty}^{+\infty} dx \int_{0}^{+\infty} \frac{dy}{y^3} \int_{-y}^{y} |u(t+x) - u(x)|^p dt \\ &= \int_{-\infty}^{+\infty} dx \int_{-\infty}^{+\infty} |u(x+t) - u(x)|^p dt \int_{|t|}^{+\infty} \frac{dy}{y^3} \\ &= \int_{-\infty}^{+\infty} dx \int_{-\infty}^{+\infty} \frac{|u(x+t) - u(x)|^p}{2t^2} dt \\ &\asymp ||u||_{\mathcal{B}_p(\mathbb{R})}^p. \end{split}$$

Corollary 5.3. Let *h* be an increasing and locally absolutely continuous homeomorphism from the real line onto itself such that $\|\log h'\|_{\mathcal{B}_p(\mathbb{R})} < \delta$. Then *h* can be extended to a quasiconformal mapping to the upper half plane which is quasi-isometric under the Poincaré metric |dz|/y and has Beltrami coefficient in $M_p(\mathbb{U})$. In particular, *h* belongs the class $SQS_p(\mathbb{R})$.

To prove (the if part of) Theorem 1.2, we will decompose a homeomorphism h with finite $\|\log h'\|_{\mathcal{B}_p(\mathbb{R})}$ into homeomorphisms h_j with small norms $\|\log h'_j\|_{\mathcal{B}_p(\mathbb{R})}$. We need

Lemma 5.4. Let *h* be an increasing and locally absolutely continuous homeomorphism from the real line onto itself such that $\|\log h'\|_{\mathcal{B}_p(\mathbb{R})} < \infty$. Then $\log h'$ is in the closure of $L^{\infty}(\mathbb{R})$ under the BMO norm. In particular, *h* is strongly quasisymmetric.

Proof. Consider the Cayley transformation $\gamma(z) = \frac{z-i}{z+i}$ from the upper half plane \mathbb{U} onto the unit disk Δ . Since $\log h' \in \mathcal{B}_p(\mathbb{R})$, $\log h' \circ \gamma^{-1} \in \mathcal{B}_p(S^1) \subset \text{VMO}(S^1)$, which implies that $\log h' \circ \gamma^{-1}$ can be approximated by a sequence of bounded functions (u_n) on the unit circle under the BMO norm (see [16]). Thus, $\log h'$ can be approximated by the bounded functions $u_n \circ \gamma$ on the real line under the BMO norm. The second statement follows immediately from Lemma 1.4 in [29]. \Box

Proof of Theorem 1.2 (if part) Let *h* be an increasing and locally absolutely continuous homeomorphism from the real line onto itself such that $\log h'$ belongs to the Sobolev class $\mathcal{B}_p(\mathbb{R})$. Without loss of generality, we assume h(0) = 0. For each real number $t \in [0, 1]$, set

$$h_t(x) = \int_0^x (h'(s))^t ds, \, x \in \mathbb{R}.$$

Then h_t is an increasing and locally absolutely continuous homeomorphism from the real line onto itself with $h_0 = id$, $h_1 = h$, and $\log h'_t = t \log h'$, which implies by Lemma 5.4 that h_t is strongly quasisymmetric. Noting that for any fixed $t \in [0, 1]$,

$$\|\log(h_s \circ h_t^{-1})'\|_{\mathcal{B}_p(\mathbb{R})} = \|(\log h'_s - \log h'_t) \circ h_t^{-1}\|_{\mathcal{B}_p(\mathbb{R})} = |s - t|\|P_{h_t}^{-1}\log h'\|_{\mathcal{B}_p(\mathbb{R})}$$

we conclude by Proposition 5.1 that there exists a neighbourhood I_t such that $\|\log(h_s \circ h_t^{-1})'\|_{\mathcal{B}_p(\mathbb{R})} < \delta$ when $s \in I_t$. By compactness, we conclude that there exists a sequence of finite numbers $0 = t_0 < t_1 < t_2 < \cdots < t_n < t_{n+1} = 1$ such that $\|\log(h_{t_j} \circ h_{t_{j+1}}^{-1})'\|_{\mathcal{B}_p(\mathbb{R})} < \delta$ for $j = 0, 1, 2, \cdots, n-1, n$. Since $SQS_p(\mathbb{R})$ is a group, and

$$h^{-1} = (h_{t_0} \circ h_{t_1}^{-1}) \circ (h_{t_1} \circ h_{t_2}^{-1}) \circ \dots \circ (h_{t_n} \circ h_{t_{n+1}}^{-1}),$$

We conclude by Corollary 5.3 that $h \in SQS_p(\mathbb{R})$. \Box

2642

6. Proof of Theorems 1.3 and 1.4

We first prove the following result which was stated in section 1.

