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Analytical method for solving a time-conformable fractional telegraph
equation
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Abstract. In this paper, we present an analytical method to solve a time-conformable fractional telegraph
equation with three boundary conditions namely, Dirichlet, Neumann and Robin. This method based on
Fourier method and conformable fractional calculus properties. We give three examples to validate this
method.

1. Introduction

Fractional calculus generalized the classical calculus to an arbitrary (non-integer) order. The history of
this theory was begun from a letter written by L’Hôspital to Leibniz in 1695 asking him if n = 1

2 , what does
it mean dn f

dxn . Leibniz then responded saying ”An apparent paradox”, different explanations of the fractional
derivative are presented. There are almost 25 definitions of the fractional derivative. The most famous
of them are Caputo and R-L derivatives. Both these definitions include integral in their definitions. Few
properties of these fractional-order derivatives are similar to the classical order derivatives. However, there
are a few complications, see [20].

☞ These definitions are non-local, which makes them unsuitable for investigating properties related to
local scaling or fractional differentiability.

☞ Riemann Liouville’s derivative does not fulfilDα (1) = 0.

☞ For Caputo’s derivative, we have to assume that the function is differentiable. Otherwise, we cannot
apply this definition.

All fractional derivatives are deficient in some mathematical properties like product rule, chain rule, and
quotient rule. Therefore, the solution of differential equations is not easy to obtain using these definitions.

A new type of fractional derivative was introduced by Khalil et al., [12] and developed by Abdeljawad,
[2] called ”conformable fractional derivative”. This definition is different from other fractional derivatives
and similar to the classical definition of the derivative. It depends on the limit definition of the derivative
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of a function. So this definition seems to be a natural extension of the ordinary derivative. Other fractional
derivatives do not have geometrical interpretation but conformable derivative has [11]. This theory has
attracted many researchers to work within and so many new concepts are introduced in conformable
fractional calculus, see [1, 3, 7, 18, 19, 24]. Recently, the authors in [4] introduced a fuzzy conformable
derivative of orderΨ and extended by Younus et al. in [21–23]. In [16] the authors introduced a new class
of mixed fractional differential equations involving the conformable and Caputo derivatives with integral
boundary conditions. The exact solutions of conformable time-fractional modified non-linear Schrödinger
equation is obtained by Direct algebraic method and Sine-Gordon expansion method [5].

Modelling of real-life problems with conformable derivatives was done in [8] and [13] where the authors
modelled the dynamic cobweb and the Gray system, respectively.

We consider the following non-homogeneous time-fractional telegraph equation:

D
(2α)
t u (x, t) + 2aD(α)

t u (x, t) + b2u (x, t) = k2 ∂
2u
∂x2

(x, t) + f (x, t) , (x, t) ∈ ΩT, 0 < α ≤ 1 (1)

and initial conditions

u (x, 0) = ϕ (x) , D(α)
t u (x, 0) = ψ (x) , 0 ≤ x ≤ ℓ, (2)

where ΩT := {(x, t) : 0 < x < ℓ, 0 < t ≤ T} with ℓ,T > 0 are given, D(α)
t represents the left-conformable

fractional derivative of order 0 < α ≤ 1 with respect to t and D(2α)
t = D(α)

t

(
D

(α)
t

)
. f (x, t) is the source term

and a, b, k are constants such that a ≥ b > 0, k > 0 and ϕ,ψ ∈ C (0, ℓ).
For α = 1, equation (1) is the classical telegraph equation introduced by Oliver Heaviside [9]. This

equation is a second-order linear hyperbolic equation and it models several phenomena in many different
fields such as signal analysis [10], wave propagation [17], random walk theory [6].

In this paper, we derive the analytical solution of equation (1) under three types of non-homogeneous
boundary conditions using the Fourier method and the properties of conformable fractional calculus.

