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Asymptotic normality of the Stirling-Whitney-Riordan triangle
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aSchool of Mathematical Sciences, Qufu Normal University, Qufu 273165, PR China

Abstract. Recently, Zhu [34] introduced a Stirling-Whitney-Riordan triangle [Tn,k]n,k≥0 satisfying the recur-
rence

Tn,k = (b1k + b2)Tn−1,k−1 + [(2λb1 + a1)k + a2 + λ(b1 + b2)]Tn−1,k + λ(a1 + λb1)(k + 1)Tn−1,k+1,

where initial conditions Tn,k = 0 unless 0 ≤ k ≤ n and T0,0 = 1. Denote by Tn =
∑n

k=0 Tn,k. In this paper, we
show the asymptotic normality of Tn,k and give an asymptotic formula of Tn. As applications, we show the
asymptotic normality of many famous combinatorial numbers, such as the Stirling numbers of the second
kind, the Whitney numbers of the second kind, the r-Stirling numbers and the r-Whitney numbers of the
second kind.

1. Introduction

Let a(n, k) be a double-index sequence of nonnegative numbers and let

p(n, k) =
a(n, k)∑n
j=0 a(n, j)

(1)

denote the normalized probabilities. Following Bender [3], we say that a(n, k) is asymptotically normal by a
central limit theorem, if

lim
n→∞

sup
x∈R

∣∣∣∣∣∣∣∣
∑

k≤µn+xδn

p(n, k) −
1
√

2π

∫ x

−∞

e−t2/2dt

∣∣∣∣∣∣∣∣ = 0, (2)

where µn and σ2
n are the mean and the variance of a(n, k) respectively. We say that a(n, k) is asymptotically

normal by a local limit theorem on R, if

lim
n→∞

sup
x∈R

∣∣∣∣∣∣σnp(n, ⌊µn + xσn⌋) −
1
√

2π
e−x2/2

∣∣∣∣∣∣ = 0. (3)
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In this case,

a(n, k) ∼
e−x2/2

∑n
j=0 a(n, j)

σn
√

2π
, as n→∞,

where k = µn + xσn and x = O(1). Clearly, the validity of (3) implies that of (2).
Many combinatorial numbers satisfy the central and local limit theorems, including the binomial coef-

ficients
(n

k
)
, the signless Stirling numbers of the first kind [17], the Stirling numbers of the second kind [21],

the Eulerian numbers [15], the q-derangement numbers [11], the coefficients of q-Catalan numbers [10], and
the Laplacian coefficients of graphs [31]. We refer the reader to the survey of Canfield [9]. Recently, Hwang
et al. [22] investigated the asymptotic distributions of recurrence sequence of Eulerian type, which includes
hundreds of examples. Liu et al. [25] proved the asymptotic normality of combinatorial numbers related to
Dowling lattices.

LetR (resp. R≥0,R>0) denote the set of all (resp. nonnegative, positive) real numbers. For {λ, a1, a2, b1, b2} ⊆

R, Zhu [34] defined a Stirling-Whitney-Riordan triangle [Tn,k]n,k≥0, which satisfies the recurrence relation

Tn,k = (b1k + b2)Tn−1,k−1 + [(2λb1 + a1)k + a2 + λ(b1 + b2)]Tn−1,k + λ(a1 + λb1)(k + 1)Tn−1,k+1, (4)

where initial conditions Tn,k = 0 unless 0 ≤ k ≤ n and T0,0 = 1. Let its row generating function Tn(q) =∑
k≥0 Tn,kqk for n ≥ 0. In [34], it was proved that under some inequalities of the coefficients,

(i) [Tn,k]n,k is coefficientwise totally positive in all the indeterminates;

(ii) Tn(q) has only real zeros;

(iii) the Turán-type polynomial Tn+1(q)Tn−1(q) − T2
n(q) is stable;

(iv) Tn(q) is q-Stieltjes moment and 3-q-log-convex.

These properties can be applied to many famous combinatorial numbers.

