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Abstract. In this paper studies the exponential stability result is derived for the second-order fractional
stochastic integro-differential equations (FSIDEs) driven by sub-fractional Brownian motion (sub-fBm). By
constructing a successive approximation method, we present pth moment exponential stability result of
second-order FSIDEs using stochastic analysis techniques and fractional calculus (FC). At last, an example
is demonstrated to illustrate the obtained theoretical result.

1. Introduction

FC was introduced around the nineteenth century by great mathematicians Riemann and Liouville. The
theory of FC is a generalization of the integer order calculus specified by Leibnitz and L’Hospital in 1695.
It has become expeditiously burgeoning area in optics and signal processing [16], electrical networks [31]
and fluid flow [48]. In recent years, there has been a significant development in FC. Hence, there is a grow-
ing need to find the qualitative behaviors of the fractional differential equations (FDEs), for more details
interested readers may refer the monographs [18, 20, 25, 28, 34, 40], articles [1–4, 6, 7, 9, 13, 30, 36, 38, 39, 41–
43, 45, 51] and references cited therein. The concept of semigroups of bounded linear operators is taken
as an important concept for dealing differential and integro-differential equations in infinite dimensional
spaces (see, [1–3, 6]). On the other hand, in numerous mathematical models of real world or man made
phenomena, we are led to dynamical systems which involve some inherent randomness. These systems are
called stochastic systems. Stochastic differential equations (SDEs) have attracted much attention and have
played an important role in many ways such as option pricing, forecast of the growth of population, etc.
The modeling of most problems in real situations is described by stochastic differential equations rather
than deterministic equations. Thus, it is of great importance to design stochastic effects in the study of
fractional-order dynamical systems.
The focus on second-order equations is to study them directly rather than make them become first-order
system, see [15, 44]. In many cases, it is advantageous to treat the second-order stochastic differential
equations directly rather than converting them to first-order systems. A variety of problems arising in
mechanics, elasticity theory, molecular dynamics and quantum mechanics can be described in general by
second-order nonlinear differential equations. The second-order differential equations involving random-
ness are seem to be more accurate model in continuous time to account for integrated processes that can
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be made stationary. Due to this reason, focus on second-order differential equations are emerged in recent
years.
In general, the fBm is a generalization of standard Bm that exhibits self-similarity, long-range depen-
dence, and stationary increments. Many researchers studied stochastic differential equations with fBm, see
[11, 17, 26, 29, 38] and devoted to study the mild solution of the second-order neutral stochastic differential
equation with infinite delay driven by fBm of the following form

CDα
0+ [y′(t) − f (t, yt)] = [A(t)y(t) + 1(t, yt)]dt + h(t, yt)dw(t) + σ(t)dBH

Q(t), t ∈ J = [0,T] (1)

y(0) = ϕ ∈ B,
y′(0) = ξ,

where CDα
0+ refers the Caputo derivative of order 0 < α < 1 and BH

Q(t) is a fBm with Hurst index H ∈ (0, 1).
The above fBm model (1) as a self-similar Gaussian process and random field has exciting applications in
many areas, including science, turbulence, and the financial market, see [5, 26]. Also, the Rosenblatt process
appears as a stationary series of long-range dependent and self-similar processes, but it is not a Gaussian
process see [13]. However, when the Gaussianity is plausible for the model in concrete situations, one can
use the fBm. However, a huge number of literature for fBm and Rosenblatt processes exist. However,
in 2004, Bojdecki et al. [8] proposed another improvement of the Brownian motion, which has all the
properties of the fBm except stationary increments, and is called sub-fractional Brownian motion (sub-fBm
in shortly). Compared with the fBm, increments of sub-fBm are correlated weakly in non-overlapping
intervals, and their covariance decays rapidly as the distance between intervals tends to infinity. Because of
this feature, it is obvious that the sub-fBm is more appropriate than the fBm to model the financial markets
problems. The sub-fBm (ζH

δ )δ∈R+ satisfies the following properties:

1. Self-similarity: for any a ≥ 0,
(ζH

aδ)δ∈R+ = aH(ζH
δ )δ∈R+ .

2. Long-rang dependence: for any H ∈ ( 1
2 , 1), if we let ρ(n) = cov(ζH

1 , ζ
H
n+1 − ζ

H
n ), then

∞∑
n=1
ρ(n) = ∞.

3. Varience: ∀δ ∈ R+,∀H ∈ (0, 1),Var(ζH
δ ) = E[(ζH

δ )2] = (2 − 22H−1)δ2H.

4. If H , 1
2 , the process (ζH

δ )δ∈R+ , is neither a markov process nor a semi-martingale.
5. The second-order moment increments of the process (ζH

δ )δ∈R+ are not stationary, in the sense that,
supposed δ > s, the second-order moment increments are

E[(ζH
δ − ζ

H
s )2] = −22H−1(δ2H + s2H) + (δ + s)2H + (δ − s)2H.

Then, there is

(δ − s)2H
≤ E[(ζH

δ − ζ
H
s )2] ≤ (2 − 22H−1)(δ − s)2H,H ∈ (0,

1
2

)

(2 − 22H−1)(δ − s)2H
≤ E[(ζH

δ − ζ
H
s )2] ≤ (δ − s)2H,H ∈ (

1
2
, 1).