Lemma 6.1. A p-integrable quasicircle must be a chord-arc curve.

Proof. Let Γ be a *p*-integrable quasicircle. Choose a conformal mapping *f* from \mathbb{D} onto the left domain Ω bounded by Γ. Then log $f' \in \mathcal{B}_p(\mathbb{D})$ so that its boundary function log $f' \in \mathcal{B}_p(\mathbb{S}) \subset \text{VMO}(\mathbb{S})$.

If Γ is a bounded curve, we let $\mathbb{D} = \Delta$ and then conclude by a Pommerenke's result (see [30]) that Γ is asymptotically smooth, which means that Γ is rectifiable, and

$$\lim_{|\zeta - z| \to 0} \frac{\text{length}(\zeta z)}{|\zeta - z|} = 1$$

for any two points *z* and ζ of Γ . Since Γ is a quasicircle, this already implies that Γ is a chord-arc curve.

If Γ passes through ∞ , we let $\mathbb{D} = \mathbb{U}$ and consider again the Cayley transformation $\gamma(z) = \frac{z-i}{z+i}$ from the upper half plane \mathbb{U} onto the unit disk Δ . Choose a point $z_0 \in \Omega$ and set $\tilde{\gamma}(z) = \frac{1}{z-z_0}$. Then $\tilde{f} \doteq \tilde{\gamma} \circ f \circ \gamma^{-1}$ is a conformal mapping from Δ onto a bounded domain with boundary the quasicircle $\tilde{\Gamma} = \tilde{\gamma}(\Gamma)$. Since $\log f' \in \mathcal{B}_p(\mathbb{U})$, Theorem 3.3 implies that $S(f) \in B_p(\mathbb{U})$, which implies that $S(f) \circ (\gamma)^{-1}(\gamma^{-1})'^2 \in B_p(\Delta)$, that is, $S(\tilde{f}) \in B_p(\Delta)$, which in turn implies that $\log \tilde{f}' \in \mathcal{B}_p(\Delta)$. Then $\tilde{\Gamma}$ is a chord-arc curve. By the Möbius invariance of chord-arc curves (see [25]), we conclude that Γ is a chord-arc curve. \Box

Now we begin to prove Theorems 1.3 and 1.4. Let Γ be a chord-arc curve passing through ∞ and z = z(s) be an arc-length parametrization of Γ . Let f map the upper half plane \mathbb{U} conformally onto the left domain Ω bounded by Γ with $f(\infty) = \infty$. Set $h_1 : \mathbb{R} \to \mathbb{R}$ by $z \circ h_1 = f$. Then we have

Lemma 6.2. Under the above notations, the following statements are equivalent: (1) Γ is a p-integrable quasicircle; (2) $h_1 \in SQS_p(\mathbb{R})$; (3) $\arg z' \in \mathcal{B}_p(\mathbb{R})$.

Proof. From $z \circ h_1 = f$ we obtain $f' = (z' \circ h_1)h'_1$, which implies that

$$\Re \log f' = \log h'_1, \ \Im \log f' = \arg z' \circ h_1$$

(3)

on the real line. Since Γ is a chord-arc curve, Γ is a *p*-integrable quasicircle if and only if

$$\log f' \in \mathcal{B}_p(\mathbb{U}) \Leftrightarrow \mathfrak{R} \log f' \in \mathcal{B}_p(\mathbb{R}) \Leftrightarrow \mathfrak{I} \log f' \in \mathcal{B}_p(\mathbb{R}).$$

By (3) and Theorem 1.2 we obtain that (1) \Leftrightarrow (2). On the other hand, since Γ is a chord-arc curve, a classical result of Lavrentiev [22] implies that h_1 is locally absolutely continuous so that h'_1 belongs to the class of weights A^{∞} , or equivalently, h_1 is a strongly quasisymmetric homeomorphism and consequently quasisymmetric. By (3) and Proposition 5.1, we conclude that (1) \Leftrightarrow (3). \Box

Proof of Theorem 1.4 (1) \Rightarrow (3) Let Γ be a *p*-integrable quasicircle passing through ∞ . Lemma 6.1 implies that Γ is a chord-arc curve. We conclude by David's result (see [11]) that there exists a real-valued BMO function $b \in BMO_{\mathbb{R}}(\mathbb{R})$ such that an arc-length parametrization z = z(s) of Γ satisfies the condition $z'(s) = e^{ib(s)}$. Now Lemma 6.2 implies that $b = \arg z' \in \mathcal{B}_{p,\mathbb{R}}(\mathbb{R})$.