We organized this paper as follows: in Section 2, we give some concepts on the conformable fractional
calculus. In Section 3, we derive the analytical solution of equation (1) with Dirichlet boundary conditions.
In Section 4 and Section 5, we discuss the analytical solution equation (1) with Neumann and Robin
boundary conditions, respectively. Some conclusions are drawn in Section 6.

2. Preliminaries on conformable fractional calculus

In this section, we start by recalling some concepts about conformable fractional calculus.

Definition 2.1 ([2]). Let φ : [a,+∞ [ → R is a given function and α ∈ ] 0, 1 ]. Then, the left-conformable fractional
derivative of order α is defined by:

D
(α)
t

(
φ
)

(t) := lim
ε→0

φ
(
t + ε (t − a)1−α

)
− φ (t)

ε
. (3)

If D(α)
t

(
φ
)

(t) exists on ] a,+∞ [ , then D(α)
t

(
φ
)

(a) = lim
t→a+
D

(α)
t

(
φ
)

(t). If a = 0, the definition (3) is introduced by

Khalil et al. [12]. In this case, we say that φ is α-differentiable.

Definition 2.2 ([12]). Let α ∈ ] 0, 1 ] and φ : [0,+∞ [ → R be real valued function. The left-conformable fractional
integral of φ of order α from zero to t is defined by:

Iαφ (t) :=
∫ t

0
sα−1φ (s) ds, t ≥ 0, (4)

Lemma 2.1 ([12]). Let φ : [0,+∞ [ → R is a given function and 0 < α ≤ 1. Then, for all t > 0, we have:
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1. If φ is continuous, thenD(α)
t

[
Iαφ (t)

]
= φ (t).

2. If φ is α-differentiable, then Iα
[
D

(α)
t

(
φ
)

(t)
]
= φ (t) − φ (0).

Definition 2.3 ([2]). Let 0 < α ≤ 1 and φ : [0,+∞ [ → R be real valued function. Then, the fractional Laplace
transform of order α starting from zero of φ is defined by:

Lα
[
φ (t)

]
(s) =

∫ +∞

0
tα−1φ (t) e−s tα

α dt. (5)

Proposition 2.1 ([2]). 1. The conformable fractional Laplace transform is a linear operator:

Lα
{
µ f (t) + λ1 (t)

}
(s) = µLα

{
f (t)

}
+ λLα

{
1 (t)

}
, (6)

where µ and λ are real constants.
2. We have,

Lα

{
f (t) e−k tα

α

}
(s) = L

{
f
(
(αt)1/α

)}∣∣∣∣
s=s+k

, s > −k. (7)

3. Let, α ∈ ] 0, 1 ] and f (t), 1 (t) are functions.
The conformable fractional Laplace transform of the convolution product of f and 1 is given by,

Lα
{(

f ∗ 1
)

(t)
}
= Fα (s)Gα (s) , (8)

where,
(

f ∗ 1
)

(t) =
∫ t

0 f
(
(tα − τα)1/α

)
1 (τ) dτ

τ1−α .

Theorem 2.1 ([2]). Let 0 < α ≤ 1 and φ : [0,+∞ [ → R be differentiable real valued function. Then, we have:

Lα

[
D

(α)
t φ (t)

]
(s) = sLα

[
φ (t)

]
(s) − φ (0) . (9)

We introduce the following theorem, which is used further in this paper.

Theorem 2.2 ([15]). Let 1 : [0,+∞ [ → R is a continuous function and η, γ ∈ R+ such that η < γ. For all
0 < α ≤ 1, the initial value problem:D(2α)

t y (t) + 2ηD(α)
t y (t) + γ2y (t) = 1 (t) ,

y (0) = y0, D
(α)
t y (0) = yα.

(10)

admits a unique solution given by

y (t) = y0e−η
tα
α cos

(√
γ2 − η2 tα

α

)
+

y0η + yα√
γ2 − η2

e−η
tα
α sin

(√
γ2 − η2 tα

α

)
+

1√
γ2 − η2

∫ t

0
1
(
(tα − τα)1/α

)
e−η

τα

α sin
(√

γ2 − η2 τ
α

α

) dτ
τ1−α .

