Additive property for the generalized Zhou inverse in a Banach algebra

Abbas Abbasi ${ }^{\mathbf{a}}$, Rahman Bahmani ${ }^{\mathbf{a}}$, Marjan Sheibani Abdolyousefi ${ }^{\mathbf{b}, *}$, Nahid Ashrafi ${ }^{\mathbf{a}}$
${ }^{a}$ Department of Mathematics, Statistics and Computer science, Semnan University, Semnan, Iran
${ }^{b}$ Farzanegan Campus, Semnan University, Semnan, Iran

Abstract

Let \mathcal{A} be a Banach algebra. An element $a \in \mathcal{A}$ has the generalized Zhou inverse if there exists $b \in \mathcal{A}$ such that $$
b=b a b, a b=b a, a^{n}-a b \in J^{\#}(\mathcal{A}), \text { for some } n \in \mathbb{N} .
$$

We find some new conditions under which the generalized Zhou inverse of the sum $a+b$ can be explicitly expressed in terms of a, b, a^{z}, b^{z}. In particular, necessary and sufficient conditions for the existence of the generalized Zhou inverse of the sum $a+b$ are obtained.

1. Introduction

Throughout the paper, \mathcal{A} is a complex Banach algebra. The symbols $J(\mathcal{A}), \mathcal{A}^{D}, \mathcal{A}^{d}, \mathcal{A}^{\text {nil }}, \mathcal{A}^{\text {qnil }}$ denote, respectively, the Jacobson radical, the sets of all Drazin invertible, generalized Drazin invertible, nilpotent and quasi nilpotent elements of \mathcal{A}. The commutant of $a \in \mathcal{A}$ is defined by $\operatorname{comm}(a)=\{x \in \mathcal{A} \mid x a=a x\}$ and the double commutant of $a \in \mathcal{A}$ is defined by

$$
\operatorname{comm}^{2}(a)=\{x \in \mathcal{A} \mid x y=y x \text { for all } y \in \operatorname{comm}(a)\}
$$

Also we define $J^{\#}(\mathcal{A})=\left\{a \in \mathcal{A} \mid a^{n} \in J(\mathcal{A})\right.$ for some $\left.n \in \mathbb{N}\right\}$.
Let us recall that the Drazin inverse [4] of $a \in \mathcal{A}$ is the element $b \in \mathcal{A}$ which satisfies

$$
\begin{equation*}
b=b a b, a b=b a \text { and } a-a^{2} b \in \mathcal{A}^{n i l} . \tag{1}
\end{equation*}
$$

The element b above is unique if it exists and is denoted by a^{D}.
The generalized Drazin inverse [5] of $a \in \mathcal{A}$ is the element $b \in \mathcal{A}$ which satisfies

$$
\begin{equation*}
b=b a b, a b=b a, a-a^{2} b \in \mathcal{A}^{q n i l} . \tag{2}
\end{equation*}
$$

Such b is unique if it exits and is denoted by a^{d}. In 2012, Wang and Chen [10] introduced the notation of the pseudo Drazin inverse (or p-Drazin inverse for short) in associative rings and Banach algebras. An element a in \mathcal{A} has p-Drazin inverse if and only if there exists $b \in \mathcal{A}$ such that

$$
\begin{equation*}
b=b a b, a b=b a, a^{n}-a^{n+1} b \in J(\mathcal{A}), \text { for some } n \in \mathbb{N} . \tag{3}
\end{equation*}
$$

[^0]We always use \mathcal{A}^{\ddagger} to denote the set of all p-Drazin invertible elements in \mathcal{A}. Any element $b \in \mathcal{A}$ satisfying the above conditions is called p-Drazin inverse of a and is denoted by a^{\ddagger}. The p-Drazin and generalized Drazin inverses were extensively studied in matrix theory and Banach algebras (see [3, 10-13]).
An element $a \in \mathcal{A}$ is said to be Zhou invertible [2] if there exists $b \in \mathcal{A}$ such that

$$
\begin{equation*}
b=b a b, b \in \operatorname{comm}(a), a^{n}-a b \in \mathcal{A}^{\text {nil }}, \text { for some } n \in \mathbb{N} . \tag{4}
\end{equation*}
$$

The preceding b is unique, if such an element exists. The generalized Zhou inverse [2] of $a \in \mathcal{A}$ is an element $b \in \mathcal{A}$ which satisfies

$$
\begin{equation*}
b=b a b, a b=b a, a^{n}-a b \in J^{\#}(\mathcal{A}), \text { for some } n \in \mathbb{N} . \tag{5}
\end{equation*}
$$

In this case, b is unique if it exists and is denoted by a^{z}. The set of all generalized Zhou invertible elements of \mathcal{A} will be denoted by \mathcal{A}^{z}. The smallest integer n which satisfies the above equation is called the generalized Zhou index of a, which is denoted by ind (a).

It was proved that $a \in \mathcal{A}^{z}$ if and only if there exists an idempotent $p \in \operatorname{comm}(a)$ such that $a^{n}-p \in J^{\#}(\mathcal{A})$ for some $n \in \mathbb{N}$. (see [2, Theorem 2.6]).

In Section 2, we investigate some elementary properties of generalized Zhou inverses. The multiplication of the two generalized Zhou invertible elements is studied. We prove that for any $a, b \in \mathcal{A}^{z}$, if $a b=b a$ then $(a b)^{z}$ exists and $(a b)^{z}=b^{z} a^{z}$. In Section 3, we apply matrix representation for the generalized Zhou inverse relative to idempotent $p \in \mathcal{A}$. Let \mathcal{A} be a Banach algebra, $x \in \mathcal{A}$. Then we write

$$
x=p x p+p x(1-p)+(1-p) x p+(1-p) x(1-p)
$$

and induce a representation given by the matrix

$$
x=\left(\begin{array}{cc}
p x p & p x(1-p) \\
(1-p) x p & (1-p) x(1-p)
\end{array}\right)_{p}
$$

so we may regard such matrix as an element in \mathcal{A}. Let $\mathcal{A}_{1}=p \mathcal{A} p, \mathcal{A}_{2}=(1-p) \mathcal{A}(1-p)$. We prove that for any $a \in \mathcal{A}, a \in \mathcal{A}^{z}$ if and only if there exists an idempotent $p \in \mathcal{A}$ such that

$$
a=\left(\begin{array}{cc}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right)_{p}
$$

where $a_{1} \in \mathcal{A}_{1}^{z}$ and $a_{2} \in J^{\#}\left(\mathcal{A}_{2}\right)$.
In Section 4, additive property of the two generalized Zhou invertible elements is studied. For any $a, b \in \mathcal{A}^{z}$, we investigate, the representations of $(a+b)^{z}$ under conditions $a b^{2}=0, a b a=0$ and various conditions.

2. The generalized Zhou inverse

In this section, some elementary results, which will be used in sequel are presenetd.
Lemma 2.1. Let \mathcal{A} be a Banach algebra, $a, b \in \mathcal{A}$ and $a b=b a$;
(1) If $a, b \in J^{\#}(\mathcal{A})$, then $a+b \in J^{\#}(\mathcal{A})$.
(2) If a or $b \in J^{\#}(\mathcal{A})$, then $a b \in J^{\#}(\mathcal{A})$.

Proof. (1) See [13, Lemma 2.4].
(2) If $a \in J^{\#}(\mathcal{A})$, then, $a^{k} \in J(\mathcal{A})$, for some $k \in \mathbb{N}$. As $a b=b a$, we have $(a b)^{k}=a^{k} b^{k}$, thus by [7, Corollary 4.2], we see that $(a b)^{k} \in J(\mathcal{A})$ which implies that $a b \in J^{\#}(\mathcal{A})$.

Theorem 2.2. Let \mathcal{A} be a Banach algebra and $a, b \in \mathcal{A}^{z}$, if $a b=b a$, then $(a b)^{z}$ exists and $(a b)^{z}=b^{z} a^{z}$.