One can write the real-time model of stock price process {Sδ, δ ≥ 0} involving sub-fBm as

dSδ = µSδ dδ + σSδ dζH
δ

under the following assumptions:

1. The dynamic of the underlying stock prices follow the sub-fBm (ζH
δ )δ∈R+ .

2. Before the maturity time of the options, the risk-free interest rate r, the expected return of the stock µ,
and the volatility of the stock price σ are all constants.

3. There are no transaction costs or taxes in buying or selling the stocks or options (i.e., the market is
frictionless).
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4. The dividends paid by the stocks before the maturity time of the options are zero (i.e., the stocks are
dividend-free).

5. The option can be exercised only at the maturity time.

Therefore, some other generalizations of fBm and Rosenblatt process to be introduced. There has been
a thorough investigation of self-similar Gaussian processes. The major reason for the complexity of self-
similar Gaussian processes is that they do not have a stationary increment process. Henceforth, a mechanism
of sub-fBm has been introduced, which is an intermediate between Brownian motion and fBm. This
process arises from occupation on the branching particle time fluctuations with Poisson initial condition;
for convenience, the reader may refer [8, 33, 47]. We provide comparisons with fBm and sub-fBm in the
following table.

S. No fBm sub-fBm
1. Long-memory if H < 1 Short memory
2. The mixed processes The mixed processes

= sums of independent Bm and fBm = independent Bm and sub-fBm
3. Is Dirichlet if H < 1 Quasi-Dirichlet if H < 1
4. mean zero and covariance function min(s, t) Similar.

Due to the exciting property of sub-fBm, few results have been analyzed SDEs with sub-fBm, for more
details readers may refer [8, 10, 14, 24, 33, 35, 47] and references therein. In the last few years, some significant
works have been done on the stability analysis of FSDEs driven by fBm; for details, see [7, 9, 12, 13, 19, 21–
23, 38, 39, 49, 50]. Inspired by the above works, we study the pth moment exponential stability of FSIDEs
driven by sub-fBm. Best of authors knowledge, so far only a very few works exist in the literature related
to the exponential stability of FSIDEs driven by sub-fBm.

The major contributions of this manuscript are listed as below:

• The well-posedness of FSIDEs is proved in stochastic settings.

• A contemporary integral inequality technique is used together with the successive approximation
method.

• The exponential stability result is obtained in the pth moment norm for the second-order FSIDEs
driven by sub-fBm.

• An example is provided to validate the obtained results.

This article is summarized as follows: Section 2 deals with problem formation and fundamental theories
which will be used in the sequel. The exponential stability of FSIDEs driven by sub-fBm is studied in
section 3. An example is provided in section 4 to validate the efficiency of the obtained theoretical result.
Finally, the conclusion is drawn in section 5.

2. Model Description

In this section, we focus on the following FSIDEs driven by sub-fBm,

CDα
0+x(δ) =Ax(δ) + f (δ, xδ) +

δ∫
0

1(τ, xτ)dw(τ) + σ(δ)dSH
Q(δ), δ ∈ J := [0,T], T > 0 (2)

x(δ) = ϕ0, x′(δ) = ϕ1, −r ≤ δ ≤ 0,

where x(δ) denotes the state variable takes values in a Hilbert spaceH with the inner product < ·, · >H and
the norm ∥ · ∥H , CDα

0+ denotes the Caputo derivative of order 1 < α < 2; A : D(A) ⊂ H → H generates
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the infinitesimal generator of an cosine families {Sα(δ)}δ≥0 and related sine families {Tα(δ)}δ≥0 of operators
on the Hilbert space H . Let K be the separable Hilbert space with inner product < ·, · >K and the norm
∥ · ∥K. Let C := C([−r, 0],H) be the space of all continuous functions x : [−r, 0] → H with norm defined by
∥x(s)∥p = sups∈[−r,0] ∥x(s)∥p. Also, for x ∈ C([−r,T],H), we have xδ ∈ C for δ ∈ J, xδ(s) = x(δ + s) for s ∈ [−r, 0].
Here, SH

Q(δ) denotes an Q-sub-fBm with Hurst index H ∈ ( 1
2 , 1) and {w(δ) : δ ∈ J} is a standard Wiener

process. ϕ0 and ϕ1 are F0-measurable H-valued random processes. The nonlinear maps f : J × C → H ,
1 : J × C → L0

Q(K,H) and σ : J → L0
Q(K,H) are the appropriate continuous functions. Here, L0

Q(K,H)

denote the Q-Hilbert Schmidt operators fromK→H . Let B = Ĉ(J,Lp(Ω̃,H)) be the space of all continuous

maps from J into Lp(Ω̃,H) which is also a Banach space with norm ∥x(δ)∥ =
[

sup
δ∈J
∥x(δ)∥p

] 1
p .

