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On the continuity of the solution to the Minkowski problem for Lp

torsional measure
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Abstract. This paper deals with on the continuity of the solution to the Minkowski problem for Lp torsional
measure. For p ∈ (1,n + 2) ∪ (n + 2,∞), we show that a sequence of convex bodies in Rn is convergent
in Hausdorff metric if the sequence of the Lp torsional measures (associated with these convex bodies) is
weakly convergent. Moreover, we also prove that the solution to the Minkowski problem for Lp torsional
measure is continuous with respect to p.

1. Introduction

The surface area measure of a convex body (compact convex set with non-empty interior) and it’s Lp
extension (see [25]) is important concept in convex geometry, and received a great attention. For a convex
body K in Rn and any Borel set ω on the unit sphere Sn−1, the Lp surface area measure of K with p ∈ R is
given by

Sp(K, ω) =
∫

x∈ν−1
K (ω)

(x · νK(x))1−pdHn−1(x),

where νK is the Gauss map from the boundary of K (denoted by ∂K) to Sn−1, and Hn−1 is the (n − 1)-
dimensional Hausdorff measure. Especially, when p = 1, S1(K, ω) = Hn−1(ν−1

K (ω)) is the classical surface
area measure of convex body K on Borel set ω ⊂ Sn−1. For any sequence of convex bodies {Ki}i≥1 and a
convex body K containing the origin in their interiors, it has been proved that Sp(Ki, ·)→ Sp(K, ·) weakly as
Ki → K in Hausdorff metric. However, the opposite problem is also very interest: Does Ki → K hold in
Hausdorff metric as Sp(Ki, ·) → Sp(K, ·) weakly? For all real number p ∈ R, it may not always be positive.
It’s lucky that the opposite problem is correct if p = 1 (see [29]) and if p > 1 and p , n by Zhu (see [49]).

Associated with the Lp surface area measure, there is a hot topic in convex geometry, i.e., the Lp
Minkowski problem which aims to find the conditions for a finite measure µ on Sn−1 such that there exists a
convex body with Lp surface area measure being µ (see [25]): For real number p ∈ R and a finite Borel measure
µ on Sn−1, what are the necessary and sufficient conditions of µ such that µ is the Lp surface area measure of a convex
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body? In recent decades, the Lp Minkowski problem has been a core object of interest in convex geometric
analysis and receives a great attention (see e.g., [2, 4, 5]). The existence and uniqueness of the solution to
the Lp Minkowski problem were studied (see e.g., [8, 10, 19, 20, 23, 27, 30–32, 46–48, 50]).

The solution to the Lp Minkowski problem have many important applications on the affine isoperimetric
inequalities (see e.g., [11, 14–16, 26, 37, 38, 42]). Recently, the study on the solutions to the Lp Minkowski
problem have also been considered by Zhu [49]. He proved that the continuity of the solution to the Lp
Minkowski problem with p > 1 but p , n. When p = 0 and 0 < p < 1, some results about the continuity
associated with the Lp Minkowski problem were obtained (see e.g., [34, 35]).

As a new central object of dual Brunn-Minkowski theorem, the qth dual curvature measure has been
introduced by Huang, Lutwak, Yang and Zhang [17]. They also posed the dual Minkowski problem for the
qth dual curvature measure: Given a nonzero finite Borel measure µ on Sn−1 and q ∈ R, can we find a convex body K
such that the qth dual curvature measure of K isµ? The existence of solutions to the dual Minkowski problem for
even measure µ and q ∈ (0,n] has been proved in [17]. Later, the existence and uniqueness of the solution to
the dual Minkowski problem for q < 0 were provided by Zhao [43]. One can refer [1, 3, 6, 7, 18, 22, 28, 44, 45]
and reference therein for more works on the solution to the dual Minkowski problem. Motivated by the
continuity of the solution to the Lp Minkowski problem [49], the authors considered the continuity of the
solution to the dual Minkowski problem for q < 0 [33, 36]. The continuity of the solution to the Minkowski
problem associated with the Lp p-capacitary measure for 1 < p < ∞ and 1 < p < n is also considered [39]
(see also [24, 40, 41, 51] for more information).

