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Abstract. Knowledge of the timing of the incubation period in plant and maturation period of vector
are crucial in our understanding of vector born viral diseases and in the design of appropriate prevention.
In this paper, we have formulated a model on the dynamics for Cassava Mosaic diseases considering
incubation period in plant and maturation period of vectors as time delay factors. The mathematical model
includes susceptible vectors, infected vectors, healthy plant, and infected plant populations. Depending
on the system parameters, we identify conditions for biological viability and stability of different steady
states of the non-delay model. We perform stability analysis and numerical simulation to evaluate the
various parameters’ role and demonstrate model behavior in different dynamical regimes. We suggest that
incubation delay may destabilize epidemiological dynamics. A coexistence equilibrium can lose stability
at a moderate level of maturation delay and restore stability if the maturation delay is significant.

1. Introduction

There are many challenges that we face for agricultural success. Plant viruses are one of the biggest
challenges among them. They attack grain, cereals and vegetables and the result is economic loss. Mosaic
disease and leaf curl disease are two of the most common viral infections in agricultural crops such as
cassava, Jatropha, cotton, tomato, etc, transmitted by hemipteran vectors, such as whitefly (Bemisia sp.)
[19]. Viruses are first introduced into the vector when they ingest the plant sap of infected plants, and
then the virus spreads to the salivary glands, where it can transmit it to non-infected plants during feeding
on those plants. Cassava (Manihot esculenta Crantz) is a root crop that is grown in many parts of sub-
Saharan Africa, largely because of its value as starchy staple food. Cassava is the third largest source of
carbohydrates in the world’s diet (annual yield is 136 million tons), and Africa is the largest producer (57
million tons were grown on 7.5 million hectares in 1985) [21]. Cassava is usually propagated by hardwood
stems cutting that farmers get from their crops or from neighbors [24].
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The cassava plant is highly susceptible to African cassava mosaic disease (ACMD), which is caused by
any two geminiviruses (ACMVs). Symptoms of cassava mosaic disease on the affected plants are distortion
and immersion of growing leaves, chlorosis, netting and weakening of plants [29]. Phytosanitation and
resistant varieties are the two main mechanisms to control ACMD. Phytosanitation is an integrated process
of use of virus-free stem cutting as planting material and removing (roguing) of infected plants from the
field on one or more occasions [21, 40].

Mathematical modeling is an effective approach for gaining an understanding of biological processes.
As a result, researchers have been constructing numerous models to examine their behaviors for so many
years [14, 17, 32–36]. How the plant viral diseases affect plant populations and the control measures of plant
diseases by scientific study and its subsequent application of the results is the primary concern of plant
disease epidemiology. From the mid-twentieth century, plant epidemiological models are raising interest
among the researchers [41]. Plant epidemiological models have proven their usefulness in both theory and
application [4], for example, Potato Late Blight [8], Cassava Mosaic Disease [24], etc.

Because real-life problems require time for actions and reactions to take impact, time delays in the
variables being modelled are frequently used. Van der Plank (1963) [41] was first the researcher who
incorporate delay differential equation with a single delay in plant epidemics. It takes a longer time for
symptoms to appear after infection, called the incubation period [41]. In case of African Cassava Mosaic
Virus (ACMV) disease, the incubation period of cassava plant is three to five weeks [29]. Assuming the
susceptible and infected individual as state variables, Cooke (1979) [11] suggested a time delay model with
the incubation period for vector-borne infectious diseases. Zhang (2012) [42], in his article on a plant disease
model, introduced the plant incubation period as a delay. Recently, Li et al. (2018) [30] modified the model
of Jackson and Chen (2016) [26] by introducing incubation and latent time as parameters. Examples of
vector-borne plant diseases without delay can show stabilizing switches, periodic oscillations, transcritical
bifurcations, simply by changing their parameters [9, 24]. Also, significant delays can disrupt the system
or make the system disease free [9].

Many types of consumers go through two or more stages of life as they continue to be born to death.
Sometimes maturation time of the consumers is negligible but not always. Most of the models in the
literature ignore such a fact and place individuals in a single reproductive phase that can be modeled
with a single ODE. Unfortunately, such simple ODEs can only produce simple dynamics of measurement.
Vector maturation delay in vector-borne animal diseases can destabilise vector dynamics, create periodic
solution, generate more complex dynamics and chaos [13, 20]. In Gurney (1985) [22], a larval maturation
delay model was proposed and analyzed, and it showed that the time delay can destabilize the system,
leading to limit cycles through Hopf bifurcation containing multiple overlapping generations. Jackson and
Chen (2016) [26] modified the model proposed by Shi et al. (2014) [39] in plant-borne disease by combining
multiple delays in terms of incubation time in plants and the latent period in vectors. In case of whiteflies,
at the pupal stage, flies do not eat plants, therefore, the virus can only be acquired and spread by adult
whiteflies. Keeping this in mind and the fact that for whitefly the average time from egg to adult maturity
was 59.3 ± 1.32 days at 16 °C, 38.9 ± 0.47 days at 20 °C, 28.2 ± 0.22 days a 24 °C, 16.3 ± 0.6 at 28 °C and
25.1± 0.3 days at 32 °C. At 36 °C, the whitefly did not complete development [3]. Therefore, in the model of
plant virus transmission between plants and vectors (whitefly), it is crucial to incorporate a maturity time.

The time delay can serve a dual character: it can destabilise the endemic state on its own, as is common
in time-delayed models, but it can also provide a way for suppressing oscillations and restoring stability
to an endemic steady state that is unstable in the absence of time delays [10]. The real-life problems often
result delay differential and delay difference models [15, 16, 18, 27, 28, 31, 37, 38]. Some of these models have
delay dependent parameters (for example, [1, 2, 5, 6, 12, 13]), while most of them contain delay independent
parameters for time delay. Because of the difficulty of studying models analytically with delay dependent
parameters, even if a single discrete delay is present, it is natural to use the help of computer programs.
Beretta and Kuang (2002) [7] have given a practical guideline that combines graphical information with
analytical work to effectively examine the local stability of models that involve delay dependent parameters.
In order to use the geometric criteria developed by Beretta and Kuang (2002) [7], one only needs to make a
certain computation (using analytics method) and to produce some simple graphs that can easily be drawn
by using popular software like Matlab, Maple, Mathematica, etc.
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In this research article, we consider a model on cassava mosaic disease considering incubation period
in plant and vector maturation time of whitefly as the time delay factors. This model involves delay
independent as well as delay dependent parameters. We have studied the effect of delay on the stability of
equilibria analytically and numerically where it applies. The paper is arranged as follow. In the next section,
a mathematical model has been formulated. Section 3 is the model analysis section where we analytically
study the non-delay model and delay model successively. In section 4 the numerical simulation of the
model is discussed and finally section 5 deals with discussion and conclusion of this work.

2. Mathematical Model Formation

To construct the model of the dynamics of cassava mosaic virus transmission between plants and their
vectors, following Holt (1997) [24], we consider the populations of cassava plants and whitefly vectors.
Let x(t) and y(t) denote the abundances of healthy and infected plants, respectively. We consider that
the replanting rate of the healthy cassava is proportional to the availability of stems used for vegetative
propagation but constrained by a maximum plant abundance k. Only healthy cuttings are selected for
propagation. Healthy and diseased cassava are harvested at the same constant rate, 1. Cassava is infected
at a rate proportional to the availability of healthy plants and the abundance of infective whitefly vectors.
Once infected, a cassava plant remains infectious until harvest, i.e., recovery does not occur. We assume the
whiteflies exhibit logistic growth behavior, with a linear growth rate b and a carrying capacity α+m(x+ y),
where m is the maximum vector abundance (plant−1) and α is some external sources. We further consider,
infective and non-infective whiteflies have the same constant death rate and non-infective whiteflies acquire
virus (and become infective) at a rate proportional to their abundance and the abundance of diseased
cassava. Once infective, whiteflies remain so for life, but their offspring are not infective.

In the model Holt (1997) [24], the growth rate of uninfected vector population is represented as b(u +
v)

(
1 − u+v

a(x+y)

)
, where u(t) and v(t) are susceptible and infected vector populations, which is the logistic

growth of vectors, with the carrying capacity proportional to the total number (size) of plants. Therefore,
using our assumption, the growth rate of uninfected vector population will take the following form:

b(u + v)
(
1 −

u + v
α +m(x + y)

)
(2.1)

As only adult whiteflies can effectively transmit the cassava mosaic virus, and maturation time is
significant compared to the lifespan of whiteflies, it is essential to study the consequences of maturity on
dynamics. We assume that both uninfected and infected vectors can generate larvae, which grow into
pupae, and then achieves adulthood after a period of maturation. Finally, mature vectors are separated into
two populations: susceptible u(t) and infected v(t). Let τ be the maturation period of whitefly. Therefore,
the equation for susceptible mature vectors can be stated as:

du
dt
= b

(
u (t − τ) + v (t − τ)

) 1 − u (t − τ) + v (t − τ)

α +m
(
x (t − τ) + y (t − τ)

)  e−cτ,

taking into account the larval and pupal stages implicitly and incorporating maturation time delay as the
delayed logistic growth. Here, e−cτ represents the survival probability of immature vector through the time
τ. As we know, the incubation period of cassava mosaic diseases in cassava plants is 3 − 5 weeks, which is
sufficiently high; we cannot neglect it. Therefore, we incorporate incubation period in our model such that
the term k1x(t − δ)v (t − δ) e−aδ represents individuals who survive in the incubation period δ and become
infected at time t, where a is the death rate of plant and e−aδ represents the survival probability of plant
through the time δ.
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Thus, the complete model is

dx
dt = rx

(
1 − x+y

k

)
− k1xv − 1x,

dy
dt = k1x(t − δ)v (t − δ) e−aδ

−
(
a + 1

)
y,

du
dt = b

(
u (t − τ) + v (t − τ)

) 1 − u(t−τ)+v(t−τ)

α+m
(

x(t−τ)+y(t−τ)
)  e−cτ

− k2yu,

dv
dt = k2yu − cv,

(2.2)

where k1 is the infection rate, k2 is the acquisition rate and c is the death rate of vector (day−1).
Let C denotes the Banach space of continuous functions ψ : [−ξ, 0] −→ R4

+ equipped with supremum
norm

∥ψ∥ = sup
−ξ≤s≤0

{
| ψ1 (s) |, | ψ2 (s) |, | ψ3 (s) |, | ψ4 (s) |

}
x(s) = ψ1(s), y(s) = ψ2(s), u(s) = ψ3(s), v(s) = ψ4(s),

ψi(s) ≥ 0, s ∈ [−ξ, 0], ψi(0) > 0, i = 1, 2, 3, 4

(2.3)

with ξ = max {τ, δ}.

Table 1: Description and range of biologically meaningful parameters
Parameter Description Range unit

r Replanting rate 0.025 − 1 day−1

k Maximum plant abundance 0.01 − 1 meter−2

k1 Coefficient of infection rate 0.002 − 0.032 vector−1day−1

k2 Coefficient of acquisition rate 0.002 − 0.032 vector−1day−1

1 Harvesting rate 0.002 − 0.004 day−1

a Death rate of infected plants 0 − 0.033 day−1

b Logistical growth rate of vectors 0.1 − 0.3 day−1

c Death rate of infected vectors 0.05 − 0.18 day−1

m Maximum vector abundance 0 − 2500 plant−1

Note: In Figures 4, 6, 7, 9, 10, 11, 13, 14, 16, 17, 18 and 19, m−2 stands for meter−2.