Example 1.1. (1) For a1 = b2 = 1 and a2 = b1 = λ = 0, Tn,k is the Stirling number of the second kind
{

n
k

}
,

which enumerates the number of partitions of a set with n elements consisting of k disjoint nonempty subsets.
Its row generating function, i.e., the Bell polynomial, is

Bn(x) =
n∑

k=0

{
n
k

}
xk.

See [2, 7, 12, 14, 18, 19, 23, 24, 30, 32, 33] for many nice properties of the Stirling number of the second kind
and the Bell polynomial.

(2) For a1 = b1 = 1, a2 = b2 = λ = 0, Tn,k = k!
{

n
k

}
. Let Gn,k = k!

{
n
k

}
, which counts the number of distinct

ordered partitions of a set with n elements. The row generating function Gn(x) =
∑n

k=1 Gn,kxk is called the
geometric polynomial and was studied by Tanny in [29].

(3) For λ = 0, Tn,k are the coefficients of a generalized ordered Bell polynomial, which were studied by Barbero et
al. [1], Guo and Zhu [20].

(4) For a1 = m, b1 = λ = 0, a2 = b2 = 1, Tn,k is the Whitney number of the second kind, denote by Wm(n, k).
In 1973, Dowling [16] introduced a class of geometric lattices based on finite group G of order m ≥ 1, called
Dowling lattices. Let Qn(G) be Dowling lattices of rank n associated to G. When m = 1, that is, G is the
trivial group, Qn(G) is isomorphic to the latticeΠn+1 of partition of an (n+1) set. Its row generatinng function
Dn(m, x) =

∑n
k=0 Wm(n, k)xk is called the Dowling polynomial by Benoumhani [5].
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(5) For a1 = m, b2 = λ = 0, a2 = b1 = 1, Tn,k = k!Wm(n, k), where Wm(n, k) is the Whitney number of the second
kind defined as (4). Its row generating function Fm(n, x) =

∑n
k=0 k!Wm(n, k)xk is called the Tanny-geometric

polynomial in [5]. See [5, 6, 12, 23, 30, 32, 33] for some properties of the Whitney number of the second kind
and the Dowling polynomial.

(6) For λ = b2 = 0, a2 = 1 and a1 = b1 = m, Tn,k = mkk!Wm(n, k), which are the coefficients of a generalized
Dowling polynomial

Fn,m,2(x) =
n∑

k=0

k!Wm(n, k)mkxk

introduced by Benoumhani [5]. See Benoumhani [4–6] for the recurrence relations, the exponential generating
functions and the reality of zeros of these Dowling polynomials.

(7) For λ = b1 = 0, a1 = b2 = 1, a2 = r, Tn,k is the r-Stirling number
{

n
k

}
r

defined by Broder [8], which

enumerates the number of partitions of the set [n] having k non-empty disjoint subset, such that the numbers
1, 2, . . . , r are in distinct subsets [8]. The row generating function

Bn,r(x) =
n∑

k=0

{
n + r
k + r

}
r
xk,

is called the r-Bell polynomial by Mezö [8].

(8) For λ = b1 = 0, b2 = 1, a1 = m, and a2 = r, Tn,k is the r-Whitney number of the second kind Wm,r(n, k). The
row generating function

Dn,m,r(x) =
n∑

k=0

Wm,r(n, k)xk

is called the r-Dowling polynomial by Choen and Jung [13].

(9) For a2 = b1 = 0 and a1 = b2 = λ = 1, Tn,k equal the numbers an,k of set partitions of [n] in which exactly k
blocks have been distinguished (see [28, A049020]). The triangle [an,k]n,k first arose in Riordan’s letter [27]. We
refer reader to [28, A049020] for more information.

The aim of this paper is to study asymptotic properties of the Stirling-Whitney-Riordan triangle. We
define Tn = Tn(1) =

∑n
k=0 Tn,k. In this paper, we first present an asymptotic formula of Tn, and then prove

the asymptotic normality of Tn,k. More precisely, we have the following.

