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Available at: http://www.pmf.ni.ac.rs/filomat

Finite Gabor systems and uncertainty principle for block sliding
discrete Fourier transform

Khole Timothy Poumaia, Nikhil Khannab,∗, S. K. Kaushikc

aDepartment of Mathematics, Motilal Nehru College, University of Delhi, Delhi-110021, India
bDepartment of Mathematics, College of Science, Sultan Qaboos University, P. O. Box 36, Al-Khoud 123, Muscat, Oman

cDepartment of Mathematics, Kirori Mal College, University of Delhi, Delhi-110007, India

Abstract. In this paper, we study the finite Gabor system for oversampling schemes. A characterization
of dual finite Gabor tight frame using discrete time Zak transform is given. Also, a method to calculate the
coefficients of the finite Gabor system expansion in the case of oversampling and a necessary and sufficient
condition for the existence of biorthogonal pair of Riesz basis in l2(ZL) is given. Further, we introduce the
notion of block sliding discrete Fourier transform (BSDFT) which reduces the computational complexity
and give uncertainty principle for BSDFT. An uncertainty principle for two finite Parseval Gabor frames
in terms of sparse representations is given. Finally, using the notion of numerical sparsity, an uncertainty
principle for finite Gabor frames is given.

1. Introduction

The most extensively used tool in signal processing is Fourier transform which helps in analyzing the
frequency information of a time series x (t) by transforming it from the time domain into the frequency
domain. In 1822, Fourier defined the notion of Fourier transform, a representation for non-periodic signals
in terms of an integral of weighted sine and cosine functions. Since signals xk received with the help of
a data acquisition system are primarily sampled at discrete time intervals, rather than continuous time
intervals, xk can be transformed into the frequency domain using discrete time Fourier transform (DTFT).
For details on Fourier transform, one may read [20, 47].
Let L ∈ N and define Ej(m) = 1

√
L

e2πijm/L = wm,j, 0 ≤ j,m ≤ L − 1. Then discrete Fourier matrix is F =

[E0 E1 E2 . . .EL−1] with discrete Fourier transform (DFT) is given byF∗z(j) = ⟨z,Ej⟩ = 1
√
L

∑L−1
m=0 z(m)e−2πijm/L, z ∈

l2(ZL) and the inverse DFT is defined as Fz(m) = 1
√
L

∑L−1
j=0 z(j)e2πijm/L, z ∈ l2(ZL).

Note that {Ej} is an orthonormal basis of l2(ZL) and reconstruction property of F is z = FF∗z =∑L−1
j=0 ⟨z,Ej⟩Ej with ∥z∥2 =

∑L−1
j=0 |⟨z,Ej⟩|

2.We shall denote discrete Fourier transform by F = F∗.

2020 Mathematics Subject Classification. 42A38, 42C15, 42C40, 94A12
Keywords. Oversampling, uncertainty principle, finite Gabor frames, block sliding discrete Fourier transform
Received: 19 March 2022; Accepted: 23 June 2022
Communicated by Dragan S. Djordjević
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Zak transform was first appeared in the work on eigenfunction expansions related to Schrödinger oper-
ators with periodic potentials done by Gel’fand. This was the reason why Zak transform was known by
Gel’fand mapping. In 1967, Zak [51] rediscovered this transform in the form of k − q representation in
order to construct a quantum mechanical representation for the motion of a Bloch electron in the presence
of a magnetic or electric field. As far as applications are concerned, Zak transform is used in the study of
coherent states representation in quantum field theory [32] and in digital data transmission [10]. Further,
it is useful in a time-frequency representation for time-continuous signals, particularly in signal theory.
In 1991, Zeevi and Gertner [49] employed finite Zak transform for the analysis of spatially nonstationary
images. Zak transform was also used in the context of Gabor representation problem in order to study the
orthogonality and the completeness of the Gabor frames when ab = 1. Further, Heil [14] defined discrete
time Zak transform (DTZT) and analyze discrete time Weyl-Heisenberg frames in l2(Z). In 2019, Poumai et
al. [42] introduced the notion of multidimensional discrete time Zak transform (MDTZT) which is used in
discrete sampling of multivariate discrete time signals. For more details on Zak transform, one may refer
[8, 11, 25, 31, 50] and for Gabor systems, one may see [19, 26].
LetM,N ∈ N and L = M × N. Finite Zak transform on l2(ZL) is a mapZ : l2(ZL)→ l2(ZM ×ZN) given by
Zz(m, n) =

∑N−1
r=0 z(m + rM)e−2πirn/N, where (m, n) ∈ ZM ×ZN and z ∈ l2(ZL). Indeed, finite Zak transformZ

is a square matrix of order L × L. Note that 1
√
N
Z is a unitary operator. For example, for N = 2 andM = 3,

the finite Zak transform is given by

Z =



w0,0 0 0 w0,1 0 0
w1,0 0 0 w1,1 0 0

0 w0,0 0 0 w0,1 0
0 w1,0 0 0 w1,1 0
0 0 w0,0 0 0 w0,1
0 0 w1,0 0 0 w1,1


.

The process of obtaining a digital signal from an analog signal is known as sampling. The sampled version
of an analog signal f ∈ L2(R) can be seen as a sequence of complex numbers z(n) = f(nPs), for n ∈ Z,where
Ps is a positive constant known as sampling period which gives the amount of time between two samples
and fs = 1

Ps
is known as sampling frequency. Among various ways of filling or interpolating the missing

information between the sample points, a significant one is given by f(t) =
∑
n∈Z z(n)g(t− nPs) with impulse

function g(t), t ∈ R. Multirate digital signal processing is an important aspect of signal processing which
lies in the fact that prior to conversion of a digital signal to analog signal, it is essential to alter the sampling
rate of a signal successively so as to upsurge the efficacy of several operations of signal processing. For
details, one may invoke [46, 47]. The process of multirate digital signal processing consists of decimation
and expansion. The reduction in sampling rate by factor N ∈N is known as decimation or downsampling.