3. Model Analysis

Before moving on to the delayed model, we will analyze the non-delayed system by exploring the
various parametric conditions under which the system exhibits stable behavior around different types of
equilibrium points.

3.1. In absence of delays
In absence of delay, the model (2.2) is reduced to

dx
dt = rx

(
1 − x+y

k

)
− k1xv − 1x,

dy
dt = k1xv −

(
a + 1

)
y,

du
dt = b (u + v)

[
1 − u+v

α+m(x+y)

]
− k2yu,

dv
dt = k2yu − cv.

(3.1)

with

x(0), y(0), u(0), v(0) > 0. (3.2)
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3.2. Positivity and Boundedness
Theorem 3.1. Solutions of system (3.1) starting in R4

+ are positive for all time.

Proof. Right hand side of equation (3.1) is continuous and locally Lipschitzian on C (space of continuous
functions) which implies that a unique solution

(
x(t), y(t),u(t), v(t)

)
of (3.1) exists on [0, ξ0) where 0 < ξ0 ≤ +∞

[23]. From the first equation of (3.1), we have

x(t) = x(0) exp
(∫ t

0

[
r
(
1 −

x(s) + y(s)
k

)
− k1v(s) − 1

]
ds

)
.

Since x(0) > 0, so, x(t) > 0, ∀t ∈ [0, ξ0). Now, we claim that y(t) > 0, ∀t ∈ [0, ξ0). If it doesn’t hold, then
∃t1 ∈ [0, ξ0) such that y(t1) = 0, ẏ(t1) < 0 and y(t) > 0, ∀t ∈ [0, t1). We also claim that u(t1) = 0, u̇(t1) < 0 and
u(t) > 0, ∀t ∈ [0, t1). If, not, then ∃t2 ∈ [0, t1) such that u(t2) = 0, u̇(t2) < 0 and u(t) > 0, ∀t ∈ [0, t2). Again, we
claim that v(t2) = 0, v̇(t2) ≤ 0 and v(t) > 0, ∀t ∈ [0, t2). If it doesn’t hold, then ∃t3 ∈ [0, t2) such that v(t3) = 0,
v̇(t3) ≤ 0 and v(t) > 0, ∀t ∈ [0, t3). But, from the last equation of (3.1), we have

dv
dt

∣∣∣∣∣
t=t3

= k2y(t3)u(t3) > 0,

which is a contradiction to v̇(t3) ≤ 0. Therefore, v(t2) = 0, v̇(t2) ≤ 0 and v(t) > 0, ∀t ∈ [0, t2). Again, from the
third equation of (3.1), we have

du
dt

∣∣∣∣∣
t=t2

= 0,

which is a contradiction to u̇(t2) < 0. Hence, u(t1) = 0, u̇(t1) < 0 and u(t) > 0, ∀t ∈ [0, t1). Finally, we claim
that v(t1) = 0, v̇(t1) ≤ 0 and v(t) > 0, ∀t ∈ [0, t1). If, not, then ∃t4 ∈ [0, t1) such that v(t4) = 0, v̇(t4) ≤ 0 and
v(t) > 0, ∀t ∈ [0, t4). But, from the last equation of (3.1), we have

dv
dt

∣∣∣∣∣
t=t4

= k2y(t4)u(t4) > 0,

which is a contradiction to v̇(t4) ≤ 0. Therefore, v(t1) = 0, v̇(t1) ≤ 0 and v(t) > 0, ∀t ∈ [0, t1). Now, from the
second equation of (3.1), we get

dy
dt

∣∣∣∣∣
t=t1

= 0,

which is a contradiction to ẏ(t1) < 0. Hence, y(t) > 0 for all t ∈ [0, ξ0). By the similar approach, we can show
that u(t) > 0, v(t) > 0 for all t ∈ [0, ξ0). This completes the proof.

Theorem 3.2. All solutions of system (3.1) are bounded in the region:

D =
{ (

x, y,u, v
)

:0 < x + y ≤M, 0 < u + v ≤ α +mM
}
,

where M = max
{
k, x(0) + y(0)

}
.

Proof. Adding first two equations of the system (3.1):

dx
dt
+

dy
dt
= rx

(
1 −

x + y
k

)
− 1x −

(
a + 1

)
y (3.3)

We first prove the following lemma:

Lemma 3.3. Assume that initial conditions (3.2) of system (3.1) satisfies x(0)+y(0) ≥ k. Then, either (i) x(t)+y(t) ≥
k, ∀t ≥ 0 or (ii) there exists a t0 > 0 such that x(t)+y(t) < k, ∀t > t0. Finally, (iii) if x(0)+y(0) < k, then x(t)+y(t) < k,
∀t ≥ 0.
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Proof. We first consider x(t) + y(t) ≥ k, ∀t ≥ 0. Then from equation (3.3), we have

d
dt

(
x(t) + y(t)

)
≤ 0, ∀t ≥ 0.

Let lim
t→∞

(
x(t) + y(t)

)
= ξ.

If ξ > k, then by Barbalat Lemma, we have

0 = lim
t→∞

d
dt

(
x(t) + y(t)

)
= lim

t→∞

[
rx

(
1 −

x + y
k

)
− 1x −

(
a + 1

)
y
]

= lim
t→∞

[
rx

(
1 −

ξ
k

)
− 1x −

(
a + 1

)
y
]

≤ −min
{
r
(
ξ
k
− 1

)
, (a + 1)

}
lim
t→∞

(
x(t) + y(t)

)
= −ξmin

{
r
(
ξ
k
− 1

)
, (a + 1)

}
< 0.

This contradiction shows that ξ = k, i.e.,

lim
t→∞

(
x(t) + y(t)

)
= k.

Now, assume that, assumption (i) is violated. Then there exists t0 > 0 at which for the first time x(t0)+y(t0) =
k.

Then, from equation (3.3),

d
dt

(
x(t) + y(t)

) ∣∣∣∣∣
t=t0

= −1x(t0) −
(
a + 1

)
y(t0) < 0. (3.4)

This implies that, once a solution with x(t) + y(t) has entered into the interval (0, k), then it remains in (0, k),
∀t > t0, i.e.,

x(t) + y(t) < k, ∀t > t0.

Finally, if x(0) + y(0) < k, applying the previous argument it follows that,

x(t) + y(t) < k, ∀t ≥ 0,

i.e., (iii) holds true. This complete the proof of the lemma.

Thus, Lemma 3.3 implies that for all the cases x(t) + y(t) ≤ k, ∀t > 0. Let M = max
{
k, x(0) + y(0)

}
. Then,

0 < x(t) + y(t) ≤M.
Adding last two equations

du
dt
+

dv
dt
= b

(
u + v

) [
1 −

u + v
α +m

(
x + y

) ] − cv,

⇒
du
dt
+

dv
dt
≤ b

(
u + v

) [
1 −

u + v
α +m

(
x + y

) ] ,
⇒

du
dt
+

dv
dt
≤ b

(
u + v

) [
1 −

u + v
α +mM

]
.

Therefore,

lim sup
t−→∞

(u + v) ≤ α +mM, where M = max
{
k, x(0) + y(0)

}
.
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Hence, all solutions of system (3.1) are bounded in the region:

D =
{ (

x, y,u, v
)

: 0 < x + y ≤M, 0 < u + v ≤ α +mM
}
,

where M = max
{
k, x(0) + y(0)

}
.

3.2.1. Equilibrium points
The equilibrium points are given by E1(x̄, 0, 0, 0) (in absence of vectors), E2(x1, 0,u1, 0) (disease free

equilibrium), E3(0, 0, α, 0), where x̄ = x1 =
k(r−1)

r and u1 = α +m k(r−1)
r .

Other equilibrium points are given by E∗(x∗, y∗,u∗, v∗), where

y∗ = x∗(s−x∗)
(x∗+p) , v∗ = pr(s−x∗)

kk1(x∗+p) , u∗ = cpr
kk1k2

1
x∗

and x∗ is a positive root of the following equation:

f (x) = L0x4 + 4L1x3 + 6L2x2 + 4L3x + L4 = 0, (3.5)

where

L0 = −bprk2
2 − kk1k2

2
(
α +ms +mp

)
(b − c) ,

L1 = [kk1k2α{bc + k2s(b − c) − k2p(b − c)} + 2bprk2(c + k2s) +mkk1k2(s + p){bc + k2s(b − c)}]/4,
L2 = [kk1k2bpcm(s + p) + kk1k2pα{2bc + k2s(b − c)} + bpr{2pck2 − (c + k2s)2

}]/6,

L3 =
[
bp2c{kk1k2α − 2cr − 2srk2}

]
/4,

L4 = −brp3c2,

p =
k
r

(a + 1),

s =
k
r

(r − 1).

3.2.2. Feasibility criteria for interior equilibrium point
From the above expression it is clear that L0 and L4 are always negative, therefore, the roots of equation

(3.5) can be characterized by the sign of L1, L2 and L3. Let

∆ = Θ3
− 27Λ2,

Υ = 4(L2
3 − 3L0L1L2 + 2L3

1),

Γ = χ2
− 4ϱ,

where

Λ = L0L2L4 − L0L2
3 + 2L1L2L3 − L2

1L4 − L3
2,

Θ = L0L4 − 4L1L3 + 3L2
2,

χ = 6(L0L2 − L2
1),

ϱ = L3
0L4 − 4L2

0L1L3 + 6L0L2
1L2 − 3L4

1.

We consider the following cases:
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Case-1. By Leroy A. Howland [25], equation (3.5) has four real roots if

∆ ≥ 0, χ < 0, Γ > 0,
or, ∆ = 0, χ > 0, Υ = 0, Γ = 0,

or, ∆ = 0, χ = Υ = ϱ = 0.
(3.6)

Thus, by “Descartes’ rule of signs” equation (3.5) has two positive roots and two negative roots, when
(3.6) holds and

L1 > 0, L2 > 0, L3 > 0,
or, L1 > 0, L2 < 0, L3 < 0,
or, L1 > 0, L2 > 0, L3 < 0,
or, L1 < 0, L2 > 0, L3 > 0,
or, L1 < 0, L2 < 0, L3 > 0,
or, L1 < 0, L2 > 0, L3 < 0.

Case-2. Equation (3.5) has four negative roots, i.e, no positive root, when (3.6) holds and

L1 < 0, L2 < 0, L3 < 0.

Case-3. Equation (3.5) has exactly two positive roots if

∆ < 0, L1 > 0, L2 < 0, L3 > 0. (3.7)

It is easy to see that f (∞) < 0 and if Case-1 or Case-3 is satisfied, f (x) has exactly two positive roots. But
for the positivity of y∗ and v∗ we must consider (s − x∗) > 0.
Therefore, we have the following theorems:

Theorem 3.4. (i) There exists exactly one feasible interior equilibrium point of non-delay system (3.1) if Case-1
or Case-3 is satisfied together with (s − x∗) > 0 and f (s) > 0.

(ii) There exists two or no feasible equilibrium points of the non-delay system (3.1) if Case-1 or Case-3 is satisfied
together with (s − x∗) > 0 and f (s) < 0.

