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Stability analysis for pricing options via time fractional Heston model
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Abstract. In this work, we have studied the time fractional-order derivative of the pricing European
options under Heston model. We found some positivity conditions for the solution obtained relative to
the numerical methods used. Also, thanks to the properties of the Mittag-Leffler function, we were able
to establish a stability result of the solution. Some numerical experiments are carried out to confirm the
theoretical results obtained.

1. Introduction and Preliminaries

Pricing options stands for one of the most popular problems in mathematical financial literature. Ba-
sically, European options considered among the most in the worldwide financial markets. Over the last
few decades, numerous papers addressed the problem of pricing options tackled by different models using
multiple methods, for instance [3], [5], [9] and [16]. The most outstanding one is the Black and Scholes
model [5], which rests upon the concept that the stock price of the underlying asset is log-normally dis-
tributed conditional on the current stock price with constant volatility. Compared to the case of the Black
and Scholes model, where the volatility is constant, the Heston model [9] proves to be more important since
the volatility is stochastic, owing to the fact that the dynamics of the volatility is fundamental to elaborate
strategies for hedging and arbitrage. Indeed, a model based on constant volatility cannot explain the reality
of the financial markets. Therefore, pricing option under stochastic volatility model is then extremely
significant and highly needed.

The fractional calculus is applied in various fields [1], [4], [6], [7], [15], [19], [21] and [23]. For instance,
fractional derivation models have displayed an ability to characterize shape-memory materials better than
full derivation models. When a material is purely elastic, it is indicated by an integer derivation of order
zero. However, when it is purely viscous it is denoted by an integer derivation of order one. We can therefore
immediately describe a viscous-elastic material by a derivation between zero and one. This accounts for
the use of fractional derivation for this kind of material. From this perspective, driven by mathematical
curiosity and in order to get closer to the reality of the financial market, it is crucial to use models based on
fractional derivatives. Recently, they have been integrated in the mathematical finance field [13], [14], [22]
and [23]. They have been particularly designed to resolve the pricing option problem, for instance [8],[11],
[12], [16] and [24] which are basically devoted for the evaluation of the European option.
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For this reason, using the splitting method, we attempt to elaborate a new resolution for the pricing
European option under the fractional Heston model. The aforementioned method allows to solve a mixed
problem Parabolic/Hyperbolic by decoupling the parabolic and hyperbolic operators, (for more details see
[2]). A nonlinear mixed problem generated by two completely different operators, (Parabolic/Hyperbolic),
can generate difficulties in in terms of the numerical simulations. During discretization, the splitting method
makes it possible to handle each operator whether Parabolic and Hyperbolic by an adequate numerical
scheme. This method preserves the numerical properties (stability, consistency, · · · ) of each used scheme
for each operator. Additionally, this new method allows to provide relevant numerical results. It is worth
noting that the state of arts works reported that the coefficient of correlation ρ, (see equation (1)), lies always
between −0.7 and 0.7. With our new numerical method, we can extend the previously stated coefficient
ranging between −0.9 and 0.9.

In summary, the novelties of this work are as follows:

⋄ Theoretical and numerical study of the time fractional-order derivative of the pricing European
options under Heston model.

⋄ Obtain a positivity result of the solution relative to the numerical methods used, (see Theorem 5.4
and Lemma 5.6),

⋄ Establish a stability result for the solution to the time fractional-order derivative of the pricing Euro-
pean options under Heston model, (see Theorem 5.7),

⋄ Prove the effectiveness of the numerical methods used and this by showing the consistency between
the theoretical results and the numerical experiments,

⋄ Extending the coefficient of correlation between −0.9 and 0.9,

⋄ Compered the numerical results between the time fractional-order derivative of the pricing European
options under Heston model versus the time integer-order derivative of the pricing European options
under Heston model.

In the following definition, we exhibit the modified right Riemann-Liouville derivative and the Caputo
time-fractional derivative.

Definition 1.1. ([10]).
1. The modified right Riemann-Liouville derivative for 0 < γ < 1 is defined by:

∂γ f (x, y, t)
∂tγ

=
1

Γ(1 − γ)
d
dt

∫ T

t

f (x, y, s) − f (x, y,T)
(s − t)γ

ds,

where x, y ∈ R and t ∈ [0,T].
2. The Caputo time fractional derivative of order γ ∈ (0, 1), a, t ∈ R can be indicated as follows:

cDγ
a f (t) =

1
Γ(1 − γ)

∫ t

a
(t − τ)−γ

d
dτ

f (τ)dτ,

where Γ(·) is the Gamma function.