LetL,N,M ∈NwithL = N×M. Then a map DN : l2(ZL)→ l2(ZM) defined by DNz(n) = z(nN), z ∈ l2(ZL),
n ∈ ZM is known as downsampling operator. In general, the downsampled signal does not hold the entire
information about the original signal z and is exercised substantially in filter banks. Downsampling is often
preceded by filtering in order to extract the conformant frequency bands. Circular convolution with respect
to filter ν ∈ l2(ZL) is an operator Gν : l2(ZL) → l2(ZL) given by Gν(z)(n) = z ∗ ν(n) =

∑L−1
k=0 z(k )ν(n − k ). The

adjoint of Gν is given by G∗νz = Gν̃z = z ∗ ν̃, where ν̃(n) = ν(−n). Consider a sequence ν ∈ l2(ZL) and let w(k) =
z ∗ ν̃(kN) = DN(z ∗ ν̃)(k) = DNGν̃z(k). The operator Gx : l2(ZL)→ l2(ZL) given by Gx (z) = z ∗ x (x ∈ l2(ZL)) is a
convolution operator with impulse response x which is usually known as filter and the convolution with the
impulse response is known as filtering. Note that in discrete sampling, filtering with the impulse response
ν̃ is followed by downsampling by factor N, whereas the sampling rate increases by factor N ∈N in filling

or upsampling. A map UN : l2(ZM) → l2(ZL) given by UNy(n) =

y( n
N

), if N|n (i.e. N divides n),
0, if N ̸ |n (i.e. N does not divide n),

where y ∈ l2(ZM), n ∈ ZL is said to be upsampling operator.
In this case, we successively putN−1 zeros amongst successive values of the input {y(n)} and upsampling is
often followed by filtering. In discrete interpolation, we obtain a sequence w ∈ l2(ZL) through upsampling
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by factor Nwhich is followed by filtering with impulse response ν. That is, w(l) = GνUNy(l) = ν ∗UNy(l), y ∈
l2(ZM) and l ∈ ZL. Sampling followed by interpolation can be explained as x = GνUNDNGν̃z = ν ∗UNDNz ∗
ν̃, for x , z ∈ l2(ZL). Whereas, interpolation followed by sampling can be described as f = DNGν̃GνUNg =
DNν̃ ∗ ν ∗UNg , for f , g ∈ l2(ZM). As usual, delta function is given as

δ(n) =

1, if n = 0,
0, otherwise,

where n ∈ ZL. The matrix representation of downsampling operator is DN =
[
dm,l
]
=
[
δ(mN − l)

]
, where

0 ≤ m ≤ M − 1 and 0 ≤ l ≤ L − 1. Upsampling matrix UN = D∗
N

(that is the adjoint of DN) is given by
UN =

[
ul,m
]
=
[
δ(l−mN)

]
,where 0 ≤ m ≤M−1 and 0 ≤ l ≤ L−1. Next, we give the product of DN and UN as

DNUN =
[ L−1∑
l=0
δ(mN− l)δ(l− sN)

]
= IN, where 0 ≤ m, s ≤M− 1. Moreover, UNDN =

[M−1∑
m=0
δ(l−mN)δ(mN− j)

]
,

where 0 ≤ l, j ≤ L − 1. Let ν ∈ l2(ZL) and s ∈ ZL. The translation operator Ts : l2(ZL) → l2(ZL) is
given by Tsν(l) = ν(l − s), 0 ≤ l ≤ L − 1. And the modulation operator E s

L
: l2(ZL) → l2(ZL) is given by

E s
L
ν(l) = e2πi sl

L ν(l), 0 ≤ l ≤ L − 1. Notice that

1
N

N−1∑
j=0

E −j

N

z(n) = UNDNz(n), z ∈ l2(Z).

For more details on sampling theory, see [1, 2]. Let D be a set, characteristic function χD is given by

χD(t) =

1, if t ∈ D,
0, if t < D.

2. Finite Gabor System

For a continuous-time function f, Gabor expansion is given by f(τ) =
∑
m,k αm,k wm,k (τ), with wm,k (τ) ≜

w(τ − mP)eikΘτ, m, k = 0,±1,±2, . . ., where w(τ) is a window function with an effective width P1, P is a
shift parameter which controls the window’s discrete shift along τ and eikΘτ is a Fourier kernel sampled
at a constant frequency interval Θ. The choice of parameters P1,P and Θ is very imperative which can
influence the existence, uniqueness, convergence properties and the numerical stability of the resulting
expansion directly. Gabor [22] proposed the classical constraints ΘP = 2π and P1 = P which happened
to be optimal in terms of minimum sampling rate and numerical stability. In 1990, Wexler and Raz [48]
converted the Gabor representation into a discrete and finite format which was best suited for numerical
implementation. Heil [27] employed discrete Zak transform in order to analyze and construct discrete
time Weyl-Heisenberg (DTWH) frames which are bases and are generated by sequences with good decay.
In 2019, Poumai et al. [41] used discrete time Zak transform (DTZT) in order to characterize the dual
discrete time Weyl-Heisenberg tight (DDTWHT) frames, DTWH frames and tight DTWH frames based on
oversampling schemes. We begin this section with the definition of finite Gabor frame for l2(ZL).
LetM,M1,N,N1 ∈ N and L = M × N1 = M1 × N. Define νm,k = E m

M
TkM1ν, (m, k ) ∈ ZM ×ZN and ν ∈ l2(ZL).

Family {νm,k } is the finite Gabor system on l2(ZL). Let H be a real (or complex) separable Hilbert space
with inner product ⟨., .⟩.
For a countable or finite set Ξ, a sequence {fξ}ξ∈Ξ in a Hilbert space H is said to be a frame for H , if there
exist numbers A, B > 0 such that

A∥f∥2 ≤
∑
ξ∈Ξ

|⟨f, fξ⟩|
2
≤ B∥f∥2, for all f ∈H , (1)

where the scalars (not necessarily unique) A and B are called the frame bounds. Further, {fξ}ξ∈Ξ is tight
frame if A = B and Parseval frame if A = B = 1.
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An operator T : l2(Ξ) → H defined by T {c(ξ)}ξ∈Ξ =
∑
ξ∈Ξ c(ξ)fξ, {c(ξ)}ξ∈Ξ ∈ l2(Ξ), is called the pre-frame

operator (or synthesis operator) with adjoint operatorT ∗ : H → l2(Ξ) given byT ∗(f) = {⟨f, fξ⟩}, for all f ∈H
is called as analysis operator. Furthermore, an operatorS = TT ∗ : H →H defined byS(x ) =

∑
ξ∈Ξ⟨f, fξ⟩fξ,

for all f ∈H is called as frame operator which happens to be a positive, self-adjoint, bounded and invertible
operator on H .
On the other hand, a sequence {fξ}ξ∈Ξ in a Hilbert space H is a Riesz basis for H if {fξ}ξ∈Ξ is complete in
H and there exist constants A, B > 0 such that
A
∑
ξ∈Ξ |α(ξ)|2 ≤ ∥

∑
ξ∈Ξ α(ξ)fξ∥2 ≤ B

∑
ξ∈Ξ |α(ξ)|2, for all {α(ξ)}ξ∈Ξ ∈ l2(Ξ).

