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Abbas Abbasia, Rahman Bahmania, Marjan Sheibani Abdolyousefib,∗, Nahid Ashrafia

aDepartment of Mathematics, Statistics and Computer science, Semnan University, Semnan, Iran
bFarzanegan Campus, Semnan University, Semnan, Iran

Abstract. Let A be a Banach algebra. An element a ∈ A has the generalized Zhou inverse if there exists
b ∈ A such that

b = bab, ab = ba, an
− ab ∈ J#(A), f or some n ∈N.

We find some new conditions under which the generalized Zhou inverse of the sum a + b can be explicitly
expressed in terms of a, b, az, bz. In particular, necessary and sufficient conditions for the existence of the
generalized Zhou inverse of the sum a + b are obtained.

1. Introduction

Throughout the paper, A is a complex Banach algebra. The symbols J(A),AD,Ad,Anil,Aqnil denote,
respectively, the Jacobson radical, the sets of all Drazin invertible, generalized Drazin invertible, nilpotent
and quasi nilpotent elements ofA. The commutant of a ∈ A is defined by comm(a) = {x ∈ A | xa = ax} and
the double commutant of a ∈ A is defined by

comm2(a) = {x ∈ A | xy = yx for all y ∈ comm(a)}.

Also we define J#(A) = {a ∈ A | an
∈ J(A) f or some n ∈N}.

Let us recall that the Drazin inverse [4] of a ∈ A is the element b ∈ Awhich satisfies

b = bab, ab = ba and a − a2b ∈ Anil. (1)

The element b above is unique if it exists and is denoted by aD.
The generalized Drazin inverse [5] of a ∈ A is the element b ∈ Awhich satisfies

b = bab, ab = ba, a − a2b ∈ Aqnil. (2)

Such b is unique if it exits and is denoted by ad. In 2012, Wang and Chen [10] introduced the notation of the
pseudo Drazin inverse (or p-Drazin inverse for short) in associative rings and Banach algebras. An element
a inA has p-Drazin inverse if and only if there exists b ∈ A such that

b = bab, ab = ba, an
− an+1b ∈ J(A), f or some n ∈N. (3)
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We always useA‡ to denote the set of all p-Drazin invertible elements inA. Any element b ∈ A satisfying
the above conditions is called p-Drazin inverse of a and is denoted by a‡. The p-Drazin and generalized
Drazin inverses were extensively studied in matrix theory and Banach algebras (see [3, 10–13]).
An element a ∈ A is said to be Zhou invertible [2] if there exists b ∈ A such that

b = bab, b ∈ comm(a), an
− ab ∈ Anil, f or some n ∈N. (4)

The preceding b is unique, if such an element exists. The generalized Zhou inverse [2] of a ∈ A is an element
b ∈ Awhich satisfies

b = bab, ab = ba, an
− ab ∈ J#(A), f or some n ∈N. (5)

In this case, b is unique if it exists and is denoted by az. The set of all generalized Zhou invertible elements of
Awill be denoted byAz. The smallest integer n which satisfies the above equation is called the generalized
Zhou index of a, which is denoted by ind(a).

It was proved that a ∈ Az if and only if there exists an idempotent p ∈ comm(a) such that an
− p ∈ J#(A)

for some n ∈N. (see [2, Theorem 2.6]).
In Section 2, we investigate some elementary properties of generalized Zhou inverses. The multiplication

of the two generalized Zhou invertible elements is studied. We prove that for any a, b ∈ Az, if ab = ba then
(ab)z exists and (ab)z = bzaz. In Section 3, we apply matrix representation for the generalized Zhou inverse
relative to idempotent p ∈ A. LetA be a Banach algebra, x ∈ A. Then we write

x = pxp + px(1 − p) + (1 − p)xp + (1 − p)x(1 − p),

and induce a representation given by the matrix

x =
(

pxp px(1 − p)
(1 − p)xp (1 − p)x(1 − p)

)
p
,

so we may regard such matrix as an element inA. LetA1 = pAp,A2 = (1 − p)A(1 − p).We prove that for
any a ∈ A, a ∈ Az if and only if there exists an idempotent p ∈ A such that

a =
(

a1 0
0 a2

)
p

where a1 ∈ A
z
1 and a2 ∈ J#(A2).

In Section 4, additive property of the two generalized Zhou invertible elements is studied. For any
a, b ∈ Az, we investigate, the representations of (a + b)z under conditions ab2 = 0, aba = 0 and various
conditions.

2. The generalized Zhou inverse

In this section, some elementary results, which will be used in sequel are presenetd.