Definition 1.2. ([25]) The Mittag-Leffler function of one parameter is determined as:

E ȷ(σ) =
∞∑

n=0

σn

Γ( ȷn + 1)
, Re( ȷ) > 0, σ ∈ C.

The Mittag-Leffler function of two parameters is defined as:

E ȷ,ξ(σ) =
∞∑

n=0

σn

Γ( ȷn + ξ)
, Re( ȷ) > 0, ξ > 0, σ ∈ C,

where Γ(·) is the gamma function.



H. Arfaoui, M. Kharrat / Filomat 37:9 (2023), 2685–2697 2687

2. Time-fractional model

In the following section, we introduce the European put option problem under the fractional Heston
model:

∂γW
∂τγ

+
1
2

s2v
∂2
W

∂s2 + ρσsv
∂2
W

∂s∂v
+

1
2
σ2v

∂2
W

∂v2 + rs
∂W
∂s
+ κ(θ − v)

∂W
∂v
− rW = 0, (1)

for all (s, v, τ) ∈ QT
∞ = (0,∞) × (0,∞) × (0,T) and where ∂γW

∂τγ is the modified right Riemann-Liouville
derivative for 0 < γ < 1 defined in Definition 1.1, ρ ∈ (−1, 1) is the instantaneous correlation, σ is the
volatility of the variance, θ is the long-run variance, κ is the mean reversion rate and r is the interest rate.

Moreover, we consider the following boundary conditions:

W(s, v,T) = max(K − s, 0), (2)
lim
s→0
W(s, v, τ) = K, lim

s→∞
W(s, v, τ) = 0, (3)

lim
v→0
W(s, v, τ) = lim

v→∞
W(s, v, τ) = max(K − s, 0), (4)

Now, let us reformulate the above problem (1)-(4), (as in [24]), with the new variable in time t defined as
follows:

t = T − τ, for 0 < γ < 1.

We can deduce, as in [24], that:

∂γW(s, v, τ)
∂τγ

=
1

Γ(1 − γ)
d

dτ

∫ T

τ

W(s, v, ξ) −W(s, v,T)
(ξ − τ)γ

dξ,

=
1

Γ(1 − γ)
−d
dt

∫ T

T−t

W(s, v, ξ) −W(s, v,T)
(ξ − (T − t))γ

dξ,

= −
1

Γ(1 − γ)
d
dt

∫ t

0

W(s, v,T − η) −W(s, v,T)
(t − η)γ

dη. (5)

By denoting ζ(s, v, t) =W(s, v,T − t), we deduce form equation (5) that:

∂γW(s, v, τ)
∂τγ

= −
∂γζ(s, v, t)

∂tγ
, 0 < γ < 1,

where the fractional derivative ∂γζ
∂tγ is given by:

∂γζ(s, v, t)
∂tγ

=
1

Γ(1 − γ)
d
dt

∫ t

0

ζ(s, v, η) − ζ(s, v, 0)
(t − η)γ

dη, 0 < γ < 1.

So, the system (1) can be rewritten as:

∂γζ
∂tγ
=

1
2

vs2 ∂
2ζ

∂s2 + ρσvs
∂2ζ
∂s∂v

+
1
2
σ2v

∂2ζ

∂v2 + rs
∂ζ
∂s
+ κ(θ − v)

∂ζ
∂v
− rζ, (6)

with the following new boundary conditions:

ζ(s, v, 0) = max(K − s, 0), (7)
lim
s→0

ζ(s, v, t) = K, lim
s→∞

ζ(s, v, t) = 0, (8)

lim
v→0

ζ(s, v, t) = lim
v→∞

ζ(s, v, t) = max(K − s, 0), (9)

If we suppose that ζ ∈ C1 about the variable t, (0 < γ < 1). Then, we can prove, as in [24], that:

∂γζ
∂tγ

(s, v, t) =
1

Γ(1 − γ)
d
dt

∫ t

0

ζ(s, v, η) − ζ(s, v, 0)
(t − η)γ

dη,

=
1

Γ(1 − γ)

∫ t

0

dζ(s, v, ξ)
dξ

(t − ξ)−γ dξ,

= cDγ
t ζ(s, v, t), (10)
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where cDγ
t ζ is the Caputo fractional derivative of order 0 < γ < 1, (see Definition 1.1). In this case, equation

(6) can be rewritten as:

cDγ
t ζ =

1
2

vs2 ∂
2ζ

∂s2 + ρσvs
∂2ζ
∂s∂v

+
1
2
σ2v

∂2ζ

∂v2 + rs
∂ζ
∂s
+ κ(θ − v)

∂ζ
∂v
− rζ. (11)

In the rest of this article, we will study equation (11) numerically. In fact, we will give some conditions
for the stability and the positivity of the numerical solution of equation (11).