(3) \Rightarrow (1) Suppose Γ is a chord-arc curve and an arclength parameterization $z : \mathbb{R} \to \Gamma$ satisfies the condition $z'(s) = e^{ib(s)}$ for some $b \in \mathcal{B}_{p,\mathbb{R}}(\mathbb{R})$. Since $\arg z' = b \in \mathcal{B}_p(\mathbb{R})$, we conclude by Lemma 6.2 again that Γ is a *p*-integrable quasicircle.

(2) \Leftrightarrow (3) Since $h = g^{-1} \circ f$ is the quasisymmetric conformal sewing for Γ , $h^{-1} = f^{-1} \circ g = (J \circ f \circ J)^{-1} \circ (J \circ g \circ J)$ is the conformal sewing for $J(\Gamma)$. Clearly, J(z(s)) is the arclength parameterization for $J(\Gamma)$ and

2643

 $(J(z))'(s) = e^{-ib(s)}$. By (1) \Leftrightarrow (3), we conclude that $b \in \mathcal{B}_p(\mathbb{R})$ if and only if $\log(J \circ g \circ J)' \in \mathcal{B}_p(\mathbb{U})$, which is equivalent to $\log g' \in \mathcal{B}_p(\mathbb{U}^*)$.

(3) \Leftrightarrow (4) $\tau(z)$ and z(s) are related by $\tau \circ z = z'$, that is, $u \circ z = b$. Since $z : \mathbb{R} \to \Gamma$ is an arc-length parameterization of the chord-arc curve $\Gamma, z : \mathbb{R} \to \Gamma$ is bi-Lipschitz, that is, $|z(t) - z(s)| \le |t - s| \le C|z(t) - z(s)|$ for some $C \ge 1$. Thus $b \in \mathcal{B}_{\nu}(\mathbb{R})$ if and only if $u \in \mathcal{B}_{\nu}(\Gamma)$. \Box

Proof of Theorem 1.3 (1) \Leftrightarrow (4) follows from Theorem 1.2, while (2) \Leftrightarrow (3) from Theorem 3.3. (1) \Rightarrow (2) follows from the relation $S(M_p^s(\mathbb{U}^*)) \subset S(M(\mathbb{U}^*)) \cap B_p(\mathbb{U})$, which has been used in the proof of the only if part of Theorem 1.2. The same reasoning can be used to prove (3) \Rightarrow (4). In fact, (3) implies $\log g' \in \mathcal{B}_p(\mathbb{U}^*)$ by Theorem 1.4. Then from $g \circ h = f$, we obtain $\log h' = \log f' - \log g' \circ h$, which implies by Proposition 5.1 that $\log h' \in \mathcal{B}_p(\mathbb{R})$. This completes the proof of Theorem 1.3. \Box

7. Concluding remarks and questions

When $p \ge 2$, T_p has a unique complex Banach manifold structure (via the Bers embedding $\beta : T_p \to B_p(\mathbb{U})$) such that the natural projection $\Phi : M_p(\mathbb{U}^*) \to T_p$ is a holomorphic split submersion (see [42]). In [36] we proved that the correspondence $h \mapsto \log h'$ induces a real analytic map from (the quasisymmetric homeomorphism model of) T_2 onto $\mathcal{B}_{2,\mathbb{R}}(\mathbb{R})/\mathbb{R}$ whose inverse is also real analytic. By the same reasoning we can show that this result still holds for a general p > 2, namely, the correspondence $h \mapsto \log h'$ induces a real analytic map from (the quasisymmetric homeomorphism model of) T_p onto $\mathcal{B}_{p,\mathbb{R}}(\mathbb{R})/\mathbb{R}$ whose inverse is also real analytic. A more general result can be found in Wei-Matsuzaki ([44], [45]).

A *p*-integrable quasicircle Γ is said to be normalized if it passes through 0 and ∞ , and the unique arclength parameterization $z : \mathbb{R} \to \Gamma$ with z(0) = 0 satisfies the condition z(1) > 0. Then the quasicircle model of T_p is precisely the set of all normalized *p*-integrable quasicircles. For each normalized *p*-integrable quasicircle Γ , Theorem 1.4 says that there exists some $b \in \mathcal{B}_{p,\mathbb{R}}(\mathbb{R})/\mathbb{R}$ such that $z'(s) = e^{ib(s)}$. It is easy to see that for each p > 1 the set \hat{T}_p of all these functions *b* is open in $\mathcal{B}_{p,\mathbb{R}}(\mathbb{R})/\mathbb{R}$. In [39] we proved that the correspondence $\Gamma \mapsto b$ induces a homeomorphism from (the quasicircle model of) T_2 onto \hat{T}_2 . Wei-Matsuzaki ([44], [45]) showed that this result remains true when p > 2.

