
Filomat 37:9 (2023), 2731–2742
https://doi.org/10.2298/FIL2309731L

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. Reducible matrices are closely associated with the connection of directed graph and can be
used in stochastic processes, biology and others. In this paper, we investigate the reducible solution to a
system of matrix equations over the Hamilton quaternion algebra. We establish the necessary and sufficient
conditions for the system to have a reducible solution and derive a formula of the general reducible solution
of the system when it is solvable. Finally, we present a numerical example to illustrate the main results of
this paper.

1. Introduction

Let R andHm×n stand, respectively, for the real number field and the set of all m × n matrices overH,
where

H = {u0 + u1i + u2j + u3k | i2 = j2 = k2 = ijk = −1, u0,u1,u2,u3 ∈ R}.

H is called the Hamilton quaternion algebra. r(A), I and 0 are denoted by the rank of a given quaternion
matrix A, an identity matrix and a zero matrix of appropriate sizes, respectively. The Moore-Penrose inverse
of A ∈ Hl×k is denoted by A† = K, which is defined as AKA = A, KAK = K, (AK)∗ = AK and (KA)∗ = KA.
Further, we define LA = I − A†A and RA = I − AA†.

In 1843, William Rowan Hamilton discoved quaternions. It is well known that the quaternion algebra is
an associative noncommutative division ring, which is widely used in computer science, orbital mechanics,
signal and color image processing, and control theory (see, e.g. [4], [28], [29], [35]).

A square quaternion matrix X is said to be reducible, if there exists a permutation matrix K such that

X = K
(

X1 X2
0 X3

)
K−1,

where X1 and X3 are square matrices with suitable dimensions. If the order of X3 is k (1 ≤ k < n), we call X
to be k-reducible concerning the permutation matrix K. For an any but fixed permutation matrix K, we put

Hn×n
k =

{
X = K

(
X1 X2
0 X3

)
K−1

∣∣∣∣1 ≤ k < n,X1 ∈H
(n−k)×(n−k),X3 ∈H

k×k
}
.
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We know that linear matrix equations are one of the active research topics in matrix theory and applica-
tions (see, e.g., [6], [13], [14], [11], [18], [19], [20], [25], [46], [38], [39], [40], [41]). They have many applications
in singular system control [32], system design [33], perturbation theory [21], sensitivity analysis [3] and so
on. A large number of papers have presented several approaches to solve some linear matrix equations
(see, e.g., [1], [2], [5], [7], [10], [15], [16], [31], [37], [42], [44]). For example, the system of matrix equations

AX = C,XB = D, (1)

the classic linear matrix equation

AZB = C, (2)

and the system

A1Z = C1,A2ZB2 = C2 (3)

have been investigated by a crowd of papers for different kinds of solutions. Li, Hu and Zhang [22] gave
a generalized reflexive solution of system (1). Qiu and Wang [30] established the least-squares solution of
system (1). Zhang [47] investigated the Hermitian and positive solutions of system (1). Nie, Wang and
Zhang [26] considered the k-reducible solution of system (1). In 2003, Liao and Bai [15] presented the least-
squares solution to (2) over symmetric positive semidefinite matrices. Huang, Yin and Guo [9] provided
the skew-symmetric solution and the optimal approximate solution of the matrix equation (2). Peng [27]
derived the centrosymmetric solution of matrix equation (2). Xie and Wang [36] studied the reducible
solution of equation (2). Wang [43] established some solvability conditions and the general solution to
system (3) over von Neumann regular rings. Wang [45] gave the k-reducible solution of the system (3) over
H. In 2013, He and Wang [8] considered some necessary and sufficient conditions for the system

A5ZB5 = C5,A6ZB6 = C6,A7ZB7 = G (4)

to have a solution and derive a formula of its general solution when it is solvable. To our best knowledge, so
far, there has been little information on the reducible solution to system (4). This paper aims to investigate the
reducible solution to system (4). It is well-known that reducible matrices are closely related to the connection
of directed graphs and can be used in compartmental analysis, continuous-time positive systems, stochastic
processes, biology, and others (see, e.g., [12], [23], [26], [34]).