Lemma 2.1. LetA be a Banach algebra, a, b ∈ A and ab = ba;

(1) If a, b ∈ J#(A), then a + b ∈ J#(A).
(2) If a or b ∈ J#(A), then ab ∈ J#(A).

Proof. (1) See [13, Lemma 2.4].
(2) If a ∈ J#(A), then, ak

∈ J(A), for some k ∈ N. As ab = ba, we have (ab)k = akbk, thus by [7, Corollary 4.2],
we see that (ab)k

∈ J(A) which implies that ab ∈ J#(A).

Theorem 2.2. LetA be a Banach algebra and a, b ∈ Az, if ab = ba, then (ab)z exists and (ab)z = bzaz.
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Proof. It is obvious by [2, Theorem 2.2] that every generalized Zhou invertible element is pseudo Drazin
invertible. Then by [10, Proposition 3.4], every generalized Zhou invertible element is generalized Drazin
invertible. Now we have az

∈ comm2(a), bz
∈ comm2(b) and ab = ba, then az, bz, a, b commute with each other

and so bzaz
∈ comm(ab), (bzaz)2(ab) = bzaz. We may assume that ak1 − aaz

∈ J#(A) and bk2 − bbz
∈ J#(A). Let

k = k1k2, then we see that ak
−aaz = (ak1 )k2 − (aaz)k2 = (ak1 −aaz)(ak1(k2−1)+ak1(k2−2)aaz+ · · ·+ak1 (aaz)k2−2+ (aaz)k2−1).

Then by Lemma 2.1, we have ak
− aaz

∈ J#(A). Likewise, bk
− bbz

∈ J#(A). Hence (ab)k
− (ab)bzaz = −(ak

−

aaz)(bk
− bbz) + (ak

− aaz)bk + ak(bk
− bbz). By Lemma 2.1, we obtain (ab)k

− (ab)(ab)z
∈ J#(A). This completes

the proof.

Corollary 2.3. Let a ∈ Az and n ∈N. Then

(1) (an)z = (az)n.
(2) (az)z = a2az.
(3) ((az)z)z = az.

Proof. (1) It is obvious by induction and Theorem 2.2.
(2) It is easy to check aza2az = a2azaz and a2azaza2az = a2az. Since a ∈ Az by [2, Theorem 2.9], we see
that a − an+1

∈ J#(A) for some n ∈ N. Now by Lemma 2.1(2), we have (az)n+1(a − an+1) ∈ J#(A). Thus
(az)n+1a − (az)n+1an+1 = (az)n

− aaz
∈ J#(A), it follows that (az)n

− aza2az = (az)n
− aaz

∈ J#(A), then (az)z = a2az.
(3) It is clear by (2) and Theorem 2.2.

Proposition 2.4. Let p ∈ A be an idempotent and a ∈ pAp. Then a ∈ Az if and only if a ∈ (pAp)z, moreover
az
A
= az

pAp.

Proof. (⇒) Let az
A
= x, then we have x2a = ax2 = x and ax3a = ax2xa = x2a = x, which imply that,

x = ax3a ∈ pAp. Since az
A
= x, there exists k ∈ N such that ak

− aaz
∈ J#(A), so (ak

− aaz)n
∈ J(A) for some

n ∈N. Otherwise, ak
− aaz

∈ pAp. Thus by [7, Theorem 2.10], (ak
− aaz)n

∈ (pAp)
⋂

J(A) = J(pAp), it follows
that ak

− aaz
∈ J#(pAp). Also, ax = xa, xax = x then a ∈ (pAp)z.

(⇐) Suppose a ∈ (pAp)z and let az
pAp = y. The condition az

pAp = y ensures that, (a) yay = y, (b) ya = ay, (c)

ak
− aaz

∈ J#(pAp) for some k ∈N. Applying [7, Theorem 2.10], we have (ak
− aaz)n

∈ J(pAp) = (pAp)
⋂

J(A)
for some n ∈N, then (ak

− aaz)n
∈ J(A). Hence a ∈ Az and az

A
= y. This completes the proof.

Corollary 2.5. Let a ∈ A. Then the following conditions are equivalent.

(1) a ∈ Az.
(2) an

∈ A
z f or any n ∈N.

(3) an
∈ A

z f or some n ∈N.