(11)

3. Conformable fractional telegraph equation with Dirichlet boundary condition

In this section, we determine the analytical solution of the time-fractional telegraph equation (1) with
the initial conditions (2) and the non-homogeneous Dirichlet boundary conditions

u (0, t) = µ1 (t) , u (ℓ, t) = µ2 (t) , t > 0, (12)

where µ1, µ2 ∈ C
1 (0,T) satisfying

ϕ (0) = µ1 (0) and ϕ (ℓ) = µ2 (0) .
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We Assume

u (x, t) =W1 (x, t) + V1 (x, t) ,

where V1 (x, t) is given by:

V1 (x, t) = µ1 (t) +
[
µ2 (t) − µ1 (t)

]
x

ℓ

in which satisfies the Dirichlet boundary conditions:

V1 (0, t) = µ1 (t) , V1 (ℓ, t) = µ2 (t) .

and the function W1 (x, t) is the solution of the following problem:
D

(2α)
t W1 (x, t) + 2aD(α)

t W1 (x, t) + b2W1 (x, t) = k2 ∂2W1(x,t)
∂x2 + f̃ (x, t) ,

W1 (x, 0) = ϕ1 (x) , D(α)
t W1 (x, 0) = ψ1 (x) ,

W1 (0, t) =W1 (ℓ, t) = 0,
(13)

where

f̃ (x, t) = −D(2α)
t V1 (x, t) − 2aD(α)

t V1 (x, t) − b2V1 (x, t) + f (x, t) ,

ϕ1 (x) = ϕ (x) − µ1 (0) −
[
µ2 (0) − µ1 (0)

]
x

ℓ
,

ψ1 (x) = ψ (x) −D(α)
t µ1 (0) −

[
D

(α)
t µ2 (0) −D(α)

t µ1 (0)
]

x

ℓ
.

We firstly assume the solution of the homogeneous equation in (13) (putting f̃ (x, t) = 0) has the form:

W1 (x, t) = X (x) Y (t) .

Substituting in (13) we obtain the Sturm-Liouville problem:X′′ (x) + λX (x) = 0,
X (0) = X (ℓ) = 0,

(14)

This problem has eigenvalues

λn =
n2π2

ℓ2 , n ∈ N∗

and corresponding eigenfunctions

Xn (x) = sin
(nπx
ℓ

)
, n ∈ N∗.

Now we seek a solution of the non-homogeneous problem (13) of the form

W1 (x, t) =
+∞∑
n=1

Bn (t) sin
(nπx
ℓ

)
. (15)

In order to determine Bn (t), we expand f̃ (x, t) as a Fourier series by the eigenfunctions Xn (x):

f̃ (x, t) =
+∞∑
n=1

f̃n (t) sin
(nπx
ℓ

)
, where f̃n (t) =

2
ℓ

∫ ℓ

0
f̃ (x, t) sin

(nπx
ℓ

)
dx. (16)
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Substituting (15), (16) into (13) yields

D
(2α)
t Bn (t) + 2aD(α)

t Bn (t) +
(
b2 + λnk2

)
Bn (t) = f̃n (t) . (17)

Since W1 (x, t) satisfies the initial conditions in (13), we must have
+∞∑
n=0

Bn (0) sin
(nπx
ℓ

)
= ϕ1 (x) , 0 < x < ℓ,

+∞∑
n=0

D
(α)
t Bn (0) sin

(nπx
ℓ

)
= ψ1 (x) , 0 < x < ℓ,

which yieldsBn (0) = 2
ℓ

∫ ℓ
0 ϕ1 (x) sin

(
nπx
ℓ

)
dx, n ∈ N∗,

D
(α)
t Bn (0) = 2

ℓ

∫ ℓ
0 ψ1 (x) sin

(
nπx
ℓ

)
dx, n ∈ N∗.