The situation seems to be complicated when p < 2. We first need to endow the strong *p*-integrable Teichmüller space T_p^s with a complex Banach manifold structure. Since $\beta(T_p^s)$ is an open subset of $B_p(\mathbb{U})$, a natural complex Banach manifold structure is endowed by declaring β to be a biholomorphic isomorphism from T_p^s onto $\beta(T_p^s)$. T_p^s can also be endowed with two real Banach manifold structures, one is by the correspondence $h \mapsto \log h'$ from (the quasisymmetric homeomorphism model of) T_p^s onto $\mathcal{B}_{p,\mathbb{R}}(\mathbb{R})/\mathbb{R}$, the other is by the correspondence $\Gamma \mapsto b$ from (the quasicircle model of) T_p^s onto \hat{T}_p . It is not clear whether these manifold structures are well compatible with each other. Finally, it remains open whether a *p*-integrable asymptotic affine homeomorphism is strong *p*-integrable asymptotic affine when p < 2.

Acknowledgements The authors would like to thank the referee for a very careful reading of the manuscript and for useful advice.

References

- [1] L. V. Ahlfors, Lectures on Quasiconformal Mapping, Van Nostrand, 1966.
- [2] K. Astala, F. W. Gehring, Injectivity, the BMO norm and the universal Teichmüller space, J. Anal. Math. 46 (1986), 16–57.
- [3] A. Beurling, L. V. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125–142.
- [4] Ch. Bishop, Function theoretic characterizations of Weil-Petersson curves, Rev. Mat. Iberoam. 38 (2022), 2355–2384.
- [5] Ch. Bishop, Weil-Petersson curves, beta-numbers, and minimal surfaces, preprint, 2021.
- [6] Ch. Bishop, MAT 638: Topics in Real Analysis, Weil-Petersson curves, traveling salesman theorems, and minimal surfaces, http://www.math.stonybrook.edu/~bishop/classes/math638.F20/.
- [7] G. Bourdaud, Changes of variable in Besov spaces II, Forum Math. 12 (2000), 545–563.
- [8] G. Bourdaud, W. Sickel, Changes of variable in Besov spaces, Math. Nachr. 198 (1999), 19–39.
- [9] R. R. Coifman, Y. Meyer, Lavrentiev's curves and conformal mappings, Institute Mittag-Leffler, Report No.5, 1983.
- [10] G. Cui, Integrably asymptotic affine homeomorphisms of the circle and Teichmüller spaces, Sci. China Ser. A. 43 (2000), 267–279.
- [11] G. David, *Thése de troisiéme cycle*, Université de Paris XI, 91405 Orsay, France.