Proof. (1)⇒ (2) It was proved in Corollary 2.3.
(2)⇒ (3) It is obvious.
(3)⇒ (1) Let y = (an)za.A direct calculation shows that yan−1y = y, ya = ay. Since an

∈ A
z, there exists k ∈N

such that (an)k
−an(an)z

∈ J#(A). Then in light of Theorem 2.2, we have (an−1)nk
−an−1y = (an−1)nk

−an−1a(an)z =
(an)(n−1)k

− an(an)z
∈ J#(A), which implies that an−1

∈ A
z. Thus an

∈ A
z =⇒ an−1

∈ A
z =⇒ an−2

∈ A
z =⇒

· · · =⇒ a ∈ Az. By induction we get a ∈ Az. This completes the proof.

3. Matrix representation

For any Banach algebraA and any idempotent p ∈ A,

M2(A, p) =
(

pAp pA(1 − p)
(1 − p)Ap (1 − p)A(1 − p)

)
,

is a Banach algebra with

I =
(

p 0
0 (1 − p)

)
p
.
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Lemma 3.1. Let p be an idempotent element inA. Then,
J(M2(A))

⋂
M2(A, p) = J(M2(A, p)).

Proof. See [13, Lemma 2.6].

Theorem 3.2. LetA be a Banach algebra, x, y ∈ A, let

x =
(

a d
0 b

)
, y =

(
b 0
d a

)
.

If a, b ∈ Az, then x, y ∈ Az and

xz =

(
az u
0 bz

)
, yz =

(
bz 0
u az

)
,

where u =
∑
∞

i=0 (az)i+2 dbibπ +
∑
∞

i=0 aπaid (bz)i+2
− azdbz.

Proof. Suppose that a, b ∈ Az. Let

w =
(

az u
0 bz

)
,

where u =
∑
∞

i=0 (az)i+2 dbibπ +
∑
∞

i=0 aπaid (bz)i+2
− azdbz. Then

I − xw =
(

aπ −au − dbz

0 bπ

)
.

Here aπ = 1 − aaz and bπ = 1 − bbz.We have

w(I − xw) =
(

az u
0 bz

) (
aπ −au − dbz

0 bπ

)
=

(
azaπ −azau − azdbz + ubπ

0 bzbπ

)
.

Note that azaπ = 0 and bzbπ = 0, then

−azau = −aza(
∞∑

i=0

(az)i+2 dbi)bπ + azdbz = −

∞∑
i=0

(az)i+2 dbibπ + azdbz,

ubπ = (
∞∑

i=0

(az)i+2 dbi)bπ

and so −azau − azdbz + ubπ = 0. This shows that w = wxw. Let r = ind(a), s = ind(b), then, ar
− aaz

∈

J#(A), bs
− bbz

∈ J#(A). Let k = rs, fk =
∑k−1

i=0 aidbk−1−i, we have

xk = (
(

a d
0 b

)
)k =

(
ak fk
0 bk

)
.

xk
− xw =

(
ak fk
0 bk

)
−

(
a d
0 b

) (
az u
0 bz

)
=

(
ak
− aaz fk − au − dbz

0 bk
− bbz

)
.

As ak
−aaz

∈ J#(A), bk
−bbz

∈ J#(A). Then there exist n1,n2 ∈N such that (ak
−aaz)n1 ∈ J(A), (bk

−bbz)n2 ∈ J(A).
Let n = max(n1,n2) and let x1 = ak

− aaz, x2 = fk − au − dbz, x3 = bk
− bbz, then we have tn =

∑n−1
i=0 xi

1x2xn−1−i
3 ,

(xk
− xw)n =

(
(ak
− aaz)n tn

0 (bk
− bbz)n

)
.
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Note that, (xk
− xw)2n= (

(ak
− aaz)n tn

0 (bk
− bbz)n

) (
(ak
− aaz)n tn

0 (bk
− bbz)n

)

=

(
(ak
− aaz)2n (ak

− aaz)ntn + tn(bk
− bbz)n

0 (bk
− bbz)2n

)
.

As (ak
− aaz)n, (bk

− bbz)n
∈ J(A), by [7, Corollary 4.2] and [7, page 57 Example(7)], we have (xk

− xw)2n
∈

J(M2(A)). Finally we need to show that xw = wx.We have

au − ub =
∞∑

i=0

(az)i+1 dbibπ + aaπ(
∞∑

i=0

aid (bz)i+2

−aazdbz
−

∞∑
i=0

(az)i+2 dbibπb − aπ
∞∑

i=0

aid (bz)i+1 + azdbzb

= (
∞∑

i=0

(az)i+1 dbibπ −
∞∑

i=0

(az)i+2 dbibπ)

+(aπ(
∞∑

i=0

ai+1d (bz)i+2) − aπ(
∞∑

i=0

aid (bz)i+1) − aazdbz + azdbzb

= azdbπ − aπdbz
− aazdbz + azdbzb = azd − dbz,

then au + dbz = azd + ub. This implies that xw = wx. Since M2(A) is also a Banach algebra,we can prove this
conditions in the similar way for y.