Theorem 1.2. Let {a1, b1} ⊆ R>0 and {λ, a2, b2} ⊆ R≥0. If R1 is the unique positive solution of the equation

n = a2R + (b1 + b2)(1 + λ)Rea1R
[
1 +

b1

a1
(1 + λ)(1 − ea1R)

]−1

satisfying the condition 0 < R1 < 1
a1

ln(1+ a1
b1(1+λ) ), then we have

Tn ∼
n!

Rn
1ψ

ea2R1

[
1 +

b1(1 + λ)
a1

(1 − ea1R1 )
]−(1+ b2

b1

)
, (5)

where

ψ =
√

2π(n + α + β), α = (b1 + b2)(1 + λ)R2
1a1ea1R1

[
1 +

b1

a1
(1 + λ)(1 − ea1R1 )

]−1

,

β = (b1 + b2)(1 + λ)2b1R2
1e2a1R1

[
1 +

b1

a1
(1 + λ)(1 − ea1R1 )

]−2

.

Theorem 1.3. Let {a1, b1} ⊆ R>0, {λ, a2, b2} ⊆ R≥0. If a1(b1+ b2) > b1a2, then the coefficients Tn,k are asymptotically
normal.
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2. Proof of Theorem 1.2

In this section, we present a proof of Theorem 1.2.

Proof. [Proof of Theorem 1.2]
When a1 , 0, b1 , 0, the exponential generating function of Tn(q) is

∑
n≥0

Tn(q)
tn

n!
= ea2t

[
1 +

b1(q + λ)(1 − ea1t)
a1

]−(1+ b2
b1

)
, (6)

(see [34] for instance). Following Moser and Wyma [26], by Cauchy’s formula, we can write Tn as

Tn =
n!

2πi

∮
|t|=R

ea2t
[
1 + b1(1+λ)(1−ea1t)

a1

]−(1+ b2
b1

)
tn+1 dt.

Set t = Reiθ. Then it yields

Tn =
n!

2πRn

∫ π

−π
ea2Reiθ

−inθ
[
1 +

b1(1 + λ)(1 − ea1Reiθ
)

a1

]−(1+ b2
b1

)
dθ. (7)

Let

F(θ) = ln
ea2Reiθ

−inθ
[

1+
b1(1+λ)(1−ea1Reiθ

)
a1

]−(1+ b2
b1

)
, ε = n−

1
4 .

We decompose the integral (7) into three parts

(
∫
−ε

−π
+

∫ ε

−ε
+

∫ π

ε
)exp

(
F(θ)

)
dθ. (8)

In what follows we will prove that integrals
∫
−ε

−π
and

∫ π
ε

are negligible, and then the greatest contribution
to (8) comes from the middle part

∫ ε
−ε

. By computing, we derive

F′(θ) = a2Rieiθ
− in + (b1 + b2)(1 + λ)Riea1Reiθ+iθ

[
1 +

b1

a1
(1 + λ)(1 − ea1Reiθ

)
]−1

,

F′′(θ) = −a2Reiθ + (b1 + b2)(1 + λ)Ri(a1Rieiθ + i)ea1Reiθ+iθ
[
1 +

b1

a1
(1 + λ)(1 − ea1Reiθ

)
]−1

−(b1 + b2)b1(1 + λ)2R2e2(a1Reiθ+iθ)

[
1 +

b1

a1
(1 + λ)(1 − ea1Reiθ

)
]−2

.

Therefore we have

F(0) = ln
ea2R

[
1+ b1

a1
(1+λ)(1−ea1R)

]−(1+ b2
b1

)
,

F′(0) = a2Ri − in + (b1 + b2)(1 + λ)Riea1R
[
1 +

b1

a1
(1 + λ)(1 − ea1R)

]−1

,

F′′(0) = −a2R − (b1 + b2)(1 + λ)R(a1R + 1)ea1R
[
1 +

b1

a1
(1 + λ)(1 − ea1R)

]−1

−

(b1 + b2)b1(1 + λ)2R2e2a1R
[
1 +

b1

a1
(1 + λ)(1 − ea1R)

]−2

.
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Note that F′(0) = 0 is equivalent to the equation

n
R
= a2 + (b1 + b2)(1 + λ)ea1R

[
1 +

b1

a1
(1 + λ)(1 − ea1R)

]−1
.