Motivated by the work mentioned above and the wide applications of reducible matrices, matrix
equations and the quaternions. This paper aims to consider the reducible solution to system (4) overH.

The rest of this paper is organized as follows. In Section 2, we make some preliminaries. In Section 3,
we give some necessary and sufficient conditions for system (4) to have a solution Z ∈ Hn×n

k and present
the expression of this solution in terms of Moore-Penrose inverses and rank equalities of the quaternion
matrices involved. We also design a numerical example to illustrate the main results of this paper. Finally,
we give a brief conclusion to close this paper in Section 4.

2. Preliminaries

In this section, we review some results on quaternion matrices and quaternion matrix equations which
are going to used in the next.

Marsaglia (1974) [24] described the following, which is available overH.

Lemma 2.1. [24] Let A ∈Hm×n, B ∈Hm×k, C ∈Hl×n, D ∈H j×k and E ∈Hl×i be given. Then we have the following
rank equality:

r
(

A BLD
REC 0

)
= r

A B 0
C 0 E
0 D 0

 − r(D) − r(E).
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Lemma 2.2. [43] Let A1, A2, B2, C1 and C2 be provided for matrices with adequate shapes, A3 = A2LA1 . Then the
following statements are equivalent:

(1) System (3) has a solution.
(2) RA1 C1 = 0, RA3 (C2 − A2A†1C1B2) = 0, C2LB2 = 0.

(3) r(A1, C1) = r(A1), r
(
A1 C1B2
A2 C2

)
= r

(
A1
A2

)
, r

(
C2
B2

)
= r(B2).

In this case, the general solution of system (3) can be expressed as

Z = A†1C1 + LA1 A†3(C2 − A2A†1C1B2)B†2 + LA1 LA3 Q1 + LA1 Q2RB2 .

where U1,U2 and U3 are any matrices overH with appropriate dimensions.

Lemma 2.3. [17] Consider the quaternion matrix equation

A1X1 + X2B1 + A2Y1B2 + A3Y2B3 + A4Y3B4 = B (5)

where Ai, Bi and B (i = 1, 4) are given quaternion matrices and the others are unknown quaternion matrices with
appropriate sizes. Put

RA1 A2 = A11, RA1 A3 = A22, RA1 A4 = A33, B2LB1 = B11, B22LB11 = N1,

B3LB1 = B22, B4LB1 = B33, RA11 A22 =M1, S1 = A22LM1 , RA1 BLB1 = T1,

C = RM1 RA11 , C1 = CA33, C2 = RA11 A33, C3 = RA22 A33, C4 = A33,

D = LB11 LN1 , D1 = B33, D2 = B33LB22 , D3 = B33LB11 , D4 = B33D,
E1 = CT1, E2 = RA11 T1LB22 , E3 = RA22 T1LB11 , E4 = T1D,

C11 = (LC2 , LC4 ), D11 =

(
RD1

RD3

)
, C22 = LC1 , D22 = RD2 , C33 = LC3 ,

D33 = RD4 , E11 = RC11 C22, E22 = RC11 C33, E33 = D22LD11 , E44 = D33LD11 ,

M = RE11 E22, N = E44LE33 , F = F2 − F1, E = RC11 FLD11 , S = E22LM.

F11 = C2LC1 , G1 = E2 − C2C†1E1D†1D2, F22 = C4LC3 , G2 = E4 − C4C†3E3D†3D4,

F1 = C†1E1D†1 + LC1 C†2E2D†2, F2 = C†3E3D†3 + LC3 C†4E4D†4.

Then following statements are equivalent:
(1) Equation (5) is consistent.
(2)

RCi Ei = 0, EiLDi = 0 (i = 1, 4), RE22 ELE33 = 0.