3. Splitting method

Equation (11) corresponds to a time-dependent two-dimensional nonlinear Diffusion/Advection equa-
tion that includes five types of spatial derivatives. Handling finite-difference methods, the existence of these
derivatives together in the same equation can distort the quality of the numerical solution. Furthermore, an
implicit finite difference scheme in the presence of five spatial derivatives generates numerous unknowns in
the numerical scheme producing considerable difficulties for the numerical implementation and entailing
rounding accumulation errors.

In what follows, we suggest using a splitting method [2]. Within the process of discretization, the splitting
method allows to handle separately each operator Diffusion and Advection by an adequate numerical
scheme. This method keeps the numerical properties (stability, consistency, quality, · · · ) of each used
scheme for each operator.

We divide the time interval [0,T] into (Nt + 1) equidistant points as follows:

∆t =
T
Nt

where tk = k∆t, for all k = 0, · · · ,Nt.

Consequently, we have:

[0,T] =
Nt−1⋃
k=0

[tk, tk+1].

Consider the approximation exhibited:
ζ(s, v, tk) ≈ ζk(s, v),

for all k = 0, · · · ,Nt and (s, v) ∈ (0,∞) × (0,∞).

The splitting method rests on solving the equation (11) on each interval [tk, tk+1] for all k = 0, · · · ,Nt − 1,
based upon the three steps:

(i) We solve the equation:

cDγ
t ζ = ρσvs

∂2ζ
∂s∂v

, on [tk, tk+ 1
3 ], (12)

with initial condition at tk : ζk.

Therefore, we obtain a solution at time step tk+ 1
3 denoted by ζk+ 1

3 .

(ii) Hence, we solve the equation:

cDγ
t ζ = rs

∂ζ
∂s
+ κ(θ − v)

∂ζ
∂v
− rζ, on [tk+ 1

3 , tk+ 2
3 ], (13)

with initial condition at tk+ 1
3 : ζk+ 1

3 ,

The solution at time step tk+ 2
3 is denoted by ζk+ 2

3 .
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(iii) We solve the equation:

cDγ
t ζ =

1
2

vs2 ∂
2ζ

∂s2 +
1
2
σ2v

∂2ζ

∂v2 , on [tk+ 2
3 , tk], (14)

with initial condition at tk+ 2
3 : ζk+ 2

3 .

We proceed in the same way until reaching the final time T = tNt and we solve simultaneously equations
(12), (13) and (14).

Remark 3.1. It’s well known [20] that the mixed derivative term ∂2ζ
∂s∂v in equation (11) is unstable. Moreover, we

know that the diffusion equation (14) is more stable than the equation (12). As a matter of fact, we begin the splitting
method by solving equation (12) in the first step and we finish by solving equation (14) to calm the unstable solution
arising from the first step. This method allows to obtain relevant numerical results.

4. Discretization of the Model

To solve the numerical problem (11), we need to select a numerical bounded domain where we can solve
(11) by approximations with finite differences. Hence, we consider the following numerical domain:

D =
{
(s, v) : s ∈ [sl, sr], sl , 0, v ∈ [vl, vr], vl , 0

}
. (15)

We define a uniform grid on the domainD as follows: let ∆s = sr−sl
Ns

and ∆v = vr−vl
Nv

. Now, we can build the
sequences (si)i , (v j) j:

si = sl + i∆s for all i = 0, · · · ,Ns,

v j = vl + j∆v for all j = 0, · · · ,Nv. (16)

Consider the approximations presented below:

ζ(si, v j, tk) ≈ ζk
i, j,

for all i = 0, · · · ,Ns, j = 0, · · · ,Nv and k = 0, · · · ,Nt.