(18)

We assume that

0 ≤
a2
− b2

k2 < λ1, (19)

where λ1 = π2/ℓ2 is the smallest eigenvalue of the Strum-Liouville problem (14).
Using condition (19), Theorem 2.2, (17), (18) and (15) we obtain the solution of problem (13) as

W1 (x, t) =
+∞∑
n=1

[
Bn (0) e−a tα

α cos
(√

b2 − a2 + λnk2 tα

α

)
+

Bn (0) a +D(α)
t Bn (0)√

b2 − a2 + λnk2
e−a tα

α sin
(√

b2 − a2 + λnk2 tα

α

)
+

1√
b2 − a2 + λnk2

∫ t

0
f̃n

(
(tα − τα)1/α

)
e−a τ

α

α sin
(√

b2 − a2 + λnk2 τ
α

α

) dτ
τ1−α

 sin
(nπx
ℓ

)
.

(20)

Example 3.1. ([14, Chapter 2]) In this example, we consider the following data:
a = b = k = ℓ = 1, α = 1

2 and f (x, t) = 0,
ϕ(x) = 1, ψ(x) = 0,
µ1 (t) = µ2 (t) = 0.

The problem (1), (2) and (12) becomes:
D

(1/2)
t

(
D

(1/2)
t u(x, t)

)
+ 2D(1/2)

t u(x, t) + u(x, t) = ∂2u(x,t)
∂x2 ,

u(x, 0) = 1, D(1/2)
t u(x, 0) = 0, 0 ≤ x ≤ 1,

u(0, t) = u(1, t) = 0.

(21)

The eigenvalues and the eigenfunctions are given by

λn = π
2n2, and Xn (x) = sin (πnx) , n ∈ N∗.

From (18), we get

Bn(0) =
2
(
1 − (−1)n)
πn

and D
(1/2)
t Bn(0) = 0.

According to (20), the analytical solution of problem (21) is given by

u(x, t) =
+∞∑
n=0

4e−2
√

t

π (2n + 1)

(
cos (4n + 2)π

√
t +

1
π (2n + 1)

sin (4n + 2)π
√

t
)

sin (2n + 1)πx.
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4. Conformable fractional telegraph equation with Neumann boundary condition

In this section, we determine analytical solution of the time-fractional telegraph equation (1) with initial
conditions (2) and non-homogeneous Neumann boundary conditions

ux (0, t) = µ1 (t) , ux (ℓ, t) = µ2 (t) , t > 0, (22)

where µ1, µ2 ∈ C (0,T) satisfying

µ1 (0) = ϕ′ (0) and µ2 (0) = ϕ′ (ℓ) .

Let

u (x, t) =W2 (x, t) + V2 (x, t) ,

where W2 (x, t) is given by

V2 (x, t) = µ1 (t) + µ1 (t) x +
[
µ2 (t) − µ1 (t)

]
x2

2ℓ
,

in which satisfies the Neumann boundary conditions

∂V2 (0, t)
∂x

= µ1 (t) ,
∂V2 (ℓ, t)
∂x

= µ2 (t)

and the function W2 (x, t) is the solution of the following problem:
D

(2α)
t W2 (x, t) + 2aD(α)

t W2 (x, t) + b2W2 (x, t) = k2 ∂2W2(x,t)
∂x2 + f̃ (x, t) ,

W2 (x, 0) = ϕ2 (x) , D(α)
t W2 (x, 0) = ψ2 (x) ,

∂W2(0,t)
∂x = ∂W2(ℓ,t)

∂x = 0,
(23)

in which

f̃ (x, t) = −D(2α)
t V2 (x, t) − 2aD(α)

t V2 (x, t) − b2V2 (x, t) + f (x, t) ,

ϕ2 (x) = ϕ (x) − µ1 (0) x −
[
µ2 (0) − µ1 (0)

]
x2

2ℓ
,

ψ2 (x) = ψ (x) −D(α)
t µ1 (0) x −

[
D

(α)
t µ2 (0) −D(α)

t µ1 (0)
]

x2

2ℓ
.