Proof. It is obvious by [2, Theorem 2.2] that every generalized Zhou invertible element is pseudo Drazin invertible. Then by [10, Proposition 3.4], every generalized Zhou invertible element is generalized Drazin invertible. Now we have $a^{z} \in \operatorname{comm}^{2}(a), b^{z} \in \operatorname{comm}^{2}(b)$ and $a b=b a$, then a^{z}, b^{z}, a, b commute with each other and so $b^{z} a^{z} \in \operatorname{comm}(a b),\left(b^{z} a^{z}\right)^{2}(a b)=b^{z} a^{z}$. We may assume that $a^{k_{1}}-a a^{z} \in J^{\#}(\mathcal{A})$ and $b^{k_{2}}-b b^{z} \in J^{\#}(\mathcal{A})$. Let $k=k_{1} k_{2}$, then we see that $a^{k}-a a^{z}=\left(a^{k_{1}}\right)^{k_{2}}-\left(a a^{z}\right)^{k_{2}}=\left(a^{k_{1}}-a a^{z}\right)\left(a^{k_{1}\left(k_{2}-1\right)}+a^{k_{1}\left(k_{2}-2\right)} a a^{z}+\cdots+a^{k_{1}}\left(a a^{z}\right)^{k_{2}-2}+\left(a a^{z}\right)^{k_{2}-1}\right)$. Then by Lemma 2.1, we have $a^{k}-a a^{z} \in J^{\#}(\mathcal{A})$. Likewise, $b^{k}-b b^{z} \in J^{\#}(\mathcal{A})$. Hence $(a b)^{k}-(a b) b^{z} a^{z}=-\left(a^{k}-\right.$ $\left.a a^{z}\right)\left(b^{k}-b b^{z}\right)+\left(a^{k}-a a^{z}\right) b^{k}+a^{k}\left(b^{k}-b b^{z}\right)$. By Lemma 2.1, we obtain $(a b)^{k}-(a b)(a b)^{z} \in J^{\#}(\mathcal{A})$. This completes the proof.

Corollary 2.3. Let $a \in \mathcal{A}^{z}$ and $n \in \mathbb{N}$. Then
(1) $\left(a^{n}\right)^{z}=\left(a^{z}\right)^{n}$.
(2) $\left(a^{z}\right)^{z}=a^{2} a^{z}$.
(3) $\left(\left(a^{z}\right)^{z}\right)^{z}=a^{z}$.

Proof. (1) It is obvious by induction and Theorem 2.2.
(2) It is easy to check $a^{z} a^{2} a^{z}=a^{2} a^{z} a^{z}$ and $a^{2} a^{z} a^{z} a^{2} a^{z}=a^{2} a^{z}$. Since $a \in \mathcal{A}^{z}$ by [2, Theorem 2.9], we see that $a-a^{n+1} \in J^{\#}(\mathcal{A})$ for some $n \in \mathbb{N}$. Now by Lemma 2.1(2), we have $\left(a^{z}\right)^{n+1}\left(a-a^{n+1}\right) \in J^{\#}(\mathcal{A})$. Thus $\left(a^{z}\right)^{n+1} a-\left(a^{z}\right)^{n+1} a^{n+1}=\left(a^{z}\right)^{n}-a a^{z} \in J^{\#}(\mathcal{A})$, it follows that $\left(a^{z}\right)^{n}-a^{z} a^{2} a^{z}=\left(a^{z}\right)^{n}-a a^{z} \in J^{\#}(\mathcal{A})$, then $\left(a^{z}\right)^{z}=a^{2} a^{z}$. (3) It is clear by (2) and Theorem 2.2.

Proposition 2.4. Let $p \in \mathcal{A}$ be an idempotent and $a \in p \mathcal{A} p$. Then $a \in \mathcal{A}^{z}$ if and only if $a \in(p \mathcal{A} p)^{z}$, moreover $a_{\mathcal{A}}^{z}=a_{p \mathcal{A} p}^{z}$.

Proof. (\Rightarrow) Let $a_{\mathcal{A}}^{z}=x$, then we have $x^{2} a=a x^{2}=x$ and $a x^{3} a=a x^{2} x a=x^{2} a=x$, which imply that, $x=a x^{3} a \in p \mathcal{A} p$. Since $a_{\mathcal{A}}^{z}=x$, there exists $k \in \mathbb{N}$ such that $a^{k}-a a^{z} \in J^{\#}(\mathcal{A})$, so $\left(a^{k}-a a^{z}\right)^{n} \in J(\mathcal{A})$ for some $n \in \mathbb{N}$. Otherwise, $a^{k}-a a^{z} \in p \mathcal{A} p$. Thus by [7, Theorem 2.10], $\left(a^{k}-a a^{z}\right)^{n} \in(p \mathcal{A} p) \cap J(\mathcal{A})=J(p \mathcal{A} p)$, it follows that $a^{k}-a a^{z} \in J^{\#}(p \mathcal{A} p)$. Also, $a x=x a, x a x=x$ then $a \in(p \mathcal{A} p)^{z}$.
(\Leftarrow) Suppose $a \in(p \mathcal{A} p)^{z}$ and let $a_{p \mathcal{A} p}^{z}=y$. The condition $a_{p \mathcal{A} p}^{z}=y$ ensures that, (a) yay=y, (b) ya=ay, (c) $a^{k}-a a^{z} \in J^{\#}(p \mathcal{A} p)$ for some $k \in \mathbb{N}$. Applying [7, Theorem 2.10], we have $\left(a^{k}-a a^{z}\right)^{n} \in J(p \mathcal{A} p)=(p \mathcal{A} p) \bigcap J(\mathcal{A})$ for some $n \in \mathbb{N}$, then $\left(a^{k}-a a^{z}\right)^{n} \in J(\mathcal{A})$. Hence $a \in \mathcal{A}^{z}$ and $a_{\mathcal{A}}^{z}=y$. This completes the proof.
Corollary 2.5. Let $a \in \mathcal{A}$. Then the following conditions are equivalent.
(1) $a \in \mathcal{A}^{z}$.
(2) $a^{n} \in \mathcal{A}^{z}$ for any $n \in \mathbb{N}$.
(3) $a^{n} \in \mathcal{A}^{z}$ for some $n \in \mathbb{N}$.

Proof. (1) \Rightarrow (2) It was proved in Corollary 2.3.
$(2) \Rightarrow(3)$ It is obvious.
(3) \Rightarrow (1) Let $y=\left(a^{n}\right)^{z} a$. A direct calculation shows that $y a^{n-1} y=y, y a=a y$. Since $a^{n} \in \mathcal{A}^{z}$, there exists $k \in \mathbb{N}$ such that $\left(a^{n}\right)^{k}-a^{n}\left(a^{n}\right)^{z} \in J^{\#}(\mathcal{A})$. Then in light of Theorem 2.2, we have $\left(a^{n-1}\right)^{n k}-a^{n-1} y=\left(a^{n-1}\right)^{n k}-a^{n-1} a\left(a^{n}\right)^{z}=$ $\left(a^{n}\right)^{(n-1) k}-a^{n}\left(a^{n}\right)^{z} \in J^{\#}(\mathcal{A})$, which implies that $a^{n-1} \in \mathcal{A}^{z}$. Thus $a^{n} \in \mathcal{A}^{z} \Longrightarrow a^{n-1} \in \mathcal{A}^{z} \Longrightarrow a^{n-2} \in \mathcal{A}^{z} \Longrightarrow$ $\cdots \Longrightarrow a \in \mathcal{A}^{z}$. By induction we get $a \in \mathcal{A}^{z}$. This completes the proof.