A pair of families ({fξ}ξ∈Ξ, {gξ}ξ∈Ξ) in a Hilbert space H is a biorthogonal pair of Riesz bases if

(i) {fξ}ξ∈Ξ and {gξ}ξ∈Ξ are Riesz bases for H .
(ii) ⟨fξ, gξ′⟩ = δ(ξ − ξ′), for ξ, ξ′ ∈ Ξ.

For details on frame theory, one may see [3, 14, 16, 39, 44, 45].

Definition 2.1. A system {νm,k } is a finite Gabor frame for l2(ZL) if there exist positive constants 0 < A ≤ B < ∞
such that

A∥z∥2 ≤
M−1∑
m=0

N−1∑
k=0

|⟨z, νm,k ⟩|
2
≤ B∥z∥2, for all z ∈ l2(ZL).

Decomposition of frame operator is stated as

S(z) =
M−1∑
m=0

N−1∑
k=0

⟨z, νm,k ⟩νm,k =
M−1∑
m=0

E m
M

GνUM1 DM1 Gν̃E− m
M
z, z ∈ l2(ZL).

Next, we give definition of dual finite Gabor tight frame for l2(ZL).

Definition 2.2. Let M,M1,N,N1 ∈ N such that L = M × N1 = M1 × N. Let ν,w ∈ l2(ZL) and define νm,k =
E m
M

TkM1ν and wm,k = E m
M

TkM1 w where 0 ≤ m ≤M − 1, 0 ≤ k ≤ N − 1. A pair ({νm,k }, {wm,k }) is a dual finite Gabor
tight frame for l2(ZL) if

z =

M−1∑
m=0

N−1∑
k=0

⟨z,wm,k ⟩νm,k , for all z ∈ l2(ZL).

Decomposition of dual finite Gabor tight frame is given by

z =

M−1∑
m=0

N−1∑
k=0

⟨z,wm,k ⟩νm,k =
M−1∑
m=0

E m
M

GνUM1 DM1 Gw̃ E− m
M
z, z ∈ l2(ZL).

The mutual cohorence between the two finite Gabor frames V = {νm,k } and W = {wm,k } is defined as

µ = sup |⟨νm,k ,wm,k ⟩|.

Let L,N1,M,N,M1 ∈N such that L = N1 ×M = N ×M1 and ν ∈ l2(ZL).
In our result, we use the following version of Zak transform

Zν(n, p) =
N−1∑
r=0

ν(n + rM1)e−2πirp/N, 0 ≤ n ≤M1 − 1, 0 ≤ p ≤ N − 1.

Using above notations, we state a result in the form of a lemma which will used in our main results.

Lemma 2.3. Let x , y ∈ l2(ZL). Then
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(a) ZE m
M

x (n, p) = e2πi m
M
n
Zx (n, p −mN1), 0 ≤ m ≤M − 1.

(b) ZE
−
j

M1
x (n, p) = e−2πi j

M1
n
Zx (n, p), 0 ≤ j ≤M1 − 1.

(c) Zx̃ (n, p) = Zx (−n, p).

(d) Z(x ∗ y)(n, p) =
M1−1∑
s=0
Zx (n − s, p)Zy(s, p) =

M1−1∑
s=0
Zx (s, p)Zy(n − s, p).

Proof. Straightforward.

In the given result, we give a characterization of dual finite Gabor tight frame using discrete time Zak
transform.

Theorem 2.4. Let L =M ×N1 =M1 ×N and let P ∈N be such thatM = P ×M1 and ν,w ∈ l2(ZL). Then a pair
({E m

M
TkM1ν}, {E m

M
TkM1 w}) is a dual finite Gabor tight frame if and only if

P−1∑
l=0

Zν(n, p − lN1)Zw(n, p − lN1) =M−1
1 , for all (n, p) ∈ ZM1 ×ZN.

Proof. Note that

S(z) =
M−1∑
m=0

N−1∑
k=0

⟨z,wm,k ⟩νm,k

=

M−1∑
m=0

E m
M
ν ∗ E m

M
(UM1 DM1 (E− m

M
z ∗ w̃))

=
1
M1

M−1∑
m=0

E m
M
ν ∗ E m

M
(
M1−1∑
j=0

E
−
j

M1
(E− m

M
z ∗ w̃)).

Let (n, p) ∈ ZM1 ×ZN. Then, we have

Z[E m
M
ν ∗ E m

M
(
M1−1∑
j=0

E
−
j

M1
(E− m

M
z ∗ w̃))](n, p)

=

M1−1∑
s=0

ZE m
M
ν(n − s, p)ZE m

M
(
M1−1∑
j=0

E
−
j

M1
(E− m

M
z ∗ w̃))(s, p)

=

M1−1∑
s=0

e2πi m
M

(n−s)
Zν(n − s, p −mN1)e2πi m

M
s

M1−1∑
j=0

ZE
−
j

M1
(E− m

M
z ∗ w̃)(s, p −mN1)

=

M1−1∑
s=0

M1−1∑
j=0

e−2πi m
M
n
Zν(n − s, p −mN1)e−2πi j

M1
s
Z(E− m

M
z ∗ w̃)(s, p −mN1)

=

M1−1∑
s=0

M1−1∑
j=0

e2πi m
M
n
Zν(n − s, p −mN1)e−2πi j

M1
s

×

M1−1∑
r=0

ZE− m
M
z(r, p −mN1)Zw̃(s − r, p −mN1)
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=

M1−1∑
s=0

M1−1∑
j=0

e2πi m
M
n
Zν(n − s, p −mN1)e−2πi j

M1
s

×

M1−1∑
r=0

e−2πi m
M
r
Zz(r, p)Zw(r − s, p −mN1)

=

M1−1∑
r=0

M1−1∑
s=0

Zν(n − s, p −mN1)Zw(r − s, p −mN1)Zz(r, p)

× e−2πi m
M

(r−n)
M1−1∑
j=0

e−2πi j
M1
s

=

M1−1∑
r=0

Zν(n, p −mN1)Zw(r, p −mN1)Zz(r, p)e−2πi m
M

(r−n)M1.