We assume the solution of the homogeneous equation in (23), by taking f̃ (x, t) = 0, has the form:

W2 (x, t) = X (x) Y (t)

and substitute in (23), we obtain the Sturm-Liouville problem:X′′ (x) + λX (x) = 0,
X′ (0) = X′ (ℓ) = 0.

(24)

A simple calculation shows that the eigenvalues of the Sturm-Liouville problem (24) are

λn =
π2n2

ℓ2 , n ∈ N

and corresponding eigenfunctions

Xn (x) = cos
(
πnx
ℓ

)
, n ∈ N.
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Consider the solution of the problem (23) is the form

W2 (x, t) =
+∞∑
n=1

Bn (t) cos
(nπx
ℓ

)
. (25)

In order to determine Bn (t), we expand f̃ (x, t) as a Fourier series by the eigenfunctions
{
cos

(
nπx
ℓ

)}
:

f̃ (x, t) =
+∞∑
n=1

f̃n (t) cos
(nπx
ℓ

)
where f̃n (t) =

2
ℓ

∫ ℓ

0
f̃ (x, t) cos

(nπx
ℓ

)
dx. (26)

Substituting (25), (26) into (23) yields

D
(2α)
t Bn (t) + 2aD(α)

t Bn (t) +
(
b2 + λnk2

)
Bn (t) = f̃n (t) . (27)

Since W2 (x, t) satisfies the initial conditions in (23), we must have
+∞∑
n=0

Bn (0) cos
(nπx
ℓ

)
= ϕ2 (x) ,

+∞∑
n=0

D
(α)
t Bn (0) cos

(nπx
ℓ

)
= ψ2 (x) ,

which yieldsBn (0) = 2
ℓ

∫ ℓ
0 ϕ2 (x) cos

(
nπx
ℓ

)
dx,

D
(α)
t Bn (0) = 2

ℓ

∫ ℓ
0 ψ2 (x) cos

(
nπx
ℓ

)
dx.

(28)

From the condition (19), Theorem 2.2, (27), (28) and (25) we obtain the solution of problem (23) as

W2 (x, t) =
+∞∑
n=1

[
Bn (0) e−a tα

α cos
(√

b2 − a2 + λnk2 tα

α

)
+

Bn (0) a +D(α)
t Bn (0)√

b2 − a2 + λnk2
e−a tα

α sin
(√

b2 − a2 + λnk2 tα

α

)
+

1√
b2 − a2 + λnk2

∫ t

0
f̃n

(
(tα − τα)1/α

)
e−a τ

α

α sin
(√

b2 − a2 + λnk2 τ
α

α

) dτ
τ1−α

 cos
(nπx
ℓ

)
.

(29)

Example 4.1. ([14, Chapter 2]) In this example, we consider the following data:
a = b = k = ℓ = 1, α = 1

2 and f (x, t) = 0,
ϕ(x) = x, ψ(x) = 0,
µ1 (t) = µ2 (t) = 0.

The problem (1), (2) and (22) becomes:
D

(1/2)
t

(
D

(1/2)
t u(x, t)

)
+ 2D(1/2)

t u(x, t) + u(x, t) = ∂2u(x,t)
∂x2 ,

u (x, 0) = x, D(1/2)
t u (x, 0) = 0,

ux (0, t) = ux (1, t) = 0.

(30)

The eigenvalues and the eigenfunctions are given by

λn = π
2n2, and Xn (x) = cos (πnx) , n ∈ N.
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From (28), we get

Bn(0) =
2

π2n2

(
(−1)n

− 1
)

and D
(1/2)
t Bn(0) = 0.

From (29), the analytical solution of problem (30) is given by

u(x, t) =
+∞∑
n=0

−4e−2
√

t

π2 (2n + 1)2

[
cosπ (4n + 2)

√
t +

sinπ (4n + 2)
√

t
π (2n + 1)

]
cosπ (2n + 1) x.