Let h(R) = n
R and

v(R) = a2 + (b1 + b2)(1 + λ)ea1R
[
1 +

b1

a1
(1 + λ)(1 − ea1R)

]−1
.

We derive

v′(R) = (b1 + b2)(1 + λ)
[a1 + b1(1 + λ)]ea1R

[1 + b1
a1

(1 + λ)(1 − ea1R)]2
> 0,

where a1, b1, λ, b2 is nonnegative. Obviously v(R) is increasing and h(R) is decreasing in the interval(
0, 1

a1
ln

(
1+

a1
b1(1+λ)

) )
respectively. It is not hard to obtain v(0) = a2 +

a1(b1+b2)(1+λ)
a1+b1(1+λ) ≥ 0 and h

(
1
a1

ln
(
1+

a1
b1(1+λ)

) )
=

na1

ln

(
1+

a1
b1(1+λ)

) ≥ 0. In addition, v(R)→ +∞ as R→ 1
a1

ln
(
1+

a1
b1(1+λ)

)
and h(R)→ +∞ as R→ 0. In consequence, there

exists a point R1 ∈
(
0, 1

a1
ln

(
1+

a1
b1(1+λ)

) )
such that v(R1) = h(R1).

Expanding the integral
∫ π
ε

in the Taylor series about θ = 0, we obtain

∣∣∣∣∣∫ π

ε
exp(F(θ))dθ

∣∣∣∣∣
=

∣∣∣∣∣∣
∫ π

ε
exp

(
F(0) + F′(0)θ + F′′(0)

θ2

2
+ o(θ2)

)
dθ

∣∣∣∣∣∣
= exp(F(0))

∣∣∣∣∣∣
∫ π

ε
exp

(
F′(0)θ + F′′(0)

θ2

2
+ o(θ2)

)
dθ

∣∣∣∣∣∣
≤ exp(F(0))

∫ π

ε

∣∣∣∣∣∣exp
(
F′(0)θ + F′′(0)

θ2

2
+ o(θ2)

)∣∣∣∣∣∣ dθ
= ea2R1

[
1 +

b1

a1
(1 + λ)(1 − ea1R1 )

]−(1+ b2
b1

) ∫ π

ε
exp

(
F′′(0)

θ2

2
+ o(θ2)

)
dθ.

In addition, we also derive

F′′(0) = −a2R1 − (b1 + b2)(1 + λ)R1(a1R1 + 1)ea1R1

[
1 +

b1

a1
(1 + λ)(1 − ea1R1 )

]−1

−

(b1 + b2)b1(1 + λ)2R2
1e2a1R1

[
1 +

b1

a1
(1 + λ)(1 − ea1R1 )

]−2

= −

{
n + (b1 + b2)(1 + λ)a1R2

1ea1R1

[
1 +

b1

a1
(1 + λ)(1 − ea1R1 )

]−1

+

(b1 + b2)b1(1 + λ)2R2
1e2a1R1

[
1 +

b1

a1
(1 + λ)(1 − ea1R1 )

]−2 }
.

In consequence, for the integral
∫ π
ε

in (8), we obtain∫ π

ε
exp

(
F′′(0)

θ2

2
+ o(θ2)

)
dθ −→ 0 as n −→ ∞.
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The same calculations are valid for
∫
−ε

−π
. So

Tn ∼
n!

2πRn
1

exp(F(0))
∫ ε

−ε
exp

(
F′′(0)

θ2

2
+ o(θ2)

)
dθ

=
n!