(3)

r
(

B A2 A3 A4 A1
B1 0 0 0 0

)
= r(B1) + r(A2, A3, A4, A1),

r

 B A2 A4 A1
B3 0 0 0
B1 0 0 0

 = r(A2, A4, A1) + r
(

B3
B1

)
,

r

 B A3 A4 A1
B2 0 0 0
B1 0 0 0

 = r(A3, A4, A1) + r
(

B2
B1

)
,

r


B A4 A1
B2 0 0
B3 0 0
B1 0 0

 = r

 B2
B3
B1

 + r(A4, A1),
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r

 B A2 A3 A1
B4 0 0 0
B1 0 0 0

 = r(A2, A3, A1) + r
(

B4
B1

)
,

r


B A2 A1
B3 0 0
B4 0 0
B1 0 0

 = r

 B3
B4
B1

 + r(A2, A1),

r


B A3 A1
B2 0 0
B4 0 0
B1 0 0

 = r

 B2
B4
B1

 + r(A3, A1),

r


B A1
B2 0
B3 0
B4 0
B1 0

 = r


B2
B3
B4
B1

 + r(A1),

r



B A2 A1 0 0 0 A4
B3 0 0 0 0 0 0
B1 0 0 0 0 0 0
0 0 0 −B A3 A1 A4
0 0 0 B2 0 0 0
0 0 0 B1 0 0 0

B4 0 0 B4 0 0 0


= r


B3 0
B1 0
0 B2
0 B1

B4 B4

 + r
(

A2 A1 0 0 A4
0 0 A3 A1 A4

)
.

In this case, the general solution to equation (5) can be expressed as

X1 = A†1(B − A2Y1B2 − A3Y2B3 − A4Y3B4) − A†1U1B1 + LA1 U2,

X2 = RA1 (B − A2Y1B2 − A3Y2B3 − A4Y3B4)B†1 + A1A†1U1 +U3RB1 ,

Y1 = A†11TB†11 − A†11A22M†

1TB†11 − A†11S1A†22TN†1B22B†11 − A†11S1U4RN1 B22B†11 + LA11 U5 +U6RB11 ,

Y2 =M†

1TB†22 + S†1S1A†22TN†1 + LM1 LS1 U7 +U8RB22 + LM1 U4RN1 ,

Y3 = F1 + LC2 V1 + V2RD1 + LC1 V3RD2 , or Y3 = F2 − LC4 W1 −W2RD3 − LC3 W3RD4 ,

where T = T1 − A33Y3B33, Ui(i = 1, 8) are arbitrary matrices with appropriate sizes overH,

V1 = (Im, 0)
[
C†11(F − C22V3D22 − C33W3D33) − C†11U11D11 + LC11 U12

]
,

W1 = (0, Im)
[
C†11(F − C22V3D22 − C33W3D33) − C†11U11D11 + LC11 U12

]
,

W2 =
[
RC11 (F − C22V3D22 − C33W3D33)D†11 + C11C†11U11 +U21RD11

] ( 0
In

)
,

V2 =
[
RC11 (F − C22V3D22 − C33W3D33)D†11 + C11C†11U11 +U21RD11

] ( In
0

)
,

V3 = E†11FE†33 − E†11E22M†FE†33 − E†11SE†22FN†E44E†33 − E†11SU31RNE44E†33 + LE11 U32 +U33RE33 ,

W3 =M†FE†44 + S†SE†22FN† + LMLSU41 + LMU31RN −U42RE44 ,

U11,U12, U21, U31, U32, U33, U41 and U42 are arbitrary matrices with appropriate sizes overH.

3. The reducible solution to system (4) overH

In this section, we give the necessary and sufficient conditions for the system (4) to have a reducible
solution and derive an expression of the solution Z ∈Hn×n

k to (4).
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Theorem 3.1. Let E1 ∈ Hm1×(n−k), E4 ∈ Hm1×k, F4 ∈ Hk×k, E2 ∈ Hm2×(n−k), E3 ∈ Hm2×k, F2 ∈ H(n−k)×(n−k),
F1 ∈Hk×(n−k), F3 ∈Hk×(n−k), C4 ∈Hm1×k,C2 ∈Hm2×(n−k),C3 ∈Hm2×k,C1 ∈Hm1×(n−k) and A ∈H(n−k)×k be known.
K ∈ Hn×n is a permutation matrix, 1 ≤ k < n. I1, I2 denote the identity matrices of order n − k and k, respectively.
Put