Thus, we get

ZS(z)(n, p) =
1
M1

M−1∑
m=0

M1−1∑
r=0

Zν(n, p −mN1)Zw(r, p −mN1)Zz(r, p)e−2πi m
M

(r−n)M1.

Given thatM = P ×M1, we have

M ×N = P ×M1 ×N = P ×M ×N1 ⇒ N = P ×N1.

Let m = m1P + l for 0 ≤ l ≤ P − 1 and 0 ≤ m1 ≤M1 − 1.
Then, we compute

ZS(z)(n, p)

=

M1−1∑
m1=0

P−1∑
l=0

M1−1∑
r=0

Zν(n, p −m1N − lN1)Zw(r, p −m1N − lN1)Zz(r, p)

× e−2πi m1
M1

(r−n)e−2πi l
M

(r−n)

=

M1−1∑
m1=0

P−1∑
l=0

M1−1∑
r=0

Zν(n, p − lN1)Zw(r, p − lN1)Zz(r, p)

× e−2πi l
M

(r−n)e−2πi m1
M1

(r−n)

=

P−1∑
l=0

M1−1∑
r=0

Zν(n, p − lN1)Zw(r, p − lN1)Zz(r, p)

× e−2πi l
M

(r−n)
M1−1∑
m1=0

e−2πi m1
M1

(r−n)

=M1

P−1∑
l=0

Zν(n, p − lN1)Zw(n, p − lN1)Zz(n, p).

Since the pair ({E m
M

TkM1ν}, {E m
M

TkM1 w}) constitutes a dual finite Gabor tight frame,

z =

M−1∑
m=0

N−1∑
k=0

⟨z,wm,k ⟩νm,k , for all z ∈ l2(ZL).
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So, taking finite Zak transform, we have

Zz(n, p) =M1Zz(n, p)
P−1∑
l=0

Zν(n, p − lN1)Zw(n, p − lN1).

Thus, we get
P−1∑
l=0
Zν(n, p − lN1)Zw(n, p − lN1) =M−1

1 .

Conversely, we have

ZSz(n, p) =M1Zz(n, p)
P−1∑
l=0

Zν(n, p − lN1)Zw(n, p − lN1) = Zz(n, p).

Hence

z =

M−1∑
m=0

N−1∑
k=0

⟨z,wm,k ⟩νm,k , for all z ∈ l2(ZL).

In Theorem 2.4, if we take ν = w , then we obtain the following result.

Corollary 2.5. {E m
M

TkM1ν} is finite Gabor Parseval frame if and only if

P−1∑
l=0

|Zν(n, p − lN1)|2 =M−1
1 , for all (n, p) ∈ ZM1 ×ZN.

In the following result, we give a necessary and sufficient condition for the existence of finite Gabor frames
which serves as a method to calculate the coefficients of the finite Gabor system expansion in the case of
oversampling.

Theorem 2.6. Let L = N1 ×M = N ×M1 and M = P ×M1. Let νm,k = E m
M

TkM1ν, where 0 ≤ m < M − 1 and
0 ≤ k ≤ N − 1. Then {νm,k } is a finite Gabor frame with bounds A and B if and only if

A ≤
P−1∑
l=0

|Zν(n, p − lN1)|2M1 ≤ B, for all (n, p) ∈ ZM1 ×ZN.

Proof. Take

S(z) =
M−1∑
m=0

N−1∑
k=0

⟨z, νm,k ⟩νm,k , for all z ∈ l2(ZL).

As proved in Theorem 2.4, we have

ZS(z)(n, p) =M1

P−1∑
l=0

|Zν(n, p − lN1)|2Zz(n, p).

Also, we compute

⟨Sz, z⟩ =
1
N
⟨ZSz,Zz⟩

=
1
N

M1−1∑
n=0

N−1∑
p=0

ZSz(n, p)Zz(n, p)

=
1
N

M1−1∑
n=0

N−1∑
p=0

|Zz(n, p)|2M1

P−1∑
l=0

|Zν(n, p − lN1)|2.
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If {νm,k } is a frame, then

A∥Zz∥2 ≤ ⟨ZSz,Zz⟩ ≤ B∥Zz∥2.

This gives

A ≤
P−1∑
l=0

|Zν(n, p − lN1)|2M1 ≤ B.

Conversely, we have

A∥Zz∥2 ≤ ∥Zz∥2
P−1∑
l=0

|Zν(n, p − lN1)|2M1 ≤ B∥Zz∥2

and

∥Zz∥2
P−1∑
l=0

|Zν(n, p − lN1)|2M1 =

M1−1∑
n=0

N−1∑
p=0

|Zz(n, p)|2
P−1∑
l=0

|Zν(n, p − lN1)|2M1

= ⟨ZSz,Zz⟩.

Thus

A∥z∥2 ≤
M−1∑
m=0

N−1∑
k=0

|⟨z, νm,k ⟩|
2
≤ B∥z∥2, for all z ∈ l2(ZL).

Next, we give necessary and sufficient conditions for the existence of Riesz basis and orthonormal basis for
finite Gabor frame.

Corollary 2.7. (a) Let L =M ×N. Then {E m
M

Tk Mν} is a Riesz basis in l2(ZL) if and only if

A ≤M|Zν(n, p)|2 ≤ B, for all (n, p) ∈ ZM ×ZN.

(b) Let L =M ×N. Then {E m
M

TkMν} is an orthonormal basis in l2(ZL) if and only if

|Zν(n, p)|2 =M−1, for all (n, p) ∈ ZM ×ZN.