2πRn
1

ea2R1
[
1 +

b1

a1
(1 + λ)(1 − ea1R1 )

]−(1+ b2
b1

)
∫ ε

−ε
exp

{
−
θ2

2

{
n + (b1 + b2)(1 + λ)a1R2

1ea1R1
[
1 +

b1

a1
(1 + λ)(1 − ea1R1 )

]−1

+ (b1 + b2)b1(1 + λ)2R2
1e2a1R1

[
1 +

b1

a1
(1 + λ)(1 − ea1R1 )

]−2}
+ o(θ2)

}
dθ.

Let
φ =

√
n + α + βθ,

where

α = (b1 + b2)(1 + λ)R2
1a1ea1R1

[
1 +

b1

a1
(1 + λ)(1 − ea1R1 )

]−1

,

β = (b1 + b2)b1(1 + λ)2R2
1e2a1R1

[
1 +

b1

a1
(1 + λ)(1 − ea1R1 )

]−2

.

Observing for large enough n, we integrate on the real axis and get

Tn ∼
n!

2πRn
1

√
n + α + β

ea2R1

[
1 +

b1

a1
(1 + λ)(1 − ea1R1 )

]−(1+ b2
b1

)

∫
∞

−∞

exp(−
φ2

2
)dφ

=
n!

Rn
1ψ

ea2R1

[
1 +

b1

a1
(1 + λ)(1 − ea1R1 )

]−(1+ b2
b1

)
,

where ψ =
√

2π(n + α + β).

3. Proof of Theorem 1.3

In this section, we give a proof of Theorem 1.3. Before it, we need some known results.
A standard approach to demonstrating the asymptotic normality is the following criterion, which was

used by Harper [21] to show the asymptotic normality of the Stirling numbers of the second kind. We refer
the reader to [3, 9, 14] for the asymptotic normality.

Lemma 3.1. [31] Suppose that An(x) =
∑n

k=0 a(n, k)xk have only real zero and An(x) =
∏n

i=1(x + ri). Let

un =

n∑
i=1

1
1 + ri

;

σ2
n =

n∑
i=1

r1

(1 + ri)2

If σn → +∞, then the numbers a(n, k) are asymptotically normal with the mean un and the variance σ2
n.
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Remark 3.2. [9] Suppose that An(x) =
∑n

k=0 a(n, k)xk. Then the mean and the variance of a(n, k) are given by the
following expressions

un =
A′n(1)
An(1)

=

∑n
k=0 ka(n, k)∑n
k=0 a(n, k)

,

σ2
n =

A′n(1)
An(1)

+
A′′n (1)
An(1)

−

(
A′n(1)
An(1)

)2

=

∑n
k=0 k2a(n, k)∑n

k=0 a(n, k)
− u2

n.

Now we are in a position to prove Theorem 1.3.

Proof. [Proof of Theorem 1.3] If a1(b1 + b2) > b1a1, then the row generating function Tn(q) =
∑n

k=0 Tn,kqk has
only real zeros [34]. So by Lemma 3.1, it suffices to prove that the variance of Tn,k tends to +∞ as n→∞ .

Let Tn = Tn(1) =
∑

k≥0 Tn,k. By the recurrence (4), we have

n∑
k=0

kTn,k =
Tn+1 − [(λ + 1)(b1 + b2) + a2]Tn

[(λ + 1)2b1 + (λ + 1)a1]
.

So the mean and the variance of Tn,k are

un =

∑n
k=0 kTn,k

Tn
=

1
[(λ + 1)2b1 + (λ + 1)a1]

[Tn+1

Tn
− [(λ + 1)(b1 + b2) + a2]

]
,

σ2
n =

∑n
k=0 k2Tn,k∑n

k=0 Tn,k
− u2

n

=
1

[(λ + 1)2b1 + (λ + 1)a1]2

[Tn+2

Tn
− [(2λ + 3 − λ2)b1 + (2λ + 2)b2 + 2a2 − λa1]

Tn+1

Tn

−

[
[(λ + 1)2b1 + (λ + 1)a1](b1 + b2) − [(λ + 1)(b1 + b2) + a2][(2 + λ)b1 + (λ + 1)b2

+a2 − λa1 − λ
2b1]

]]
− u2

n.