Similar to the surface area measure and qth dual curvature measure, the torsional measure of a convex
body K (denoted by µT(K, ·)) is also an important object of interest in convex geometry. A solution to the
Minkowski problem associated with the torsional measure µT(K, ·) was provided in [12]. Recently, when
p ≥ 1, the Lp torsional measure of a convex body K (see e.g., [9, 21]), denoted by µT,p(K, ·), was introduced
as follows

µT,p(K, ·) = h1−p
K (·)µT(K, ·),

where hK(·) is the support function of convex body K (see section 2 for unexplained definitions). Especially,
µT,1(K, ·) = µT(K, ·).

In this paper, we will show that the weak convergence of Lp torsional measures implies the convergence
of the corresponding convex bodies.

Theorem 1.1. Let p > 1 with p , n+ 2 andΩi,Ω ⊂ Rn(i = 1, 2, · · · ) be convex bodies containing the origin in their
interiors. If the sequence of Lp torsional measure µT,p(Ωi, ·) converges to µT,p(Ω, ·) weakly, thenΩi converges toΩ in
the Hausdroff metric.

The Minkowski problem associated with the Lp torsional measure was investigated (see [9, 21]) which
can be stated as follows.

The Minkowski problem associated with Lp torsional measure: For fixed p ≥ 1 and a given non-
negative finite Borel measure µ on Sn−1, under what conditions there exists a unique convex body Ω such
that µT,p(Ω, ·) = µ?

As mentioned above, this problem was proved by Colesanti and Fimiani [12] for p = 1. In [9], the
authors provided a solution to this problem for p > 1 and p , n + 2. One can refer to [21] for the solution
to this problem for more general measure. Therefore, there is a natural question whether such solution is
continuous with respect to p. In this paper, we also show the continuity for p > 1 and p , n + 2.

Theorem 1.2. Let p, pi ∈ (1,n + 2) ∪ (n + 2,∞) with pi → p. Let µ be a Borel measure on Sn−1. If a convex body Ω
containing the origin in its interior is the solution to the Minkowski problem associated with the Lp torsional measure
for µ and the sequence of convex bodies Ωi containing the origin in their interiors is the solution to the Minkowski
problem associated with the Lpi torsional measure for µ, then Ωi → Ω as pi → p.

2. Preliminaries and notations

In this section, we will collect some basic concepts and notations in convex geometry. For more details
and more concepts on convex geometry, please refer to [13, 29].
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We call a compact and convex subset with non-empty interiors as a convex body in Rn. Let Kn
o denote

the set of convex bodies containing the origin o in their interiors. The standard inner product of the vectors
x, y ∈ Rn is denoted by x · y. For x ∈ Rn, let |x| =

√
x · x be the Euclidean norm of x. The origin-centered unit

ball {x ∈ Rn : |x| ≤ 1} in Rn and the unit sphere {x ∈ Rn : |x| = 1} are denoted by Bn
2 and Sn−1, respectively.

The volume of a convex body K is denoted by |K|.
For a compact convex set Ω, its support function is defined by

hΩ(x) = max{x · y : y ∈ Ω}, for x ∈ Rn
\ {0}.

It is easy to check that hcΩ(x) = chΩ(x) for c > 0 and x ∈ Rn, here cΩ = {cx : x ∈ Ω}. Let diam(Ω) be the
diameter of Ω is given by

diam(Ω) = sup{|x − y| : ∀x, y ∈ Ω}.

Two compact convex sets Ω and Ω′ in Rn are said to be homothetic to each other if Ω = cΩ′ + x0 for some
constant c > 0 and any point x0 ∈ Rn. In particular, Ω and Ω′ are said to be dilates to each other if x0 is the
origin. The Hausdroffmetric between Ω and Ω′ is defined as

dH(Ω,Ω′) = max
u∈Sn−1

|hΩ(u) − hΩ′ (u)| = ∥hΩ − hΩ′∥∞.

Let W1,2(Ω) be the Sobolev space of those functions having weak derivatives up to the second order in
L2(Ω) and W1,2

0 (Ω) is the set of functions in W1,2(Ω) having compact support. We use C∞c (Rn) to denote
the class of all infinitely differentiable functions with compact support in Rn. For a convex body Ω, the
torsional rigidity T(Ω) of Ω is defined by

1
T(Ω)

= inf


∫
Ω
|∇u|2dx

(
∫
Ω
|u|dx)2

: u ∈W1,2
0 (Ω),

∫
Ω

|u|dx > 0

 ,
where ∇u is the gradient of u. It has been proved that if u is the unique solution of the boundary-value
problem ∆u = −2 in Ω,

u = 0 on ∂Ω,
(2.1)

then

T(Ω) =
∫
Ω

|∇u|2dx.