3. Preliminaries

In this section, we summarily recollect some elementary definitions of Riemann-Liouville (R-L) fractional
derivative & integral and Caputo derivative. Also, the basic lemmas, and semi-group theory are highlighted,
which are used in the sequel. Let (Ω̃,F,P) be a complete filtered probability space equipped with complete
family of right continuous increasing sub σ-algebras {Fδ, δ ∈ J} satisfying Fδ ⊂ F, a H-valued random
variable ofF-measurable function x(δ) : Ω̃→H . LetS = {x(δ, ω) : Ω̃→H : δ ∈ J} be a collection of random
variables known as stochastic process and usually represented by x(δ) by suppressing ω ∈ Ω̃. Let {γn(δ)}∞n=1
be a real valued one-dimensional standard Bm independent of (Ω̃,F,P). Let w(δ) =

∑
∞

n=1
√
λnγn(δ)ζn(δ), δ ≥

0, where, λn ≥ 0 are non-negative real numbers and {ζn}(n = 1, 2, . . . ) is complete orthonormal basis in K.
Let Q ∈ L(K,H) be defined by Qζn = λnζn with finite Tr(Q) =

∑
∞

n=1 λn < ∞. From the above, the K-valued
stochastic process w(δ) is the Q-Wiener process. LetΨ ∈ L0

Q(K,H),

∥Ψ∥2Q = Tr(ΨQΨ∗) =
∞∑

n=1

∥

√
λnΨζn∥

2.

If ∥Ψ∥Q < ∞, then Ψ is known as Q-Hilbert Schmidt operator. For more details on concepts and theories
on SDEs, one can refer the articles [27, 29, 33, 36, 37, 41] and references therein.

Definition 3.1. [18] The R-L fractional integral of order q for a continuous function f : J→ R is given by,

Iq
0+ f (δ) =

1
Γ(q)

δ∫
0

(δ − s)q−1 f (s)ds, δ > 0, n − 1 < q < n,

provided that the RHS is pointwise defined on J.

Definition 3.2. [20] The R-L fractional derivative of order q, of a function f : J→ R is defined by,

Dq
0+ f (δ) =

1
Γ(n − q)

( d
dδ

)n δ∫
0

(δ − s)n−q−1 f (s)ds, δ > 0, n − 1 < q < n,

provided that the RHS is pointwise defined on J, where n = [q] + 1, [q] denotes the integral part of number q, and Γ
is the usual Gamma function.

Definition 3.3. [22] The Caputo fractional derivative of order q for a function f : J→ R is defined as,

CDq
0+ f (δ) =

1
Γ(n − q)

δ∫
0

(δ − s)n−q−1 f (n)(s)ds, n − 1 < q < n,

where (n) denotes the nth derivative, furnished that the RHS is pointwise defined on J.
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Definition 3.4. [23, 32, 46] The solution operator {Sα(δ)}δ≥0 andA is the infinitesimal generator, if

1. Sα(0) = I, Sα(δ) is strongly continuous for δ ≥ 0;
2. ASα(δ)τ = Sα(δ)Aτ and Sα(δ)D(A) ⊂ D(A) and ∀ τ ∈ D(A) , δ ≥ 0;
3. The solution of system (2) is Sα(δ)τ , ∀ τ ∈ D(A).

Definition 3.5. The sub-fBm is a continuous centered Gaussian process (ζH
δ )δ∈R+ , starting from zero, and with the

covariance given by

Cov(ζH
δ , ζ

H
s ) = δ2H + s2H

−
1
2

((δ + s)2H + |δ − s|2H),∀δ ∈ R+, s ∈ R+.

where Hurst index H ∈ (0, 1).

Definition 3.6. A {Fδ}δ≥0-adapted X-valued stochastic process x(δ) (δ ∈ J) with cadlag path is known as mild
solution of (2) provided the following integral equation holds

x(δ) =



ϕ(δ), δ ∈ [−r, 0]

Sα(δ)ϕ0 + Tα(δ)ϕ1 +
δ∫

0
Tα(δ − s) f (s, xs)ds +

δ∫
0
Tα(δ − s)

×

( τ∫
0
1(θ, xθ)dw(θ)

)
ds +

δ∫
0
Tα(δ − s)σ(s)dSH

Q(s), δ ∈ J.

Definition 3.7. [13] The mild solution x(δ) of the given Cauchy problem (2) is called pth moment exponentially stable
(p ≥ 2), if ∃ +ve constants µ > 0, ⊕̂ ≥ 1

E∥x(δ)∥p ≤ ⊕̂e−µδ, δ ≥ 0, p ≥ 2.

Lemma 3.8. [27] (Burkholder-Davis-Gundy inequality) If p ≥ 2, then the L0
Q(K,H)-valued predictable process

1(s) satisfies

sup
s∈J
E
∥∥∥∥ δ∫

0

1(s)dw(s)
∥∥∥∥p ≤ Cp


δ∫

0

(E∥1(s)∥p
L0

Q
)

2
p ds


p
2

, δ ∈ J,

where Cp =
( p(p−1)

2

) p
2
, and E denotes the mathematical expectation.

Lemma 3.9. [24] If σ : J→ L0
Q(K,H) and satisfies

δ∫
0
∥σ(s)∥p

L0
Q
ds < ∞ for any δ ∈ [0,T], then

E
∥∥∥∥ δ∫

0

σ(s)dSH
Q(s)
∥∥∥∥p
H
≤ CHδpH−1

δ∫
0

E∥σ(s)∥p
L0

Q
ds.