3. Matrix representation

For any Banach algebra \mathcal{A} and any idempotent $p \in \mathcal{A}$,

$$
M_{2}(\mathcal{A}, p)=\left(\begin{array}{cc}
p \mathcal{A} p & p \mathcal{A}(1-p) \\
(1-p) \mathcal{A} p & (1-p) \mathcal{A}(1-p)
\end{array}\right)
$$

is a Banach algebra with

$$
I=\left(\begin{array}{cc}
p & 0 \\
0 & (1-p)
\end{array}\right)_{p}
$$

Lemma 3.1. Let p be an idempotent element in \mathcal{A}. Then,
$J\left(M_{2}(\mathcal{A})\right) \cap M_{2}(\mathcal{A}, p)=J\left(M_{2}(\mathcal{A}, p)\right)$.
Proof. See [13, Lemma 2.6].
Theorem 3.2. Let \mathcal{A} be a Banach algebra, $x, y \in \mathcal{A}$, let

$$
x=\left(\begin{array}{ll}
a & d \\
0 & b
\end{array}\right), y=\left(\begin{array}{ll}
b & 0 \\
d & a
\end{array}\right)
$$

If $a, b \in \mathcal{A}^{z}$, then $x, y \in \mathcal{A}^{z}$ and

$$
x^{z}=\left(\begin{array}{cc}
a^{z} & u \\
0 & b^{z}
\end{array}\right), y^{z}=\left(\begin{array}{cc}
b^{z} & 0 \\
u & a^{z}
\end{array}\right)
$$

where $u=\sum_{i=0}^{\infty}\left(a^{z}\right)^{i+2} d b^{i} b^{\pi}+\sum_{i=0}^{\infty} a^{\pi} a^{i} d\left(b^{z}\right)^{i+2}-a^{z} d b^{z}$.
Proof. Suppose that $a, b \in \mathcal{A}^{z}$. Let

$$
w=\left(\begin{array}{cc}
a^{z} & u \\
0 & b^{z}
\end{array}\right)
$$

where $u=\sum_{i=0}^{\infty}\left(a^{z}\right)^{i+2} d b^{i} b^{\pi}+\sum_{i=0}^{\infty} a^{\pi} a^{i} d\left(b^{z}\right)^{i+2}-a^{z} d b^{z}$. Then

$$
I-x w=\left(\begin{array}{cc}
a^{\pi} & -a u-d b^{z} \\
0 & b^{\pi}
\end{array}\right)
$$

Here $a^{\pi}=1-a a^{z}$ and $b^{\pi}=1-b b^{z}$. We have

$$
\begin{gathered}
w(I-x w)=\left(\begin{array}{cc}
a^{z} & u \\
0 & b^{z}
\end{array}\right)\left(\begin{array}{cc}
a^{\pi} & -a u-d b^{z} \\
0 & b^{\pi}
\end{array}\right)= \\
\left(\begin{array}{cc}
a^{z} a^{\pi} & -a^{z} a u-a^{z} d b^{z}+u b^{\pi} \\
0 & b^{z} b^{\pi}
\end{array}\right)
\end{gathered}
$$

Note that $a^{z} a^{\pi}=0$ and $b^{z} b^{\pi}=0$, then

$$
\begin{gathered}
-a^{z} a u=-a^{z} a\left(\sum_{i=0}^{\infty}\left(a^{z}\right)^{i+2} d b^{i}\right) b^{\pi}+a^{z} d b^{z}=-\sum_{i=0}^{\infty}\left(a^{z}\right)^{i+2} d b^{i} b^{\pi}+a^{z} d b^{z} \\
u b^{\pi}=\left(\sum_{i=0}^{\infty}\left(a^{z}\right)^{i+2} d b^{i}\right) b^{\pi}
\end{gathered}
$$

and so $-a^{z} a u-a^{z} d b^{z}+u b^{r}=0$. This shows that $w=w x w$. Let $r=\operatorname{ind}(a), s=\operatorname{ind}(b)$, then, $a^{r}-a a^{z} \in$ $J^{\#}(\mathcal{A}), b^{s}-b b^{z} \in J^{\#}(\mathcal{A})$. Let $k=r s, f_{k}=\sum_{i=0}^{k-1} a^{i} d b^{k-1-i}$, we have

$$
\begin{gathered}
x^{k}=\left(\left(\begin{array}{ll}
a & d \\
0 & b
\end{array}\right)\right)^{k}=\left(\begin{array}{cc}
a^{k} & f_{k} \\
0 & b^{k}
\end{array}\right) . \\
x^{k}-x w=\left(\begin{array}{cc}
a^{k} & f_{k} \\
0 & b^{k}
\end{array}\right)-\left(\begin{array}{cc}
a & d \\
0 & b
\end{array}\right)\left(\begin{array}{cc}
a^{z} & u \\
0 & b^{z}
\end{array}\right)=\left(\begin{array}{cc}
a^{k}-a a^{z} & f_{k}-a u-d b^{z} \\
0 & b^{k}-b b^{z}
\end{array}\right) .
\end{gathered}
$$

As $a^{k}-a a^{z} \in J^{\#}(\mathcal{A}), b^{k}-b b^{z} \in J^{\#}(\mathcal{A})$. Then there exist $n_{1}, n_{2} \in \mathbb{N}$ such that $\left(a^{k}-a a^{z}\right)^{n_{1}} \in J(\mathcal{A}),\left(b^{k}-b b^{z}\right)^{n_{2}} \in J(\mathcal{A})$.
Let $n=\max \left(n_{1}, n_{2}\right)$ and let $x_{1}=a^{k}-a a^{z}, x_{2}=f_{k}-a u-d b^{z}, x_{3}=b^{k}-b b^{z}$, then we have $t_{n}=\sum_{i=0}^{n-1} x_{1}^{i} x_{2} x_{3}^{n-1-i}$,

$$
\left(x^{k}-x w\right)^{n}=\left(\begin{array}{cc}
\left(a^{k}-a a^{z}\right)^{n} & t_{n} \\
0 & \left(b^{k}-b b^{z}\right)^{n}
\end{array}\right)
$$

Note that, $\left(x^{k}-x w\right)^{2 n}=$

$$
\begin{gathered}
\left(\begin{array}{cc}
\left(a^{k}-a a^{z}\right)^{n} & t_{n} \\
0 & \left(b^{k}-b b^{z}\right)^{n}
\end{array}\right)\left(\begin{array}{cc}
\left(a^{k}-a a^{z}\right)^{n} & t_{n} \\
0 & \left(b^{k}-b b^{z}\right)^{n}
\end{array}\right) \\
=\left(\begin{array}{cc}
\left(a^{k}-a a^{z}\right)^{2 n} & \left(a^{k}-a a^{z}\right)^{n} t_{n}+t_{n}\left(b^{k}-b b^{z}\right)^{n} \\
0 & \left(b^{k}-b b^{z}\right)^{2 n}
\end{array}\right) .
\end{gathered}
$$

As $\left(a^{k}-a a^{z}\right)^{n},\left(b^{k}-b b^{z}\right)^{n} \in J(\mathcal{A})$, by [7, Corollary 4.2] and [7, page 57 Example(7)], we have $\left(x^{k}-x w\right)^{2 n} \in$ $J\left(M_{2}(\mathcal{A})\right)$. Finally we need to show that $x w=w x$. We have

$$
\begin{gathered}
a u-u b=\sum_{i=0}^{\infty}\left(a^{z}\right)^{i+1} d b^{i} b^{\pi}+a a^{\pi}\left(\sum_{i=0}^{\infty} a^{i} d\left(b^{z}\right)^{i+2}\right. \\
-a a^{z} d b^{z}-\sum_{i=0}^{\infty}\left(a^{z}\right)^{i+2} d b^{i} b^{\pi} b-a^{\pi} \sum_{i=0}^{\infty} a^{i} d\left(b^{z}\right)^{i+1}+a^{z} d b^{z} b \\
=\left(\sum_{i=0}^{\infty}\left(a^{z}\right)^{i+1} d b^{i} b^{\pi}-\sum_{i=0}^{\infty}\left(a^{z}\right)^{i+2} d b^{i} b^{\pi}\right) \\
+\left(a^{\pi}\left(\sum_{i=0}^{\infty} a^{i+1} d\left(b^{z}\right)^{i+2}\right)-a^{\pi}\left(\sum_{i=0}^{\infty} a^{i} d\left(b^{z}\right)^{i+1}\right)-a a^{z} d b^{z}+a^{z} d b^{z} b\right. \\
=a^{z} d b^{\pi}-a^{\pi} d b^{z}-a a^{z} d b^{z}+a^{z} d b^{z} b=a^{z} d-d b^{z}
\end{gathered}
$$

then $a u+d b^{z}=a^{z} d+u b$. This implies that $x w=w x$. Since $M_{2}(\mathcal{A})$ is also a Banach algebra,we can prove this conditions in the similar way for y.