Moreover, one can obtain the upper bound of |∇u|.

Lemma 2.1. (see [12]) Let Ω be an open bounded convex subset of Rn. If u is the solution of the problem (2.1) in Ω,
then

|∇u(x)| ≤ diam(Ω),∀x ∈ Ω.

The definition of the torsional rigidity shows that T(aΩ) = an+2T(Ω) for any Ω ∈ Kn
o and a > 0. The

torsional measure µT(Ω, ·) is a nonnegative Borel measure on Sn−1 which can be defined as (see [12]): for
any measurable subset ω ⊂ Sn−1,

µT(Ω, ω) =
∫
ν−1
Ω

(ω)
|∇u(x)|2dHn−1(x). (2.2)

Obviously, for a > 0
µT(aΩ, ·) = an+1µT(Ω, ·) on Sn−1.

In addition, µT(Ω, ·) is not concentrated on any closed hemisphere of Sn−1, i.e.,∫
Sn−1

(v · u)+dµT(Ω,u) > 0 for any v ∈ Sn−1,
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where (v · u)+ = max{v · u, 0}.
From (2.2), we have the relation between µT(Ω, ·) and S(Ω, ·) as follows

dµT(Ω, v) = |∇u(ν−1
Ω (v))|2dS(Ω, v) for any v ∈ Sn−1. (2.3)

Based on the relation (2.3), the Lp torsional measure ofΩwith p > 1 was induced as follows (see [9, 21])

µT,p(Ω, ω) =
∫

x∈ν−1
Ω

(ω)
(x · νΩ(x))1−p

|∇u(x)|2dHn−1(x),

for any Borel set ω on the unit sphere Sn−1. It has also been proved that the weak convergence of the Lp
torsional measure, i.e., if a sequence of convex bodies Ωi ∈ K

n
o (i = 1, 2, · · · ) converges to a convex body Ω,

then
µT,p(Ωi, ·)→ µT,p(Ω, ·) weakly on Sn−1 as i→∞. (2.4)

Moreover, the Lp mixed torsional rigidity Tp(Ω1,Ω2) of the convex bodies Ω1,Ω2 ∈ K
n
o for p > 1 was given

by

Tp(Ω1,Ω2) =
1

n + 2

∫
Sn−1

hΩ2 (u)pdµT,p(Ω1,u).

Especially, for Ω ∈ Kn
o , we have

T(Ω) = Tp(Ω,Ω) =
1

n + 2

∫
Sn−1

hΩ(u)dµT(Ω,u).

Obviously, it can be easily checked that Tp is homogeneous with respect to its variables, i.e., for any p > 1,
Ω1,Ω2 ∈ K

n
o and any real numbers s, t > 0,

Tp(sΩ1, tΩ2) = sn+2−ptpTp(Ω1,Ω2). (2.5)

We will use the Minkowski type inequality for Lp mixed torsional rigidity (see [9, 21]): Let p > 1 and
Ω1,Ω2 ∈ K

n
o , then

Tp(Ω1,Ω2)n+2
≥ T(Ω1)n+2−pT(Ω2)p, (2.6)

with equality if and only if K and L are dilates. This inequality plays an important role on solving the
Minkowski problem for Lp torsional measure.

Lemma 2.2. (see [9, 21]) Let p > 1 with p , n + 2. If µ is a finite Borel measure on Sn−1 whose support is not
concentrated on any closed hemisphere, then there exists a unique convex body Ω ∈ Kn

o such that

µ = µT,p(Ω, ·) = h1−p
Ω
µT(Ω, ·).

3. The proof of main result

In this section, we will prove our main theorems. That is the continuity of the solution to the Minkowski
problem for Lp torsional measure. To do so, we firstly provide several lemmas which will be used in the
proofs of our main results.

Lemma 3.1. Let p > 1 and Ω,Ωi ∈ K
n
o (i = 1, 2, · · · ). If the sequence of the measures µT,p(Ωi, ·) converges to

µT,p(Ω, ·) weakly, then for all u ∈ Sn−1

fi(u) =
∫

Sn−1
(u · v)p

+dµT,p(Ωi, v)

converges to

f (u) =
∫

Sn−1
(u · v)p

+dµT,p(Ω, v)

uniformly on Sn−1.
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Proof. Since p > 1, for any real numbers α, β > 0 and u1,u2 ∈ Sn−1, we have

f
1
p

i (αu1 + βu2) ≤ α f
1
p

i (u1) + β f
1
p

i (u2),

and
f

1
p (αu1 + βu2) ≤ α f

1
p (u1) + β f

1
p (u2).