5. Conformable fractional telegraph equation with Robin boundary condition

In this section, we find the analytical solution for the conformable fractional telegraph equation (1) with
initial conditions (2) and the non-homogeneous Robin boundary conditions

u (0, t) + ρux (0, t) = µ1 (t) , u (ℓ, t) + σux (ℓ, t) = µ2 (t) , t > 0, (31)

where ρ < 0, σ > 0 and µ1, µ2 ∈ C (0,T) satisfyingϕ (0) + ρϕ′ (0) = µ1 (0) ,
ϕ (ℓ) + ρϕ′ (ℓ) = µ2 (0) .

We assume that

u (x, t) =W3 (x, t) + V3 (x, t) ,

where V3 (x, t) is given by

V3 (x, t) =
µ1 (t) − µ2 (t)
ρ − σ − ℓ

x −
(ℓ + σ)µ1 (t) − ρµ2 (t)

ρ − σ − ℓ
,

in which satisfies the Robin boundary conditionsV3 (0, t) + ρ ∂V3(0,t)
∂x = µ1 (t) ,

V3 (ℓ, t) + σ ∂V3(ℓ,t)
∂x = µ2 (t)

and the function W3 (x, t) is the solution of the following problem
D

(2α)
t W3 (x, t) + 2aD(α)

t W3 (x, t) + b2W3 (x, t) = k2 ∂2W3(x,t)
∂x2 + f̃ (x, t) ,

W3 (x, 0) = ϕ3 (x) , D(α)
t W3 (x, 0) = ψ3 (x) , 0 ≤ x ≤ ℓ

W3 (0, t) + ρ ∂V3(0,t)
∂x = 0, t ≥ 0,

W3 (ℓ, t) + σ ∂V3(ℓ,t)
∂x = 0, t ≥ 0,

(32)

i which

f̃ (x, t) = −D(2α)
t V3 (x, t) − 2aD(α)

t V3 (x, t) − b2V3 (x, t) + f (x, t) ,
ϕ3 (x) = ϕ (x) − V3 (x, 0)

ψ3 (x) = ψ (x) −D(α)
t V3 (x, 0) .

We assume the solution of the homogeneous equation in (32), by taking f̃ (x, t) = 0, has the form:

W3 (x, t) = X (x) Y (t)
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and substitute in (32), we obtain the Sturm-Liouville problem
X′′ (x) + λX (x) = 0,
X (0) + ρX′ (0) = 0,
X (ℓ) + σX′ (ℓ) = 0,

(33)

To study the Sturm-Liouville problem (33), we have the following lemma:

Lemma 5.1. Let (λn) be the eigenvalues and (Xn (x)) be the corresponding eigenfunctions of the Sturm-Liouville
problem (33). Then, the sequence of functions (Xn (x)) is orthogonal on [0, ℓ], i.e.

⟨Xn,Xm⟩ =

∫ ℓ

0
Xn (x) Xm (x) dx =

0 if n = m,
Rn if n , m.

(34)

Proof. Let λi and λ j , i , j be eigenvalues, and Xi (x) and X j (x) the corresponding eigenfunctions of problem
(33). we have

X′′i (x) + λiXi (x) = 0, (35)
X′′j (x) + λ jX j (x) = 0. (36)

By multiplying (35) by X j (x), (36) by Xi (x) and with the difference, we obtain(
X j (x) X′i (x) − Xi (x) X′j (x)

)′
+

(
λi − λ j

)
Xi (x) X j (x) = 0.

By integration on [0, ℓ], we obtain

(
λi − λ j

) ∫ ℓ

0
Xi (x) X j (x) dx =

[
X j (x) X′i (x) − Xi (x) X′j (x)

]ℓ
0
. (37)

Xi (x) and X j (x) satisfy the Robin boundary conditions in (33), we haveXi (0) + ρX′i (0) = 0,
X j (0) + σX′j (0) = 0,

and

Xi (ℓ) + ρX′i (ℓ) = 0,
X j (ℓ) + σX′j (ℓ) = 0,

it is necessary that

Xi (0) X′j (0) − X j (0) X′i (0) = Xi (ℓ) X′j (ℓ) − X j (ℓ) X′i (x) = 0.