In the following result, we give necessary and sufficient conditions for the existence of biorthogonal pair
of Riesz bases in l2(ZL). Before proving the result, we first give a lemma which will help us in writing the
proof of the main result.

Lemma 2.8. Let H be a Hilbert space. A pair of families {fξ}ξ∈Ξ ⊆ H and {gξ}ξ∈Ξ ⊆ H is a biorthogonal pair of
Riesz bases if and only if

(i) {fξ}ξ∈Ξ and {gξ}ξ∈Ξ are Bessel sequences for H .
(ii) f =

∑
ξ∈Ξ
⟨f, fξ⟩gξ, for all f ∈H .

(iii) ⟨fξ, gξ′⟩ = δ(ξ − ξ′), for ξ, ξ′ ∈ Ξ.

Proof. Here (Only if part) is trivial. So we will prove for (If part). Let T1 and T2 be synthesis operators of
Bessel sequences {fξ} and {gξ} respectively. From the given condition, we have T2T

∗

1 = IH . So, it is clear
that {fξ} is a frame for H . Let {α(ξ)} ∈ l2(Ξ) and note that

T
∗

1T2({α(ξ)}) = {
∑
ξ∈Ξ

α(ξ)⟨gξ, fξ′⟩}ξ′∈Ξ = {α(ξ)}.

This givesT ∗1 is invertible. So {fξ} is a Riesz basis for H . Also, we haveT1T
∗

2 = IH . Similarly, we can prove
that {gξ} is a Riesz basis for H .
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Theorem 2.9. LetL =M×N. For 0 ≤ m ≤M−1 and 0 ≤ k ≤ N−1, a pair ({E m
M

TkMν}, {E m
M

TkMw}) is biorthogonal
pair of Riesz bases in l2(ZL) if and only if

(a) ({E m
M

TkMν}, {E m
M

TkMw}) is a dual finite Gabor tight frame in l2(ZL).

(b)
M−1∑
s=0
ZE m

M
ν(s, p)ZEm′

M

w(s, p) = δ(m −m′)M and 0 ≤ p ≤ N − 1.

Proof. Note that ⟨E m
M

TkMν,Em′

M
Tk ′Mw⟩ = δ(m −m′)δ(k − k ′) if and only if

⟨E m
M
ν,TkME m′

M
w⟩ = δ(m−m′)δ(k ) if and only if ⟨ν,Em′−m

M

TkMw⟩ = δ(m−m′)δ(k ) if and only if Em−m′

M

ν ∗ w̃(kM) =
δ(m −m′)δ(k ). But

1
M

M−1∑
l=0

E
−
l
M

(
Em−m′

M

ν ∗ w̃
)
(p) =

{
Em−m′

M

ν ∗ w̃(p), ifM|p
0, elsewhere.

So 1
M

M−1∑
l=0

E
−
l
M

(
Em−m′

M

ν ∗ w̃
)
= δ(m −m′)δ. By taking Zak Transform, we get

Z

( 1
M

M−1∑
l=0

E
−
l
M

(
Em−m′

M
ν ∗ w̃

))
(n, p) = δ(m −m′)M.

We compute

Z

( 1
M

M−1∑
l=0

E
−
l
M

(
Em−m′

M

ν ∗ w̃
))

(n, p)

=
1
M

M−1∑
l=0

e−2πi l
M
n
Z

(
Em−m′

M

ν ∗ w̃
)
(n, p)

=
1
M

M−1∑
l=0

e−2πi l
M
n

M−1∑
s=0

ZEm−m′

M

ν(s, p)Zw̃(n − s, p)

=
1
M

M−1∑
s=0

Zν(s, p)e2πim−m
′

M
s
Zw(s − n, p)

M−1∑
l=0

e−2πi l
M
n

=

M−1∑
s=0

Zν(s, p)Zw(s − n, p)e2πim−m
′

M
s

=

M−1∑
s=0

ZE m
M
ν(s, p)ZEm′

M

w(s, p).

Thus ({E m
M

TkMν}, {E m
M

TkMw}) is biorthogonal if and only if

M−1∑
s=0

ZE m
M
ν(s, p)ZEm′

M

w(s, p) = δ(m −m′)M, for 0 ≤ p ≤ N − 1.

Hence the proof follows immediately from Lemma 2.8.

Frazier [20] defined first stage wavelet system B = {T2k ν}k∈Z ∪ {T2k w}k∈Z in l2(Z) and observed that B is
a basis (orthonormal) for l2(Z). He gave various characterizations of such systems in connection with the
reconstruction property. Frazier et al. [21] defined dual wavelet frames and gave various characterizations
of dual wavelet frames. For further readings on wavelet tight frames, one may see [5, 18] and for more
details on wavelet theory, see [33–35]. In the next result, we give the definitions of dual discrete time
wavelet tight frame (DDTWT frame) and discrete time wavelet frame (DTW frame) of scale N in l2(ZL).
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Definition 2.10. Let M,N,K ∈ N and L = N × K. Let V = {ν1, ν2, ..., νM},W = {w1,w2, . . . ,wM} ⊆ l2(ZL).
FamilyV withW generate a dual discrete time wavelet tight frame (DDTWT frame) of scale N if

z =

M∑
j=1

K−1∑
k=0

⟨z,TkNwj⟩TkNνj, for all z ∈ l2(ZL).

Definition 2.11. Let M,N,K ∈ N and L = N × K. A family {ν1, ν2, ..., νM} ⊆ l2(ZL) generates a discrete time
wavelet frame (DTW frame) of scale N in l2(ZL) if there exist constants 0 < A ≤ B < ∞ such that

A∥z∥2 ≤
M∑
j=1

K−1∑
k=0

|⟨z,TkNνj⟩|
2
≤ B∥z∥2, for all z ∈ l2(ZL).

Decomposition of DTW frame operator:

S(z) =
M∑
j=1

K−1∑
k=0

⟨z,TkNνj⟩TkNνj =
M∑
j=1

GνjUNDNGν̃jz, z ∈ l2(ZL).

In the given result, we give a characterization in the form of construction of DDTWT frames in l2(ZL).