A5K = (E1, E4), K−1B5 =

(
I1 0
0 F4

)
, (6)

A6K = (E2, E3), K−1B6 =

(
F2 0
0 I2

)
, (7)

A7K = (F1, I2), K−1B7 =

(
I1
F3

)
, (8)

E5 = E2LE1 , E6 = E4LE3 , F1LE1 LE5 = A1, F1LE1 = A2, C5 = (C1, C4 − E1AF4),
LE3 LE6 = A3, LE3 = A4, RF2 = B2, F3 = B3, RF4 F3 = B4, C6 = (C2, C3 − E2A),

B = G − F1AF3 −
(
F1E†1C1 + F1LE1 E†5(C2 − E2E†1C1F2)F†2 + E†3(C3 − E2A)F3

)
−

(
LE3 E†6(C4 − E1AF4 − E4E†3(C3 − E2A)F4)F†4F3

)
,

(9)

RA1 A2 = A11, RA1 A3 = A22, RA1 A4 = A33, RA11 A22 =M1, S1 = A22LM1 , RA1 B = T1,

C = RM1 RA11 , H1 = CA33, H2 = RA11 A33, H3 = RA22 A33, H4 = A33, B3LB2 = N1,

D = LB2 LN1 , D1 = B4, D2 = B4LB3 , D3 = B4LB2 , D4 = B4D,
G1 = CT1, G2 = RA11 T1LB3 , G3 = RA22 T1LB2 , G4 = T1D,

C11 = (LH2 , LH4 ), D11 =

(
RD1

RD3

)
, C22 = LH1 , D22 = RD2 , C33 = LH3 ,

D33 = RD4 , E11 = RC11 C22, E22 = RC11 C33, E33 = D22LD11 , E44 = D33LD11 ,

M = RE11 E22, N = E44LE33 , F = F6 − F5, E = RC11 FLD11 , S = E22LM,

F11 = H2LH1 , L1 = G2 −H2H†1G1D†1D2, F22 = H4LH3 , L2 = G4 −H4H†3G3D†3D4,

F5 = H†1G1D†1 + LH1 H†2G2D†2, F6 = H†3G3D†3 + LH3 H†4G4D†4.

(10)

Then the following statements are equivalent:
(i) System (4) has a solution Z ∈Hn×n

k .
(ii)

RE1 C1 = 0, RE5 (C2 − E2E†1C1F2) = 0, C2LF2 = 0, RE3 (C3 − E2A) = 0,

RE6 (C4 − E1AF4 − E4E†3(C3 − E2A)F4) = 0, (C4 − E1AF4)LF4 = 0,
(11)

RHi Gi = 0, GiLDi = 0(i = 1, 4), RE22 ELE33 = 0. (12)

(iii)

r(E1, C1) = r(E1), r
(
E1 C1F2
F2 C2

)
= r

(
E1
E2

)
, r

(
C2
F2

)
= r(F2), (13)

r(E3, C3 − E2A) = r(E3), r
(
E3 (C3 − E2A)F4
F4 C4 − E1AF4

)
= r

(
E3
E4

)
, r

(
C4
F4

)
= r(F4), (14)

r
(

C1 E1
C3F3 − E3(G − F1AF3) − E2AF3 −E3F1

)
= r

(
E1
−E3F1

)
, (15)
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r

 F3 0
C1 E1

E3G E3F1

 = r(F3) + r
(

E1
E3F1

)
, (16)

r

 E3F1 E3GF2 − (C3 − E2A)F3F2
E1 C1F2 + E1AF3F2
E2 C2

 = r

 E3F1
E1
E2

 , (17)

r


0 F3F2

E3F1 E3GF2
E1 C1F2
E2 C2

 = r

 E3F1
E1
E2

 + r(F3F2), (18)