3.2.3. Stability analysis
Theorem 3.5. The equilibrium point E1(x̄, 0, 0, 0) is always unstable.

Proof. The Jacobian matrix corresponding to the equilibrium point E1(x̄, 0, 0, 0) is

J (x̄, 0, 0, 0) =



−(r − 1) −
rx̄
k 0 −k1x̄

0 −(a + 1) 0 k1x̄

0 0 b b

0 0 0 −c


,

therefore, the eigenvalues corresponding to the Jacobian matrix J(x̄, 0, 0, 0) are −(r − 1),−(a + 1), b, and −c
which implies E1(x̄, 0, 0, 0) is unstable.

Theorem 3.6. The equilibrium point E2(x1, 0,u1, 0) is stable if r > 1 and r2[kk1k2α+mk2k1k2− (a+1)c]−kk1k21(α+
2mk)r+mk2k1k21

2 < 0 and unstable if r2[kk1k2α+mk2k1k2 − (a+ 1)c]− kk1k21(α+ 2mk)r+mk2k1k21
2 > 0 or r < 1.
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Proof. The Jacobian matrix corresponding to the equilibrium point E2(x1, 0,u1, 0) is

J (x1, 0,u1, 0) =



r − 2rx1
k − 1 −

rx1
k 0 −k1x1

0 −(a + 1) 0 k1x1

bmu2
1

(α+mx1)2

bmu2
1

(α+mx1)2 − k2u1 b − 2bu1
α+mx1

b − 2bu1
α+mx1

0 k2u1 0 −c


,

and the corresponding eigenvalues are λ1 = −b, λ2 = −(r − 1),

λ3 =
−(a+1+c)−

√
(a+1−c)2+4k1k2x1u1

2 and λ4 =
−(a+1+c)+

√
(a+1−c)2+4k1k2x1u1

2 .
Clearly E2(x1, 0,u1, 0) is stable if (a + 1)c > k1k2x1u1, i.e.,

r2
[
kk1k2α +mk2k1k2 − (a + 1)c

]
− kk1k21(α + 2mk)r +mk2k1k21

2 < 0

and unstable if (a + 1)c < k1k2x1u1, i.e.,

r2
[
kk1k2α +mk2k1k2 − (a + 1)c

]
− kk1k21(α + 2mk)r +mk2k1k21

2 > 0.

Theorem 3.7. The equilibrium point E3(0, 0, α, 0) is stable if r < 1 and unstable if r > 1.

Proof. The Jacobian matrix corresponding to the equilibrium point E3(0, 0, α, 0) is

J (0, 0, α, 0) =



(r − 1) 0 0 0

0 −(a + 1) 0 0

0 0 −b −b

0 k2α 0 −c


and the eigenvalues corresponding to E3 are (r − 1), −(a + 1), −b and −c. Therefore, the equilibrium point
E3(0, 0, α, 0) is stable if r < 1 and unstable if r > 1.

Theorem 3.8. The interior equilibrium point E∗(x∗, y∗,u∗, v∗) is stable if the conditions (3.9), as stated in the proof,
hold.

Proof. The Jacobian matrix J
(
x∗, y∗,u∗, v∗

)
corresponding to the equilibrium point E∗(x∗, y∗,u∗, v∗) is given by

J =



−
rx∗
k −

rx∗
k 0 −k1x∗

k1v∗ −(a + 1) 0 k1x∗

bm(u∗+v∗)2

(α+m(x∗+y∗))2
bm(u∗+v∗)2

(α+m(x∗+y∗))2 − k2u∗ b − 2b(u∗+v∗)
α+m(x∗+y∗) − k2y∗ b − 2b(u∗+v∗)

α+m(x∗+y∗)

0 k2u∗ k2y∗ −c


The equation of characteristic corresponding to the interior equilibrium point E∗ is given by

λ4 + A1λ
3 + A2λ

2 + A3λ + A4 = 0, (3.8)
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where

A1 = −(a11 + a22 + a33 + a44),
A2 = a33a44 + a22a44 + a11a44 − a34a43 − a24a42 + a22a33 + a11a33 + a11a22 − a12a21,

A3 = −a22a33a44 − a11a33a44 − a11a22a44 + a12a21a44 + a22a34a43 + a11a34a43 − a24a32a43 − a14a31a43 + a33a24a42

+a11a24a42 − a14a21a42 − a11a22a33 + a12a21a33,

A4 = a11a22a33a44 − a12a21a33a44 − a11a22a34a43 + a12a21a34a43 + a11a24a32a43

−a14a21a32a43 − a12a24a31a43 + a14a22a31a43 − a11a24a33a42 + a14a21a33a42,

and a11 = −
rx∗
k , a12 = −

rx∗
k , a14 = −k1x∗, a21 = k1v∗, a22 = −(a + 1), a24 = k1x∗, a31 =

bm(u∗+v∗)2

(α+m(x∗+y∗))2 , a32 =
bm(u∗+v∗)2

(α+m(x∗+y∗))2 − k2u∗, a33 = b − 2b(u∗+v∗)
α+m(x∗+y∗) − k2y∗, a34 = b − 2b(u∗+v∗)

α+m(x∗+y∗) , a42 = k2u∗, a43 = k2y∗, a44 = −c.
Therefore, by Routh-Hurwitz criteria, E∗(x∗, y∗,u∗, v∗) is a stable equilibrium point, i.e., equation (3.8)

will have roots with negative real part if following conditions hold:

A1 > 0, A4 > 0,
A1A2 − A3 > 0,

A1A2A3 − A2
3 − A4A2

1 > 0.
(3.9)

3.3. In presence of delay
3.3.1. Equilibrium points

Equilibrium points of the delay model are

• E′1 = E1(x̄, 0, 0, 0) =
( k(r−1)

r , 0, 0, 0
)

(in absence of vectors),

• E′2 = E2(x1, 0,u1, 0) =
( k(r−1)

r , 0, α +m k(r−1)
r , 0

)
(disease free equilibrium),

• E′3 = E3(0, 0, α, 0)

• other equilibrium points are Ẽ(x̃, ỹ, ũ, ṽ), where

ỹ = x̃(s−x̃)
(x̃+peaδ) , ṽ = pr(s−x̃)eaδ

kk1(x̃+peaδ) , ũ = cpreaδ

kk1k2

1
x̃

and x̃ is a positive root of

L
′

0x4 + 4L
′

1x3 + 6L
′

2x3 + 4L
′

3x + L
′

4 = 0 (3.10)

where

L
′

0 = −b1p1rk2
2 − kk1k2

2
(
α +ms +mp1

)
(b1 − c) ,

L
′

1 = [kk1k2α{b1c + k2s(b1 − c) − k2p1(b1 − c)} + 2b1p1rk2(c + k2s) +mkk1k2(s + p1){b1c + k2s(b1 − c)}]/4,

L
′

2 = [kk1k2b1p1cm(s + p1) + kk1k2p1α{2b1c + k2s(b1 − c)} + b1p1r{2p1ck2 − (c + k2s)2
}]/6,

L
′

3 = [b1p2
1c{kk1k2α − 2cr − 2srk2}]/4,

L
′

4 = −b1rp3
1c2,

p1 =
k
r

(a + 1)eaδ,

s =
k
r

(r − 1),

b1 = be−cτ.

Here, we notice that all the equilibrium points of the delay system are same as in the non-delay system
except the coexistence equilibrium point Ẽ(x̃, ỹ, ũ, ṽ) because our delay model involves delay-dependent
parameters.
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3.3.2. Feasibility criteria

Here, L′0 and L′4 are always negative, so the nature of the roots of equation (3.10) can be explained by
the sign of L′1, L′2 and L′3. Fortunately, equation (3.10) is very much similar to equation (3.5). Therefore,
existence and feasibility conditions of the roots of (3.10) can be derived by proceeding in similar manner as
in section (3.2.2) or explicitly we can say, if we replace all Li, by L′i for i = 0, 1, 2, 3, 4 in section (3.2.2), then
we have the following theorems:

Theorem 3.9. (i) There exists exactly one feasible interior equilibrium point of delay system (2.2) if Case-1 or
Case-3 is satisfied together with (s − x̃) > 0 and f (s) > 0.

(ii) There exists two or no feasible equilibrium points of the delay system (2.2) if Case-1 or Case-3 is satisfied together
with (s − x̃) > 0 and f (s) < 0.

3.3.3. Stability analysis

Linearizing the delay system (2.2) about Ẽ(x̃, ỹ, ũ, ṽ) we get the following system:

dX
dt
= AX (t) + BX (t − δ) + CX (t − τ) ,

where A,B,C are 4 × 4 matrices given by

A =



−
rx̃
k −

rx̃
k 0 −k1x̃

0 −(a + 1) 0 0

0 −k2ũ −k2 ỹ 0

0 k2ũ k2 ỹ −c


, B =



0 0 0 0

k1ṽe−aδ 0 0 k1x̃e−aδ

0 0 0 0

0 0 0 0


,

C =



0 0 0 0

0 0 0 0

bm(ũ+ṽ)2

(α+m(x̃+ỹ))2 e−cτ bm(ũ+ṽ)2

(α+m(x̃+ỹ))2 e−cτ
[
b − 2b(ũ+ṽ)

α+m(x̃+ỹ)

]
e−cτ

[
b − 2b(ũ+ṽ)

α+m(x̃+ỹ)

]
e−cτ

0 0 0 0


.

The characteristic equation of the delay system is given by

H(ρ) = det
[
ρI − A − Be−ρδ − Ce−ρτ

]
= 0,

i.e., the characteristic equation is

ρ4 + A1ρ3 + A2ρ2 + A3ρ + A4 + (B2ρ2 + B3ρ + B4)e−ρδ + (C1ρ3 + C2ρ2 + C3ρ + C4)e−ρτ

+(D3ρ +D4)e−ρ(δ+τ) = 0, (3.11)
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where

A1 = −(a11 + a22 + a33 + a44),
A2 = a11a22 + a11a33 + a11a44 + a22a33 + a22a44 + a33a44,

A3 = −(a11 + a22)a33a44 − (a33 + a44)a11a22,

A4 = a11a22a33a44,

B2 = a42b24 + a12b21,

B3 = (a33a42 + a11a42 − a32a43)b24 + (a12a44 + a12a33 − a14a42)b21,

B4 = −a12a33a44b21,

C1 = −c33,

C2 = (a11 + a22 + a33 + a44)c33,

C3 = a14a33c31 − (a11a22 + a11a33 + a11a44 + a22a33 + a22a44)c33,

C4 = (a11a22a44c33 + a11a22a33c33 − a14a22a33c31),

D3 = (a33b24c31 − a32b24c33 + a12b21c33),
D4 = (a11a32b24 − a12a44b21 − a12a33b21 − a14a32b21)c33 + (a14a33b21

−a11a33b24 + a12a33b24)c31,

and a11 = −
rx̃
k = a12, a14 = −k1x̃, a22 = −(a + 1), a32 = −a42 = k2ũ, a33 = −a43 = k2 ỹ, a44 = −c, b21 = k1ṽe−aδ,

b24 = k1x̃e−aδ, c31 = c32 =
bm(ũ+ṽ)2

(α+m(x̃+ỹ))2 e−cτ, c43 = c44 =
[
b − 2b(ũ+ṽ)

α+m(x̃+ỹ)

]
e−cτ.

To study the local stability behavior of the delay model (2.2), we consider the following cases:

3.3.4. Case-I
When τ = 0, δ = 0, Theorem 3.8 states the conditions of stable behavior of the feasible interior equilibrium

point.