• Discretization of the Caputo fractional time derivative term (cDγ
t ζ): we know from equation (10) that the

Caputo fractional time derivative term (cDγ
t ζ) is defined by:

cDγ
t ζ(s, v, t) =

1
Γ(1 − γ)

∫ t

0

dζ(s, v, ξ)
dξ

(t − ξ)−γ dξ.

As identified in [24], at the point (si, v j, tk+1), we get the following approximation:

cDγ
t ζ(si, v j, tk+1) ≈

(∆t)−γ

Γ(2 − γ)

k∑
m=0

(ζk+1−m
i, j − ζk−m

i, j )bm,

≈ α0

k−1∑
m=0

(bm+1 − bm)ζk−m
i, j − α0ζ

0
i, jbk + α0ζ

k+1
i, j ,

where α0 =
(∆t)−γ

Γ(2−γ) and bm = (m + 1)1−γ
−m1−γ.
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• Discretization of the problem (12): At the point (si, v j, tk+1), we have:

(∆t)−γ

Γ(2 − γ)

k∑
m=0

(ζk+1−m
i, j − ζk−m

i, j )bm =

ρσsiv j

∆s∆v

(
ζk+1

i+1, j+1 − ζ
k+1
i, j+1 − ζ

k+1
i+1, j + ζ

k+1
i, j

)
. (17)

• Discretization of the problem (13): At the point (si, v j, tk+1), we have:

(∆t)−γ

Γ(2 − γ)

k∑
m=0

(ζk+1−m
i, j − ζk−m

i, j )bm =

rsi

∆s

(1
2

(ζk+1
i+1, j+1 + ζ

k+1
i+1, j−1) − ζk+1

i, j

)
+

κ(θ − v j)
∆v

(
ζk+1

i, j+1 − ζ
k+1
i, j

)
− rζk

i, j. (18)

• Discretization of the problem (14): At the point (si, v j, tk+1), we have:

(∆t)−γ

Γ(2 − γ)

k∑
m=0

(ζk+1−m
i, j − ζk−m

i, j )bm =

s2
i v j

2(∆s)2

(
ζk+1

i+1, j − 2ζk+1
i, j +

1
2

(ζk+1
i−1, j+1 + ζ

k+1
i−1, j−1)

)
+

σ2v j

2(∆v)2

(
ζk+1

i, j+1 − 2ζk+1
i, j + ζ

k+1
i, j−1

)
. (19)

Remark 4.1. 1) For the discretization of equations (12), (13) and (14) we have used an implicit time finite
difference schemes. The basic merit of these schemes resides in the fact that they are unconditionally stable.

2) Notice that in the first step of the splitting method, in equation (17), only four unknowns are identified: ζk+1
i+1, j+1,

ζk+1
i, j+1, ζk+1

i+1, j, ζ
k+1
i, j . In addition, in the second step of the splitting method, in equation (18), we have three

unknowns: ζk+1
i, j+1, ζk+1

i+1, j, ζ
k+1
i, j . In the third step, in equation (19), we have five unknowns: ζk+1

i+1, j, ζ
k+1
i, j+1, ζk+1

i−1, j, ,
ζk+1

i, j−1, ζk+1
i, j . Thus, in each step, the numerical implementation is quite simple and the solution quality(Diffusion,

Advection) is ensured.

5. Study of the stability

The total spatial discretization of equation (11) is expressed as follows: for all i = 1, · · · ,Ns − 1 and
j = 1, · · · ,Nv − 1

cDγ
t ζi, j =

s2
i v j

2(∆s)2

(
ζi+1, j − 2ζi, j +

1
2

(ζi−1, j+1 + ζi−1, j−1)
)
+

ρσsiv j

4∆s∆v

(
ζi+1, j+1 − ζi, j+1 − ζi+1, j + ζi, j

)
+

σ2v j

2(∆v)2

(
ζi, j+1 − 2ζi, j + ζi, j−1

)
+

rsi

∆s

(1
2

(ζi+1, j+1 + ζi+1, j−1) − ζi, j

)
+

k(θ − v j)
∆v

(
ζi, j+1 − ζi, j

)
− rζi, j,
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where we mean by ζi, j = ζi, j(t) for all t ∈ [0,T]. Therefore, we obtain the following expression: for all
i = 1, · · · ,Ns − 1 and j = 1, · · · ,Nv − 1

cDγ
t ζi, j = τi, jζi+1, j − ϵi, jζi, j + α̃i, jζi−1, j+1 + αi, jζi−1, j−1 +

δi, jζi+1, j+1 + δ̃i, jζi+1, j−1 + (a j + f j)ζi, j+1 + a jζi, j−1, (20)

where the coefficients a j, τi, j, βi, j, f j, γi, δi, j, αi, j and ϵi, j are real numbers and are determined by:

a j =
σ2v j

2(∆v)2 , τi, j =
s2

i v j

2(∆s)2 , βi, j =
ρσsiv j

4∆s∆v
, f j =

k(θ − v j)
∆v

, γi =
rsi

∆s
, (21)