Lemma 3.3. Let $a \in \mathcal{A}$. Then $a \in \mathcal{A}^{z}$ if and only if there exists an idempotent $p \in \mathcal{A}$ such that

$$
a=\left(\begin{array}{cc}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right)_{p}
$$

where $a_{1} \in \mathcal{A}^{z}$ and $a_{2} \in J^{\#}(\mathcal{A})$. In this case

$$
a^{z}=\left(\begin{array}{cc}
a_{1}^{z} & 0 \tag{6}\\
0 & 0
\end{array}\right)_{p}
$$

and $p=a a^{z}$
Proof. (\Rightarrow) Let

$$
a=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)_{p}
$$

Let $p=a a^{z}$. Obviously,

$$
p a(1-p)=a a^{z} a\left(1-a a^{z}\right)=0,(1-p) a p=\left(1-a a^{z}\right) a a a^{z}=0
$$

Thus $a_{12}=0, a_{21}=0$. Let $a_{11}=a_{1}, a_{22}=a_{2}$. Since $a \in \mathcal{A}^{z}$, there exists $k \in \mathbb{N}$ such that $a^{k}-a a^{z} \in J^{\#}(\mathcal{A})$. We have $a_{1}=a a^{z} a a a^{z}=a a^{z} a a^{z} a=a a^{z} a$, so by Corollay 2.3,

$$
a_{1} a_{1}^{z}=a a^{z}\left(a a^{z}\right)^{z}=a^{2} a^{z}\left(a^{2}\right)^{z} a^{2} a^{z}=a^{4}\left(a^{z}\right)^{4}=a a^{z}
$$

Hence,

$$
a_{1}^{k}=\left(a a^{z} a\right)^{k}=a a^{z} a^{k}, a a^{z}\left(a^{k}-a a^{z}\right)
$$

$$
=a a^{z} a^{k}-a a^{z} a a^{z}=a a^{z} a^{k}-a a^{z}=a_{1}^{k}-a_{1} a_{1}^{z}
$$

Thus by Lemma 2.1(2),

$$
a_{1}^{k}-a_{1} a_{1}^{z} \in J^{\#}(\mathcal{A})
$$

Therefore there exists $n \in \mathbb{N}$ such that $\left(a_{1}^{k}-a_{1} a_{1}^{z}\right)^{n} \in J(\mathcal{A})$. Otherwise $\left(a_{1}^{k}-a_{1} a_{1}^{z}\right)^{n} \in p \mathcal{A} p$, by [7, Theorem 2.10], we have $a_{1} \in \mathcal{A}_{1}^{z}$. As $a^{k}-a a^{z} \in J^{\#}(\mathcal{A})$ in light of [2, Theorem 2.2], we get $a^{k}\left(1-a a^{z}\right) \in J^{\#}(\mathcal{A})$. Then there exists $m \in \mathbb{N}$ such that $\left(a^{k}\left(1-a a^{z}\right)\right)^{m} \in J(\mathcal{A})$ as $\left(a^{k}\left(1-a a^{z}\right)\right)^{m} \in(1-p) \mathcal{A}(1-p)$ by [7, Theorem 2.10], we obtain $\left(a^{k}\left(1-a a^{z}\right)\right)^{m} \in J\left(\mathcal{A}_{2}\right)$. Then, wev have $\left(a\left(1-a a^{z}\right)\right)^{m k} \in J\left(\mathcal{A}_{2}\right)$. So, $a_{2}=a\left(1-a a^{z}\right) \in J^{\#}\left(\mathcal{A}_{2}\right)$.
(\Leftarrow) Let,

$$
x=\left(\begin{array}{cc}
a_{1}^{z} & 0 \\
0 & 0
\end{array}\right)_{p} .
$$

A direct calculation shows that $x a x=x$, $a x=x a$. Since $a_{2} \in J^{\#}\left(\mathcal{A}_{2}\right)$, there exists $k_{2} \in \mathbb{N}$ such that $a_{2}^{k_{2}} \in J\left(\mathcal{A}_{2}\right)$. As $a_{1} \in \mathcal{A}_{1}^{z},\left(a_{1}^{k_{1}}-a_{1} a_{1}^{z}\right)^{k_{3}} \in J\left(\mathcal{A}_{1}\right)$ for some $k_{1}, k_{3} \in \mathbb{N}$. Let $k=\max \left(k_{2}, k_{3}\right)$, we have $a_{2}^{k} \in J\left(\mathcal{A}_{2}\right) \subset J(\mathcal{A})$ and $\left(a_{1}^{k}-a_{1} a_{1}^{z}\right)^{k} \in J\left(\mathcal{A}_{1}\right) \subset J(\mathcal{A})$ thus, we get

$$
\begin{gathered}
a^{k_{1}}-a x=\left(\begin{array}{cc}
a_{1}^{k_{1}}-a_{1} a_{1}^{z} & 0 \\
0 & a_{2}^{k_{1}}
\end{array}\right)_{p} \\
\left(a^{k_{1}}-a x\right)^{k}=\left(\begin{array}{cc}
\left(a_{1}^{k_{1}}-a_{1} a_{1}^{z}\right)^{k} & 0 \\
0 & a_{2}^{k_{1} k}
\end{array}\right)_{p} \in J\left(M_{2}(\mathcal{A})\right) .
\end{gathered}
$$

Using [7, Theorem 2.10], so $a \in \mathcal{A}^{z}$
Theorem 3.4. . Let \mathcal{A} be a Banach algebra, $x, y \in \mathcal{A}$, and p be an idempotent element in Banach algebra \mathcal{A}. Assume that

$$
x=\left(\begin{array}{ll}
a & c \\
0 & b
\end{array}\right)_{p}, y=\left(\begin{array}{cc}
b & 0 \\
c & a
\end{array}\right)_{1-p}
$$

Then,
(1) If $a \in \mathcal{A}_{1}^{z}$ and $b \in \mathcal{A}_{2}^{z}$, then $x, y \in \mathcal{A}^{z}$ and

$$
x^{z}=\left(\begin{array}{cc}
a^{z} & u \tag{7}\\
0 & b^{z}
\end{array}\right)_{p}, y^{z}=\left(\begin{array}{cc}
b^{z} & 0 \\
u & a^{z}
\end{array}\right)_{1-p}
$$

Where $u=\sum_{i=0}^{\infty}\left(a^{z}\right)^{i+2} c b^{i} b^{\pi}+\sum_{i=0}^{\infty} a^{\pi} a^{i} c\left(b^{z}\right)^{i+2}-a^{z} c b^{z}$.
(2) If $x \in \mathcal{A}^{z}$ and $a \in \mathcal{A}_{1}^{z}$ then $b \in \mathcal{A}_{2}^{z}$ and x^{z} [resp. y^{z}] is given by (7) and (8).

Proof. (1) Applying Theorem 3.3, and Proposition 2.4, we get $x \in\left(M_{2}(\mathcal{A})\right)^{z}$ and

$$
x^{z}=\left(\begin{array}{cc}
a^{z} & u \\
0 & b^{z}
\end{array}\right)_{p}
$$

where $u=\sum_{i=0}^{\infty}\left(a^{z}\right)^{i+2} c b^{i} b^{\pi}+\sum_{i=0}^{\infty} a^{\pi} a^{i} c\left(b^{z}\right)^{i+2}-a^{z} c b^{z}$. Then there exist $k, m \in \mathbb{N}$ such that $\left(x^{k}-x x^{z}\right)^{m} \in J\left(M_{2}(\mathcal{A})\right)$. Lemma 3.1 ensures that, $\left(x^{k}-x x^{z}\right)^{m} \in J\left(M_{2}(\mathcal{A}, p)\right)$. Then, $x \in\left(M_{2}(\mathcal{A}), p\right)^{z}$ which implies that $x \in \mathcal{A}^{z}$. Next, we consider the generalized Zhou inverse of y since

$$
y=\left(\begin{array}{ll}
b & 0 \\
c & a
\end{array}\right)_{1-p}=\left(\begin{array}{ll}
a & c \\
0 & b
\end{array}\right)_{p}
$$

from the first part, we obtain $y \in \mathcal{A}^{z}$ and

$$
y^{z}=\left(\begin{array}{cc}
a^{z} & u \\
0 & b^{z}
\end{array}\right)_{p}=\left(\begin{array}{cc}
b^{z} & 0 \\
u & a^{z}
\end{array}\right)_{1-p}
$$