3.3.5. Case-II
We shall study whether any possible stability switching occurs as the time incubation delay δ increases

and τ = 0. When τ = 0, the characteristic equation (3.11) reduces to

ρ4 + a1ρ
3 + a2ρ

2 + a3ρ + a4 + (b2ρ
2 + b3ρ + b4)e−ρδ = 0, (3.12)

where a1 = A1 + C1, a2 = A2 + C2, a3 = A3 + C3, a4 = A4 + C4, b2 = B2, b3 = B3 + D3, b4 = B4 + D4. Again,
equation (3.12) can be written as:

P1(ρ, δ) +Q1(ρ, δ)e−ρδ = 0, (3.13)

where, P1(ρ, δ) ≡ ρ4 + a1ρ3 + a2ρ2 + a3ρ + a4 and Q1(ρ, δ) ≡ b2ρ2 + b3ρ + b4.
Let ρ = ω + iν. Then equation (3.13) becomes

ω4 + 4ω3νi − 6ω2ν2
− 4ων3i + ν4 + a1(ω3 + 3ω2νi − 3ων2

− ν3i) + a2(ω2 + 2ωνi − ν2) + a3(ω + νi) + a4

+
[
b2(ω2

− ν2 + 2ωνi) + b3(ω + νi) + b4

]
e−ωδ(cos νδ − i sin νδ) = 0.

Comparing real and imaginary parts of both sides, we get

ω4
− 6ω2ν2 + ν4 + a1(ω3

− 3ων2) + a2(ω2
− ν2) + a3ω + a4 +

[
b2(ω2

− ν2) + b3ω + b4

]
e−ωδ cos νδ

+(2b2ων + b3ν)e−ωδ sin νδ = 0,
(3.14)
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and

4ω3ν − 4ων3 + 3a1ω2ν − a1ν3 + 2a2ων + a3ν −
[
b2(ω2

− ν2) + b3ω + b4

]
e−ωδ sin νδ

+(2b2ων + b3ν)e−ωδ cos νδ = 0.
(3.15)

For purely imaginary roots ω = 0, so from equations (3.14) and (3.15), we have

(b2ν
2
− b4) cos νδ − b3ν sin νδ = ν4

− a2ν
2 + a4, (3.16)

b3ν cos νδ + (b2ν
2
− b4) sin νδ = a1ν

3
− a3ν, (3.17)

squaring both side of equations (3.16) and (3.17), then adding we get the following equation:

F1(ν, δ) ≡ ν8 + (a2
1 − 2a2)ν6 + (a2

2 + 2a4 − 2a1a3 − b2
2)ν4 + (a2

3 − 2a2a4 + 2b2b4 − b2
3)ν2 + a2

4 − b2
4 = 0. (3.18)

As our model equations involve delay-dependent parameters, the above equation (3.18), which we got
for ρ = iν, has δ in its coefficients. This practically implies that we cannot calculate the precise value of δ at
which stability switches occur by applying the traditional methods. Beretta and Kuang [7] have developed
a technique for studying the challenging characteristic equations arising from such systems.

To apply the geometric criterion for stability switch, developed by Beretta and Kuang [7], the following
conditions should be satisfied:

(i) Equation (3.13) has no zero root, i.e., a4 + b4 = A4 + B4 +C4 +D4 , 0 (Putting ρ = 0 in equation (3.13)).
(ii) For ρ = iν, ν ∈ R, P1(iν, δ) +Q1(iν, δ) , 0, δ ∈ R, i.e.,

P1(iν, δ) +Q1(iν, δ) = (ν4
− a2ν2 + a4 + b4) + i(−a1ν3 + a3ν + b3ν) , 0.

(iii)

lim
|ρ|−→∞

∣∣∣∣∣∣Q1(ρ, δ)
P1(ρ, δ)

∣∣∣∣∣∣ = lim
|ρ|−→∞

∣∣∣∣∣∣ b2ρ2 + b3ρ + b4

ρ4 + a1ρ3 + a2ρ2 + a3ρ + a4

∣∣∣∣∣∣ = 0 < 1.

(iv) F1(ν, δ) =| P1(iν, δ) |2 − | Q1(iν, δ) |2 for each δ has at most a finite number of real zeros which is obvious
as F1(ν, δ) is a polynomial of degree eight (see equation (3.18)).

(v) Each positive root ν(δ) of F1(ν, δ) = 0 is continuous and differentiable in δ whenever it exists. Using
the implicit function theorem, we can show this condition holds.
Solving (3.16) and (3.17), we get

sin νδ =
(b2ν2

− b4)(a1ν3
− a3ν) − b3ν(ν4

− a2ν2 + a4)
(b2ν2 − b4)2 + b2

3ν
2

, (3.19)

cos νδ =
(b2ν2

− b4)(ν4
− a2ν2 + a4) + b3ν(a1ν3

− a3ν)
(b2ν2 − b4)2 + b2

3ν
2

. (3.20)

Let us assume δ ∈ I1 ⊆ R+0 is the set where ν(δ) is a positive root of (3.18) and for δ < I1, ν(δ) is not definite.
Therefore for all δ ∈ I1, ν(δ) is a positive root of equation (3.18). Now we define θ(δ) ∈ [0, 2π) such that
sinθ(δ) and cosθ(δ) is given by the right side of equations (3.19) and (3.20) respectively.
Then, a stability switch may occur through roots ρ = ±iν(δ) at the values of δ as follows:

δ(1)
n =

θ(δ) + 2nπ
ν(δ)

, (3.21)

where n ∈ N0 = {0, 1, 2, 3, ...}. Then for each n ∈ N0, (3.21) defines the maps δ(1)
n : I1 −→ R+0, and the stability

switch may occur only for the values of δ at which

δ(1)
n (δ) = δ, for some n,

i.e., the stability switches take place at the zeros of the functions:
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S(1)
n (δ) : = δ − δ(1)

n (δ), for some n ∈ N0.

Now, differentiating equations (3.14) and (3.15) with respect to δ, we get the following equations:

X1
dω
dδ
+ X2

dν
dδ
+ X3 = 0, (3.22)

−X2
dω
dδ
+ X1

dν
dδ
+ X4 = 0, (3.23)

where

X1 = 4ω3
− 12ων2 + 3a1(ω2

− ν2) + 2a2ω + a3 + [2b2ω + b3 − δ(b2ω
2
− b2ν

2 + b3ω + b4)]e−ωδ cos νδ
+ [2b2ν − δ(2b2ων + b3ν)] e−ωδ sin νδ,

X2 = 4ν3
− 12ω2ν − 6a1νω − 2a2ν − [2b2ν − δ(2b2ων + b3ν)] e−ωδ cos νδ +

[
2b2ω + b3 − δ(b2ω

2
− b2ν

2

+b3ω + b4)] e−ωδ sin νδ,

X3 =

[
db2

dδ
(ω2
− ν2) +

db3

dδ
ω +

db4

dδ

]
e−ωδ cos νδ −

[
b2(ω2

− ν2) + b3ω + b4

]
(ω cos νδ + ν sin νδ)e−ωδ

+
db3

dδ
νe−ωδ sin νδ + (2b2ων + b3ν)(ν cos νδ − ω sin νδ)e−ωδ,

X4 = −

[
db2

dδ
(ω2
− ν2) +

db3

dδ
ω +

db4

dδ

]
e−ωδ sin νδ −

[
b2(ω2

− ν2) + b3ω + b4

]
(ν cos νδ − ω sin νδ)e−ωδ

+
db3

dδ
νe−ωδ cos νδ − (2b2ων + b3ν)(ω cos νδ + ν sin νδ)e−ωδ.

Therefore, from equations (3.22) and (3.23), we have

d(Re(ρ))
dδ

=
dω
dδ
=

X2X4 − X3X1

X2
1 + X2

2

.

Hence we have the following theorem:

Theorem 3.10. Assume that ν(δ) is a positive real root of (3.18), defined for δ ∈ I1, I1 ⊆ R+0, and at some δ∗ ∈ I1,

S1
n(δ∗) = 0, for some n ∈ N0.

Then a pair of simple conjugate pure imaginary roots ρ+(δ∗) = iν(δ∗), ρ−(δ∗) = −iν(δ∗) of (3.13) exists at δ = δ∗

which crosses the imaginary axis from left to right if ∆1(δ∗) > 0 and crosses the imaginary axis from right to left if
∆1(δ∗) < 0, where

∆1(δ∗) = sign
{

dRe(ρ)
dδ

∣∣∣∣∣
ρ=iν(δ∗)

}
= sign

{
X2X4 − X3X1

X2
1 + X2

2

∣∣∣∣∣
ρ=iν(δ∗)

}
. (3.24)

3.3.6. Case-III
In this case, we consider δ = 0 and τ > 0. Thus, putting δ = 0 in the characteristic equation (3.11), we

have

ρ4 +m1ρ
3 +m2ρ

2 +m3ρ +m4 + (l1ρ3 + l2ρ2 + l3ρ + l4)e−ρτ = 0, (3.25)

where m1 = A1, m2 = A2 +B2, m3 = A3 +B3, m4 = A4 +B4, l1 = C1, l2 = C2, l3 = C3 +D3, l4 = C4 +D4. Now,
equation (3.25) can be written as

P2(ρ, τ) +Q2(ρ, τ)e−ρτ = 0, (3.26)

where P2 = ρ4 +m1ρ3 +m2ρ2 +m3ρ +m4 and Q2 = l1ρ3 + l2ρ2 + l3ρ + l4.
As above, due to the dependency of the coefficients of the polynomials P2(ρ, τ) and Q2(ρ, τ) on τ, we apply
the geometric criterion of stability switch. For that, following conditions should be satisfied.
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(i) Equation (3.26) has no zero root, that is, m4 + l4 , 0, i.e., A4 + B4 + C4 +D4 , 0.
(ii) Forρ = iκ, κ ∈ R, P2(iκ, τ)+Q2(iκ, τ) , 0, τ ∈ R, i.e., κ4

−(m2+l2)κ2+(m4+l4)−i{(m1+l1)κ3
−(m3+l3)κ} , 0.

(iii)

lim
|ρ|−→∞

∣∣∣∣∣∣Q2(ρ, τ)
P2(ρ, τ)

∣∣∣∣∣∣ < 1 when Re(ρ) ≥ 0 f or any τ.

(iv) F2(κ, τ) =| P2(iκ, τ) |2 − | Q2(iκ, τ) |2 for each τ has at most a finite number of real zeros which is
obvious as F2(κ, τ) is a polynomial of degree eight (see equation (3.33)).

(v) Each positive root κ(τ) of F2(κ, τ) = 0 is continuous and differentiable in τ whenever it exists. Using
the implicit function theorem we can show this condition holds.

Let ρ = η + iκ, then equation (3.26) becomes

η4 + i4η3κ − 6η2κ2
− i4ηκ3 + κ4 +m1(η3 + i3η2κ − 3ηκ2

− iκ3) +m2(η2
− κ2 + i2ηκ) +m3(η + iκ)

+m4 +
[
l1(η3 + i3η2κ − 3ηκ2

− iκ3) + l2(η2
− κ2 + i2ηκ) + l3(η + iκ) + l4

]
e−ητ(cosκτ − i sinκτ) = 0.