Lemma 3.3. Let a ∈ A. Then a ∈ Az if and only if there exists an idempotent p ∈ A such that

a =
(

a1 0
0 a2

)
p

where a1 ∈ A
z and a2 ∈ J#(A). In this case

az =

(
az

1 0
0 0

)
p
, (6)

and p = aaz

Proof. (⇒) Let

a =
(

a11 a12
a21 a22

)
p
.

Let p = aaz. Obviously,

pa(1 − p) = aaza(1 − aaz) = 0, (1 − p)ap = (1 − aaz)aaaz = 0.

Thus a12 = 0, a21 = 0. Let a11 = a1, a22 = a2 . Since a ∈ Az, there exists k ∈ N such that ak
− aaz

∈ J#(A).We
have a1 = aazaaaz = aazaaza = aaza, so by Corollay 2.3,

a1az
1 = aaz(aaz)z = a2az(a2)za2az = a4(az)4 = aaz.

Hence,
ak

1 = (aaza)k = aazak, aaz(ak
− aaz)
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= aazak
− aazaaz = aazak

− aaz = ak
1 − a1az

1.

Thus by Lemma 2.1(2),
ak

1 − a1az
1 ∈ J#(A).

Therefore there exists n ∈ N such that (ak
1 − a1az

1)n
∈ J(A). Otherwise (ak

1 − a1az
1)n
∈ pAp, by [7, Theorem

2.10], we have a1 ∈ A
z
1. As ak

− aaz
∈ J#(A) in light of [2, Theorem 2.2],we get ak(1 − aaz) ∈ J#(A). Then there

exists m ∈N such that (ak(1− aaz))m
∈ J(A) as (ak(1− aaz))m

∈ (1− p)A(1− p) by [7, Theorem 2.10], we obtain
(ak(1 − aaz))m

∈ J(A2). Then, wev have (a(1 − aaz))mk
∈ J(A2). So, a2 = a(1 − aaz) ∈ J#(A2).

(⇐) Let,

x =
(

az
1 0

0 0

)
p
.

A direct calculation shows that xax = x, ax = xa. Since a2 ∈ J#(A2), there exists k2 ∈ N such that ak2
2 ∈ J(A2).

As a1 ∈ A
z
1 , (ak1

1 − a1az
1)k3 ∈ J(A1) for some k1, k3 ∈ N. Let k = max(k2, k3), we have ak

2 ∈ J(A2) ⊂ J(A) and
(ak

1 − a1az
1)k
∈ J(A1) ⊂ J(A) thus, we get

ak1 − ax =
(

ak1
1 − a1az

1 0
0 ak1

2

)
p

,

(ak1 − ax)k =

(
(ak1

1 − a1az
1)k 0

0 ak1k
2

)
p

∈ J(M2(A)).

Using [7, Theorem 2.10], so a ∈ Az

Theorem 3.4. . LetA be a Banach algebra, x, y ∈ A, and p be an idempotent element in Banach algebraA. Assume
that

x =
(

a c
0 b

)
p
, y =

(
b 0
c a

)
1−p
.

Then,

(1) If a ∈ Az
1 and b ∈ Az

2, then x, y ∈ Az and

xz =

(
az u
0 bz

)
p
, yz =

(
bz 0
u az

)
1−p
. (7)

Where u =
∑
∞

i=0 (az)i+2 cbibπ +
∑
∞

i=0 aπaic (bz)i+2
− azcbz. (8)

(2) If x ∈ Az and a ∈ Az
1 then b ∈ Az

2 and xz [resp. yz] is given by (7) and (8).

Proof. (1) Applying Theorem 3.3, and Proposition 2.4, we get x ∈ (M2(A))z and

xz =

(
az u
0 bz

)
p
,

where u =
∑
∞

i=0 (az)i+2 cbibπ+
∑
∞

i=0 aπaic (bz)i+2
−azcbz.Then there exist k,m ∈N such that (xk

−xxz)m
∈ J(M2(A)).