Lemma 3.10. [9] Suppose that for h > 0, η1, η2 ∈ (0, h], there exist constants ξi > 0 (i = 1, 2, 3, 4) and a function
ψ : [−τ,∞)→ [0,∞) s.t

ψ(δ) ≤



ξ1e−η1δ + ξ2e−η2δ, δ ∈ [−r, 0]

ξ1e−η1δ + ξ2e−η2δ + ξ3

δ∫
0

e−η2(δ−s) sup
θ∈[−r,0]

ψ(s + θ)ds

+ξ4

δ∫
0

e−η2(δ−s) sup
θ∈[−r,0]

ψ(s + θ)ds, δ ≥ 0,

(3)
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and if

ξ4
e−µδ1

η2 − µ
− ξ3

e−η2δ1

η2 − µ
< 1 (4)

then, we have

ψ(t) ≤ Nϵe−µδ for δ ≥ −τ, (5)

where µ ∈ (0, η1Λ η2) is a positive root of the equation ξ4
e−µδ1

η2−µ
− ξ3

e−η2δ1

η2−µ
= 1 and

Nϵ = max
{
ξ1 + ξ2,

(η2 − µ)ξ2

ξ4eµδ1

}
> 0.

In order to prove our main result, we enforce the following hypotheses.

(A1) A generates cosine families of bounded linear operators Sα(δ) and related sine families of operators
Tα(δ), δ ≥ 0 onH , and thus there exist non-negative constants a1, a2 s.t

sup
δ≥0
∥Sα(δ)∥ ≤ a1

sup
δ≥0
∥Tα(δ)∥ ≤ a2

(A2) The nonlinear continuous functions f : J × C → H and 1 : J × C → L0
Q(K,H) satisfy the Lipschitz

condition, for all δ ∈ J, x1, x2 ∈ H , s.t

E∥ f (δ, x1(δ)) − f (δ, x2(δ))∥p
∨
E∥1(s, x1(s)) − 1(s, x2(s))∥p ≤ ρ(δ)(E∥x1 − x2∥

p)

where, ρ(·) is a concave non-decreasing function from R+ to R+ s.t ρ(0) = 0, ρ(ν) > 0 for ν > 0 and∫
0+

dν
ρ(ν) = ∞.

(A3) ∀ δ ∈ J, ∃ a +ve constant N0 s.t

(i)
δ∫

0
E∥ f (s, 0)∥pds

∨ τ∫
0
E∥1(s, 0)∥pds ≤ N0,

(A4) The mapping σ : J→ L0
Q(K,H) satisfies

δ∫
0

E∥σ(s)∥pds < ∞.

(A5) For strongly continuous cosine families Sα(δ) and sine families Tα(δ), δ ≥ 0, ∃ +ve constants µ1 and µ2
with M̃1, M̃2 > 1 such that

sup
δ≥0
∥Sα(δ)∥ ≤ M̃1e−µ1δ

sup
δ≥0
∥Tα(δ)∥ ≤ M̃2e−µ2δ.
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4. Main result

In order to prove the existence of mild solution for a given system (2), we construct the sequence of
successive approximation as follows

x0(δ) = Sα(δ)ϕ0 + Tα(δ)ϕ1, δ ∈ J
xn(δ) = ϕ(δ), δ ∈ [−r, 0]

xn(δ) = Sα(δ)ϕ0 + Tα(δ)ϕ1 +

δ∫
0

Tα(δ − s) f (s, xn−1
s )ds +

δ∫
0

Tα(δ − s)
( τ∫

0

1(θ, xn−1
θ )dw(θ)

)
ds

+

δ∫
0

Tα(δ − s)σ(s)dSH
Q(s), δ ∈ J, n ≥ 1. (6)

Theorem 4.1. Assume that the hypotheses (A1) − (A4) hold, then the given Cauchy problem (2) has a unique mild
solution.

Proof: For better readability, the proof is given by splitting into the following three steps
Step 1:
For all δ ∈ J, {xn(δ)}∞n=1, n ≥ 1 is bounded. It is apparently x0(δ) ∈ B. Let x0 be a initial approximation and
from (6), we have

E∥xn(δ)∥p = 5p−1
{
E
∥∥∥∥Sα(δ)ϕ0 + Tα(δ)ϕ1 +

δ∫
0

Tα(δ − s) f (s, xn−1
s )ds

+

δ∫
0

Tα(δ − s)
( τ∫

0

1(θ, xn−1
θ )dw(θ)

)
ds +

δ∫
0

Tα(δ − s)σ(s)dSH
Q(s)
∥∥∥∥p}

≤ 5p−1
5∑

i=1

Ii. (7)

Now, we estimate each term on the RHS of the above inequality (7). By using assumption (A1), we have

I1 ≤ ap
1 E∥ϕ0∥

p,

I2 ≤ ap
2 E∥ϕ1∥

p.

By assumptions (A1) − (A3) and the Hölder’s inequality, we get the following estimate for I3

I3 = E
∥∥∥∥ δ∫

0

Tα(δ − s) f (s, xn−1
s )ds

∥∥∥∥p

≤ ap
2

δ∫
0

E
∥∥∥∥ f (s, xn−1

s ) − f (s, 0) + f (s, 0)
∥∥∥∥pds

≤ 2p−1ap
2δ

p−1
[ δ∫

0

ρ(E∥xn−1
s ∥

p)ds +N0

]
.
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We estimate I4 by using Lemma 3.8 and assumptions (A1) − (A3) as follows

I4 = E
∥∥∥∥ δ∫

0

Tα(δ − s)
( τ∫

0

1(θ, xn−1
θ )dw(θ)

)
ds
∥∥∥∥p

≤ ap
2Cp T

p
2

[ τ∫
0

E∥1(θ, xn−1
θ )∥pdθ

]

≤ 2p−1ap
2CpT

p
2

[ δ∫
0

ρ(E∥xn−1
s ∥

p)ds +N0

]
.