δi, j =
1
2
γi + βi, j, αi, j =

1
2
τi, j + βi, j, ϵi, j = 2τi, j + 2a j + γi + f j + r,

where if q = x + y ∈ R, then q̃ = x − y ∈ R.

Remark 5.1. Remark that the coefficients a j, τi, j, γi, are strictly positive real numbers. On the other side, the sign of
each coefficient βi, j, δi, j, αi, j, ϵi, j and f j depends on the signs of ρ ∈ (−1, 1) and the parameter θ.

Let Nsv = (Ns − 1) × (Nv − 1). We define the vector Q ∈ RNsv by: ∀t ∈ [0,T]

Q(t) = [ζ1,1, ζ1,2, · · · , ζ1,Nv−1, ζ2,1, ζ2,2, · · · , ζ2,Nv−1, · · · , ζNs−1,1, · · · , ζNs−1,Nv−1] ∈ RNsv .

Hence, the system (20) can be expressed as follows:
cDγ

t Q(t) = BQ(t) +M(t), (22)

with initial condition:

Q(0) = Q0. (23)

Remark 5.2. 1) The matrix B = (ai, j)i, j ∈ RNsv×Nsv has eight diagonals and is defined in terms of:

⋄The diagonal elements of B:
ai,i ∈ {−ϵk,ℓ, k = 1, · · · ,Ns − 1, ℓ = 1, · · · ,Nv − 1}.

⋄The non-diagonal elements of B for i , j:
ai, j ∈ {τk,ℓ, δk,ℓ, δ̃k,ℓ, aℓ, aℓ + fℓ, αk,ℓ, α̃k,ℓ, k = 1, · · · ,Ns − 1, ℓ = 1, · · · ,Nv − 1}.

2) The vector function M(t) ∈ RNsv and is defined only by the trace of the solution ζ(s, v, t) at the boundary ΓD of
the domainD identified in (15) as well as the coefficients τi, j, δi, j, δ̃i, j, a j, f j, αi, j, α̃i, j. The vector function M(t)
is indicated by:

M(t) =
[
ϕ(1) + δ̃1,1ζ2,0 + a0ζ1,0, ϕ(2), · · · , ϕ( j), · · · , ϕ(Nv − 2), ϕ(Nv − 1) +

δ1,Nv−1ζ2,Nv + 1Nv−1ζ1,Nv , ψ(2), · · · , ψ(i), · · · , ψ(Ns − 2), λ(1) +
ωNs−1ζNs−2,0 + a0ζNs−1,0, λ(2), · · · , λ( j), · · · , λ(Nv − 2), λ(Nv − 1) +

α̃Ns−1ζNs−2,Nv + 1Nv−1ζNs−1,Nv

]
∈ RNsv ,

where 1 j = a j + f j, the functions ϕ, λ and the vector function ψ ∈ R(Ns−3)×(Nv−1) are computed by:

▷ ϕ( j) = α̃1, jζ0, j+1 + α1, jζ0, j−1, j = 1, · · · ,Nv − 1,

▷ λ( j) = τNs−1, jζNs, j + δNs−1, jζNs, j+1 + δ̃Ns, jζNs, j−1, j = 1, · · · ,Nv − 1,

▷ ψ(i) =
[
αi,1ζi−1,0 + δ̃i,1ζi+1,0 + a1ζi,0, 0, · · · · · · , 0,

α̃i,Nv−1ζi−1,Nv + δi,Nv−1ζi+1,Nv + 1Nv−1ζi,Nv

]
∈ RNv−1, i = 2, · · · ,Ns − 2.