We drive the result.
(2). We prove $b^{z}=[(1-p) x(1-p)]^{z}=(1-p) x^{z}(1-p)$. Since $x \in \mathcal{A}^{z}, a \in \mathcal{A}_{1}^{z}, \mathcal{A}^{z} \subset \mathcal{A}^{d}$, then $x \in \mathcal{A}^{d}, a \in \mathcal{A}_{1}^{d}$ and $x^{d}=x^{z}, a^{d}=a^{z}$. According to [1, Theorem 2.3(2)], it follows that

$$
\left(\begin{array}{cc}
a^{d} & u \\
0 & b^{d}
\end{array}\right)_{p}=x^{d}=\left(\begin{array}{cc}
p x^{d} p & p x^{d}(1-p) \\
(1-p) x^{d} p & (1-p) x^{d}(1-p)
\end{array}\right)_{p}
$$

then we have, $(1-p) x^{d} p=0$, i.e. $(1-p) x^{z} p=0$, which implies that $(1-p) x^{z}(1-p)=(1-p) x^{z}$. Note that $(1-p) x p=0$, we can get $(1-p) x(1-p)=(1-p) x$. Therefore, we need only to prove $[(1-p) x]^{z}=(1-p) x^{z}$. Let $v=(1-p) x^{z}$.
(a) $[(1-p) x] v=(1-p) x(1-p) x^{z}=(1-p) x x^{z}=(1-p) x^{z} x=(1-p) x^{z}(1-p) x=v[(1-p) x]$.
(b) $v[(1-p) x] v=(1-p) x^{z}(1-p) x(1-p) x^{z}=(1-p) x^{z}(1-p) x x^{z}=(1-p) x^{z} x x^{z}=v$.
(c) As $(1-p) x p=0$,we have $(1-p) x(1-p)=(1-p) x$, thus by induction we see that, $((1-p) x)^{k}=$ $(1-p) x^{k},(1-p) x^{k}(1-p)=(1-p) x^{k}$. Now we prove $\left[(1-p)\left(x^{k}-x x^{z}\right)\right]^{n}=(1-p)\left(x^{k}-x x^{z}\right)^{n}$, for any $n \in \mathbb{N}$ by induction. It is obvious for $n=1$. Assume $\left[(1-p)\left(x^{k}-x x^{z}\right)\right]^{n}=(1-p)\left(x^{k}-x x^{z}\right)^{n}$. Since $(1-p) x x^{z}(1-p)=(1-p) x(1-p) x^{z}(1-p)=(1-p) x(1-p) x^{z}=(1-p) x x^{z}$, for the $(n+1)$ case, $\left[(1-p)\left(x^{k}-x x^{z}\right)\right]^{n+1}=$ $(1-p)\left(x^{k}-x x^{z}\right)\left[(1-p)\left(x^{k}-x x^{z}\right)\right]^{n}=(1-p)\left(x^{k}-x x^{z}\right)\left[(1-p)\left(x^{k}-x x^{z}\right)\right]^{n}=\left[(1-p) x^{k}(1-p)-(1-p) x x^{z}(1-p)\right]\left(x^{k}-x x^{z}\right)^{n}$ $=\left[(1-p) x^{k}-(1-p) x x^{z}\right]\left(x^{k}-x x^{z}\right)^{n}=(1-p)\left(x^{k}-x x^{z}\right)\left(x^{k}-x x^{z}\right)^{n}=(1-p)\left(x^{k}-x x^{z}\right)^{n+1}$. Then, we see that $b^{k}-b v=((1-p) x)^{k}-(1-p) x v=(1-p) x^{k}-(1-p) x(1-p) x^{z}=(1-p) x^{k}-(1-p) x x^{z}=(1-p)\left(x^{k}-x x^{z}\right)$. Since $\left(x^{k}-x x^{z}\right) \in J^{\#}(\mathcal{A})$. Thus we have $\left(x^{k}-x x^{z}\right)^{n} \in J(\mathcal{A})$, for some $n \in \mathbb{N}$, therefore by [7, Corollary 4.2(2)], $(1-p)\left(x^{k}-x x^{z}\right)^{n} \in J(\mathcal{A})$, which implies that $\left(b^{k}-b v\right)^{n} \in J(\mathcal{A}) \bigcap \mathcal{A}_{2}=J\left(\mathcal{A}_{2}\right)$. Hence $b^{z}=(1-p) x^{z}$. Using part (1), we see x^{z} is given by (7),(8). Following an analogous strategy as in the proof for y of part (1), we have (2) for y.

Moreover, when an element $x \in \mathcal{A}^{z}$ commutes with an idempotent $p \in \mathcal{A}$, the generalized Zhou inverse of x has a simple form of the matrix representation relative to p.

Corollary 3.5. Let \mathcal{A} be a unital Banach algebra and let $x \in \mathcal{A}, p$ is an idempotent element in \mathcal{A}. If

$$
x=\left(\begin{array}{cc}
x_{1} & 0 \\
0 & x_{2}
\end{array}\right)_{p}
$$

then $x \in \mathcal{A}^{z}$ if and only if $x_{1} \in \mathcal{A}_{1}^{z}$ and and $x_{2} \in \mathcal{A}_{2}^{z}$ in this situation, one has

$$
x^{z}=\left(\begin{array}{cc}
x_{1}^{z} & 0 \\
0 & x_{2}^{z}
\end{array}\right)_{p} .
$$

Proof. If $x_{1} \in \mathcal{A}_{1}^{z}$ and $x_{2} \in \mathcal{A}_{2}^{z}$, by Theorem 3.4(1), we have $x \in \mathcal{A}^{z}$.
Conversly if $x \in \mathcal{A}^{z}$ by Lemma 3.3, we see that, $x_{1} \in \mathcal{A}_{1}^{z}, x_{2} \in J^{\#}\left(\mathcal{A}_{2}\right) \subset \mathcal{A}_{2}^{z}$, where $x_{2}^{z}=0$, as required.

4. Additive results

In this section, we investigate the representation for generalized Zhou inverse of the sum of two elements in a Banach algebra under various conditions. In particular, necessary and sufficient conditions for the existence of generalized Zhou inverse of the sum $a+b$ are obtained under certain conditios.

Lemma 4.1. Let \mathcal{A} be a Banach algebra, if $a, b \in \mathcal{A}^{z}$ and $a b=0$, then, $a+b \in \mathcal{A}^{z}$ and $(a+b)^{z}=\sum_{i=0}^{\infty}\left(b^{z}\right)^{i+1} a^{i} a^{\pi}+$ $b^{\pi} \sum_{i=0}^{\infty} b^{i}\left(a^{z}\right)^{i+1}$.

Proof.

$$
\text { Let } A=\binom{1}{a}, B=\left(\begin{array}{ll}
b & 1
\end{array}\right) . \text { Then } A B=\left(\begin{array}{ll}
b & 1 \\
0 & a
\end{array}\right)
$$

since $a b=0$ and $B A=a+b$, also $a, b \in \mathcal{A}^{z}$. Then, by Theorem 3.2 , we have $A B \in\left(M_{2}(\mathcal{A})\right)^{z}$ and

$$
(A B)^{z}=\left(\begin{array}{cc}
b^{z} & w \\
0 & a^{z}
\end{array}\right)
$$

where $w=\sum_{i=0}^{\infty}\left(b^{z}\right)^{i+2} a^{i} a^{\pi}+b^{\pi} \sum_{i=0}^{\infty} b^{i}\left(a^{z}\right)^{i+2}-b^{z} a^{z}$. By Cline's formula [2, Theorem 3.1], we have $B A=a+b \in$ \mathcal{A}^{z},

$$
(a+b)^{z}=(B A)^{z}=B\left((A B)^{z}\right)^{2} A=\left(\begin{array}{ll}
b & 1
\end{array}\right)\left(\left(\begin{array}{cc}
b^{z} & w \\
0 & a^{z}
\end{array}\right)\right)^{2}\binom{1}{a}
$$

$=\sum_{i=0}^{\infty}\left(b^{z}\right)^{i+1} a^{i} a^{\pi}+b^{\pi} \sum_{i=0}^{\infty} b^{i}\left(a^{z}\right)^{i+1}$.
Theorem 4.2. Let $a \in \mathcal{A}^{z}, b \in J^{\#}(\mathcal{A})$. If $a b a=0, a b^{2}=0$, then
$a+b \in \mathcal{A}^{z}$ and $(a+b)^{z}=\left(a^{z}+b u a\right)\left(1+a^{z} b\right)$ where $u=\sum_{i=0}^{\infty} b^{2 i}(a+b)\left(a^{z}\right)^{2 i+4}$
Proof.