Comparing real and imaginary parts, we have

η4 + κ4
− 6η2κ2 +m1(η3

− 3ηκ2) +m2(η2
− κ2) +m3η +m4 +

[
l1(η3

− 3ηκ2) + l2(η2
− κ2) + l3η + l4

]
e−ητ cosκτ +

[
l1(3η2κ − κ3) + 2l2ηκ + l3κ

]
e−ητ sinκτ = 0,

(3.27)

and

4η3κ − 4ηκ3 +m1(3η2κ − κ3) + 2m2ηκ +m3κ +
[
l1(3η2κ − κ3) + 2l2ηκ + l3κ

]
e−ητ cosκτ

−

[
l1(η3

− 3ηκ2) + l2(η2
− κ2) + l3η + l4

]
e−ητ sinκτ = 0.

(3.28)

For purely imaginary root η = 0, so from (3.27) and (3.28):

(l4 − l2κ2) cosκτ + (l3κ − l1κ3) sinκτ = −(κ4
−m2κ

2 +m4), (3.29)
(l3κ − l1κ3) cosκτ − (l4 − l2κ2) sinκτ = m1κ

3
−m3κ. (3.30)

Solving equations (3.29) and (3.30), we have

sinκτ =
−(κ4

−m2κ2 +m4)(l3κ − l1κ3) − (l4 − l2κ2)(m1κ3
−m3κ)

(l3κ − l1κ3)2 + (l4 − l2κ2)2 , (3.31)

cosκτ =
(l3κ − l1κ3)(m1κ3

−m3κ) − (l4 − l2κ2)(κ4
−m2κ2 +m4)

(l3κ − l1κ3)2 + (l4 − l2κ2)2 . (3.32)

Squaring and adding equations (3.29) and (3.30), we have

F2(κ, τ) = κ8 + (m2
1 − 2m2 − l21)κ6 + (m2

2 + 2m4 − 2m1m3 + 2l1l3 − l22)κ4 + (m2
3 − 2m2m4 + 2l2l4 − l23)κ2

+(m2
4 − l24) = 0.

(3.33)

Let us assume τ ∈ I2 ⊆ R+0 is the set where κ(τ) is a positive root of (3.33) and for τ < I2, κ(τ) is not
definite. Now define Ω(τ) ∈ [0, 2π) such that sinΩ(τ) and cosΩ(τ) is given by the right hand side of the
equations (3.31) and (3.32).

Now for each n ∈ N0, define a map τ(1)
n : I2 −→ R+0, and stability switch occurs for the τ values at which

τ(1)
n (τ) = τ, for some n,
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where

τ(1)
n =

Ω(τ) + 2nπ
κ(τ)

for n ∈ N0. That is, the stability switches takes place at the zeros of the functions

S(2)
n (τ) = τ − τ(1)

n (τ) for some n ∈ N0.

Now differentiating (3.27) and (3.28) with respect to τ, we get

Y1
dη
dτ
+ Y2

dκ
dτ
+ Y3 = 0, (3.34)

−Y2
dη
dτ
+ Y1

dκ
dτ
+ Y4 = 0, (3.35)

where

Y1 = 4η3
− 12ηκ2 + 3m1(η2

− κ2) + 2m2η +m3 +
[
3l1(η2

− κ2) + 2l2η + l3 − τ{l1(η3
− 3ηκ2) + l2(η2

− κ2)

+l3η + l4}
]

e−ητ cosκτ +
[
2κ(3l1η + l2) − τ{l1(3η2κ − κ3) + 2l2ηκ + l3κ}

]
e−ητ sinκτ,

Y2 = 4κ4
− 12η2κ − 6m1ηκ − 2m2κ −

[
2κ(3l1η + l2) − τ{l1(3η2κ − κ3) + 2l2ηκ + l3κ}

]
e−ηκ cosκτ

+
[
3l1(η2

− κ2) + 2l2η + l3 − τ{l1(η3
− 3ηκ2) + l2(η2

− κ2) + l3η + l4}
]

e−ητ sinκτ,

Y3 =

[
dl1
dτ

(η3
− 3ηκ2) +

dl2
dτ

(η2
− κ2) +

dl3
dτ
η +

dl4
dτ

]
e−ητ cosκτ −

[
l1(η3

− 3ηκ2) + l2(η2
− κ2) + l3η + l4

]
(η cosκτ + κ sinκτ)e−ητ +

[
dl1
dτ

(3η2κ − κ3) + 2
dl2
dτ
ηκ +

dl3
dτ
κ

]
e−ητ sinκτ +

[
l1(3η2κ − κ3) + 2l2ηκ

+l3κ] (κ cosκτ − η sinκτ)e−ητ,

Y4 =

[
dl1
dτ

(3η2κ − κ3) + 2
dl2
dτ
ηκ +

dl3
dτ
κ

]
e−ητ cosκτ −

[
l1(3η2κ − κ3) + 2l2ηκ + l3κ

]
(η cosκτ + κ sinκτ)e−ητ

−

[
dl1
dτ

(η3
− 3ηκ2) +

dl2
dτ

(η2
− κ2) +

dl3
dτ
η +

dl4
dτ

]
e−ητ sinκτ +

[
l1(η3

− 3ηκ2) + l2(η2
− κ2) + l3η + l4

]
(η sinκτ − κ cosκτ)e−ητ.

Therefore, from equations (3.34) and (3.35), we get

dη
dτ
=

Y2Y4 − Y1Y3

Y2
1 + Y2

2

.

Theorem 3.11. Assume that κ(τ) is a positive real root of (3.33), defined for τ ∈ I2, I2 ⊆ R+0, and at some τ∗ ∈ I2,

S(2)
n (τ∗) = 0, for some n ∈ N0.

Then a pair of simple conjugate pure imaginary roots ρ+(τ∗) = iκ(τ∗), ρ−(τ∗) = −iκ(τ∗) of (3.26) exists at τ = τ∗

which crosses the imaginary axis from left to right if ∆2(τ∗) > 0 and crosses the imaginary axis from right to left if
∆2(τ∗) < 0, where

∆2(τ∗) = sign
{

dRe(ρ)
dτ

∣∣∣∣∣
ρ=iκ(τ∗)

}
= sign

{
Y2Y4 − Y3Y1

Y2
1 + Y2

2

∣∣∣∣∣
ρ=iκ(τ∗)

}
. (3.36)
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3.3.7. Case-IV
Here, we consider τ as a fixed number and τ ∈ (0, τ∗).
Let P3(ρ, δ) = ρ4 + (A1 + C1e−ρτ)ρ3 + (A2 + C2e−ρτ)ρ2 + (A3 + C3e−ρτ)ρ + (A4 + C4e−ρτ) and Q3(ρ, δ) =

B2ρ2 + (B3 +D3e−ρτ)ρ + (B4 +D4)e−ρτ.
Then, equation (3.11) becomes

P3(ρ, δ) +Q3(ρ, δ)e−ρδ = 0. (3.37)

For the stability switch, there should hold the following conditions:

(i) Equation (3.11) has no zero root i.e., A4 + B4 + C4 +D4 , 0,
(ii) For ρ = iξ, κ ∈ R, P3(iξ, δ) +Q3(iξ, δ) , 0, δ ∈ R,

(iii)

lim
|ρ|−→∞

∣∣∣∣∣∣Q3(ρ, δ)
P3(ρ, δ)

∣∣∣∣∣∣ < 1 when Re(ρ) ≥ 0 f or any δ,

(iv) F3(ξ, δ) =| P3(iξ, δ) |2 − | Q3(iξ, δ) |2 for each δ has at most a finite number of real zeros.
(v) Each positive root ξ(δ) of F3(ξ, δ) = 0 is continuous and differentiable in δ whenever it exists. Using

the implicit function theorem, we can show this condition hold.

Now, from (3.11) by putting ρ = ζ + iξ, we get

ζ4 + i4ζ3ξ − 6ζ2ξ2
− i4ζξ3 + ξ4 + A1(ζ3 + i3ζ2ξ − 3ζξ2

− iξ3) + A2(ζ2
− ξ2 + i2ζξ) + A3(ζ + iξ) + A4

+{C1(ζ3 + i3ζ2ξ − 3ζξ2
− iξ3) + C2(ζ2

− ξ2 + i2ζξ)} + {C3(ζ + iξ) + C4}(cos ξτ − i sin ξτ)e−ζτ + {B2(ζ2

−ξ2 + i2ζξ) + B3(ζ + iξ) + B4}(cos ξδ − i sin ξδ)e−ζδ + {D3(ζ + iξ) +D4}(cos ξ(δ + τ)
−i sin ξ(δ + τ))e−ζ(δ+τ) = 0,

comparing real and imaginary parts, we have

ζ4
− 6ζ2ξ2 + ξ4 + A1(ζ3

− 3ζξ2) + A2(ζ2
− ξ2) + A3ζ + A4 + {C1(ζ3

− 3ζξ2) + C2(ζ2
− ξ2) + C3ζ + C4}

e−ζτ cos ξτ + {C1(3ζ2ξ − ξ3) + 2C2ζξ + C3ξ}e−ζτ sin ξτ + {B2(ζ2
− ξ2) + B3ζ + B4}e−ζδ cos ξδ

+(2B2ζξ + B3ξ)e−ζδ sin ξδ + (D3ζ +D4)e−ζ(δ+τ) cos ξ(δ + τ) +D3ξe−ζ(δ+τ) sin ξ(δ + τ) = 0,
(3.38)

and

4ζ3ξ − 4ζξ3 + A1(3ζ2ξ − ξ3) + 2A2ζξ + A3ξ + {C1(3ζ2ξ − ξ3) + 2C2ζξ + C3ξ}e−ζτ cos ξτ − {C1(ζ3
− 3ζξ2)

+C2(ζ2
− ξ2) + C3ζ + C4}e−ζτ sin ξτ + (2B2ζξ + B3ξ)e−ζδ cos ξδ − {B2(ζ2

− ξ2) + B3ζ + B4}e−ζδ sin ξδ
+D3ξe−ζ(δ+τ) cos ξ(δ + τ) − (D3ζ +D4)e−ζ(δ+τ) sin ξ(δ + τ) = 0.

(3.39)

For purely imaginary roots, ζ = 0, so (3.38) and (3.39) become

G1 cos ξδ + G2 sin ξδ = R1, (3.40)

G2 cos ξδ − G1 sin ξδ = R2, (3.41)

where

R1 = ξ4
− A2ξ

2 + A4 + (C4 − C2ξ
2) cos ξτ − (C1ξ

3
− C3ξ) sin ξτ,

R2 = −A1ξ
3 + A3ξ − ξ(C1ξ

2
− C3) cos ξτ + (C2ξ

2
− C4) sin ξτ,

G1 = (B2ξ
2
− B4) −D4 cos ξτ −D3ξ sin ξτ,

G2 = D4 sin ξτ −D3ξ cos ξτ − B3ξ.
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Solving (3.40) and (3.41), we get

sin ξδ =
R1G2 − R2G1

G2
1 + G2

2

, (3.42)

cos ξδ =
R1G1 + R2G2

G2
1 + G2

2

. (3.43)

Squaring and adding (3.40) and (3.41), we get

F3(ξ, δ) = ξ8 + T1ξ
7 + T2ξ

6 + T3ξ
5 + T4ξ

4 + T5ξ
3 + T6ξ

2 + T7ξ + T8 = 0, (3.44)

where

T1 = −2C1 sin ξτ,
T2 = A2

1 + C2
1 − 2A2 + 2(A1C1 − C2) cos ξτ,

T3 = 2(C3 − A1C2 + A2C1) sin ξτ
T4 = A2

2 − 2A4 + C2
2 − B2

2 − 2(C1C3 + A1A3) + 2(C4 + A2C2 − A1C3 − A3C1) cos ξτ,
T5 = 2(D3B2 + A1C4 − A4C1 + A3C2 − A2C3) sin ξτ,
T6 = A2

3 − B2
3 + C2

3 −D2
3 − 2(A2A4 − B2B4 + C2C4) + 2(A3C3 − A2C4 − A4C2 +D4B2 −D3B3) cos ξτ

T7 = 2(A4C3 − A3C4 + B3D4 −D3B4) sin ξτ,
T8 = A2

4 + C2
4 − B2

4 −D2
4 + 2(A4C4 −D4B4) cos ξτ.