Lemma 3.9 is used to derive the following estimate

I5 = E
∥∥∥∥ δ∫

0

Tα(δ − s)σ(s)dSH
Q(s)
∥∥∥∥p

≤ ap
2CHδpH−1

δ∫
0

E∥σ(s)∥pds

≤ ap
2CHδpH−1L.

These estimates together with (7) yields

E∥xn(δ)∥p ≤ 5p−1
{
ap

1 E∥ϕ0∥
p + ap

2 E∥ϕ1∥
p + 2p−1ap

2δ
p−1
[ δ∫

0

ρ(E∥xn−1
s ∥

p)ds +N0

]

+ 2p−1ap
2CpT

p
2

[ δ∫
0

ρ(E∥xn−1
s ∥

p)ds +N0

]
+ ap

2CHδpH−1L
}
.

≤ 5p−1[ap
1E∥ϕ0∥

p + ap
2 E∥ϕ1∥

p + ap
2CHδpH−1L]

+ 10p−1ap
2δ

p−1

δ∫
0

ρ(E∥xn−1
s ∥

p)ds + 10p−1ap
2δ

p−1N0

+ 10p−1ap
2CpT

p
2

δ∫
0

ρ(E∥xn−1
s ∥

p)ds + 10p−1ap
2CpT

p
2 N0

≤ R1 + 10p−1ap
2δ

p−1

δ∫
0

ρ(E∥xn−1
s ∥

p)ds + 10p−1ap
2CpT

p
2

δ∫
0

ρ(E∥xn−1
s ∥

p)ds,

where

R1 = 5p−1[ap
1E∥ϕ0∥

p + ap
2 E∥ϕ1∥

p + ap
2CHδpH−1L] + 10p−1ap

2δ
p−1 + 10p−1ap

2CpT
p
2 N0.

Here, ρ(·) is concave and ρ(0) = 0, and one can find a pair of +ve constants β1 and β2 s.t ρ(δ) ≤ β1 + β2δ for
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δ ≥ 0, now

E∥xn(δ)∥p ≤ R1 + 10p−1β1ap
2(δp−1 + CpT

p
2 ) + 10p−1β2ap

2(δp−1 + CpT
p
2 )

δ∫
0

ρ(E∥xn−1
s ∥

p)ds

≤ R2 + 10p−1β2ap
2(δp−1 + Cp T

p
2 )

δ∫
0

ρ(E∥xn−1
s ∥

p)ds,

where R2 = R1 + 10p−1β1ap
2 (δp−1 + Cp T

p
2 ).

For any k ≥ 1

max
1≤n≤k

E sup
0≤s≤δ

∥xn−1(s)∥p ≤ E∥x0(s)∥p + max
1≤n≤k

sup
0≤s≤δ

E∥xn(s)∥p

max
1≤n≤k

sup
0≤s≤δ

E∥xn(s)∥p ≤ R2 + 20p−1β2 ap
2 (δp−1 + CpT

p
2 )ρ δ E∥x0(s)∥p

+ 20p−1 β2 ρ ap
2(δp−1 + CpT

p
2 )

δ∫
0

(
max
1≤n≤k

sup
0≤s≤δ

E∥xn(s)∥p
)
ds

≤ R3 + 20p−1 β2 ρ ap
2(δp−1 + CpT

p
2 )

δ∫
0

(
max
1≤n≤k

sup
0≤s≤δ

E∥xn(s)∥p
)
ds,

where R3 = R2 + 20p−1β2 ap
2 (δp−1 + CpT

p
2 )ρ δ E∥x0(s)∥p.

Hence,

max
1≤n≤k

sup
0≤s≤δ

E∥xn(s)∥p ≤ R3 + 20p−1 β2 ρ ap
2 (δp−1 + Cp T

p
2 )

δ∫
0

(
max
1≤n≤k

sup
0≤s≤δ

E∥xn(s)∥p
)
ds. (8)

Using the Gronwall inequality, the above inequality (8) becomes

max
1≤n≤k

sup
0≤s≤δ

E∥xn(s)∥p ≤ R3 e20p−1β2 ρ ap
2 (δp−1+CpT

p
2 )δ.