r


F3 0 F4

C1 + E1AF3 E1 0
C3F3 − E2F3 − E3G −E3F1 0

E4G E4F1 C4 − E1AF4

 = r(F3, F4) + r

 E1
−E3F1
E4F1

 , (19)

r

 G F1
F3 0
C1 E1

 = r
(

F1
E1

)
+ r(F3), (20)

r


0 0 F4

E3F1 E3GF2 − C3F3F2 − (E3F1 − E2)AE3F2 0
E4F1 E4GF3 − F1AF3F2 E1AF4 − C4
E1 C1F2 0
E2 C2 0

 = r


E3F1
E4F1
E1
E2

 + r(F3F2, F4), (21)

r


F1 GF2
0 F3F2

E1 C1F2
E2 C2

 = r
(
F3F2

)
+ r

F1
E1
E2

 , (22)

r



F3 0 0 0 0
0 0 0 F3F2 F4

C1 E1 0 0 0
E3G E3F1 E3F1 E3GF2 + E2AF3F2 − C3F3F2 E3F1AF4
E4G E4F1 E4F1 E4GF2 C4 − E1AF4 + E4F1AF4

0 0 E1 C1F2 0
0 0 E2 C2 0

E3G E3F1 0 0 0


= r

(
F3 0 0
0 F3F2 F4

)
+ r


E1 0

E3F1 E3F1
E4F1 E4F1

0 E1
0 E2

 . (23)

In this case, a reducible solution Z of system (4) with respect to K can be expressed as

Z = K
(
X A
0 Y

)
K−1, (24)
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where X ∈H(n−k)×(n−k), Y ∈Hk×k,

X = E†1C1 + LE1 E†5(C2 − E2E†1C1F2)F†2 + LE1 LE5 Q1 + LE1 Q2RF2 ,

Y = E†3(C3 − E2A) + LE3 E†6(C4 − E1AF4 − E4E†3(C3 − E2A)F4)F†4 + LE3 LE6 Q3 + LE3 Q4RF4 ,

Q1 = A†1(B − A2Q2B2 − A3Q3B3 − A4Q4B4) − A†1U1B1 + LA1 U2,

Q2 = A†11TB†2 − A†11A22M†

1TB†2 − A†11S1A†22TN†1B3B†2 − A†11S1U4RN1 B3B†2 + LA11 U5 +U6RB2 ,

Q3 =M†

1TB†3 + S†1S1A†22TN†1 + LM1 LS1 U7 +U8RB3 + LM1 U4RN1 ,

Q4 = F1 + LC2 V1 + V2RD1 + LC1 V3RD2 , or V2 = F2 − LC4 W1 −W2RD3 − LC3 W3RD4 ,

(25)

where T = T1 − A33Q4B33, Ui(i = 1, ..., 8) are any matrices with the fit dimensions,

V1 = (Im, 0)
[
C†11(F − C22V3D22 − C33W3D33) − C†11U11D11 + LC11 U12

]
,

W1 = (0, Im)
[
C†11(F − C22V3D22 − C33W3D33) − C†11U11D11 + LC11 U12

]
,

W2 =
[
RC11 (F − C22V3D22 − C33W3D33)D†11 + C11C†11U11 +U21RD11

] ( 0
In

)
,

V2 =
[
RC11 (F − C22V3D22 − C33W3D33)D†11 + C11C†11U11 +U21RD11

] ( In
0

)
,

V3 = E†11FE†33 − E†11E22M†FE†33 − E†11SE†22FN†E44E†33 − E†11SU31RNE44E†33 + LE11 U32 +U33RE33 ,

W3 =M†FE†44 + S†SE†22FN† + LMLSU41 + LMU31RN −U42RE44 ,

where U11,U12, U21, U31, U32, U33, U41 and U42 are any matrices with the suitable dimensions.