Let us assume τ ∈ I3 ⊆ R+0 is the set where ξ(δ) is a positive root of (3.44) and for ξ < I3, ξ(δ) is not
definite. Now define Ψ(δ) ∈ [0, 2π) such that sinΨ(δ) and cosΨ(δ) are given by the right hand side of the
equations (3.42) and (3.43) respectively.

Now for each n ∈ N0, define a map δ(2)
n : I3 −→ R+0, and stability switch occurs for the values of δ at

which

δ(2)
n (δ) = δ, for some n,

where

δ(2)
n =

Ψ(δ) + 2nπ
ξ(δ)

for n ∈ N0. That is, the stability switches take place at the zeros of the functions

S(3)
n (δ) = δ − δ(2)

n (δ), for some n ∈ N0.

Now, differentiating (3.38) and (3.39) with respect to δ, we get

M1
dζ
dδ
+M2

dξ
dδ
+M3 = 0, (3.45)

−M2
dζ
dδ
+M1

dξ
dδ
+M4 = 0, (3.46)
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where

M1 = 4ζ3
− 12ζξ2 + 3A1(ζ2

− ξ2) + 2A2ζ + A3 +
[
{3C1(ζ2

− ξ2) + 2C2ζ + C3} − τ{C1(ζ3
− 3ζξ2)

+C2(ζ2
− ξ2) + C3ζ + C4}

]
e−ζτ cos ξτ +

[
2ξ(3C1ζ + C2) − τ{C1(3ζ2ξ − ξ3) + 2C2ζξ + C3ξ}

]
e−ζτ sin ξτ +

[
(2B2ζ + B3) − δ{B2(ζ2

− ξ2) + B3ζ + B4}
]

e−ζδ cos ξδ + [2B2ξ − δ(2B2ζξ + B3ξ)]

e−ζδ sin ξδ + {D3 − (δ + τ)(D3ζ +D4)}e−ζ(δ+τ) cos ξ(δ + τ) − (δ + τ)D3ξe−ζ(δ+τ) sin ξ(δ + τ),

M2 = 4ξ3
− 12ζ2ξ − 6A1ζξ − 2A2ξ −

[
2ξ(3C1ζ + C2) − τ{C1(3ζ2ξ − ξ3) + 2C2ζξ + C3ξ}

]
e−ζτ cos ξτ

+
[
{3C1(ζ2

− ξ2) + 2C2ζ + C3} − τ{C1(ζ3
− 3ζξ2) + C2(ζ2

− ξ2) + C3ζ + C4}
]

e−ζτ sin ξτ

+
[
(2B2ζ + B3) − δ{B2(ζ2

− ξ2) + B3ζ + B4}
]

e−ζδ sin ξδ − [2B2ξ − δ(2B2ζξ + B3ξ)] e−ζδ cos ξδ

+{D3 − (δ + τ)(D3ζ +D4)}e−ζ(δ+τ) + sin ξ(δ + τ)(δ + τ)D3ξe−ζ(δ+τ) cos ξ(δ + τ),

M3 =

[
dB2

dδ
(ζ2
− ξ2) +

dB3

dδ
ζ +

dB4

dδ

]
e−ζδ cos ξδ +

[
2

dB2

dδ
ζξ +

dB3

dδ

]
e−ζδ sin ξδ −

[
B2(ζ2

− ξ2) + B3ζ + B4

]
(ζ cos ξδ + ξ sin ξδ)e−ζδ + (2B2ζξ + B3ξ)(ξ cos ξδ − ζ sin ξδ)e−ζδ +

dD3

dδ
ξe−ζ(δ+τ) sin ξ(δ + τ)

+

[
dD3

dδ
ζ +

dD4

dδ

]
e−ζ(δ+τ) cos ξ(δ + τ),

M4 =

[
2

dB2

dδ
ζξ +

dB3

dδ

]
e−ζδ cos ξδ −

[
dB2

dδ
(ζ2
− ξ2) +

dB3

dδ
ζ +

dB4

dδ

]
e−ζδ sin ξδ +

dD3

dδ
ξe−ζ(δ+τ) cos ξ(δ + τ)

−

[
dD3

dδ
ζ +

dD4

dδ

]
e−ζ(δ+τ) sin ξ(δ + τ) − (2B2ζξ + B3ξ)(ζ cos ξδ + ξ sin ξδ)e−ζδ.

From (3.45) and (3.46), we have

dRe(ρ)
dδ

=
dζ
dδ
=

M2M4 −M1M3

M2
1 +M2

2

.

Theorem 3.12. Assume that ξ(δ) is a positive real root of (3.11) defined for δ ∈ I3, I3 ⊆ R+0, and at some δ∗∗ ∈ I3,

S(3)
n (δ∗∗) = 0, for some n ∈ N0.

Then a pair of simple conjugate pure imaginary roots ρ+(δ∗∗) = iξ(δ∗∗), ρ−(δ∗∗) = −iξ(δ∗∗) of (3.44) exists at δ = δ∗∗

which crosses the imaginary axis from left to right if ∆3(δ∗∗) > 0 and crosses the imaginary axis from right to left if
∆3(δ∗∗) < 0, where

∆3(δ∗∗) = sign
{

dRe(ρ)
dδ

∣∣∣∣∣
ρ=iξ(δ∗∗)

}
= sign

{
M2M4 −M3M1

M2
1 +M2

2

∣∣∣∣∣
ρ=iξ(δ∗∗)

}
. (3.47)

3.3.8. Case-V
Here, we consider δ is fixed with δ ∈ (0, δ∗) and τ > 0. Let P4(ρ, τ) ≡ ρ4+A1ρ3+A2ρ2+A3ρ+A4+ (B2ρ2+

B3ρ + B4)e−ρδ and Q4(ρ, τ) ≡ (C1ρ3 + C2ρ2 + C3ρ + C4) + (D3ρ +D4)e−ρδ. Then equation (3.11) reduces to

P4(ρ, τ) +Q4(ρ, τ)e−ρτ = 0. (3.48)

Then the following conditions hold for the occurrence of stability switch:

(i) Equation (3.11) has no zero root, i.e., A4 + B4 + C4 +D4 , 0,
(ii) For ρ = iβ, β ∈ R, P4(iβ, τ) +Q4(iβ, τ) , 0, τ ∈ R,
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(iii)

lim
|ρ|−→∞

∣∣∣∣∣∣Q4(ρ, τ)
P4(ρ, τ)

∣∣∣∣∣∣ < 1, when Re(ρ) ≥ 0 f or any τ,

(iv) F4(β, τ) =| P4(iβ, τ) |2 − | Q4(iβ, τ) |2 for each τ has at most a finite number of real zeros.
(v) Each positive root β(τ) of F4(β, τ) = 0 is continuous and differentiable in τ whenever it exists. Using

the implicit function theorem we can shows this condition holds.

Now, putting ρ = σ + iβ in equation (3.11), we have

σ4 + i4σ3β − 6σ2β2
− i4σβ3 + β4 + A1(σ3 + i3σ2β − 3σβ2

− iβ3) + A2(σ2
− β2 + i2σβ) + A3(σ + iβ) + A4

+{B2(σ2
− β2 + i2σβ) + B2(σ + iβ) + B4}(cos βδ − i sin βδ)e−σδ + {C1(σ3 + i3σ2β − 3σβ2

− iβ3) + C2(σ2

−β2 + i2σβ) + C3(σ + iβ) + C4}(cos βτ − i sin βτ)e−στ + {D3(σ + iβ) +D4}(cos β(δ + τ)

−i sin β(δ + τ))e−σ(δ+τ) = 0,

comparing real and imaginary parts, we get

σ4
− 6σ2β2 + β4 + A1(σ3

− 3σβ2) + A2(σ2
− β2) + A3σ + A4 + {B2(σ2

− β2) + B2σ + B4}e−σδ cos βδ
+(2B2σβ + B2β)e−σδ sin βδ + {C1(σ3

− 3σβ2) + C2(σ2
− β2) + C3σ + C4}e−στ cos βτ + {C1(3σ2β − β3)

+2C2σβ + C3β}e−στ sin βτ + (D3σ +D4)e−σ(δ+τ) cos β(δ + τ) +D3βe−σ(δ+τ) sin β(δ + τ) = 0,
(3.49)

and

4σ3β − 4σβ3 + A1(3σ2β − β3) + 2A2σβ + A3β − {B2(σ2
− β2) + B2σ + B4}e−σδ sin βδ + (2B2σβ + B2β)e−σδ cos βδ

+{C1(3σ2β − β3) + 2C2σβ + C3β}e−στ cos βτ − {C1(σ3
− 3σβ2) + C2(σ2

− β2) + C3σ + C4}e−στ sin βτ
−(D3σ +D4)e−σ(δ+τ) sin β(δ + τ) +D3βe−σ(δ+τ) cos β(δ + τ) = 0.

(3.50)

For purely imaginary root, σ = 0 and so equations (3.49) and (3.50) become

W1 cos βτ +W2 sin βτ = E1, (3.51)
W2 cos βτ −W1 sin βτ = E2, (3.52)

where

W1 = (C2β
2
− C4) −D4 cos βδ −D3β sin βδ,

W2 = (C1β
3
− C3β) +D4 sin βδ −D3β cos βδ,

E1 = β4
− A2β

2 + A4 − (B2β
2
− B4) cos βδ + B3β sin βδ,

E2 = −A1β
3 + A3β + (B2β

2
− B4) sin βδ + B3β cos βδ.

Solving equations (3.51) and (3.52), we get

sin βτ =
W2E1 −W1E2

W2
1 +W2

2

, (3.53)

cos βτ =
W2E2 +W1E1

W2
1 +W2

2

. (3.54)

Squaring and adding equations (3.51) and (3.52), we get

F4(β, τ) = β8 + I1β
6 + I2β

5 + I3β
4 + I4β

3 + I5β
2 + I6β + I7 = 0, (3.55)
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where

I1 = A2
1 − C2

1 − 2A2 − 2B2 cos βδ,
I2 = 2(B3 − A1B2) sin βδ,
I3 = A2

2 + B2
2 − C2

2 + 2(A4 + C1C3 − A1A3) + 2(C1D3 + B4 + A2B2 − A1B3) cos βδ,
I4 = 2(C2D3 − C1D4 − A2B2 + A1B4 + A3B2) sin βδ,
I5 = A2

3 + B2
3 − C2

3 −D2
3 − 2(A2A4 + B2B4 − C2C4) + 2(C2D4 −D3C3 − A2B4 − A4B2 + A3B3) cos βδ,

I6 = 2(C3D4 − C4D3 + A4B3 − A3B4) sin βδ,
I7 = A2

4 + B2
4 − C2

4 −D2
4 + 2(A4B4 − C4D4) cos βδ.