Hence,

E∥xn(δ)∥p ≤ ap
1E∥ϕ∥

p + b R3 e20p−1β2 ρ ap
2 (δp−1+CpT

p
2 )δ
≤ K,

for n ≥ 1, δ ∈ J which shows that {xn(δ)}∞n=1 is bounded in B.
Step 2 :
Now we prove {xn(δ)}∞n=1, n ≥ 1 is a Cauchy sequence.
Consider the {xn(δ)}∞n=1 defined in (6) and define the sequence {xn+1(δ)}∞n=1 as

xn+1(δ) = Sα(δ)ϕ0 + Tα(δ)ϕ1 +

δ∫
0

Tα(δ − s) f (s, xn
s )ds +

δ∫
0

Tα(δ − s)
( τ∫

0

1(θ, xn
θ)dw(θ)

)
ds

+

δ∫
0

Tα(δ − s)σ(s)dSH
Q(s), δ ∈ J, n ≥ 1.
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then, we have

E∥xn+1(δ) − xn(δ)∥p ≤ 2p−1
{
E
∥∥∥ δ∫

0

Tα(δ − s)[ f (s, xn
s ) − f (s, xn−1

s )]ds
∥∥∥p

+ E
∥∥∥ δ∫

0

Tα(δ − s)
( τ∫

0

[1(θ, xn
θ) − 1(θ, xn−1

θ )]dw(θ)
)
ds
∥∥∥p}

≤ 2p−1
2∑

i=1

Ji. (9)

By using assumptions (A1) − (A2) we estimate J1 as,

J1 = E
∥∥∥ δ∫

0

Tα(δ − s)[ f (s, xn
s ) − f (s, xn−1

s )]ds
∥∥∥p

≤ ap
2 δ

p−1

δ∫
0

E∥ f (s, xn
s ) − f (s, xn−1

s )∥pds

≤ ap
2 δ

p−1

δ∫
0

ρ(E∥xn
s − xn−1

s ∥
p)ds.

From Lemma 3.8 and assumptions (A1) − (A2) we estimate

J2 = E
∥∥∥ δ∫

0

Tα(δ − s)
( τ∫

0

[1(θ, xn
θ) − 1(θ, xn−1

θ )]dw(θ)
)
ds
∥∥∥p

≤ ap
2 T

p
2 Cp

[ τ∫
0

E∥1(θ, xn
θ) − 1(θ, xn−1

θ )∥pdθ
]

≤ ap
2 T

p
2 Cp

δ∫
0

ρ(E∥xn
s − xn−1

s ∥
p)ds.

Using the estimates J1 and J2, (9) can be written as,

E∥xn+1(δ) − xn(δ)∥p ≤ 2p−1 ap
2

(
δp−1 + T

p
2 Cp

) δ∫
0

ρ(E∥xn
s − xn−1

s ∥
p)ds.
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Let Φn(δ) = sup
δ∈J
E∥xn+1(δ) − xn(δ)∥p. Thus the above inequality becomes

Φn(δ) = 2p−1 ap
2

(
δp−1 + T

p
2 Cp

) δ∫
0

ρ(E∥xn(s) − xn−1(s)∥p)ds

≤ 2p−1 ap
2

(
δp−1 + T

p
2 Cp

) δ∫
0

ρ(Φn−1(s))ds

:= R4

δ∫
0

ρ(Φn−1(s))ds, (10)

where R4 = 2p−1 ap
2

(
δp−1 + T

p
2 Cp

)
.

Moreover, for n = 1 in (10),

Φ1(δ) ≤ R4

δ∫
0

ρ(E∥x1(s) − x0(s)∥p)ds

≤ R4

δ∫
0

ρ(E∥x0(s)∥p)ds where, k1 = ρ E∥x0(s)∥p

≤ R4 k1 δ,

where k1 := ρ E∥x0(s)∥p. Also, for n = 2 in (10), we have

Φ2(δ) ≤ R4

δ∫
0

ρ(E∥x2(s) − x1(s)∥p)ds

≤ R4

δ∫
0

ρ(E∥x1(s)∥p)ds

≤ R4

δ∫
0

ρ (Φ1(s))ds

≤ (R4)2 k1
δ2

2
.

By applying mathematical induction from (10), we have

Φn(δ) ≤ (R4)n k1
δn

n!
, n ≥ 1, δ ∈ J.

If m ≥ n ≥ 0,

sup
δ∈J
E∥xm(δ) − xn(δ)∥p ≤

∞∑
r=n

E∥xr+1(δ) − xr(δ)
∥

p

≤

∞∑
r=n

(R4)r k1
δr

r!
→ 0 as n→∞.
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Hence, we conclude that {xn(δ)}∞n=1, n ≥ 1, is a Cauchy sequence.
Step 3 :
We have to show that the existence and uniqueness of system (2).
Now, we prove the existence of solution.
By using Step 2, (i.e) {xn(δ)}∞n=1, n ≥ 1, is a Cauchy sequence, which is convergence. Then by using Lemma
(Borel-Cantelli) taking the limits on both sides of the equation (6), we get

x(δ) = Sα(δ)ϕ0 + Tα(δ)ϕ1 +

δ∫
0

Tα(δ − s) f (s, xs)ds +

δ∫
0

Tα(δ − s)
( τ∫

0

1(θ, xθ)dw(θ)
)
ds

+

δ∫
0

Tα(δ − s)σ(s)dSH
Q(s).

Hence, we obtain that x(δ) is a solution to the given Cauchy problem (2).
Now, we prove the Uniqueness of solution.
Now, we prove the uniqueness of solution. Let x(δ), y(δ) ∈ B be two solutions on δ ∈ J, we have

E∥x(δ) − y(δ)∥p ≤ 2p−1 ap
2

(
δp−1 + T

p
2 Cp

) δ∫
0

ρ(E∥x(s) − y(s)∥p)ds. (11)

By Bihari inequality, the above (11)
E∥x(δ) − y(δ)∥p = 0.