Remark that ζNs, j, ζ0, j, ζi,Nv and ζi,0 represent the discrete boundary conditions of the problem given by
ζ(s, v, t)|ΓD .
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Definition 5.3. ([26]) A matrix M = (mi, j)i, j ∈ Rn×n is called Metzler, if its off-diagonal elements are positive, i.e.:
mi, j ≥ 0, for all 1 ≤ i , j ≤ n.

Theorem 5.4. If ρ = 0, then the matrix B is Metzler.
Let ρ ∈ (−1, 1)\{0} and d = sr − sl. If θ and the ratio ∆s

∆v of the spatial steps satisfy the identities:

θ ≥ vr and
∆s
∆v
≤

1
|ρ|

min{
sl

σ
,

2rd
σvlNs

}, (24)

then the matrix B is Metzler.

Proof. It’s clear, from Remark 5.1, that we need to study the signs of the coefficients δi, j, δ̃i, j, αi, j, α̃i, j, f j with
respect to the values of ρ, θ. From this perspective, it is useful to distinguish the following two cases:

• When θ ≥ vr, the coefficients f j are positive. Indeed, from relations (15) and (16) we have v j ∈ [vl, vr]
for all j. Consequently, we have θ ≥ vr ≥ v j. Hence, the coefficients f j, (see relation (21)), are positive
for all j.

• When ρ ∈ (0, 1): since δi, j, αi, j are positive, then the terms δ̃i, j, α̃i, j must be positive to make sure the
matrix B is Metzler:

δ̃i, j =
1
2
γi − βi, j =

rsi

2∆s
−
ρσsiv j

4∆s∆v
≥ 0,

α̃i, j =
1
2
τi, j − βi, j =

s2
i v j

4(∆s)2 −
ρσsiv j

4∆s∆v
≥ 0.

Hence, we obtain:

∆s
∆v

≤
2r∆s
ρσv j

, ∀ j = 0, · · · ,Nv,

∆s
∆v

≤
si

ρσ
, ∀i = 0, · · · ,Ns.

Or

∆s
∆v

≤
2rd

ρσvlNs
, where d = sr − sl,

∆s
∆v

≤
sl

ρσ
.

Thus, we deduce:

∆s
∆v
≤

1
ρ

min{
2rd
σvlNs

,
sl

σ
}. (25)

• When ρ ∈ (−1, 0): since δ̃i, j, α̃i, j are positive, then the terms δi, j, αi, j must be positive to make sure the
matrix B is Metzler:

δi, j =
1
2
γi + βi, j =

rsi

2∆s
+
ρσsiv j

4∆s∆v
≥ 0,

αi =
1
2
τi, j + βi, j =

s2
i v j

4(∆s)2 +
ρσsiv j

4∆s∆v
≥ 0.
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Therefore, proceeding in the same way as above, we obtain:

∆s
∆v
≤ −

1
ρ

min{
2rd
σvlNs

,
sl

σ
}. (26)

Departing from estimations (25) and (26) we deduce the identity (24).

Remark 5.5. Referring to (7)-(9), we deduce that ζ(s, v, t)|ΓD and ζ(S, v, t)|t=0 are positive. Further more, the
coefficients τi, j, δi, j, δ̃i, j, a j, a j+ f j, αi, j, α̃i, j (in the expression of M(t)), are positive under condition (24). Consequently,
M(t) and Q0 are positive.

Based upon [17, 18], we deduce that the system (22)-(23) has an analytic solution defined as follows:

Q(t) = Eγ,1(Btγ)Q0 + χ[0,t]

(
tγ−1Eγ,γ(Btγ)

)
∗ χ[0,t]M(t), (27)

where χ[0,t] is the characteristic function of [0, t], and Eγ,1(·), Eγ,γ(·) are the Mittag-Leffler functions and the
symbol (∗) means the convolution product.

Lemma 5.6. For ρ = 0 or for ρ ∈ (−1, 1)\{0} and under the condition (24), the numerical solution of the system
(22)-(23) displayed by the proposed scheme is positive.

Proof. For ρ = 0 or for ρ ∈ (−1, 1)\{0} and under the condition (24), the matrix B is Metzler, (see Theorem
5.4). Consequently, we have:

Eγ,1(Btγ) ≥ 0, Eγ,γ(Btγ) ≥ 0.

Knowing from Remark 5.5 that Q0 ≥ 0 and M(t) ≥ 0, we infer that the solution Q(t) is positive.