$$
\text { Let } X_{1}=\binom{a}{1}, X_{2}=\left(\begin{array}{ll}
1 & b
\end{array}\right) \text {. Then, } a+b=X_{2} X_{1}
$$

Let $M=X_{1} X_{2}=\left(\begin{array}{cc}a & a b \\ 1 & b\end{array}\right)$, so

$$
M^{2}=\left(\begin{array}{cc}
a^{2}+a b & a^{2} b \\
a+b & a b+b^{2}
\end{array}\right)=\left(\begin{array}{cc}
a b & a^{2} b \\
0 & a b
\end{array}\right)+\left(\begin{array}{cc}
a^{2} & 0 \\
a+b & b^{2}
\end{array}\right):=F+G
$$

The conditions $a b a=0, a b^{2}=0$ imply $F G=0, F^{2}=0$. Since $a \in \mathcal{A}^{z}$ then, $a^{2} \in \mathcal{A}^{z}$ and $\left(a^{2}\right)^{z}=\left(a^{z}\right)^{2}$. As $b \in J^{\#}(\mathcal{A})$, then $b^{k} \in J(\mathcal{A})$ for some $k \in \mathbb{N}$, which implies that $b^{z}=0$. Now we have $b^{\pi}=1-b b^{z}=1$ and by applying Theorem 3.2, we obtain that $G \in\left(M_{2}(\mathcal{A})\right)^{z}$ and $G=\left(\begin{array}{cc}\left(a^{z}\right)^{2} & 0 \\ u & 0\end{array}\right)$ where

$$
u=\sum_{i=0}^{\infty} b^{2 i}(a+b)\left(a^{z}\right)^{2 i+4}
$$

As $F^{2}=0$, then $F^{z}=0$. By Lemma 4.1, we deduce that $M^{2} \in\left(M_{2}(\mathcal{A})\right)^{z}$, and

$$
\left(M^{2}\right)^{z}=G^{z}+\left(G^{z}\right)^{2} F=\left(\begin{array}{cc}
\left(a^{z}\right)^{2}+\left(a^{z}\right)^{3} b & \left(a^{z}\right)^{2} b \\
u+u a^{z} b & u a^{z} a b
\end{array}\right)
$$

Applying Corollary 2.5, $M \in\left(M_{2}(\mathcal{A})\right)^{z}$. Finally, according to [2, Theorem 3.1], we have $a+b \in \mathcal{A}^{z}$ and

$$
(a+b)^{z}=X_{2}\left(M^{2}\right)^{z} X_{1}
$$

Observe that $a^{z} b a=0$ and by a simple computation, we obtain the result.
Theorem 4.3. Let \mathcal{A} be a Banach algebra, $a, b \in \mathcal{A}^{z}$ and $s=\left(1-b^{\pi}\right) a\left(1-b^{\pi}\right) \in \mathcal{A}^{z}$. If $b^{\pi} a b a=0, b^{\pi} a b^{2}=0$ and $t=\left(1-b^{\pi}\right)(a+b)\left(1-b^{\pi}\right) \in \mathcal{A}^{z}$, then $a+b \in \mathcal{A}^{z}$. In this case, we have

$$
\begin{equation*}
(a+b)^{z}=t^{z}+\left(1-t^{z} a\right) x+\sum_{i=0}^{\infty}\left(t^{z}\right)^{i+2} a b^{\pi}(a+b)^{i}[1-(a+b) x]+\sum_{i=0}^{\infty} t^{\pi} t^{i}\left(1-b^{\pi}\right) a x^{i+2} \tag{9}
\end{equation*}
$$

Where $x=\sum_{i=0}^{\infty} b^{\pi} b^{i}\left(a^{z}\right)^{i+1} b^{\pi}\left(1+a^{z} b\right)$.

Proof. According to Lemma 3.3, we consider the matrix representation of a, b relative to the idempotent $p=b b^{z}$,

$$
b=\left(\begin{array}{cc}
b_{1} & 0 \\
0 & b_{2}
\end{array}\right)_{p}, a=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)_{p}
$$

where $b_{1} \in \mathcal{A}_{1}^{z}, b_{2} \in J^{\#}\left(\mathcal{A}_{2}\right)$. The condition $\left(b^{\pi}\right) a b^{2}=0$ expressed in matrix form yields

$$
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)_{p}=b^{\pi} a b^{2}=\left(\begin{array}{cc}
0 & 0 \\
a_{21} b_{1}^{2} & a_{22} b_{2}^{2}
\end{array}\right)_{p}
$$

Then we have

$$
a_{21} b_{1}^{2}=\left(1-b b^{z}\right) a b b^{z} b^{4}\left(b^{z}\right)^{2}=\left(1-b b^{z}\right) a b b^{z} b^{3} b^{z}=0
$$

This gives

$$
\left(1-b b^{z}\right) a b b^{z} b^{3} b^{z}\left(b^{z}\right)^{2}=\left(1-b b^{z}\right) a b^{4}\left(b^{z}\right)^{4}=\left(1-b b^{z}\right) a b b^{z}=0
$$

, which implies that

$$
a_{21}=0, a_{22} b_{2}^{2}=0
$$

Denote $a_{1}=a_{11}, a_{2}=a_{22}, a_{3}=a_{12}$. Thus

$$
a=\left(\begin{array}{cc}
a_{1} & a_{3} \\
0 & a_{2}
\end{array}\right)_{p}, a+b=\left(\begin{array}{cc}
t & a_{3} \\
0 & a_{2}+b_{2}
\end{array}\right)_{p}
$$

Since $a_{1}=s \in \mathcal{A}^{z}$, by Proposition 2.4, we have $a_{1} \in \mathcal{A}_{1}^{z}$. Also $a \in \mathcal{A}^{z}$. Using Theorem 3.4(2), we deduce that $a_{2} \in \mathcal{A}_{2}^{z}$ and

$$
a^{z}=\left(\begin{array}{cc}
a_{1}^{z} & u_{1} \\
0 & a_{2}^{z}
\end{array}\right)_{p}
$$

From the condition $b^{\pi} a b a=0$, we can get

$$
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)_{p}=b^{\pi} a b a=b^{\pi} a b^{2}=\left(\begin{array}{cc}
0 & 0 \\
0 & a_{2} b_{2} a_{2}
\end{array}\right)_{p}
$$

which implies $a_{2} b_{2} a_{2}=0$. Hence, applying Theorem 4.2 to a_{2}, b_{2}, we have $a_{2}+b_{2} \in \mathcal{A}_{2}^{z}$ and

$$
\left(a_{2}+b_{2}\right)^{z}=\left[a_{2}^{z}+\sum_{i=0}^{\infty}\left(b_{2}\right)^{2 i+1}\left(a_{2}+b_{2}\right)\left(a_{2}^{z}\right)^{2 i+3}\right]\left(1-p+a_{2}^{z} b_{2}\right) .
$$

In order to give the expression of $\left(a_{2}+b_{2}\right)^{z}$ in terms of a, a^{z}, b, b^{z}, we calculate $b^{\pi} a^{z}, b^{\pi} b^{2 i+1}(a+b)\left(a^{z}\right)^{2 i+3}, b^{\pi} a^{z} b$ separately in matrix form as follows

$$
\begin{gathered}
b^{\pi} a^{z}=\left(\begin{array}{cc}
0 & 0 \\
0 & a_{2}^{z}
\end{array}\right)_{p}, b^{\pi} a^{z} b=\left(\begin{array}{cc}
0 & 0 \\
0 & a_{2}^{z} b_{2}
\end{array}\right)_{p} \\
b^{\pi} b^{2 i+1}(a+b)\left(a^{z}\right)^{2 i+3}=\left(\begin{array}{cc}
0 & 0 \\
0 & b_{2}^{2 i+1}\left(a_{2}+b_{2}\right)\left(a_{2}^{z}\right)^{2 i+3}
\end{array}\right)_{p} .
\end{gathered}
$$