Using the asymptotic formula (5) of Tn, we have

σ2
n =

∑n
k=0 k2Tn,k∑n

k=0 Tn,k
− u2

n ∼
n + 1

[(λ + 1)2b1 + (λ + 1)a1]2

1 + [(λ2
− 1)b1 + λa1]R1

R2
1

 . (9)

Now we claim that 1 + [(λ2
− 1)b1 + λa1]R1 > 0. It is easy to get that (λ2

− 1)b1 + λa1 is increasing in
(0,+∞). So if λ = 0, then (λ2

− 1)b1 + λa1 = −b1 is minimum in the interval (0,+∞). Hence we have

1 + [(λ2
− 1)b1 + λa1]R1 > 1 − b1R1 > 1 −

b1

a1
ln(1 +

a1

b1
) > 0,

for R1 ∈ (0, 1
a1

ln(1 + a1
b1(1+λ) )) ⊂ (0, 1

a1
ln(1 + a1

b1
)) and ln(1 + a1

b1
) < a1

b1
when a1, b1 > 0.

Following (9), we have σ2
n → +∞ as n→∞.

For a1 , 0 or b1 = 0, using continuity of functions, the exponential generating function is∑
n≥0

Tn(q)
tn

n!
= e

a2t+
[

b2(q+λ)(ea1t
−1)

a1

]

(see Zhu [34]). In this case, we also obtain an asymptotic formula of Tn and the asymptotic normality of
Tn,k in the following theorem. It can be proved by the same technique used in the proof of Theorems 1.2
and 1.3. So we omit its proof for brevity.
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Theorem 3.3. Let {a1} ⊆ R>0 and {a2, b2, λ} ⊆ R≥0. Then

(i) an asymptotic formula of Tn is

Tn ∼
n!

Rn
2

√
2π(n + a1R2

2ea1R2 )
exp

(
a2R2 +

b2

a1
(1 + λ)(ea1R2 − 1)

)
,

where R2 is the unique positive solution n = a2R + b2(1 + λ)Rea1R.

(ii) the coefficients Tn,k are asymptotically normal.

4. Applications

In this section, we give some applications of Theorems 1.2, 1.3 and 3.3, and obtain asymptotic formulas
and the asymptotic normality of some combinatorial numbers or polynomials related to the Stirling-
Whitney-Riordan triangle.

It is well-known that many classical combinatorial numbers satisfy the following recurrence

Tn,k = λ(a0n + a1k + a2)Tn−1,k + (b0n + b1k + b2)Tn−1,k−1 +
d(da1 − b1)

λ
(n − k + 1)Tn−1,k−2;

(10)

withT0,0 = 1 andTn,k = 0 unless 0 ≤ k ≤ n.We also denote its row generating function byTn(q) =
∑

k≥0 Tn,kqk

for n ≥ 0.
Now we consider the asymptotic normality of triangles satisfying the following two types of recurrences
(i) Tn,k = λ(a1k + a2)Tn−1,k + [−da1n+ (b1 + 2da1)k + b2 − b1 − d(a1 − a2)]Tn−1,k−1−

d(da1+b1)
λ (n− k + 1)Tn−1,k−2;

(ii) Tn,k = λ(a0n − a0k + a2 − a0)Tn−1,k + [(b0 + 2da0)(n − k) + b2 + da2]Tn−1,k−1 +
d(b0+da0)

λ (n − k + 1)Tn−1,k−2.
The next relationship was proved by Zhu [35].

Theorem 4.1. [35] Let [Tn,k]n,k≥0 be defined in (10). Then there exists an array [An,k]n,k≥0 satisfying the recurrence
relation

An,k = [[b0 + d(a1 − a0)]n + (b1 − 2da1)k + b2 + d(a1 − a2)]An−1,k−1 + (a0n + a1k + a2)An−1.k

with A0,0 = 1 and An,k = 0 unless 0 ≤ k ≤ n such that their row-generating functions satisfy

Tn(q) = (λ + dq)nAn(
q

λ + dq
)

for n ≥ 0.