Lemma 3.1 ensures that, (xk
− xxz)m

∈ J(M2(A, p)). Then, x ∈ (M2(A), p)z which implies that x ∈ Az. Next,
we consider the generalized Zhou inverse of y since

y =
(

b 0
c a

)
1−p
=

(
a c
0 b

)
p
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from the first part, we obtain y ∈ Az and

yz =

(
az u
0 bz

)
p
=

(
bz 0
u az

)
1−p
.

We drive the result.
(2). We prove bz = [(1 − p)x(1 − p)]z = (1 − p)xz(1 − p). Since x ∈ Az, a ∈ Az

1, Az
⊂ A

d, then x ∈ Ad, a ∈ Ad
1

and xd = xz, ad = az. According to [1, Theorem 2.3(2)], it follows that(
ad u
0 bd

)
p
= xd =

(
pxdp pxd(1 − p)

(1 − p)xdp (1 − p)xd(1 − p)

)
p
,

then we have, (1 − p)xdp = 0, i.e. (1 − p)xzp = 0, which implies that (1 − p)xz(1 − p) = (1 − p)xz. Note that
(1 − p)xp = 0 , we can get (1 − p)x(1 − p) = (1 − p)x. Therefore, we need only to prove [(1 − p)x]z = (1 − p)xz.
Let v = (1 − p)xz.
(a)[(1 − p)x]v = (1 − p)x(1 − p)xz = (1 − p)xxz = (1 − p)xzx = (1 − p)xz(1 − p)x = v[(1 − p)x].
(b) v[(1 − p)x]v = (1 − p)xz(1 − p)x(1 − p)xz = (1 − p)xz(1 − p)xxz = (1 − p)xzxxz = v.
(c) As (1 − p)xp = 0,we have (1 − p)x(1 − p) = (1 − p)x, thus by induction we see that, ((1 − p)x)k =
(1 − p)xk, (1 − p)xk(1 − p) = (1 − p)xk. Now we prove [(1 − p)(xk

− xxz)]n = (1 − p)(xk
− xxz)n, for any

n ∈ N by induction. It is obvious for n = 1. Assume [(1 − p)(xk
− xxz)]n = (1 − p)(xk

− xxz)n. Since
(1−p)xxz(1−p) = (1−p)x(1−p)xz(1−p) = (1−p)x(1−p)xz = (1−p)xxz, for the (n+1) case, [(1−p)(xk

−xxz)]n+1 =
(1−p)(xk

−xxz)[(1−p)(xk
−xxz)]n = (1−p)(xk

−xxz)[(1−p)(xk
−xxz)]n = [(1−p)xk(1−p)−(1−p)xxz(1−p)](xk

−xxz)n

=[(1 − p)xk
− (1 − p)xxz](xk

− xxz)n = (1 − p)(xk
− xxz)(xk

− xxz)n = (1 − p)(xk
− xxz)n+1. Then, we see that

bk
− bv = ((1 − p)x)k

− (1 − p)xv = (1 − p)xk
− (1 − p)x(1 − p)xz = (1 − p)xk

− (1 − p)xxz = (1 − p)(xk
− xxz).

Since (xk
− xxz) ∈ J#(A). Thus we have (xk

− xxz)n
∈ J(A), for some n ∈N , therefore by [7, Corollary 4.2(2)],

(1− p)(xk
− xxz)n

∈ J(A), which implies that (bk
− bv)n

∈ J(A)
⋂
A2 = J(A2).Hence bz = (1− p)xz. Using part

(1), we see xz is given by (7),(8). Following an analogous strategy as in the proof for y of part (1), we have
(2) for y.

Moreover, when an element x ∈ Az commutes with an idempotent p ∈ A, the generalized Zhou inverse
of x has a simple form of the matrix representation relative to p.

Corollary 3.5. LetA be a unital Banach algebra and let x ∈ A , p is an idempotent element inA. If

x =
(

x1 0
0 x2

)
p

then x ∈ Az if and only if x1 ∈ A
z
1 and and x2 ∈ A

z
2 in this situation, one has

xz =

(
xz

1 0
0 xz

2

)
p
.

Proof. If x1 ∈ A
z
1 and x2 ∈ A

z
2, by Theorem 3.4(1), we have x ∈ Az.

Conversly if x ∈ Az by Lemma 3.3, we see that, x1 ∈ A
z
1 , x2 ∈ J#(A2) ⊂ Az

2, where xz
2 = 0 , as required.

4. Additive results

In this section, we investigate the representation for generalized Zhou inverse of the sum of two
elements in a Banach algebra under various conditions. In particular, necessary and sufficient conditions
for the existence of generalized Zhou inverse of the sum a + b are obtained under certain conditios.