Thus,

$$
b^{\pi} a^{z}=a_{2}^{z}, b^{\pi} b^{2 i+1}(a+b)\left(a^{z}\right)^{2 i+3}=b_{2}^{2 i+1}\left(a_{2}+b_{2}\right)\left(a_{2}^{z}\right)^{2 i+3}
$$

and $b^{\pi} a^{z} b=a_{2}^{z} b_{2}$. Write $x=\left(a_{2}+b_{2}\right)^{z}$. Note that

$$
a\left(a^{z}\right)^{2 i+3}=\left(a^{z}\right)^{2 i+2} \text { for } i \geq 0,
$$

then

$$
\begin{gathered}
x=b^{\pi}\left[a^{z}+\sum_{i=0}^{\infty} b^{2 i+1}(a+b)\left(a^{z}\right)^{2 i+3}\right] b^{\pi}\left(1+a^{z} b\right) \\
=b^{\pi}\left[a^{z}+\sum_{i=0}^{\infty} b^{2 i+1}\left(a^{z}\right)^{2 i+2}+\sum_{i=0}^{\infty} b^{2 i+2}\left(a^{z}\right)^{2 i+3}\right] b^{\pi}\left(1+a^{z} b\right) \\
=b^{\pi}\left(\sum_{i=0}^{\infty} b^{i}\left(a^{z}\right)^{i+1}\right) b^{\pi}\left(1+a^{z} b\right) .
\end{gathered}
$$

Now, by Theorem 3.4, we have $a+b \in \mathcal{A}^{z}$ if and only if $t \in \mathcal{A}^{z}$. Moreover

$$
(a+b)^{z}=\left(\begin{array}{cc}
t^{z} & u \\
0 & x
\end{array}\right)_{p}
$$

where

$$
\begin{equation*}
u=\sum_{i=0}^{\infty}\left(t^{z}\right)^{i+2} a_{3}\left(a_{2}+b_{2}\right)^{i}\left(a_{2}+b_{2}\right)^{\pi}+\sum_{i=0}^{\infty} t^{\pi} t^{i} a_{3} x^{i+2}-t^{z} a_{3} x . \tag{10}
\end{equation*}
$$

As $b^{\pi} a b^{2}=0$, then $b^{\pi} a b^{z}=0$. Thus

$$
a_{2}+b_{2}=b^{\pi}(a+b) b^{\pi}=b^{\pi} a b^{\pi}+b^{\pi} b=b^{\pi} a\left(1-b b^{z}\right)+b^{\pi} b=b^{\pi}(a+b)
$$

which ensures

$$
\left(a_{2}+b_{2}\right)^{i}=b^{\pi}(a+b)^{i} b^{\pi} \text { for } i \in \mathbb{N} .
$$

Also we can easily obtain that $b^{\pi}(a+b)^{i} b^{\pi}=b^{\pi}(a+b)^{i}$, for $i \in \mathbb{N}$ by induction. Note $a_{3}=\left(1-b^{\pi}\right) a b^{\pi}$. Thus (10) reduces to

$$
u=\sum_{i=0}^{\infty}\left(t^{z}\right)^{i+2} a b^{\pi}(a+b)^{i}[1-(a+b) x]+\sum_{i=0}^{\infty} t^{\pi} t^{i}\left(1-b^{\pi}\right) a x^{i+2}-t^{z} a x .
$$

From $(a+b)^{z}=t^{z}+u+x$, we get (9) holds.
Corollary 4.4. Let $a, b \in \mathcal{A}^{z}$, and let $s=\left(1-b^{\pi}\right) a\left(1-b^{\pi}\right) \in \mathcal{A}^{z}$. If $a b a=0, a b^{2}=0$, then $a+b \in \mathcal{A}^{z}$. In this case, we have

$$
\begin{align*}
& (a+b)^{z}=b^{z} a^{\pi}+\left(b^{z}\right)^{2} a a^{\pi}+\sum_{i=1}^{\infty}\left(b^{z}\right)^{i+2}\left(a^{i+1} a^{\pi}-a^{i+1} a^{z} b+a^{i} b\right) \\
& \quad+\sum_{i=0}^{\infty} b^{\pi} b^{i}\left(a^{z}\right)^{i+1}\left(1+a^{z} b\right)-b^{z} a^{z} b-\left(b^{z}\right)^{2} a a^{z} b \tag{11}
\end{align*}
$$

Proof. From $a b^{2}=0$, it follows that $a b^{z}=0$. Thus, we can get $s=\left(1-b^{\pi}\right) a\left(1-b^{\pi}\right)=0 \in \mathcal{A}^{z}, t=\left(1-b^{\pi}\right)(a+$ b) $\left(1-b^{\pi}\right)=b\left(b b^{z}\right)$. Since $\left(b b^{z}\right)^{z}=b b^{z}$, using Theorem 2.2, we deduce that $t \in \mathcal{A}^{z}, t^{z}=b^{z}$. Thus, Theorem 4.3 is applicable. Furthermore, note that $a^{z} b^{z}=0, a b a^{z}=0$. Let

$$
x=\sum_{i=0}^{\infty} b^{\pi} b^{i}\left(a^{z}\right)^{i+1} b^{\pi}\left(1+a^{z} b\right)
$$

We have

$$
\begin{gathered}
a x=a \sum_{i=0}^{\infty} b^{\pi} b^{i}\left(a^{z}\right)^{i+1} b^{\pi}\left(1+a^{z} b\right) \\
=a\left(1-b b^{z}\right) a^{z} b^{\pi}\left(1+a^{z} b\right)+a\left(1-b b^{z}\right) b\left(a^{z}\right)^{2} b^{\pi}\left(1+a^{z} b\right)
\end{gathered}
$$

$$
\begin{aligned}
& =a a^{z} b^{\pi}\left(1+a^{z} b\right)+a b\left(a^{z}\right)^{2} b^{\pi}\left(1+a^{z} b\right) \\
& =a a^{z}\left(1-b b^{z}\right)\left(1+a^{z} b\right)=a a^{z}+a^{z} b, \\
& a b x=a b\left[\sum_{i=0}^{\infty} b^{\pi} b^{i}\left(a^{z}\right)^{i+1} b^{\pi}\left(1+a^{z} b\right)\right] \\
& =a b\left(1-b b^{z}\right)\left(a^{z}\right) b^{\pi}\left(1+a^{z} b\right)=0 .
\end{aligned}
$$

Hence,

$$
a[1-(a+b) x]=a-a^{2} x-a b x=a a^{\pi}-a a^{z} b
$$

Note,

$$
a(a+b)^{i}=a^{i}(a+b) \text { for } i \geq 1 .
$$

So,

$$
\begin{gathered}
a b^{\pi}(a+b)^{i}[1-(a+b) x]=a\left(1-b b^{z}\right)(a+b)^{i}[1-(a+b) x] \\
=a(a+b)^{i}[1-(a+b) x]=a^{i}(a+b)[1-(a+b) x] \\
=a^{i} a[1-(a+b) x]+a^{i} b[1-(a+b) x] \\
=a^{i+1} a^{\pi}-a^{i+1} a^{z} b+a^{i} b .
\end{gathered}
$$

Obsever that

$$
t^{\pi} t^{i}\left(1-b^{\pi}\right) a x^{i+2}=b^{\pi}\left(b^{2} b^{z}\right)^{i}\left(1-b^{\pi}\right) a x^{i+2}=0 \text { for } i \geq 0 .
$$

Finally, by using these relations and (9) we get (11).
Theorem 4.5. Let $a, b, p \in \mathcal{A}$ be such that $a \in \mathcal{A}^{z}, p^{2}=p, p a=a p, b p=p[r e s p . p b=b]$. If $r=(a+b) p \in \mathcal{A}^{z}$, then $(a+b) \in \mathcal{A}^{z}$ and

$$
\begin{aligned}
(a+b)^{z} & =\sum_{i=0}^{\infty}(1-p) a^{\pi} a^{i} b\left(r^{z}\right)^{i+3}(a+b)-a^{z}(1-p) b\left(r^{z}\right)^{2}(a+b)+a^{z}(1-p) \\
& +\sum_{i=0}^{\infty}\left(a^{z}\right)^{i+2}(1-p) b(a+b)^{i}\left[1-r^{z}(a+b)\right]+p\left(r^{z}\right)^{2}(a+b)
\end{aligned}
$$

[resp.

$$
\left.(a+b)^{z}=r^{z}+\sum_{i=0}^{\infty}\left(r^{z}\right)^{i+2} b(1-p) a^{i} a^{\pi}+\left(1-r^{z} b\right)(1-p) a^{z}+r^{\pi} \sum_{i=0}^{\infty} r^{i} b(1-p)\left(a^{z}\right)^{i+2}\right]
$$