Thus, equation (37) reduces to

(
λi − λ j

) ∫ ℓ

0
Xi (x) X j (x) dx = 0,

but λi , λ j, so
∫ ℓ

0 Xi (x) X j (x) dx = 0.

Lemma 5.2. We have:

1. All eigenvalues of the Sturm-Liouville problem (33) are strictly positive.
2. The eigenvalues of the Sturm-Liouville problem (33) satisfy the following algebraic equation:

tan
(
ℓ
√

λ
)
=

(
ρ − σ

) √
λ

1 + ρσλ
. (38)
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3. The Sturm-Liouville problem (33) admits a strictly increasing sequence of eigenvalues (λn) such that

λn −−−−−→
n→+∞

+∞.

Proof. 1. Let λ be an eigenvalue and X (x) , 0 be an eigenfunction associated of problem (33). We have:

X′′ (x) + λX (x) = 0. (39)

By multiplying (39) by X (x) and using integration by parts, we obtain:

λ

∫ ℓ

0
X2 (x) dx = −

∫ ℓ

0
X′′ (x) X (x) dx

= X′ (0) X (0) − X′ (ℓ) X (ℓ) +
∫ ℓ

0
(X′)2 (x) dx.

X (x) satisfies the Robin boundary conditions in (33), so we have:

λ =
−

X2(0)
ρ +

X2(ℓ)
σ +

∫ ℓ
0

(X′ (x))2 dx∫ ℓ
0 X2 (x) dx

> 0

2. From (39), we obtain:

X (x) = c1 cos
(√
λx

)
+ c2 sin

(√
λx

)
. (40)

Using (40) and (33), we get the following linear systemc1 + ρ
√
λc2 = 0,(

cos
(√
λℓ

)
− σ
√
λ sin

(√
λℓ

))
c1 +

(
sin

(√
λℓ

)
+ σ
√
λ cos

(√
λℓ

))
c2 = 0.

(41)

The eigenfunction X (x) , 0 is equivalent the determinant of the linear system (41) is zero, i.e.∣∣∣∣∣∣ 1 ρ
√
λ

cos
(√
λℓ

)
− σ
√
λ sin

(√
λℓ

)
sin

(√
λℓ

)
+ σ
√
λ cos

(√
λℓ

)∣∣∣∣∣∣ = 0, (42)

with simplification of (42), we obtain (38).
3. Consider the function κ defined by:

κ (λ) = tan
(
ℓ
√

λ
)
−

(
ρ − σ

) √
λ

1 + ρσλ
.

✓ The function κ is differentiable on ] 0,+∞ [ and its derivative given by:

κ′ (λ) =
ℓ
(
1 + tan2

(
ℓ
√
λ
))

2
√
λ

+

(
σ − ρ

) (
1 − ρσλ

)
2
√
λ
(
1 + ρσλ

)2
> 0,

where, κ is strictly increasing on ] 0,+∞ [ .
✓ We show the following proposition:

∀n ∈ N, ∃!λn ∈ ]
(2n + 1)2 π2

4ℓ2 ,
(2n + 3)2 π2

4ℓ2 [ such that κ (λn) = 0.

We have:

κ (λ) −−−−−−−−→
λ
>
→

(2n+1)2π2

4ℓ2

−∞ and κ (λ) −−−−−−−−→
λ
<
→

(2n+3)2π2

4ℓ2

+∞.

According to the intermediate value theorem and the increasing of the function κ there exists
unique λn.
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The sequence (λn) is positive and strictly increasing, then λn −−−−−→
n→+∞

+∞.