For [Tn,k]n,k in (i), by Theorem 4.1, we obtain a corresponding array [An,k]n,k as follows: An,k = (a1k +
a2)An−1,k + [(b1(k − 1) + b2]An−1,k−1.

Clearly, if λ = 0 and b2 − b1 → b2 in recurrence relation (4), then the String-Whitney-Riordan triangle
Tn,k reduces toAn,k. Thus forAn(x) =

∑
k≥0An,kxk, we have the exponential generating function∑

n≥0

An(x)
tn

n!
= exp(a2t)

[
a1

a1 + b1x − b1x exp(a1t)

] b2
b1

. (11)

So we derive∑
n≥0

Tn(q)
tn

n!
=

∑
n≥0

(λ + dq)n
An

(
q

λ + dq

)
tn

n!

= exp(a2t(λ + dq))
[

a1(λ + dq)
a1(λ + dq) + b1q − b1q exp(a1(λ + dq)t)

] b2
b1

. (12)
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Corollary 4.2. (1)

Tn =

n∑
k=0

Tn,k ∼

n!
(
exp(a2(λ + d)R1)

[
a1(λ+d)

a1(λ+d)+b1−b1 exp(a1(λ+d)R1)

] b2
b1

)
Rn

1

√
2π(n + η)

,

where

η =
b2a2

1(λ + d)2R2
1 exp(a1(λ + d)R1)

a1(λ + d) + b1 − b1 exp(a1(λ + d)R1)
+

b1b2a2
1(λ + d)2R2

1 exp(2a1(λ + d)R1)

[a1(λ + d) + b1 − b1 exp(a1(λ + d)R1)]2

and R1 is the positive solution of

n = a2(λ + d)R + b2
a1(λ + d)R exp a1(λ + d)R

a1(λ + d) + b1 − b1 exp a1(λ + d)R
.

(2) If b2a1(λ + d) > a2(λ + d)b1, then the coefficients Tn,k are asymptotically normal.

For [Tn,k]n,k in (ii), by Theorem 4.1, we get a corresponding array [Bn,k]n,k satisfying

Bn,k = [a0(n − k − 1) + a2]Bn−1,k + [b0(n − k) + b2]Bn−1,k−1.

Let B∗n,k = Bn,n−k. It yields

B
∗

n,k = [a0(k − 1) + a2]B∗n−1,k−1 + [b0k + b2]B∗n−1,k.

So we have B∗n(x) = xn
Bn( 1

x ), where B∗n(x) =
∑

n≥0B
∗

n,kxk, Bn(x) =
∑

n≥0Bn,kxk.

Combining (11) and B∗n(x) = xn
Bn( 1

x ), we have the exponential generating function:∑
n≥0

Tn(q)
tn

n!
=

∑
n≥0

(λ + dq)n
Bn

(
q

λ + dq

)
tn

n!

=
∑
n≥0

B
∗

n

(
λ + dq

q

)
(tq)n

n!

= exp(b2tq)
[

b0q
qb0 + a0(λ + dq) − a0(λ + dq) exp(b0tq)

] a2
a0

.

Corollary 4.3. (1)

Tn =

n∑
k=0

Tn,k ∼

n!
(
exp(b2R1)

[
b0

b0+a0(λ+d)−a0(λ+d) exp(b0R1)

] a2
a0

)
Rn

1

√
2π(n + µ)

;

where

µ =
a2b2

0R2
1(λ + d) exp(b0R1)

b0 + a0(λ + d) − a0(λ + d) exp(b0R1)
+

a2b2
0R2

1(λ + d)2a0 exp(2b0R1)

[b0 + a0(λ + d) − a0(λ + d) exp(b0R1)]2

and R1 is the positive solution of

n = b2R +
a2b0R(λ + d) exp(b0R)

b0 + a0(λ + d) − a0(λ + d) exp(b0R)
.