Thus f
1
p (u) and f

1
p

i (u) are support functions of convex bodies (see, e.g., Schneider [29]). Since the pointwise

and uniform convergence of support functions are equivalent (also see, e.g., Schneider [29]). Thus f
1
p

i

converges to f
1
p uniformly on Sn−1. This implies that fi converges to f uniformly on Sn−1.

Lemma 3.2. Suppose p > 1 with p , n + 2. Let Ω be a compact convex set with o ∈ Ω and let µ be a Borel measure
on Sn−1 such that T(Ω) · hp−1

Ω
(·)µ = µT(Ω, ·). If there exists a constant R0 > 0 such that∫

Sn−1
(u · v)p

+dµ(v) ≥
n + 2

Rp
0

for all u ∈ Sn−1, then Ω ⊂ R0Bn
2 .

Proof. Let R := hΩ(v0) = max{hΩ(u) : u ∈ Sn−1
} for some v0 ∈ Sn−1. Since the segment [o,Rv0] ⊂ Ω, thus

R(u · v0)+ ≤ hΩ(u) for all u ∈ Sn−1, and hence

Rp

Rp
0

≤
Rp

n + 2

∫
Sn−1

(u · v0)p
+dµ(u)

≤
1

n + 2

∫
Sn−1

hp
Ω

(u)dµ(u)

=
1

n + 2

∫
Sn−1

h(Ω,u)
dµT(Ω,u)

T(Ω)
= 1.

This gives R ≤ R0 which shows that Ω ⊂ R0Bn
2 .

Lemma 3.3. Suppose p > 1 with p , n + 2. Let Ω ∈ Kn
o be a convex body and let {Ωi}

∞

i=1 ⊂ K
n
o be a sequence of

convex bodies. If the sequence of measures {µT,p(Ωi, ·)}∞i=1 converges weakly to µT,p(Ω, ·), thenΩi is bounded and there
exist η1, η2 > 0 with η1 < η2 and N ∈N such that

η1 < T(Ωi) < η2

for all i ≥ N.

Proof. Let

µT,p(Ω,Sn−1) =
∫

Sn−1
dµT,p(Ω,u).

The inequality (2.6) gives that [
µT,p(Ωi,Sn−1)

n + 2

]n+2

≥ T(Ωi)n+2−pT(Bn
2)p.

Since µT,p(Ωi, ·) converges weakly to µT,p(Ω, ·), there exist constants c1, c′1 > 0 and N0 ∈N such that

T(Ωi) ≤ c1 for 1 < p < n + 2 (3.7)

and
T(Ωi) ≥ c′1 for p > n + 2 (3.8)
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for all i ≥ N0.
Since the Lp torsional measure µT,p is not concentrated on any closed hemisphere of Sn−1, i.e., there exists

a constant η > 0 such that ∫
Sn−1

(u · v)+dµT,p(Ω, v) > η.

Combined with Lemma 3.1, this implies that there exist R0 > 0 and N1 ∈ N such that for all u ∈ Sn−1 and
i ≥ N1,

fi(u) =
∫

Sn−1
(u · v)p

+dµT,p(Ωi, v) ≥
n + 2

Rp
0

. (3.9)

By (2.5) and Lemma 2.2, there exists a unique convex body Ω′i ∈ K
n
o such that

T(Ω′i )h
p−1
Ω′i
· µi = µT(Ω′i , ·)

with
Ω′i = T(Ωi)

−
1
pΩi.