Lemma 4.1. LetA be a Banach algebra, if a, b ∈ Az and ab = 0, then, a + b ∈ Az and (a + b)z =
∑
∞

i=0 (bz)i+1 aiaπ +
bπ

∑
∞

i=0 bi (az)i+1 .
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Proof.

Let A =
(

1
a

)
,B =

(
b 1

)
. Then AB =

(
b 1
0 a

)
,

since ab = 0 and BA = a + b, also a, b ∈ Az. Then, by Theorem 3.2, we have AB ∈ (M2(A))z and

(AB)z =

(
bz w
0 az

)
where w =

∑
∞

i=0 (bz)i+2 aiaπ+bπ
∑
∞

i=0 bi (az)i+2
−bzaz. By Cline’s formula [2, Theorem 3.1], we have BA = a+b ∈

A
z,

(a + b)z = (BA)z = B((AB)z)2A =
(

b 1
)

(
(

bz w
0 az

)
)2

(
1
a

)
=
∑
∞

i=0 (bz)i+1 aiaπ + bπ
∑
∞

i=0 bi (az)i+1 .

Theorem 4.2. Let a ∈ Az , b ∈ J#(A). If aba = 0, ab2 = 0, then
a + b ∈ Az and (a + b)z = (az + bua)(1 + azb) where u =

∑
∞

i=0 b2i(a + b) (az)2i+4

Proof.

Let X1 =

(
a
1

)
,X2 =

(
1 b

)
. Then, a + b = X2X1.

Let M = X1X2 =

(
a ab
1 b

)
, so

M2 =

(
a2 + ab a2b
a + b ab + b2

)
=

(
ab a2b
0 ab

)
+

(
a2 0

a + b b2

)
:= F + G.

The conditions aba = 0, ab2 = 0 imply FG = 0,F2 = 0. Since a ∈ Az then, a2
∈ A

z and (a2)z = (az)2. As
b ∈ J#(A), then bk

∈ J(A) for some k ∈ N, which implies that bz = 0. Now we have bπ = 1 − bbz = 1 and by

applying Theorem 3.2, we obtain that G ∈ (M2(A))z and G =
(

(az)2 0
u 0

)
where

u =
∞∑

i=0

b2i(a + b) (az)2i+4 .

As F2 = 0 , then Fz = 0. By Lemma 4.1, we deduce that M2
∈ (M2(A))z, and

(M2)z = Gz + (Gz)2F =
(

(az)2 + (az)3b (az)2b
u + uazb uazab

)
.

Applying Corollary 2.5, M ∈ (M2(A))z. Finally, according to [2, Theorem 3.1], we have a + b ∈ Az and

(a + b)z = X2(M2)zX1.

Observe that azba = 0 and by a simple computation, we obtain the result.

Theorem 4.3. Let A be a Banach algebra, a, b ∈ Az and s = (1 − bπ)a(1 − bπ) ∈ Az. If bπaba = 0, bπab2 = 0 and
t = (1 − bπ)(a + b)(1 − bπ) ∈ Az, then a + b ∈ Az. In this case, we have

(a + b)z = tz + (1 − tza)x +
∞∑

i=0

(tz)i+2 abπ(a + b)i[1 − (a + b)x] +
∞∑

i=0

tπti(1 − bπ)axi+2, (9).

Where x =
∑
∞

i=0 bπbi(az)i+1bπ(1 + azb).
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Proof. According to Lemma 3.3, we consider the matrix representation of a, b relative to the idempotent
p = bbz,

b =
(

b1 0
0 b2

)
p
, a =

(
a11 a12
a21 a22

)
p
,

where b1 ∈ A
z
1, b2 ∈ J#(A2). The condition (bπ)ab2 = 0 expressed in matrix form yields(

0 0
0 0

)
p
= bπab2 =

(
0 0

a21b2
1 a22b2

2

)
p
.

Then we have
a21b2

1 = (1 − bbz)abbzb4(bz)2 = (1 − bbz)abbzb3bz = 0.

This gives
(1 − bbz)abbzb3bz(bz)2 = (1 − bbz)ab4(bz)4 = (1 − bbz)abbz = 0

, which implies that
a21 = 0, a22b2

2 = 0.

Denote a1 = a11, a2 = a22, a3 = a12. Thus

a =
(

a1 a3
0 a2

)
p
, a + b =

(
t a3
0 a2 + b2

)
p
.