Proof. We consider the matrix representation of p, a, b relative to p we have

$$
p=\left(\begin{array}{ll}
p & 0 \\
0 & 0
\end{array}\right)_{p}, a=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)_{p}, b=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)_{p} .
$$

The condition $p a=a p$ implies $a_{12}=0, a_{21}=0$ we denote $a_{1}=a_{11}, a_{2}=a_{22}$. Thus

$$
a=\left(\begin{array}{cc}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right)_{p} .
$$

Observe that $(1-p) a=a(1-p)$ and $(1-p)^{z}=1-p$. By Theorem 2.2, we can conclude that $a_{2}=(1-p) a \in \mathcal{A}_{2}^{z}$ and $a_{2}^{z}=(1-p) a^{z}=a^{z}(1-p)$. From $b p=b$, it follows that $b_{12}=0, b_{22}=0$. Denote $b_{1}=b_{11}, b_{3}=b_{21}$. Hence

$$
a+b=\left(\begin{array}{cc}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right)_{p}+\left(\begin{array}{ll}
b_{1} & 0 \\
b_{3} & 0
\end{array}\right)_{p}=\left(\begin{array}{cc}
a_{1}+b_{1} & 0 \\
b_{3} & a_{2}
\end{array}\right)_{p} .
$$

Since $b p=b, a_{1}+b_{1}=p(a+b) p=p(a+b)$ which implies that $p(a+b)^{i} p=p(a+b)^{i},(p(a+b))^{i}=p(a+b)^{i}$ for any $i \geq 0$. From the condition $r=(a+b) p \in \mathcal{A}^{z}$ and[2, Theorem 3.1], we deduce that $a_{1}+b_{1} \in \mathcal{A}_{1}^{z}$ and $\left(a_{1}+b_{1}\right)^{z}=p\left(r^{z}\right)^{2}(a+b)$. According to Theorem 3.4, we obtain $a+b \in \mathcal{A}^{z}$ and

$$
(a+b)^{z}=\left(\begin{array}{cc}
\left(a_{1}+b_{1}\right)^{z} & 0 \\
u & a_{2}^{z}
\end{array}\right)_{p}
$$

Where,

$$
u=\sum_{i=0}^{\infty}\left(a_{2}\right)^{i+2} b_{3}\left(a_{1}+b_{1}\right)^{i}\left(a_{1}+b_{1}\right)^{\pi}+\sum_{i=0}^{\infty} a_{2}^{\pi} a_{2}^{i} b_{3}\left(\left(a_{1}+b_{1}\right)^{z}\right)^{i+2}-a_{2}^{z} b_{3}\left(a_{1}+b_{1}\right)^{z}
$$

Note that

$$
\begin{gathered}
\left(a_{2}^{z}\right)^{i+2} b_{3}\left(a_{1}+b_{1}\right)^{i}\left(a_{1}+b_{1}\right)^{\pi}= \\
{\left[a^{z}(1-p)\right]^{i+2}(1-p) b p[p(a+b)]^{i}\left[p-p(a+b) p\left(r^{z}\right)^{2}(a+b)\right]} \\
=\left(a^{z}\right)^{i+2}(1-p) b p(a+b)^{i} p\left[1-(a+b) p\left(r^{z}\right)^{2}(a+b)\right], a_{2}^{\pi} a_{2}^{i} b_{3}\left[\left(a_{1}+b_{1}\right)^{z}\right]^{i+2} \\
=\left[(1-p)-(1-p) a a^{z}(1-p)\right][(1-p) a]^{i}(1-p) b p\left[p\left(r^{z}\right)^{2}(a+b)\right]^{i+2} \\
=(1-p)\left(1-a a^{z}\right)(1-p) a^{i}(1-p) b p\left[p\left(r^{z}\right)^{i+3}(a+b)\right] \\
=(1-p) a^{\pi} a^{i} b\left(r^{z}\right)^{i+3}(a+b), \\
a_{2}^{z} b_{3}\left(a_{1}+b_{1}\right)^{z}=a^{z}(1-p)(1-p) b p p\left(r^{z}\right)^{2}(a+b)=a^{z}(1-p) b\left(r^{z}\right)^{2}(a+b) .
\end{gathered}
$$

Therefore we have result. The proof for the case $p b=b$ is similar.
Corollary 4.6. Let $a \in \mathcal{A}^{z}, b \in \mathcal{A}$ be such that $b a^{z}=0\left[\right.$ resp. $\left.a^{z} b=0\right], r=(a+b) a^{\pi} \in \mathcal{A}^{z}$. Then $a+b \in \mathcal{A}^{z}$ and we have

$$
\begin{gathered}
(a+b)^{z}= \\
\sum_{i=0}^{\infty}\left(a^{z}\right)^{i+2} b(a+b)^{i}\left[1-r^{z}(a+b)\right]+a^{z}+\left[1-a^{z}(a+b)\right]\left(r^{z}\right)^{2}(a+b)
\end{gathered}
$$

$\left[\right.$ resp. $\left.(a+b)^{z}=a^{z}+r^{z}+r^{\pi} \sum_{i=0}^{\infty} r^{i} b\left(a^{z}\right)^{i+2}-r^{z} b a^{z}\right]$.
Proof. By $p=a^{\pi}$ in Theorem 4.5, we obtain the result.

Acknowledgement

The authors would like to thank the referees for their careful reading of the paper and the valuable comments which greatly improved the presentation of this article.

References

[1] N. Castro-González and J.J. Koliha, New additive results for the g-Drazin inverse, Proc. Roy. Soc. Edinburgh Sect. A, 134(2004), 1085-1097.
[2] H.Chen and M. Sheibani, Generalized Zhou inverse in rings, Comm. Algebra, 49(2021), 4098-4108.
[3] J. Cui and J. Chen, Pseudopolar matrix rings over local rings, J. Algebra Appl., 13(2014), DOI: 10.1142/S0219498813501090.
[4] M.P. Drazin, Pseudo inverse in associative rings and semigroups, Amer. Math. Monthly 65(1958), 506-514.
[5] J.J. Koliha, A generalized Drazin inverse, Glasgow Math. J., 38(1996), 367-381.
[6] M.T. Kosan; T. Yildirim and Y. Zhou, Rings with $x^{n}-x$ nilpotent, J. Algebra Appl., 19(2020), DOI: 10.1142/S0219498820500656.
[7] T.Y. Lam, A First Course in Noncommutative Rings, Grad. Text in math., Vol.131,Springer-Verlag, Berlin-Heidelberg-New York.,(2001).
[8] Y. Liao; J. Chen and J. Cui, Cline's formula for the generalized Drazin inverse, Bull. Malays. Math. Sci. Soc., 37(2014), 37-42.
[9] D. Mosić, The generalized and pseudo n-strong Drazin inverses in rings, Linear Multilinear Algebra, 69(2021), 361-375.
[10] Z. Wang and J. Chen, Pseudo Drazin inverses in associative rings and Banach algebras, Linear Algebra Appl., 437(2012), $1332-1345$.
[11] H. Zhu; J. Chen and P. Patrício, Representations for the pseudo Drazin inverse of elements in a Banach algebra, Taiwanese J. Math., 19(2015), 349-362.
[12] G. Zhuang; J. Chen and J. Cui, Jacobson's Lemma for the generalized Drazin inverse, Linear Algebra Appl., 436(2012), 742-746.
[13] H. Zou and J. Chen, On the pseudo Drazin inverse of the sum of two elements in a Banach algebra, Filomat, 31(2017), 2011 -2022.

[^0]: 2020 Mathematics Subject Classification. 15A09, 32A65, 16E50
 Keywords. additive property, Banach algebra, generalized Zhou inverse
 Received: 10 April 2022;Revised: 12 July 2022; Accepted: 29 September 2022
 Communicated by Dijana Mosić

 * Corresponding author: Marjan Sheibani Abdolyousefi

 Email addresses: abbas.abbasi@yahoo.com (Abbas Abbasi), rbahmani@semnan.ac.ir (Rahman Bahmani), m.sheibani@semnan.ac.ir (Marjan Sheibani Abdolyousefi), nashrafi@semnan.ac.ir (Nahid Ashrafi)