Let µi = µT,p(Ωi, ·), combined with (3.9) and Lemma 3.2, this implies that Ω′i ⊂ R0Bn
2 for all i ≥ N1. Thus

T(Ωi)
p−(n+2)

p = T(Ω′i ) ≤ Rn+2
0 T(Bn

2)

for all i ≥ N1. Then there exist constants c2, c′2 > 0 and N2 ∈N such that

T(Ωi) ≥ c2 for 1 < p < n + 2 (3.10)

and
T(Ωi) ≤ c′2 for p > n + 2 (3.11)

for all i ≥ N2.
From (3.7), (3.8), (3.10) and (3.11), there exist η1, η2 > 0 with η1 < η2 and N = max{N0,N1,N2} ∈ N such

that
η1 < T(Ωi) < η2 (3.12)

for all i ≥ N.
Let Ri = h(Ωi,ui) = max{h(Ωi,u) : u ∈ Sn−1

} for some ui ∈ Sn−1. Since the segment [o,Riui] ⊂ Ωi, thus

Ri(u · ui)+ ≤ h(Ωi,u)

for all u ∈ Sn−1. Combined with (3.9) and (3.12), this proves that for all i ≥ N

Rp
i

Rp
0

≤
Rp

i

n + 2

∫
Sn−1

(u · ui)
p
+dµT,p(Ωi,u)

≤
1

n + 2

∫
Sn−1

hp(Ωi,u)dµT,p(Ωi,u)

= T(Ωi)
< η2.

This gives that Ωi is bounded.

We now prove our first main result, i.e., Theorem 1.1, we repeat it as follows.

Theorem 3.4. Let p > 1 with p , n + 2. Let Ω ∈ Kn
o be a convex body and let {Ωi}

∞

i=1 ⊂ K
n
o be a sequence of

convex bodies. If the sequence of measures {µT,p(Ωi, ·)}∞i=1 converges to µT,p(Ω, ·) weakly, then Ωi converges to Ω in
the Hausdroff metric.
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Proof. Suppose Ωi does not converge to Ω. That is to say, there exists a subsequence Ωi j of Ωi and ε0 > 0
such that

∥h(Ωi j ,u) − h(Ω,u)∥∞ ≥ ε0

for all u ∈ Sn−1 and i j ∈N.
Lemma 3.3 implies thatΩi is bounded and thusΩi j is also bounded. By the Blaschke selection theorem,

there exists a subsequence Ωi jk
of Ωi j converges to a compact convex set Ω0 with Ω0 , Ω.

Next we show that Ω0 is a convex body. Indeed, the formula (2.2) and Lemma 2.1 show that T(Ωi jk
) ≤

[diam(Ωi jk
)]2
|Ωi jk
|, i.e.,

|Ωi jk
| ≥

1
[diam(Ωi jk

)]2 T(Ωi jk
).

This gives that |Ω0| ≥
1

[diam(Ω0)]2 T(Ω0) > 0 as Ωi jk
→ Ω0. This further implies that Ω0 is a convex body but

Ω0 , Ω.
Let µ = µT,p(Ω, ·), which implies that µT,p(Ωi jk

, ·) converges to µ weakly. On the other hand, the weak
convergence (2.4) implies that

µT,p(Ωi jk
, ·)→ µT,p(Ω0, ·) weakly as Ωi jk

→ Ω0.

Combined with µT,p(Ωi jk
, ·) → µT,p(Ω, ·) weakly, this yields that µT,p(Ω0, ·) = µ = µT,p(Ω, ·), which further

implies that Ω0 = Ω by the uniqueness of the solution to the Minkowski problem for Lp torsional measure
in Lemma 2.2. This contradiction shows that Ωi converges to Ω.

Obviously, the theorem above is closely related to the Minkowski problem for the Lp torsional measure
and can be described as follows:

Theorem 3.5. Let p > 1 with p , n+2 and µi, µ be nonzero finite Borel measures on Sn−1. IfΩi ∈ K
n
o is the solution

to the Minkowski problem for Lp torsional measure associated with µi and Ω ∈ Kn
o is the solution to the Minkowski

problem for Lp torsional measure associated with µ, then Ωi → Ω as µi → µ.

Proof. From Lemma 2.2 and the uniqueness of the solution to the Minkowski problem for Lp torsional
measure, we have

µi = µT,p(Ωi, ·) and µ = µT,p(Ω, ·).

Since µi → µ, i.e.,
µT,p(Ωi, ·)→ µT,p(Ω, ·).

This, together with Theorem 3.4, gives Ωi → Ω.

To show the continuity of solution to the Minkowski problem for Lp torsional measure with respect to
p, we shall use the following lemma.