Since a1 = s ∈ Az, by Proposition 2.4, we have a1 ∈ A
z
1. Also a ∈ Az. Using Theorem 3.4(2), we deduce that

a2 ∈ A
z
2 and

az =

(
az

1 u1
0 az

2

)
p
.

From the condition bπaba = 0, we can get(
0 0
0 0

)
p
= bπaba = bπab2 =

(
0 0
0 a2b2a2

)
p
,

which implies a2b2a2 = 0. Hence, applying Theorem 4.2 to a2, b2, we have a2 + b2 ∈ A
z
2 and

(a2 + b2)z = [az
2 +

∞∑
i=0

(b2)2i+1 (a2 + b2)
(
az

2

)2i+3
](1 − p + az

2b2).

In order to give the expression of (a2 + b2)z in terms of a, az, b, bz, we calculate bπaz,bπb2i+1(a + b)(az)2i+3, bπazb
separately in matrix form as follows

bπaz =

(
0 0
0 az

2

)
p
, bπazb =

(
0 0
0 az

2b2

)
p
,

bπb2i+1(a + b)(az)2i+3 =

(
0 0
0 b2i+1

2 (a2 + b2)(az
2)2i+3

)
p
.

Thus,
bπaz = az

2, b
πb2i+1(a + b)(az)2i+3 = b2i+1

2 (a2 + b2)(az
2)2i+3

and bπazb = az
2b2.Write x = (a2 + b2)z. Note that

a(az)2i+3 = (az)2i+2 f or i ≥ 0,
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then

x = bπ[az +

∞∑
i=0

b2i+1(a + b) (az)2i+3]bπ(1 + azb)

= bπ[az +

∞∑
i=0

b2i+1 (az)2i+2 +

∞∑
i=0

b2i+2 (az)2i+3]bπ(1 + azb)

= bπ(
∞∑

i=0

bi (az)i+1)bπ(1 + azb).

Now, by Theorem 3.4, we have a + b ∈ Az if and only if t ∈ Az.Moreover

(a + b)z =

(
tz u
0 x

)
p
,

where

u =
∞∑

i=0

(tz)i+2 a3(a2 + b2)i(a2 + b2)π +
∞∑

i=0

tπtia3xi+2
− tza3x. (10)

As bπab2 = 0, then bπabz = 0. Thus

a2 + b2 = bπ(a + b)bπ = bπabπ + bπb = bπa(1 − bbz) + bπb = bπ(a + b)

which ensures
(a2 + b2)i = bπ(a + b)ibπ f or i ∈N.

Also we can easily obtain that bπ(a + b)ibπ = bπ(a + b)i, for i ∈ N by induction. Note a3 = (1 − bπ)abπ. Thus
(10) reduces to

u =
∞∑

i=0

(tz)i+2 abπ(a + b)i[1 − (a + b)x] +
∞∑

i=0

tπti(1 − bπ)axi+2
− tzax.

From (a + b)z = tz + u + x, we get (9) holds.

Corollary 4.4. Let a, b ∈ Az, and let s = (1 − bπ)a(1 − bπ) ∈ Az. If aba = 0, ab2 = 0, then a + b ∈ Az. In this case,
we have

(a + b)z = bzaπ + (bz)2aaπ +
∞∑

i=1

(bz)i+2 (ai+1aπ − ai+1azb + aib)

+

∞∑
i=0

bπbi(az)i+1(1 + azb) − bzazb − (bz)2aazb. (11)

Proof. From ab2 = 0, it follows that abz = 0. Thus, we can get s = (1 − bπ)a(1 − bπ) = 0 ∈ Az, t = (1 − bπ)(a +
b)(1 − bπ) = b(bbz). Since (bbz)z = bbz, using Theorem 2.2, we deduce that t ∈ Az, tz = bz. Thus, Theorem 4.3
is applicable. Furthermore, note that azbz = 0, abaz = 0. Let

x =
∞∑

i=0

bπbi(az)i+1bπ(1 + azb).

We have

ax = a
∞∑

i=0

bπbi(az)i+1bπ(1 + azb)

= a(1 − bbz)azbπ(1 + azb) + a(1 − bbz)b(az)2bπ(1 + azb)
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= aazbπ(1 + azb) + ab(az)2bπ(1 + azb)

= aaz(1 − bbz)(1 + azb) = aaz + azb,

abx = ab[
∞∑

i=0

bπbi (az)i+1 bπ(1 + azb)]

= ab(1 − bbz)(az)bπ(1 + azb) = 0.

Hence,
a[1 − (a + b)x] = a − a2x − abx = aaπ − aazb.