Let us assume τ ∈ I4 ⊆ R+0 is the set where β(τ) is a positive root of (3.55) and for τ < I4, β(τ) is not
definite. Now define Φ(τ) ∈ [0, 2π) such that sinΦ(τ) and cosΦ(τ) are given by the right hand side of the
equations (3.53) and (3.54) respectively.

Now for each n ∈ N0, define a map τ(2)
n : I4 −→ R+0, and stability switch occurs for the τ values at which

τ(2)
n (τ) = τ, for some n,

where

τ(2)
n =

Φ(τ) + 2nπ
β(τ)

for n ∈ N0. That is, the stability switches take place at the zeros of the functions

S(4)
n (τ) = τ − τ(2)

n (τ), for some n ∈ N0.

Now, differentiating equations (3.49) and (3.50) with respect to τ, we get

U1
dσ
dτ
+U2

dβ
dτ
= U3, (3.56)

−U2
dσ
dτ
+U1

dβ
dτ
= U4, (3.57)

where

U1 = 4σ3
− 12σβ2 + 3A1(σ2

− β2) + 2A2σ + A3 +
[
2B2σ + B2 − δ{B2(σ2

− β2) + B2σ + B4}
]

e−σδ cos βδ

+
[
2B2β − δ(2B2σβ + B2β)

]
e−σδ sin βδ +

[
3C1(σ2

− β2) + 2C2σ + C3 − τ{C1(σ3
− 3σβ2) + C2(σ2

− β2)

+C3σ + C4}] e−στ cos βτ +
[
2β(3C1σ + C2) − τ{C1(3σ2β − β3) + 2C2σβ + C3β}

]
e−στ sin βτ

+ [D3 − (δ + τ)(D3σ +D4)] e−σ(δ+τ) cos β(δ + τ) −D3β(δ + τ)e−σ(δ+τ) sin β(δ + τ),

U2 = 4β3
− 12σ2β − 6A1σβ − 2A2β −

[
2B2β − δ(2B2σβ + B2β)

]
e−σδ cos βδ +

[
2B2σ + B2 − δ{B2(σ2

− β2)

+B2σ + B4}] e−σδ sin βδ −
[
2β(3C1σ + C2) − τ{C1(3σ2β − β3) + 2C2σβ + C3β}

]
e−στ cos βτ +

[
3C1(σ2

−β2) + 2C2σ + C3 − τ{C1(σ3
− 3σβ2) + C2(σ2

− β2) + C3σ + C4}
]

e−στ sin βτ + [D3 − (δ + τ)(D3σ +D4)]

e−σ(δ+τ) sin β(δ + τ) +D3β(δ + τ)e−σ(δ+τ) cos β(δ + τ),
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U3 =

[
dC1

dτ
(σ3
− 3σβ2) +

dC2

dτ
(σ2
− β2) +

dC3

dτ
σ +

dC4

dτ

]
e−στ cos βτ +

[
dC1

dτ
(3σ2β − β3) + 2

dC2

dτ
σβ +

dC3

dτ
β

]
e−στ sin βτ −

[
C1(σ3

− 3σβ2) + C2(σ2
− β2) + C3σ + C4

]
(σ cos βτ + β sin βτ)e−στ +

[
C1(3σ2β − β3)

+2C2σβ + C3β
]

(β cos βτ − σ sin βτ)e−στ +
[

dD3

dτ
σ +

dD4

dτ

]
e−σ(δ+τ) cos β(δ + τ) +

dD3

dτ
βe−σ(δ+τ)

sin β(δ + τ),

U4 =

[
dC1

dτ
(3σ2β − β3) + 2

dC2

dτ
σβ +

dC3

dτ
β

]
e−στ cos βτ −

[
C1(3σ2β − β3) + 2C2σβ + C3β

]
(σ cos βτ + β sin βτ)

e−στ −
[

dC1

dτ
(σ3
− 3σβ2) +

dC2

dτ
(σ2
− β2) +

dC3

dτ
σ +

dC4

dτ

]
e−στ sin βτ −

[
C1(σ3

− 3σβ2) + C2(σ2
− β2)

+C3σ + C4] (β cos βτ − σ sin βτ)e−στ −
[

dD3

dτ
σ +

dD4

dτ

]
e−σ(δ+τ) sin β(δ + τ) +

dD3

dτ
βe−σ(δ+τ) cos β(δ + τ).

Thus from equations (3.56) and (3.57), we get

dσ
dτ
=

U2U4 −U1U3

U2
1 +U2

2

.

Theorem 3.13. Assume that β(τ) is a positive real root of (3.11) defined for τ ∈ I4, I4 ⊆ R+0, and at some τ∗∗ ∈ I4,

S(4)
n (τ∗∗) = 0, for some n ∈ N0.

Then a pair of simple conjugate pure imaginary roots ρ+(τ∗∗) = iβ(τ∗∗), ρ−(τ∗∗) = −iβ(τ∗∗) of (3.55) exists at τ = τ∗∗

which crosses the imaginary axis from left to right if ∆4(τ∗∗) > 0 and crosses the imaginary axis from right to left if
∆4(τ∗∗) < 0, where

∆4(τ∗∗) = sign
{

dRe(ρ)
dτ

∣∣∣∣
ρ=iβ(τ∗∗)

}
= sign

{
U2U4 −U3U1

U2
1 +U2

2

∣∣∣∣
ρ=iβ(τ∗∗)

}
. (3.58)

4. Numerical analysis

Here, we have illustrated numerical simulations to verify the analytical findings of the proposed system
(3.1). Since our proposed model is based on Holt [24], we have considered the range of the parameter
values same as in that article except the range of c (death rate of vectors) (see Table 1). We chose the range
(0.05 − 0.18) for c. For parameter set : {k = 0.5, r = 0.05, a = 0.003, 1 = 0.003, m = 500, b = 0.2, c = 0.18,
k1 = 0.003, k2 = 0.003, α = 1}. Under this set of parametric values, the disease free equilibrium point
E2(0.47, 0, 236, 0) is stable (see Figure 1).

Figure 2(a) is the bifurcation diagram regarding the parameter k. Here, we choose the parametric set
{r = 0.05, a = 0.003, 1 = 0.003, m = 500, b = 0.2, c = 0.12, k1 = 0.008, k2 = 0.008, α = 1}. From this Figure
2(a), we see that there is a critical value k = 0.15851418357765 at which the disease free equilibrium point
E2 exchange its stability behavior with the interior equilibrium point E∗. That is, as we increase the value of
k from 0.01 to 1, at k = 0.15851418357765, E2 becomes unstable and the feasible interior equilibrium point
E∗ exists and is stable. Figure 2(b) shows the occurrence of Hopf bifurcation for the change of value of the
parameter k1. Here, all other parameter values are same as in Figure 2(a). From this Figure 2(b), it is clear
that Hopf bifurcation occurs at the point (0.0316763, 0.031379941).

Figure 3 is the bifurcation diagram regarding the parameter m. From this Figure 3, we see that both
transcritical and Hopf bifurcation occur as we increase the value of the parameter m from 0 to 2500. From
m = 0 to m = 48.800362, E2 is stable, but it becomes unstable as m crosses this critical value m = 48.800362.
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Figure 1: Graph of stable behavior of the disease free equilibrium point E2(0.47, 0, 236, 0) for the parametric value k = 0.5, r = 0.05,
a = 0.003, 1 = 0.003, m = 500, b = 0.2, c = 0.18, k1 = 0.003, k2 = 0.003, α = 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Transcritical Bifurcation Point

Unstable  E
2

Stable E
2

Stable E
*

0.005 0.01 0.015 0.02 0.025 0.03 0.035

k
1

0

0.05

0.1

0.15

0.2

0.25

0.3

x

Hopf Bifurcation point

(a) (b)

Figure 2: (a) Bifurcation diagram regarding parameter k. As, k increases from 0.001 to k = 0.15851418357765 the equilibrium point
E2(x1, 0,u1, 0) is stable but changes it’s stable behavior as k crosses this value and interior equilibrium point E∗ is stable then. (b)
Bifurcation diagram regarding k1. Hopf bifurcation occurs at the point (0.0316763, 0.031379941). For both the sub-figures the other
parameter values are a = 0.003, 1 = 0.003, m = 500, b = 0.2, c = 0.12, k2 = 0.008, α = 1
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Figure 3: Bifurcation diagram regarding m. Here, k1 = 0.008, k = 0.5, a = 0.003, 1 = 0.003, b = 0.2, c = 0.12, k2 = 0.008, α = 1. The
equilibrium point E2 is stable as m varies from 0 to 48.800362 after that it is unstable but the interior equilibrium point stable for
m=48.800362 to 1984.3385 and Hopf bifurcation occurs at (1984.3385, 0.031491886)

However, as the value of m crosses this critical value m = 48.800362 the feasible interior equilibrium point
exists, and it is stable up to the value m = 1984.3385 at which system shows oscillatory behavior, i.e., Hopf
bifurcation occurs at the point (m[H], x[H]) = (1984.3385, 0.031491886).

For the set of parametric value {k = 0.8, r = 0.05, a = 0.002, 1 = 0.002, m = 500, b = 0.25, c = 0.05,
k1 = 0.003, k2 = 0.0025, α = 1} the interior equilibrium point E∗(x∗, y∗,u∗, v∗) is feasible and satisfied the
condition (3.9). Hence, E∗(0.105, 0.412, 253.407, 5.222) is stable (see Figure 4).

4.1. Effects of delays
Here in this section, we shall discuss the numerical results for the delay model (2.2). We have already

seen that the interior equilibrium point E∗(0.105, 0.412, 253.407, 5.222) is stable when τ = 0 and δ = 0, i.e., in
absence of delay (see Figure 4). For subsection 3.3.5, i.e, when τ = 0 but δ > 0, the stability switch occurs
at that value of δ for which S(1)

n (δ) = 0, n = 0, 1, .... Choosing the same parameter values as in Figure 4 and
solving S(1)

0 (δ) = 0 by numerical method, find that there is a zero for S(1)
0 (δ) at δ∗ = 46.254 (See Figure 5). It has

also confirmed that for no n, S(1)
n (δ) = 0, n = 1, 2, 3, .... That means for these choice of parameter values, there

is only one stability switching point δ∗ = 46.254. Thus, the model (2.2) undergoes Hopf bifurcation at this
critical value, i.e., as δ increases to pass δ∗, Ẽ(x̃, ỹ, ũ, ṽ) loses its stability, leading to sustained oscillation of the
population. Numerical simulations of the model (2.2), as shown in Figure 6 and Figure 7, confirmed these. In
Figure 6, we see that the coexistence equilibrium point Ẽ(0.1093, 0.409, 254.014, 5.198) is stable when δ = 20
but in Figure 7 the coexistence equilibrium point Ẽ(0.115, 0.405, 254.903, 5.162) becomes unstable when
δ = 48. Biologically, it means that when the incubation period δ is comparatively large, the population
density of the cassava plants and vectors sustain to oscillate.