Theorem 2.12. Let N,K,M ∈ N such that L = N × K and M ≥ N. A family {ν1, ν2, . . . , νM} ⊆ l2(ZL) with
{w1,w2, . . . ,wM} ⊆ l2(ZL) generate DDTWT frame of scale N if and only if

(a)
M∑
j=1
F ν j(p + sK)F wj(p + sK) = N

L
, for all p ∈ {0, 1, . . . ,K − 1}, s ∈ {0, 1, . . . ,N − 1}.

(b)
M∑
j=1
F νj(p + sK)F wj(p + nK) = 0, for all p ∈ {0, 1, . . . ,K − 1}, s, n ∈ {0, 1, . . . ,N − 1} and s , n.

Proof. We know that

S(z) =
M∑
j=1

K−1∑
k=0

⟨z,TkNwj⟩TkNνj

=

M∑
j=1

νj ∗UNDN(z ∗ w̃j)

=
1
N

M∑
j=1

νj ∗
N−1∑
n=0

E− n
N

(z ∗ w̃j).

This gives

FS(z)(p) =
1
N
F

[ M∑
j=1

νj ∗
N−1∑
n=0

E− n
N

(z ∗ w̃j)
]
(p)

=

√
L

N

M∑
j=1

F νj(p)
N−1∑
n=0

F

[
E− n

N
(z ∗ w̃j)

]
(p)

=
L

N

M∑
j=1

F νj(p)
N−1∑
n=0

F z(p + nK) F wj(p + nK).
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This yields

FS(z)(p) =
L

N

M∑
j=1

F νj(p) F wj(p) F z(p)

+
L

N

N−1∑
n=1

F z(p + nK)
M∑
j=1

F νj(p) F wj(p + nK).

(⇐) If conditions (a) and (b) are satisfied and by taking s = 0, we have

FS(z)(p) = F z(p).

Thus z =
M∑
j=1

K−1∑
k=0
⟨z,TkNwj⟩TkNνj.

(⇒) We have

F z(p) =
L

N

M∑
j=1

F νj(p)F wj(p) F z(p) +
L

N

N−1∑
n=1

F z(p + nK)
M∑
j=1

F νj(p)F wj(p + nK) (2)

Also, for 0 ≤ s ≤ N − 1, we have

F z(p + sK) =
L

N

M∑
j=1

F νj(p + sK)F wj(p + sK) F z(p + sK)

+
L

N

N−1∑
n=1

F z(p + (n + s)K)
M∑
j=1

F νj(p + sK)F wj(p + (s + n)K).

Let z ∈ l2(ZL) be such that F z = χ{sK,sK+1,...,(s+1)K−1}. So F z(p + sK) = 1 and F z(p + (n + s)K) = 0, for all
p ∈ {0, 1, . . . ,K − 1} and n = 1, 2, . . . ,N − 1.

So
M∑
j=1
F νj(p + sK)F wj(p + sK) = N/L, for all s ∈ {0, 1, . . . ,N − 1}.

Let r ∈ {0, 1, . . . , s − 1, s + 1, . . . ,N − 1}. Let z ∈ l2(ZL) such that F z = χ{rK,rK+1,...,(r+1)K−1}. Then, for p ∈
{0, 1, . . . ,K − 1}, we have

F z(p + rK) = 1, F z(p + sK) = 0 and
F z(p +mK) = 0, for all m ∈ {0, 1, . . . ,N − 1} and m , r.

Thus
∑M
j=1 F νj(p + sK) F wj(p + rK) = 0, for all p ∈ {0, 1, . . . ,K − 1}, s , r.

Next, we give an interesting result for the existence of discrete time wavelet Parseval frame (DTW Parseval
frame) of scale N in l2(ZL) in the form of a corollary.

Corollary 2.13. Let N,K,M ∈ N such that L = N × K andM ≥ N. A family {ν1, ν2, ..., νM} ⊆ l2(ZL) generates a
discrete time wavelet Parseval frame (DTW frame) of scale N in l2(ZL) if and only if

(a)
M∑
j=1
|F νj(p + sK)|2 = N

L
, for all p ∈ {0, 1, . . . ,K − 1}, s ∈ {0, 1, . . . ,N − 1}.

(b)
M∑
j=1
F νj(p + sK)F νj(p + nK) = 0, for all p ∈ {0, 1, . . . ,K − 1}, s, n ∈ {0, 1, . . . ,N − 1} and s , n.
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3. Uncertainity Principle

For f ∈ L2(R) with ∥f∥ = 1, we have △2
τ△

2
fr ≥

1
16π2 , where △τ is time spread of a signal f, given by

△
2
τ =

1
∥f∥2

∫
R

(τ − µτ)2
|f(τ)|2dτ with time center µτ = 1

∥f∥2

∫
R
τ|f(τ)|2dτ and △fr is frequency spread of a signal

f, given by △2
fr =

1
∥f∥2

∫
R

(ν − µfr)2
|f̂(ν)|2dν with frequency center µfr = 1

∥f∥2

∫
R
ν|f̂(ν)|2dν. Here f̂ stands for

the Fourier transform of f. The above result is known as the classical uncertainty principle. For details,
one may see [9, 25, 30]. Analogously, one can see uncertainty principle for k ∈ l2(Z) with a condition
k̂(1) = 0, where △τ is time spread of a signal k, given by △2

τ =
1
∥k∥2
∑
m∈Z(m − µτ)2

|k(m)|2 with time center
µτ = 1

∥k∥2
∑
m∈Zm|k(m)|2 and △fr is frequency spread of a signal k, given by △2

fr =
1
∥k∥2
∑
m∈Z(m − µτ)2

|k(m)|2

with frequency center µfr = 1
∥k∥2

∫ 1

0 ν|F k(ν)|2dν. For details, see [47]. Other versions of the uncertainty
principle for sequences are also available that uses a different measure of frequency spread and which
even drops the condition of k̂(1) = 0 (see [40]). Donoho and Stark [15] further generalized the uncertainty
principle significantly and explain interesting phenomena in signal recovery problems where there is an
interplay of missing data, sparsity, and bandlimiting. It states that for Fourier transform pair (f, f̂) with f
practically zero outside a measurable set R and f̂ practically zero outside the measurable set S, we have
|R||S| ≥ 1 − ρ, where |R| and |S| denote the measures of the sets and ρ is a small number depending on the
phrase “practically zero” (in L2 or L1 sense). In case of sequences, if {yr}