(2) If a2(λ + d)b0 > b2a0(λ + d), then the coefficients Tn,k are asymptotically normal.

By Theorems 1.2, 1.3 and 3.3, for those combinatorial numbers in Example 1.1, we have the following
asymptotic formulas in a unified manner.
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Example 4.4. The following asymptotic formulas hold.

(1) The Bell numbers

Bn =

n∑
k=0

S(n, k) ∼
n!

Rn
2

√
2π(n + R2

2eR2 )
exp(eR2 − 1),

where R2 is the unique positive solution ReR = n;

(2) The ordered Bell numbers

Gn =

n∑
k=0

k!S(n, k) ∼
n!

Rn
1

√
2π(n(2 − eR1 )2 + 2R2

1eR1 )
,

where R1 is the unique solution n = ReR(2 − eR)−1 and satisfying 0 < R1 < 1;

(3) The Whitney numbers of the second kind

Dn =

n∑
k=0

Wm(n, k) ∼
n!

Rn
2

√
2π(n +mR2

2emR2 )
exp

(
R2 +

1
m

(emR2 − 1)
)
,

where R2 is the unique positive solution n = R + RemR;

(4) The numbers

Fm =

n∑
k=0

Wm(n, k)k! ∼
mn!eR1

Rn
1

√
2π(n(m + 1 − emR1 )2 +m2(m + 1)R2

1emR1 )
,

where R1 is the unique solution n = R + RemR(1 + 1
m (1 − emR))−1 and satisfies 0 < R1 < 1;

(5) The numbers of Riordan

An =

n∑
k=0

an,k ∼
n!

Rn
2

√
2π(n + R2

2eR2 )
exp(2(eR2 − 1)),

where R2 is the unique positive solution of n = 2ReR;

(6) The numbers A154602, let bn,k = A154602

En =

n∑
k=0

bn,k ∼
n!

Rn
2

√
2π(n + 2R2

2e2R2 )
exp((e2R2 − 1)),

where R2 is unique positive solution n = 2Re2R;

(7) The r-Bell numbers

Hn =

n∑
k=0

Sr(n, k) ∼
n! exp(rR2 + eR2 − 1)

Rn
2

√
2π(n + R2

2eR2 )
,

where R2 is the unique positive solution n = rR + ReR;
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(8) The r-Dowling numbers

Ln =

n∑
k=0

Wm,r(n, k) ∼
n! exp(rR2 +

1
m (emR2−1))

Rn
2

√
2π(n +mR2

2emR2 )
,

where R2 is the unique positive solution n = rR + RemR;

(9) The numbers

Vn =

n∑
k=0

mkk!Wm(n, k) ∼
n!eR1

Rn
1

√
2π(n(2 − emR1 )2 + 2m2R2

1emR1 )
,

where R1 is the solution of R + mRemR

2−emR = n satisfying 0 < R1 < 1;

(10) The generalized ordered Bell polynomial coefficientsUn,k

Un =

n∑
k=0

Un,k ∼
n!

Rn
1ψ

ea2R1

[
1 +

b1

a1
(1 − ea1R1 )

]−(1+ b2
b1

)
,

where ψ =
√

2π(n + α + β),

α = (b1 + b2)R2
1a1ea1R1

[
1 +

b1

a1
(1 − ea1R1 )

]−1

,

β = (b1 + b2)b1R2
1e2a1R1

[
1 +

b1

a1
(1 − ea1R1 )

]−2

,

and R1 is the unique positive solution of n = a2R + (b1 + b2)Rea1R
[
1 + b1

a1
(1 − ea1R)

]−1
satisfying 0 < R1 <

1
a1

ln(1+
a1
b1

) .

Corollary 4.5. The sequences (S(n, k)), (k!S(n, k)), (Wm(n, k)), (k!Wm(n, k)), (an,k), (bn,k), (Sr(n, k)), (Wm,r(n, k)),
(mkk!Wm(n, k)) are asymptotically normal respectively.
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