Theorem 5.7. For any Q0 ∈ R
Nsv such that ∥Q0∥∞ ≤ ϱ, (ϱ > 0), the solution Q(t) to the problem (22)-(23) is stable

and satisfies the stability identity:

∥Q(t)∥∞ ≤ ϱEγ,1(Mtγ) + EtγEγ,γ(Mtγ), ∀t ∈ [0,T], (28)

where ∥B∥∞ ≤ M, E = E( 1
∆s ,

1
∆v ) and ϱ are constants independent of t. Moreover, we have:

∥Q(t)∥∞ ≤ K , ∀t ∈ [0,T], (29)

whereK = K ( 1
∆s ,

1
∆v ) is a constant independent of t.

Proof. Grounded on the expression of the analytic solution Q(t) exhibited in (27), we deduce that:

∥Q(t)∥∞ ≤ ∥Q0∥∞∥Eγ,1(Btγ)∥∞ + ∥χ[0,t]

(
tγ−1Eγ,γ(Btγ)

)
∗ χ[0,t]M(t)∥∞,

≤ ϱ∥Eγ,1(Btγ)∥∞ + ∥Eγ,γ(Btγ)∥∞∥χ[0,t]

(
tγ−1
)
∗ χ[0,t]M(t)∥∞,

≤ ϱ∥Eγ,1(Btγ)∥∞ + ∥Eγ,γ(Btγ)∥∞∥M(t)∥∞
( ∫ t

0
sγ−1 ds

)
,

where χ[0,t] is the characteristic function of [0, t]. It follows that:

∥Q(t)∥∞ ≤ ϱ∥Eγ,1(Btγ)∥∞ +
tγ

γ
∥Eγ,γ(Btγ)∥∞∥M(t)∥∞. (30)

We know that:

Eγ,1(Btγ) =
∑
k≥0

Bktγk

Γ(γk + 1)
, (31)

Eγ,γ(Btγ) =
∑
k≥0

Bktγk

Γ(γk + γ)
. (32)
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Thus, we deduce that:

∥Eγ,1(Btγ)∥∞ ≤

∑
k≥0

tγk

Γ(γk + 1)
∥B∥k∞, (33)

∥Eγ,γ(Btγ)∥∞ ≤

∑
k≥0

tγk

Γ(γk + γ)
∥B∥k∞. (34)

Recall that:

∥B∥∞ = max
k

{ Nsv∑
ℓ=1

|ak,ℓ|
}

Departing from the definition of the matrix B given in Remark 5.2 and under the condition (24), all the
non-diagonal elements of the matrix B are positive and the diagonal elements are negative. Additionally,
the maximum number of non-zero elements at all the rows of B is equal to eight elements. These elements
are expressed as follows: τi, j, δi, j, δ̃i, j, a j, a j + f j, αi, j, α̃i, j and −ϵi,i, (where ϵi,i > 0). Hence, we can establish
that:

∥B∥∞ = ϵi,i +
(
τi, j + δi, j + δ̃i, j + a j + a j + f j + αi, j + α̃i, j

)
i, j
,

= 4τi, j + 2γi + 4a j + 2 f j + r, ∀i = 0, · · · ,Ns, j = 0, · · · ,Nv.

Referring to the definition of the coefficients τi, j, γi, a j, f j, we can prove easily that there exists a constant
M > 0 such that:

∥B∥∞ ≤ M. (35)

Consequently, using the identities (33), (34) and (35), we get:

∥Eγ,1(Btγ)∥∞ ≤ Eγ,1(Mtγ) and ∥Eγ,γ(Btγ)∥∞ ≤ Eγ,γ(Mtγ). (36)

Based on the definition of the vector function M(t) as well as Remark 5.2, there exists a constantE = E( 1
∆s ,

1
∆v )

that is independent of t such that:

∥M(t)∥∞ ≤ E, ∀t ∈ [0,T]. (37)

In fact, the constant E = E( 1
∆s ,

1
∆v ) comes from the estimates made on each coefficient τi, j, δi, j, δ̃i, j, a j, a j + f j,

αi, j, α̃i, j where each one depends on 1
∆s and 1

∆v , (see Remark 5.2). Finally, the identity (28) can be obtained
from (30), (36) and (37). Since the Mittag-Leffler functions Eγ,1(Mtγ), Eγ,γ(Mtγ) are bounded for all t ∈ [0,T],
then we can establish the identity (29).