V−1
r=0 is a sequence of length V with

discrete Fourier transform {ŷs}
V−1
s=0 and if {yr} is not zero at Vr points and {ŷs} is not zero at Vs points. Then

VrVs ≥ V. The underdetermined linear system of equations Py = q (where P ∈ Ri× j is a full-rank matrix)
has infinitely many solutions. In order to obtain one well-defined solution, sparsity optimization problem
is considered. A vector y is said to be sparse if it consists of only few nonzero entries. In other words,
y is sparse if ∥y∥0 ≪ j, where ∥ · ∥0 denotes the l0 “norm” defined as ∥y∥0 = ♯{k : yk , 0}. Thus, a better
representation method which leads to more sparsity is practically a preferable way to tackle such problems.
Now, consider a nonzero vector (or a signal) u ∈ Ri and let Υ and Ω be two orthobases. Then u can be
represented as u = Υγ = Ωδ, where γ and δ are uniquely defined. If we take Υ to be the identity matrix and
Ω to be the matrix of the Fourier transform, then the time-domain and frequency-domain representations
of u are γ and δ, respectively. One may note that for particular choice of pairs of bases Υ and Ω, either γ
can be sparse, or δ can be sparse. Mathematically, we have

∥γ∥0 + ∥δ∥0 ≥ 2/µ(P), (3)

where µ(P) is the mutual coherence matrix P, i.e., the largest absolute normalized inner product between
different columns from P which characterizes the dependence between columns of the matrix P. Above
inequality is also known as uncertainty principle 1. One may note that if the mutual coherence of two bases
is small, γ and δ cannot both be very sparse. In contrast to classical uncertainty principle, (3) gives a lower
bound on the sum of the nonzeros. Moving from uncertainty to uniqueness leads to one of its another
version, i.e., uncertainty principle 2. Let y0 and y1 be two solutions of linear system Py = [Υ,Ω]y = q of
which one is very sparse. Then according to uncertainty principle 2, any two distinct solutions of the linear
system [Υ,Ω]y = q cannot both be very sparse. Mathematically, it is given by

∥y0∥0 + ∥y1∥0 ≥ ∥e∥0 ≥ 2/µ(P), (4)

where e = y0 − y1. For more details on uncertainty principle, one may read [4, 6, 15, 17, 23, 37, 43].
Discrete Fourier transform is the conventional technique for spectrum analysis which is usually executed

using a fast Fourier transform algorithm. However, spectrum analysis exclusively over a subset of the L
center frequencies of an L-point discrete Fourier transform can be done by computing a single complex
DFT spectral bin value for every L input time samples. The involved method is Goertzel algorithm. Later,
Jacobsen and Lyons [28, 29] constructed sliding discrete Fourier transform (SDFT), a recursive algorithm
for computation of discrete Fourier transform on a sample-by-sample basis. For real-time spectral analysis,
it was found that SDFT requires fewer computations over Goertzel algorithm.
Executing the intermediate computations by adopting the techniques of FFT motivated the block processing
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approach. Burrus [12, 13] proposed an exquisite method for block processing which employ the use of
the matrix representation of the convolution and helped in representing periodically time-varying digital
filters using a time-in-variant digital filter. This approach was further beneficial in the FFT implementation
of multirate digital filters. An interesting characteristic that lies in the block implementation method
introduced by Burrus is that while analyzing the eigenvalues of a specificM ×Mmatrix with block length
M, stability of block structure can dexterously be examined and in fact, if the original scalar transfer function
is stable, then the block structure is also stable. For more details, see [36, 38]. Thus, the introduction of
block structures reduces the computational complexity and block implementations of digital filters endorses
efficacious use of parallel processors which results in high speed. This led us to define the notion of block
sliding discrete Fourier transform.

Definition 3.1. Let M,N ∈ N and L = M × N. Block sliding discrete Fourier transform (BSDFT) on l2(ZL) is a
map Fb : l2(ZL)→ l2(ZM ×ZN) given by

Fbz(m, n) =
1
√
M

M−1∑
r=0

z(r + nM)e−2πirm/M,

where (m, n) ∈ ZM ×ZN and z ∈ l2(ZL).

Indeed, BSDFT Fb is a square matrix of order L × L. For example, let N = 2,M = 3 and BSDFT Fb is given
by

Fb =
1
√

3



w0,0 w0,1 w0,2 0 0 0
w1,0 w1,1 w1,2 0 0 0
w2,0 w2,1 w2,2 0 0 0

0 0 0 w0,0 w0,1 w0,2
0 0 0 w1,0 w1,1 w1,2
0 0 0 w2,0 w2,1 w2,2


.

Let τm,n = 1
√
M

E m
M

TnMχZM , where 0 ≤ m ≤ M − 1 and 0 ≤ n ≤ N − 1. One can notice that {τm,n} is an

orthonormal basis of l2(ZL). In fact, BSDFT Fb is the analysis operator of orthonormal basis of {τm,n} from
l2(ZL) onto l2(ZM ×ZN), that is Fbz(m, n) = ⟨z, τm,n⟩ = 1

√
M

∑M−1
r=0 z(r + nM)e−2πirm/M, z ∈ l2(ZL).

Using frame theory and above discussion, we can summarize it as given below.

Proposition 3.2. BSDFT Fb is a unitary operator from l2(ZL) onto l2(ZM ×ZN).

The inversion of BSDFT Fb is a map F ∗b : l2(ZM ×ZN)→ l2(ZL) given by

F
∗

b ({α(m, n)}) =
M−1∑
m=0

N−1∑
n=0

α(m, n)τm,n, {α(m, n)} ∈ l2(ZM ×ZN).

The reconstruction of signals from BSDFT Fb is given by

z = F ∗b Fbz =

M−1∑
m=0

N−1∑
n=0

⟨z, τm,n⟩τm,n, z ∈ l2(ZL).

Next, we give an uncertainty principle for BSDFT. Recall that the uncertainty principle for DFT is ∥x ∥0∥F x ∥0 ≥
L, for x , 0, x ∈ l2(ZL). In this direction, we show BSDFT is sparse than DFT.