Therefore, x(δ) = y(δ), ∀ δ ∈ J.
Hence, the existence and uniqueness of solution of (2) on J is obtained. Accordingly, all the conditions are
satisfied by the iteration technique which implies that the system (2) has a unique mild solution.

5. Exponential Stable

In this section, the sufficient criteria of the mild solution of pth moment exponential stability for FSIDEs
driven by sub-fBm are established.

Theorem 5.1. Suppose that assumptions (A2)−(A5) hold, then the mild solution x(δ) described in (2) is exponentially
stable in the pth moment sense on J provided that

5p−1
{2p−1M̃p

2bp−1 + 2p−1M̃p
2bp−1N0 + 2p−1M̃p

2Cp

(µ2(p − 1)
(p − 2)

)1− p
2 (1 +N0)} < 1. (12)

Proof: Let x(δ) be the solution of the given Cauchy problem (2) described by

x(δ) = Sα(δ)ϕ0 + Tα(δ)ϕ1 +

δ∫
0

Tα(δ − s) f (s, xs)ds +

δ∫
0

Tα(δ − s)
( τ∫

0

1(θ, xθ)dw(θ)
)
ds

+

δ∫
0

Tα(δ − s)σ(s)dSH
Q(s).

Then

E∥x(δ)∥p = 5p−1
{
E
∥∥∥Sα(δ)ϕ0 + Tα(δ)ϕ1 +

δ∫
0

Tα(δ − s) f (s, xs)ds
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+

δ∫
0

Tα(δ − s)
( τ∫

0

1(θ, xθ)dw(θ)
)
ds +

δ∫
0

Tα(δ − s)σ(s)dSH
Q(s)
∥∥∥p}

E∥x(δ)
∥∥∥p ≤ 5p−1

5∑
i=1

Bi. (13)

Here, it is easy to estimate each term of the RHS of the above inequality (13) as below.

B1 ≤ M̃p
1e−pµ1(δ)E∥ϕ0∥

p

B2 ≤ M̃p
2e−pµ2(δ)E∥ϕ1∥

p.

By using assumptions (A2) − (A4), we estimate B3 as

B3 = E
∥∥∥ δ∫

0

Tα(δ − s) f (s, xs)ds
∥∥∥p

≤ M̃p
2bp−1

( δ∫
0

e−pµ2(δ−s)E∥ f (s, xs) − f (s, 0) + f (s, 0)∥pds
)

≤ 2p−1M̃p
2bp−1[

δ∫
0

e−pµ2(δ−s)ρ(E∥xs∥
p)ds +N0].

By using assumptions (A2) − (A4) and Lemma 3.8, we estimate B4 as

B4 = E
∥∥∥ δ∫

0

Tα(δ − s)
( τ∫

0

1(θ, xθ)dw(θ)
)
ds
∥∥∥p

≤ 2p−1M̃p
2Cp

(µ2(p − 1)
(p − 2)

)1− p
2
{ δ∫

0

e−pµ2(δ−s)
( τ∫

0

E∥1(θ, xθ) − 1(θ, 0)∥pdθ

+

τ∫
0

E∥1(θ, 0)∥pdθ
)
ds
}

≤ 2p−1M̃p
2Cp

(µ2(p − 1)
(p − 2)

)1− p
2
{ δ∫

0

e−pµ2(δ−s)
( τ∫

0

ρ(E∥xθ)∥pdθ
)
ds +N0

}
.

Using assumption (A4) and Lemma 3.10 the estimate B5 is given by

B5 = E
∥∥∥ δ∫

0

Tα(δ − s)σ(s)dSH
Q(s)
∥∥∥p

≤ M̃p
2

δ∫
0

e−pµ2(δ−s)E∥σ(s)∥pds

≤ M̃p
2LpCHδpH−1

δ∫
0

e−pµ2(δ−s)ds.
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From the above estimates Bi (i = 1, 2, . . . , 5), the inequality (13) becomes

E∥x(δ)∥p ≤ 5p−1
{
M̃p

1e−pµ1(δ)E∥ϕ0∥
p + M̃p

2e−pµ2(δ)E∥ϕ1∥
p

+ 2p−1M̃p
2bp−1[

δ∫
0

e−pµ2(δ−s)ρ(E∥x(s)∥p)ds +N0]

+ 2p−1M̃p
2Cp

(µ2(p − 1)
(p − 2)

)1− p
2
{ δ∫

0

e−pµ2(δ−s)
( τ∫

0

ρ(E∥x(θ))∥pdθ
)
ds +N0

}

+ M̃p
2LpCHδpH−1

δ∫
0

e−pµ2(δ−s)ds
}
. (14)

By using the inequality (12) in the above inequality, it is equivalently estimated as

E∥x(δ)∥p ≤ 5p−1[M̃p
1e−pµ1(δ)E∥ϕ0∥

p + M̃p
2e−pµ2(δ)E∥ϕ1∥

p + M̃p
2LpCHδpH−1]

≤ ⊕̂1e−µ1(δ) + ⊕̂2e−µ2(δ), µ1, µ2 ≥ 0,

where

⊕̂1 = 5p−1M̃p
1e−pµ1(δ)E∥ϕ0∥

p

⊕̂2 = 5p−1M̃p
2e−pµ2(δ)E∥ϕ1∥

p + M̃p
2LpCHδpH−1.