6. Numerical simulations and interpretations

In this section, we consider the time fractional-order derivative Heston model of order γ ∈ (0, 1) and the
time integer-order derivative Heston model of order 1 indicated by:

cDγ
t ζ =

1
2

vs2 ∂
2ζ

∂s2 + ρσvs
∂2ζ
∂s∂v

+
1
2
σ2v

∂2ζ

∂v2 + rs
∂ζ
∂s
+ κ(θ − v)

∂ζ
∂v
− rζ, (38)

∂ζ
∂t
=

1
2

vs2 ∂
2ζ

∂s2 + ρσvs
∂2ζ
∂s∂v

+
1
2
σ2v

∂2ζ

∂v2 + rs
∂ζ
∂s
+ κ(θ − v)

∂ζ
∂v
− rζ. (39)

We consider the same boundary conditions as presented in (7)-(9).

Example:1– The parameters considered in this example are determined as:

T = 0.25, [sl, sr] = [0.25, 40], [vl, vr] = [0.002, 1.2], Ns = Nv = 30, Nt = 100
γ = 0.8, K = 10, σ = 0.2, ρ = 0.001, r = 0.1, κ = 5.
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In this example, we investigate the numerical solution with respect to the stability condition (24) given
in Theorem 5.4 and verify the positivity of the solution given in Lemma 5.6. Remark that the numerical
solutions are in coherence with the theoretical results. Indeed, when the condition (24) is not verified
θ = 0.1 < vr = 1.2 the solution is not positive and unstable see Figure 2. On the other hand, when (24) is
verified θ = 2 > vr = 1.2 the solution is positive and stable see Figure 1.
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Figure 1: Solution with fractional derivative figure (a) versus solution with classical derivative figure (b): θ = 2 > vr = 1.2
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Figure 2: Solution with fractional derivative figure (a) versus solution with classical derivative figure (b): θ = 0.1 < vr =
1.2

Example:2– Notice that when |ρ| is close to zero, the spatial mixed derivative term ∂2ζ
∂s∂v of equation (11) has

a very weak influence on the numerical solution, (stable solution), see Figure 1 in Example:1. In fact, the
problem arises for large values of |ρ|, (when |ρ| is close to 1), which we do not find in literature [20], where
the maximum value of ρ was equal to 0.7. In this paper, thanks to our numerical method, we managed to
reach the value of ρ = −0.9, 0.9, see Figure 3.

T = 0.25, [sl, sr] = [0.25, 40], [vl, vr] = [0.002, 1.2], Ns = Nv = 18, Nt = 100
K = 10, σ = 0.9, ρ = −0.9, 0.9, θ = 2.0, r = 0.1, κ = 5.
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Figure 3: Solution withγ = 0.9: (a): ρ = 0.9, (b): ρ = −0.9.

Example:3– In this example, we examine the properties of the numerical solution by exploring the behavior
of the first order partial derivatives ∆ = ∂ζ

∂s and ν = ∂ζ
∂v .

T = 0.25, [sl, sr] = [0.25, 40], [vl, vr] = [0.002, 1.2], Ns = Nv = 30, Nt = 100
γ = 0.8, K = 10, σ = 0.2, ρ = 0.1, θ = 2, r = 0.1, κ = 5.

Notice that when S tends to zero, ∆ is decreasing fast up to −1. On the other side, when S ≈ K, ∆ is
increasing fast up to 0, see Figure 4. As expected, the put option price tends to zero for large asset price.
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Figure 4: ∆ = ∂ζ
∂s of the option (a) and ν = ∂ζ

∂v of the option (b).

7. Conclusion

In this research paper, we have studied the time fractional-order derivative of the pricing European
options under Heston model. We found some positivity conditions for the solution obtained relative to
the numerical methods used. Also, we were able to establish a stability result of the solution. Moreover,
we elaborate a new resolution for the pricing European option under the fractional Heston model based
on the splitting method. we have invested implicit time finite difference schemes. The intrinsic merit of
these schemes lies in the fact that they are unconditionally stable. This new method allowed us to provide
relevant numerical results in addition to what we found in literature confirming that the coefficient of
correlation lies always between -0.7 and 0.7. With our new numerical method, we are able to extend the
absolute value of the aforementioned coefficient to 0.9.
To corroborate the reliability of our results, we compared obtained results related to the fractional time
derivative Heston model to the classical Hesston model and we deduced that all results are correlated with
the options theory.
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