Note,
a(a + b)i = ai(a + b) f or i ≥ 1.

So,
abπ(a + b)i[1 − (a + b)x] = a(1 − bbz)(a + b)i[1 − (a + b)x]

= a(a + b)i[1 − (a + b)x] = ai(a + b)[1 − (a + b)x]

= aia[1 − (a + b)x] + aib[1 − (a + b)x]

= ai+1aπ − ai+1azb + aib.

Obsever that
tπti(1 − bπ)axi+2 = bπ(b2bz)i(1 − bπ)axi+2 = 0 f or i ≥ 0.

Finally, by using these relations and (9) we get (11).

Theorem 4.5. Let a, b, p ∈ A be such that a ∈ Az, p2 = p, pa = ap, bp = p [resp. pb = b]. If r = (a + b)p ∈ Az, then
(a + b) ∈ Az and

(a + b)z =

∞∑
i=0

(1 − p)aπaib (rz)i+3 (a + b) − az(1 − p)b(rz)2(a + b) + az(1 − p)

+

∞∑
i=0

(az)i+2 (1 − p)b(a + b)i[1 − rz(a + b)] + p(rz)2(a + b)

[resp.

(a + b)z = rz +

∞∑
i=0

(rz)i+2 b(1 − p)aiaπ + (1 − rzb)(1 − p)az + rπ
∞∑

i=0

rib(1 − p) (az)i+2]

.

Proof. We consider the matrix representation of p, a, b relative to p we have

p =
(

p 0
0 0

)
p
, a =

(
a11 a12
a21 a22

)
p
, b =

(
b11 b12
b21 b22

)
p
.

The condition pa = ap implies a12 = 0, a21 = 0 we denote a1 = a11, a2 = a22. Thus

a =
(

a1 0
0 a2

)
p
.

Observe that (1− p)a = a(1− p) and (1− p)z = 1− p. By Theorem 2.2, we can conclude that a2 = (1− p)a ∈ Az
2

and az
2 = (1 − p)az = az(1 − p). From bp = b, it follows that b12 = 0, b22 = 0. Denote b1 = b11, b3 = b21. Hence

a + b =
(

a1 0
0 a2

)
p
+

(
b1 0
b3 0

)
p
=

(
a1 + b1 0

b3 a2

)
p
.
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Since bp = b, a1 + b1 = p(a + b)p = p(a + b) which implies that p(a + b)ip = p(a + b)i, (p(a + b))i = p(a + b)i

for any i ≥ 0. From the condition r = (a + b)p ∈ Az and[2, Theorem 3.1], we deduce that a1 + b1 ∈ A
z
1 and

(a1 + b1)z = p(rz)2(a + b). According to Theorem 3.4, we obtain a + b ∈ Az and

(a + b)z =

(
(a1 + b1)z 0

u az
2

)
p
.

Where,

u =
∞∑

i=0

(a2)i+2 b3(a1 + b1)i(a1 + b1)π +
∞∑

i=0

aπ2 ai
2b3 ((a1 + b1)z)i+2

− az
2b3(a1 + b1)z.

Note that
(az

2)i+2b3(a1 + b1)i(a1 + b1)π =

[az(1 − p)]i+2(1 − p)bp[p(a + b)]i[p − p(a + b)p(rz)2(a + b)]

= (az)i+2(1 − p)bp(a + b)ip[1 − (a + b)p(rz)2(a + b)], aπ2 ai
2b3[(a1 + b1)z]i+2

= [(1 − p) − (1 − p)aaz(1 − p)][(1 − p)a]i(1 − p)bp[p(rz)2(a + b)]i+2

= (1 − p)(1 − aaz)(1 − p)ai(1 − p)bp[p(rz)i+3(a + b)]

= (1 − p)aπaib(rz)i+3(a + b),

az
2b3(a1 + b1)z = az(1 − p)(1 − p)bpp(rz)2(a + b) = az(1 − p)b(rz)2(a + b).

Therefore we have result. The proof for the case pb = b is similar.

Corollary 4.6. Let a ∈ Az, b ∈ A be such that baz = 0 [resp. azb = 0], r = (a + b)aπ ∈ Az. Then a + b ∈ Az and we
have

(a + b)z =
∞∑

i=0

(az)i+2 b(a + b)i[1 − rz(a + b)] + az + [1 − az(a + b)](rz)2(a + b).

[resp.(a + b)z = az + rz + rπ
∑
∞

i=0 rib (az)i+2
− rzbaz].

Proof. By p = aπ in Theorem 4.5, we obtain the result.
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