By Lemma 3.10 and equation (14) we have, E∥x(δ)∥p ≤ ⊕̂ e−ηδ, δ ≥ −r, η ∈ (0, η1Λη2), where

⊕̂ = max
{
⊕̂1 + ⊕̂2, ⊕̂3 := 2p−1M̃pbp−1 + 2p−1M̃pbp−1N0

⊕̂4 := 2p−1M̃pCp

(µ2(p − 1)
(p − 2)

)1− p
2 (1 +N0)

}
η is a +ve root of the equation, we have ⊕̂1e−µ1δ1 + ⊕̂2e−µ2δ1 + ⊕̂3

e−µ2δ1

η2−µ
= 1.

Here, ξ1 = ⊕̂1, ξ2 = ⊕̂2, ⊕̂3, ⊕̂4 as defined above. We conclude that the mild solution of the Cauchy problem
(2) is pth moment exponentially stable.

Remark 5.2. In the article [44], the asymptotic stability and mean square stability have been analysed for the second-
order stochastic differential equations of fractional order with variable delay in the state by using the Banach fixed
point theorem by imposing the Lipschitz condition on nonlinearity and estimated parameters of the solution is less
than 1. Authors in [15] studied stability analysis of fractional stochastic Clarke’s subdifferential type with Poisson
jumps by using the multi-valued fixed point theorem in mean square estimation. Different from the above two papers
by using the successive approximation the exponential stability is established for the fast convergence of the stochastic
integro-differential sub-fBm instead of Bm with relaxed restrictive conditions in pth moment norm through the new
integral inequality.

6. Illustration

In this section, an example is provided to verify the obtained theoretical result. Consider the following
fractional stochastic partial integro-differential equation driven by sub-fBm of the form

CD
5
4
0+ y(δ, x) =

∂2

∂x2 y(δ, x) +
e−3δy(δ, x)

(1 + e2δ) + (1 + y(δ, x))
+

δ∫
0

e−4δ sinπy(δ, x)dw(s) + e−5δy(x)dSH
Q(s),

y(0, δ) = y(π, δ) = 0, y′(0, δ) = y′(π, δ) = ϕ1, δ ≥ 0 (15)
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Here, CD
5
4
0+ denotes Caputo fractional partial derivative of order α = 5

4 . Let w(δ) refers the standard Wiener
process and dSH

Q(s) is the sub-fBm.
Consider the operator A : D(A) ⊂ H → H defined by AZ = Z′′ with the domain D(A) = {Z ∈
H , Z,Z′ absolutely continuous, Z′′ ∈ H , Z(0) = Z(π) = 0}. Then

AZ =
∞∑

n=1

−n2(Z,Zn),

here, Zn(x) =
√

2
π sin(nx) be an orthonormal set of eigenvalue of A. A generates a compact semigroup

(Tα(δ))δ≥0 inH is

Tα(δ)Z =
∞∑

n=1

e−n2δ(Z,Zn), δ ≥ 0, Z ∈ H .

Now, define the non-linear continuous functions f : J × H → H , 1 : J × H → L0
Q(K,H) and σ : J × H →

L0
Q(K,H) as described by

f (δ, y) =
e−3δy(δ, x)

(1 + e2δ) + (1 + y(δ, x))
,

1(δ, y) =

δ∫
0

e−4δ sinπy(δ, x)dw(s),

σ(δ) = e−5δ, δ ∈ J.

Put M̃p
2 = 0.5, δ = 1

3 , p = 1, µ2 = 0.2,Cp = 1, b = 0.1,N0 = 0.25.

5p−1
{2p−1M̃p

2bp−1(1 +N0) + 2p−1M̃p
2Cp

(µ2(p − 1)
(p − 2)

)1− p
2 (1 +N0) + M̃p

2LpCHδpH−1
} < 1

5p−1
{2p−1M̃p

2bp−1(1 +N0)
( e−3δ

1 + e2δ

)
+ 2p−1M̃p

2Cp

(µ2(p − 1)
(p − 2)

)1− p
2

× (1 +N0)e−4δsinπ + M̃p
2e−5δ

} < 1

0.87525 < 1.

It can be effortlessly proved, all conditions (A2)− (A5) of Theorem 5.1 are satisfied. Hence, we can conclude
that the system (15) is pth moment exponentially stable.

Remark 6.1. The exponentially stability does not hold for p = 2 based on the Theorem 5.1.

Remark 6.2. Stability is a critical property of the dynamical systems for investigation in various domains. In
fractional order systems, there are many challenging and unsolved problems related to stability theory. The stability
analysis has been performed by the convergence of solutions for fractional order differential and trajectories of dynamical
systems under small perturbations of the initial condition. Recently, different types of stability such as Mittag-Leffler
stability, generalized Mittag-Leffler stability, Ulam stability, and Ulam-Hyers stability have been discussed. The
exponential stability cannot be used to characterize the asymptotic stability of fractional order systems.

7. Conclusion

This manuscript addressed the wellposedness of mild solution and stability analysis for FSIDEs driven
by sub-fBm. Sufficient conditions have been derived for the existence and uniqueness of the mild solution for
FSIDEs with sub-fBm by using the successive approximation technique. Also, the pth moment exponential
stability result has been attained. Finally, a numerical example has been validated to prove the efficiency
of the obtained theoretical results.
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