Lemma 3.6. Suppose p, pi ∈ (1,n + 2) ∪ (n + 2,∞) with pi → p. Let µ be a Borel measure on Sn−1 that is not
concentrated on a closed hemisphere. IfΩ is the solution to the Minkowski problem for Lp torsional measure associated
with µ andΩi is the solution to the Minkowski problem for Lpi torsional measure associated with µ, thenΩi is bounded
from above and there exist constants η3, η4 > 0 with η3 < η4 and N ∈N such that

η3 < T(Ωi) < η4

for all i ≥ N.

Proof. Let |µ| =
∫

Sn−1 dµ(u). Since Ω is the solution to the Minkowski problem for Lp torsional measure
associated with µ, by Lemma 2.2, we obtain

Tp(Ω,Bn
2) =

µT,p(Ω,Sn−1)
n + 2

=
|µ|

n + 2
.
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By the Minkowski inequality for Lpi mixed torsional rigidity, we have[
|µ|

n + 2

]n+2

≥ T(Ωi)n+2−pi T(Bn
2)pi .

By the condition that p, pi ∈ (1,n + 2) ∪ (n + 2,∞) with pi → p, there exist constants c′3, c3 > 0 and N1 ≥ N
such that

T(Ωi) ≤ c3 for 1 < p < n + 2 (3.13)

and
T(Ωi) ≥ c′3 for p > n + 2 (3.14)

for all i ≥ N1.
Since p, pi ∈ (1,n + 2) ∪ (n + 2,∞) with pi → p and µ is not concentrated on a closed hemisphere of Sn−1,

there exist N2 ∈N, R0,m0 > 0 and p2 > p > p1 > 1 such that

p2 ≥ pi ≥ p1, (R0 +m0)pi ≥ Rp2

0

for i ≥ N2, and ∫
Sn−1

(u · v)p2
+ dµ(v) ≥

n + 2
Rp2

0

for all u ∈ Sn−1. When i ≥ N2, one has∫
Sn−1

(u · v)pi
+dµ(v) ≥

∫
Sn−1

(u · v)p2
+ dµ(v)

≥
n + 2

(R0 +m0)pi

for all u ∈ Sn−1. From Lemma 3.2, it follows that

T(Ωi)
−

1
pΩi ⊂ (R0 +m0)Bn

2 , (3.15)

thus
T(Ωi)

pi−(n+2)
pi ≤ (R0 +m0)n+2T(Bn

2).

Since pi → p, we conclude that there exist c′4, c4 > 0 and N3 ∈N such that

T(Ωi) ≥ c4 for 1 < p < n + 2 (3.16)

and
T(Ωi) ≤ c′4 for p > n + 2 (3.17)

for all i ≥ N3.
By (3.13), (3.14), (3.16) and (3.17), there exist η3, η4 > 0 with η3 < η4 and N = max{N1,N2,N3} ∈ N such

that
η3 < T(Ωi) < η4

for all i ≥ N. From this and (3.15), we have

Ωi ⊂ η
1
p

4 (R0 +m0)Bn
2 .

This shows that Ωi is bounded from above.

We now prove Theorem 1.2 and repeat it again as follows.
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Theorem 3.7. Suppose p, pi ∈ (1,n + 2) ∪ (n + 2,∞) with pi → p. Let µ be a Borel measure on Sn−1. If Ω ∈ Kn
o is

the solution to the Minkowski problem for Lp torsional measure associated with µ and the sequence of convex bodies
Ωi ∈ K

n
o is the solution to the Minkowski problem for Lpi torsional measure associated with µ, then Ωi → Ω as

pi → p.

Proof. Suppose Ωi does not converge to Ω. That is to say, there exists a subsequence Ωi j of Ωi and ε0 > 0
such that

∥h(Ωi j ,u) − h(Ω,u)∥∞ ≥ ε0

for all i j ∈N.
By Lemma 3.6 and the same argument in the proof of Theorem 3.4, this shows that there exist a convex

body Ω0 but Ω0 , Ω and a subsequence Ωi jk
of Ωi j such that limk→∞Ωi jk

= Ω0.
Since Ωi jk

is the solution to the Minkowski problem for Lpi jk
torsional measure associated with µ, this

gives that
h(Ωi jk

, ·)pi jk
−1
· µ = µT(Ωi jk

, ·).

Taking k→∞ on both sides, we obtain

h(Ω0, ·)p−1
· µ = µT(Ω0, ·).

By the uniqueness of the solution to the Minkowski problem for Lp torsional measure, we have Ω0 = Ω,
which is a contraction. This shows that Ωi → Ω.
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