Now, we seek a solution W3 (x, t) of the non-homogeneous problem (32) in the following form:

W3 (x, t) =
+∞∑
n=0

Bn (t) Xn (x) . (43)

To determine Bn (t), we expand f̃ (x, t) as a Fourier series by the eigenfunctions Xn (x),

f̃ (x, t) =
+∞∑
n=0

fn (t) Xn (x) with fn (t) =
1

Rn

∫ ℓ

0
f̃ (x, t) Xn (x) dx. (44)

By substituting (43) and (44) in (32), we obtain:

D
(2α)
t Bn (t) + 2aD(α)

t Bn (t) +
(
b2 + λnk2

)
Bn (t) = fn (t) . (45)

Since W3 (x, t) satisfies the initial conditions of problem (32), we have:ϕ3 (x) =
∑+∞

n=0 Bn (0) Xn (x) ,
ψ3 (x) =

∑+∞
n=0D

(α)
t Bn (0) Xn (x) ,

whereBn (0) = 1
Rn

∫ ℓ
0 ϕ3 (x) Xn (x) dx,

D
(α)
t Bn (0) = 1

Rn

∫ ℓ
0 ψ3 (x) Xn (x) dx.

(46)

On the other hand, we assume that

0 ≤
a2
− b2

k2 < λ0, (47)

where λ0 is the smallest eigenvalue of problem (33).
From the condition (47), Theorem 2.2, (45), (46) and (43), we obtain the analytical solution of problem

(32) id given by:

W3 (x, t) =
+∞∑
n=0

[
Bn (0) e−a tα

α cos
(√

b2 − a2 + λnk2 tα

α

)
+

Bn (0) a +D(α)
t Bn (0)√

b2 − a2 + λnk2
e−a tα

α sin
(√

b2 − a2 + λnk2 tα

α

)
+

1√
b2 − a2 + λnk2

∫ t

0
f̃n

(
(tα − τα)1/α

)
e−a τ

α

α sin
(√

b2 − a2 + λnk2 τ
α

α

) dτ
τ1−α

 Xn (x) .

(48)

Example 5.1. ([14, Chapter 2]) We consider the following data:
a = b = k = ℓ = 1, α = 1

2 , and f (x, t) = 0.
ϕ(x) = 1, ψ(x) = 0,
ρ = −1, σ = 1 and µ1 (t) = µ2 (t) = 0.

The problem (1), (2), (31) becomes:
D

(1/2)
t

(
D

(1/2)
t u(x, t)

)
+ 2D(1/2)

t u(x, t) + u(x, t) = ∂2u(x,t)
∂x2 ,

u(x, 0) = 1, D(1/2)
t u(x, 0) = 0, 0 ≤ x ≤ 1,

u (0, t) − ux (0, t) = 0, u (1, t) + ux (1, t) = 0.

(49)
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Using (38), we obtain the eigenvalues satisfying the following algebraic equation:

tan
(√
λ
)
= −

2
√
λ

1 − λ
.

Figure 1 represents the graphs of the functions x 7→ tan
(√

x
)

and x 7→ − 2
√

x
1−x with the points of the intersection being

the eigenvalues λn.
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Figure 1: Graphs of two functions x 7→ tan
(√

x
)

et x 7→ − 2
√

x
1−x .

From (40) and (41), the eigenfunctions are given by:

Xn (x) = sin
(√
λnx

)
−

√
λn cos

(√
λnx

)
.

From (34) and (46), we have:

Rn =
λn

2
+

(
λn

2
−

1
2

) sin
(
2
√
λn

)
2
√
λn

+
cos

(
2
√
λn

)
2

,

Bn (0) =
−1
Rn

cos
(√
λn

)
√
λn

+ sin
(√
λn

)
−

1
√
λn

 ,
D

(1/2)
t (Bn (0)) = 0.
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Thanks to (48), the analytical solution of problem (49) is given by:

u (x, t) =
+∞∑
n=0

Bn (0) e−2
√

t

cos
(
2
√
λn
√

t
)
+

sin
(
2
√
λn
√

t
)

√
λn

 Xn (x) .

6. Conclusion

We have derived the analytical solution of a time-fractional telegraph equation with three boundary
conditions using the Fourier method. The time-fractional derivative are considered in the conformable
sense. Three examples are presented.
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