Theorem 3.3. Let L =M ×N and x ∈ l2(ZL). Then ∥x ∥0∥Fb x ∥0 ≥M, x , 0.

Proof. Let ∥Fb x ∥∞ = |⟨x , τm,k ⟩|, for some m ∈ ZM and k ∈ ZN. Then

∥Fb x ∥∞ = |
L−1∑
j=0

x (j) τm,k (j)| ≤
1
√
M

L−1∑
j=0

|x (j)| =
1
√
M
∥x ∥1.
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Also, let ∥x ∥∞ = |x (s)|, for some s ∈ ZL. So, we have

∥x ∥∞ = |

M−1∑
m=0

N−1∑
k=0

⟨x , τm,k ⟩τm,k (s)| ≤
1
√
M

M−1∑
m=0

N−1∑
k=0

|⟨x , τm,k ⟩| =
1
√
M
∥Fb x ∥1.

But ∥x ∥1 ≤ ∥x ∥0∥x ∥∞ and ∥Fb x ∥1 ≤ ∥Fb x ∥0∥Fb x ∥∞. Note that

∥x ∥1 ≤ ∥x ∥0
1
√
M
∥Fb x ∥1 ≤

1
√
M
∥x ∥0∥Fb x ∥0∥Fb x ∥∞ ≤

1
M
∥x ∥0∥Fb x ∥0∥x ∥1.

This gives ∥x ∥0∥Fb x ∥0 ≥M.

Let L = M × N and x ∈ l2(ZL). Let Zx (n, k ) =
∑N−1
j=0 x (n + jM) e−2πi jk

N , (n, k ) ∈ ZM × ZN and x (s) =
1
N

∑N−1
k=0 Zx (s, k ).

In the following result, we give an uncertainty Principle in sparsity for finite Zak transform. Here also
we show, finite Zak transform is sparse than DFT.

Theorem 3.4. Let x ∈ l2(ZL). Then ∥x ∥0∥Zx ∥0 ≥ N, x , 0.

Proof. Let ∥x ∥∞ = |x (n)|, for some n ∈ ZL. Then

∥x ∥∞ = |
1
N

N−1∑
k=0

Zx (n, k )| ≤
1
N

M−1∑
n=0

N−1∑
k=0

|Zx (n, k )| =
1
N
∥Zx ∥1.

Similarly, let ∥Zx ∥∞ = |Zx (n, k )|, for some (n, k ) ∈ ZM ×ZN. Then

∥Zx ∥∞ = |

N−1∑
j=0

x (n + jM)e−2πij k
N |

= |
1
M

L−1∑
l=0

x (l)e−2πik l−n
L

M−1∑
r=0

e−2πi l−n
M
r
|

≤
1
M

L−1∑
l=0

|x (l)| ×M = ∥x ∥1.

Note that ∥x ∥1 ≤ ∥x ∥0∥x ∥∞ and ∥Zx ∥1 ≤ ∥Zx ∥0∥Zx ∥∞.
Also ∥x ∥1 ≤ ∥x ∥0 1

N
∥Zx ∥1 ≤

1
N
∥x ∥0∥Zx ∥0∥Zx ∥∞ ≤

1
N
∥x ∥0∥Zx ∥0∥x ∥1.

This gives ∥x ∥0∥Zx ∥0 ≥ N.

Analogous to uncertainty principle 1, we give an uncertainty principle for two finite Gabor Parseval frames
in terms of sparse representations.

Theorem 3.5. Let L = M × N1 = M1 × N. Let V = {νm,k }, W = {wm,k } be finite Gabor Parseval frames for l2(ZL).
Then for every z ∈ l2(ZL), ∥Φ∗z∥0∥Ψ∗z∥0 ≥ 1

µ2 , where Φ∗, Ψ∗ are the analysis operators of {νm,k }, {wm,k } and µ is
mutual coherence of V and W.

Proof. Let ∥Φ∗z∥∞ = |⟨z, νn,s⟩|, for some n ∈ ZM, s ∈ ZN . Then

∥Φ∗z∥∞ = |

M−1∑
m=0

N−1∑
k=0

⟨z,wm,k ⟩⟨wm,k , νn,s⟩|

≤

M−1∑
m=0

N−1∑
k=0

|⟨z,wm,k ⟩| µ

= ∥Ψ∗z∥1 µ.
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Similarly, ∥Ψ∗z∥∞ ≤ ∥Φ∗z∥1 µ and so

∥Φ∗z∥1 ≤ ∥Φ
∗z∥0∥Φ

∗z∥∞ ≤ ∥Φ
∗z∥0∥Ψ

∗z∥1 µ.

Thus

∥Ψ∗z∥1 ≤ ∥Ψ
∗z∥0∥Ψ

∗z∥∞

≤ ∥Ψ∗z∥0∥Φ
∗z∥1 µ

≤ ∥Ψ∗z∥0∥Φ
∗z∥0∥Ψ

∗z∥1 µ
2.

Hence ∥Φ∗z∥0∥Ψ∗z∥0 ≥ 1
µ2 .

The concept of numerical sparsity appeared around 1978 in the field of geophysics. Recently, it has been
widely used as sparse representation in various signal processing applications.

Definition 3.6. [7] Let z ∈ l2(ZL). Numerical sparsity of z is defined as

NS(z) =
∥z∥21

∥z∥22

.

Finally, using the notion of numerical sparsity, we provide uncertainty principle for finite Gabor frame.

Theorem 3.7. LetL =M×N1 =M1×N. Let {νm,k } is a finite Gabor frame with bounds A and B. Let 0 , x ∈ l2(ZL).
Then NS(z)NS(Φ∗z) ≥ A

∥Φ∥22
, where Φ∗is the analysis operator of {νm,k } and ∥.∥2 is the induced norm of matrix.

Proof. We have

NS(z) NS(Φ∗z) =
∥z∥21

∥z∥22

×
∥Φ∗z∥21
∥Φ∗z∥22

≥
∥z∥22

∥z∥22

× A
∥z∥22

∥Φ∗z∥22

= A
∥z∥22

∥Φ∗z∥22
≥ A

1
∥Φ∗∥22

.
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