- [12] A. Douady, C.J. Earle, Conformally natural extension of homeomorphisms of the circle, Acta Math. 157 (1986), 23–48.
- [13] R. Fefferman, C. Kenig, J. Pipher, *The theory of weights and the Dirichlet problems for elliptic equations*, Ann. Math. 134 (1991), 65–124.
 [14] F. P. Gardiner, N. Lakic, *Quasiconformal Teichmüller Theory*, Mathematical Surveys and Monographs 76, American Mathematical Society, Providence, RI, 2000.
- [15] F. P. Gardine, D. Sullivan, Symmetric structures on a closed curve, Amer. J. Math. 114 (1992), 683–736.
- [16] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
- [17] F. Gay-Balmaz, T. S. Ratiu, The geometry of the universal Teichmüller space and the Euler-Weil-Petersson equation, Adv. Math. 279 (2015), 717–778.
- [18] H. Guo, Integrable Teichmüller spaces, Sci. China Ser. A 43 (2000), 47–58.
- [19] D. E. Hamilton, BMO and Teichmüller spaces, Ann. Acad. Sci. Fenn. Math. 14 (1989), 213–224.
- [20] G. L. Jones, The Grunsky operator and the Schatten ideals, Michigan Math. J. 46 (1999), 93–100.
- [21] A. Kufner, L.E.Persson, Weighted inequalities of Hardy type, World Scientific, Singapore, 2003.
- [22] M. Lavrentiev, Boundary problems in the theory of univalent functions, Mat. Sb. (N.S.) 1 (1936), 815–844; Amer. Math. Soc. Transl. Ser. 2. 32 (1963), 1–35.
- [23] O. Lehto, Univalent Functions and Teichmüller Spaces, Springer-Verlag, New York, 1986.
- [24] X. Liu, Y. Shen, Integrable Teichmüller space, Math. Z. 302 (2022), 2233–2251.
- [25] P. MacManus, Quasiconformal mappings and Ahlfors-David curves, Tran. Amer. Math. Soc. 343 (1994), 853-881.
- [26] K. Matsuzaki, M. Yanagishita, Asymptotic conformality of the barycentric extension of quasiconformal maps, Filomat 31 (2017), 85–90.
- [27] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226.
- [28] S. Nag, The Complex Analytic Theory of Teichmüller Spaces, Wiley-Interscience, 1988.
- [29] D. Partyka, Eigenvalues of quasisymmetric automorphisms determined by VMO functions, Ann. Univ. Mariae Curie-Sklodowska Sect. A 52 (1998), 121–135.
- [30] Ch. Pommerenke, On univalent functions, Bloch functions and VMOA, Math. Ann. 236 (1978), 199–208.
- [31] Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin 1992.
- [32] D. Radnell, E. Schippers, W. Staubach, A Hilbert manifold structure on the Weil-Petersson class Teichmüller space of bordered Riemann surfaces, Commun. Contemp. Math. 17 (2015), no. 42, 1550016, 42 pp.
- [33] D. Radnell, E. Schippers, W. Staubach, Convergence of the Weil-Petersson metric on the Teichmuller spaces of bordered Riemann surfaces, Commun. Contemp. Math. 19 (2017), no. 1, 1650025, 39 pp.
- [34] S. Semmes, Quasiconformal mappings and chord-arc curves, Tran. Amer. Math. Soc. 306 (1988), 233–263.
- [35] Y. Shen, Weil-Peterssen Teichmüller space, Amer. J. Math. 140 (2018), 1041–1074.
- [36] Y. Shen, S. Tang, Weil-Petersson Teichmüller space II: smoothness of flow curves of $H^{\frac{3}{2}}$ -vector fields, Adv. Math. **359** (2020), 106891.
- [37] Y. Shen, S. Tang, Corrigendum to: "Weil-Petersson Teichmüller space II: smoothness of flow curves of H^{3/2}-vector fields" [Adv. Math. 359 (2020) 106891], Adv. Math. 399 (2022), 108015.
- [38] Y. Shen, S. Tang, L. Wu, Weil-Petersson and little Teichmüller spaces on the real line, Ann. Acad. Sci. Fenn. Math. 43 (2018), 935–943.
- [39] Y. Shen, L. Wu, Weil-Petersson Teichmüller space III: dependence of Riemann mappings for Weil-Petersson curves, Math. Ann. 381 (2021), 875–904.
- [40] L. Takhtajan, Lee-Peng Teo, Weil-Petersson metric on the universal Teichmüller space, Mem. Amer. Math. Soc. 183 (2006), no. 861.
- [41] S. Tang, Some characterizations of the integrable Teichmüller space, Sci. China Math. 56 (2013), 541–551.
- [42] S. Tang, Y. Shen, Integrable Teichmüller space, J. Math. Anal. Appl. 465 (2018), 658–672.
- [43] S. K. Vodop'yanov, Mappings of homogeneous groups and embeddings of function spaces, Sibirsk. Mat. Zh. 30 (1989), 25–41.
- [44] H. Wei, K. Matsuzaki, The p-Weil-Petersson Teichmüller space and the quasiconformal extension of curves, J. Geom. Anal. 32 (2022), 213, 30pp.
- [45] H. Wei, K. Matsuzaki, Parametrization of the p-Weil-Petersson curves: holomorphic dependence, arXiv: 2111.14011.
- [46] L. Wu, Y. Hu, Y. Shen, Weil-Petersson Teichmüller space revisited, J. Math. Anal. Appl. 491 (2020), 124304.
- [47] M. Yanagishita, Introduction of a complex structure on the p-integrable Teichmüller space, Ann. Acad. Sci. Fenn. Math. 39 (2014), 947-971.
- [48] M. Yanagishita, Kählerity and negativity of Weil-Petersson metric on square integrable Teichmüller space, J. Geom. Anal. 27 (2017), 1995-2017.
- [49] K. Zhu, Operator Theory in Function Spaces, Second Edition, Mathematical Surveys and Monographsl 138, American Mathematical Society, Providence, RI, 2007.
- [50] I. V. Zhuravlev, A model of the universal Teichmüller space, Sibirsk. Mat. Zh. 27 (1986), 75-82.