For subsection 3.3.6, i.e., the case when δ = 0 but τ > 0, choosing the same parameter values as in
Figure 4, the numerical solution of S(2)

0 (τ) = 0 gives, there are two zeros for S(2)
0 (τ), which are τ∗1 = 11.08

and τ∗2 = 30.59, as shown in Figure 8. Again, for none of n = 1, 2, 3..., S(2)
n (τ) = 0. Which implies no

stability switching point exists other than τ∗1 = 11.08 and τ∗2 = 30.59 for these choice of parameter values.
This indicates that the model (2.2) exhibits Hopf bifurcation at these two critical values : when τ increases
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Figure 4: Graph of stable nature of interior equilibrium point E∗(0.105, 0.412, 253.407, 5.222) with time when k = 0.8, r = 0.05, a = 0.002,
1 = 0.002, m = 500, b = 0.25, c = 0.05, k1 = 0.003, k2 = 0.0025, α = 1.

Figure 5: Here τ = 0 and other parameters are same as in Figure 4. Stability switch occurs at δ∗ = 46.254



N. Santra et al. / Filomat 37:9 (2023), 2887–2921 2912

0 2000 4000 6000 8000

Time (days)

0

0.15

0.3

0.45

0.6

H
e

a
lt
h

y
 P

la
n

t,
 x

 (
m

-2
)

0 2000 4000 6000 8000

Time (days)

0

0.15

0.3

0.45

0.6

In
fe

c
te

d
 P

la
n

t,
 y

 (
m

-2
)

0 2000 4000 6000 8000

Time (days)

0

100

200

300

400

s
u

s
c
e

p
ti
b

le
 V

e
c
to

r,
 u

 (
m

-2
)

0 2000 4000 6000 8000

Time (days)

0

2.5

5

7.5

10

In
fe

c
te

d
 V

e
c
to

r,
 v

 (
m

-2
)

Figure 6: Graph of stable nature of interior equilibrium point Ẽ(0.1093, 0.409, 254.014, 5.198) for τ = 0, δ = 20 and other parameters are
same as in Figure 4.
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Figure 7: Graph of the oscillatory nature of the solution around the interior equilibrium point Ẽ(0.115, 0.405, 254.903, 5.162) for τ = 0,
δ = 48 and other parameters are same as in Figure 4.
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Figure 8: Here δ = 0 and other parameters are same as in Figure 4. Stability switch occurs at τ∗1 = 11.08 and τ∗2 = 30.59.

to pass τ∗1, Ẽ loses its stability, leading the population to oscillate continuously; however, when τ further
increases to pass τ∗2, the periodic solutions vanish, and Ẽ regains its stability. Numerical simulations of
the model (2.2) confirmed these (see Figure 9, Figure 10 and Figure 11). Figure 9 shows, for δ = 0 and
τ = 10 < τ∗1 the system is stable, Figure 10 shows, for δ = 0 and τ = 15, the delay system is unstable and
the system stable again when δ = 0 and τ = 32 (see Figure 11). That means the maturation delay τ of
vectors has interesting characteristic to force the system stable to unstable and vice versa. Thus, when the
maturation delay is comparatively large; the system regains its stability, i.e., both the population exists.

Similarly, for the Case-III (subsection 3.3.6), when τ ∈ (0, τ∗1) ∪ (τ∗2,∞), say τ = 8 and δ > 0, we have
δ∗∗ = 45.668 as zero of S(3)

0 (δ), solving numerically and taking same parameter values as in Figure 4. As like
before there is no zero of S(3)

n (δ) for n = 1, ...(See Figure 12). Consequently, δ∗∗ = 45.668 is the only stability
switching point . This implies that the model (2.2) undergoes Hopf bifurcation at this critical value. When
δ increases to pass δ∗∗, Ẽ loses its stability leading to sustained oscillation of the population. These are
confirmed by numerical simulations of the model (2.2), as shown in Figure 13 and Figure 14. Figure 13
shows that the system is stable for τ = 8 and δ = 17 but Figure 14 shows unstable behavior of the system
for τ = 8 and δ = 47.

It is noticeable that there has very much similarity in behavior of the system (2.2) in Case-II (subsection
3.3.5) and Case-IV (subsection 3.3.7), also the stability switching points are slightly different from each other
(see Figure 5 and Figure 12).

Finally, for the Case-V (subsection 3.3.8) choosing same parameter set as in Figure 4 and after numerically
solving S(4)

0 (τ) = 0, we find two zeros for S(4)
0 (τ), which are τ∗∗1 = 10.998 and τ∗∗2 = 29.957, but none for

S(4)
n (τ) = 0, n = 1, ... (see Figure 15). This indicates that the model (2.2) exhibits Hopf bifurcation at these

two critical values : when τ increases to pass τ∗∗1 , Ẽ loses its stability, leading the population to oscillate
continuously; however, when τ further increases to pass τ∗∗2 , the periodic solutions vanish, and Ẽ regains
its stability. Numerical simulations of the model (2.2) confirmed these (see Figure 16, Figure 17, Figure
18 and Figure 19). Clearly, the stability switching points obtained in Case-3 (Subsection 3.3.6) and Case-5
(subsection 3.3.8) are slightly different from each others. Also, Figure 8 and Figure 15 express the similarity
in the behavior of the delay system. Figure 16 shows that the system is stable when δ = 10 and τ = 8, Figure
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Figure 9: Graph of stable nature of interior equilibrium point Ẽ(0.105, 0.412, 252.921, 5.214) for δ = 0, τ = 10 and other parameters are
same as in Figure 4.
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Figure 10: Graph of the oscillatory nature of the solution around the interior equilibrium point Ẽ(0.106, 0.412, 252.569, 5.208) for δ = 0,
τ = 15 and other parameters are same as in Figure 4.



N. Santra et al. / Filomat 37:9 (2023), 2887–2921 2915

0 2000 4000 6000

Time (days)

0.09

0.1

0.11

0.12

0.13

H
e

a
lt
h

y
 P

la
n

t,
 x

 (
m

-2
)

0 2000 4000 6000

Time (days)

0.38

0.4

0.42

In
fe

c
te

d
 P

la
n

t,
 y

 (
m

-2
)

0 2000 4000 6000

Time (days)

235

244

253

262

S
u

s
c
e

p
ti
b

le
 V

e
c
to

r,
 u

 (
m

-2
)

0 2000 4000 6000

Time (days)

2.5

3.5

4.5

5.5

6.5

In
fe

c
te

d
 V

e
c
to

r,
 v

 (
m

-2
)

Figure 11: Graph of stable nature of interior equilibrium point Ẽ(0.106, 0.413, 250.429, 5.173) for δ = 0, τ = 32 and other parameters are
same as in Figure 4.

Figure 12: Here τ = 8 and other parameters are same as in Figure 4. Stability switch occurs at δ∗∗ = 45.668.
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Figure 13: Graph of stable nature of interior equilibrium point Ẽ(0.109, 0.410, 253.554, 5.195) for τ = 8, δ = 17 and other parameters are
same as in Figure 4.
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Figure 14: Graph of the oscillatory nature of the solution around the interior equilibrium point Ẽ(0.115, 0.405, 254.506, 5.158) for τ = 8,
δ = 47 and other parameters are same as in Figure 4.
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Figure 15: Here, δ = 10 and other parameters are same as in Figure 4. Stability switch occurs at two points τ∗∗1 = 10.998 and τ∗∗2 = 29.957
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Figure 16: Graph of stable nature of interior equilibrium point Ẽ(0.107, 0.411, 253.34, 5.204) for δ = 10, τ = 8 and other parameters are
same as in Figure 4.

17, Figure 18 indicate the system is unstable when δ = 10 ans τ = 12, 20, and whereas Figure 19 shows the
system is again stable when δ = 10 and τ = 33.
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Figure 17: Graph of the oscillatory nature of the solution around the interior equilibrium point Ẽ(0.1074, 0.4109, 253.093, 5.199) for
δ = 10, τ = 12 and other parameters are same as in Figure 4.
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Figure 18: Graph of the oscillatory nature of the solution around the interior equilibrium point Ẽ(0.108, 0.411, 252.421, 5.189) for δ = 10,
τ = 20 and other parameters are same as in Figure 4.
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Figure 19: Graph of stable nature of interior equilibrium point Ẽ(0.1086, 0.4118, 250.545, 5.1587) for δ = 10, τ = 33 and other parameters
are same as in Figure 4.

5. Discussion and Conclusion

So far in this work, we have considered an epidemiological model on cassava mosaic disease. Here,
we see that under conditions for which the disease-free equilibrium point E2(x̄, 0, ū, 0) (i.e., the equilibrium
point at which both cassava plant and vectors present but the disease is not spreading) to be stable or
unstable. We have shown that coexisting equilibrium point E∗(x∗, y∗,u∗, v∗) in the absence of delay is stable
under some conditions, and also we have verified it by numerical simulation. It is also numerically checked
that the parameter k (the carrying capacity of the plant (meter−2)) can make the system unstable by creating
Hopf bifurcation. Similarly, numerical simulation of the system shows that the parameters k1 (contact rate
between healthy plant and infected vectors) and m (the maximum vector abundance (plant−1)) have some
threshold values at which the system generates periodic solutions (see Figures 2(b), 3).

Due to delay dependant parameter involved in the model, it was tough to check the stability behavior
of the model around the coexistence equilibrium point. For those reasons, we have adopted the Geometric
criteria for stability switch developed by Berreta and Kuang [7]. For that purpose, we have analytically
performed some routine calculations and used it to draw the stability switching figures (see Figures 5, 8, 12,
15). From the numerical analysis with the parameter set of values as in Figure 4, we see that at τ = 0; there
is a threshold value of δ = δ∗ at which the system moves from stable to unstable state and remains unstable
for a larger value of that. But, when δ = 0, there are two critical values of τ at which stability switch occurs:
τ = τ∗1 and τ = τ∗2. As the value of τ increases from zero onward, the system becomes stable to unstable
at τ = τ∗1. It remains unstable up to τ = τ∗2 after that system regains its stability for the rest of the values
of τ. That is, for τ ∈ (τ∗1, τ

∗

2), the coexistence equilibrium Ẽ is unstable whereas it is asymptotically stable
for 0 ≤ τ < τ∗1 and for any τ > τ∗2. However, many periodic solutions with different frequencies may exist
within a specific range of τ. It should be in mind that the number of stability switching points may differ
for a different set of parameter values. We have seen a similar behavior of the system for the case τ ∈ (0, τ∗1)
, δ > 0 and for τ = 0, δ > 0 and also for the case δ ∈ (0, δ∗) , τ > 0 and the case δ = 0, τ > 0 but the main
differences are in the value of stability switching points. Thus, sufficiently large value of the incubation
time delay can generate periodic solutions around the steady-state. However, the maturation time delay
can make the system stable to unstable, and again, unstable to stable as it increases from zero onward.
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Our model considers particular use of healthy plants, this makes no sense unless farmers discriminate
between healthy and diseased plants. With the most tolerant varieties in the advanced growth stage or
when they have been damaged by other pests or drought-prone, it is not always possible to distinguish
healthy plants from diseases, especially in the final stages of growth when the stems are collected for
distribution. Therefore, re-planting both infected and healthy cuts are possible, but we may include some
sort of selective cutting of a particular type similar to Holt [24]. Incorporating this to our model (2.2), it will
make the model much more realistic. We can include the recovery of infected plants as well.
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