Proof. (i)⇔ (ii) :
Substituting (24) into the system (4) yields

A5K
(
X A
0 Y

)
K−1B5 = C5, A6K

(
X A
0 Y

)
K−1B6 = C6, A7K

(
X A
0 Y

)
K−1B7 = G, (26)

where X ∈ H(n−k)×(n−k), Y ∈ Hk×k A ∈ H(n−k)×k . It follows from (6), (7) and (8) that the system (26) is
equivalent to

(E1, E4)
(
X A
0 Y

) (
I1 0
0 F4

)
= C5,

(E2, E3)
(
X A
0 Y

) (
F2 0
0 I2

)
= C6,

(F1, I2)
(
X A
0 Y

) (
I1
F3

)
= G,

i.e.,

E1X = C1, E4YF4 = C4 − E1AF4,

E3Y = C3 − E2A, E2XF2 = C2,

F1X + YF3 = G − F1AF3.

(27)

Thus, system (4) has a solution Z ∈Hn×n
k is equivalent to (27) is consistent for X and Y.

We divided the system (27) into the following:

E1X = C1, E2XF2 = C2,

E3Y =C3 − E2A, E4YF4 = C4 − E1AF4,
(28)
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F1X + YF3 = G − F1AF3. (29)

We want to show that system (28) and equation (29) have a common solution if and only if (ii) holds or
(iii) holds. The outline of the proof is as follows: We first prove that system (28) and equation (29) have a
common solution if and only if (ii) holds and the general common solution to (28) and (29) has the form of
(25); We then show that (ii)⇔ (iii).

We now assume system (28) and (29) have a common solution (X, Y). By Lemma 2.2, it follows from
(28) that (11) holds and

X = E†1C1 + LE1 E†5(C2 − E2E†1C1F2)F†2 + LE1 LE5 Q1 + LE1 Q2RF2 ,

Y = E†3C3 − E†3E2A + LE3 E†6(C4 − E1AF4 − E4E†3(C3 − E2A)F4)F†4 + LE3 LE6 Q3 + LE3 Q4RF4 ,
(30)

where Qi(i = 1, 4) are any matrices with the suitable dimensions overH. Substituting (30) into (29) yields

A1Q1 + A2Q2B2 + A3Q3B3 + A4Q4B4 = B, (31)

where Ai, Bi (i = 1, 4) and B are defined by (9). According to Lemma 2.3, we have from (31) that (12) holds
and

Q1 = A†1(B − A2Q2B2 − A3Q3B3 − A4Q4B4) − A†1U1B1 + LA1 U2,

Q2 = A†11TB†2 − A†11A22M†

1TB†2 − A†11S1A†22TN†1B3B†2 − A†11S1U4RN1 B3B†2 + LA11 U5 +U6RB2 ,

Q3 =M†

1TB†3 + S†1S1A†22TN†1 + LM1 LS1 U7 +U8RB3 + LM1 U4RN1 ,

Q4 = F1 + LC2 V1 + V2RD1 + LC1 V3RD2 , or Q4 = F2 − LC4 W1 −W2RD3 − LC3 W3RD4 ,

(32)

where T = T1 − A33Q4B33, Ui(i = 1, ..., 8) are any matrices with the fit dimensions overH. Hence, we have
shown that if (28) and (29) have a common solution, then all equalities of (ii) are satisfied and X and Y can
be expressed as (25).

Conversely, suppose that (ii) holds, for any X, Y of the form (25), it is easy to verify from (11) that X and
Y satisfy the system (28). Let Qi (i = 1, 4) be expressed as (32). According to (12), we have that Qi (i = 1, 4)
satisfy (31). Note X and Y can be expressed as (25), we easily get that (29) holds. Hence, X and Y having
the form of (25) are a common solution of system (28) and (29) under the hypothesis (ii). To sum up, system
(28) and equation (29) have a common solution if and only if (ii) holds and the general solution to (28) and
(29) have the form of (25), i.e., system (4) has a solution Z ∈Hn×n

k if and only if (ii) holds.
(ii)⇔ (iii) : We now show that (ii)⇔ (iii). It follows from Lemma 2.2 that (11) are equivalent to (13) and

(14). We turn to prove that (12) holds if and only if (15) to (23) hold. By Lemma 2.3, we have that (12) are
equivalent to

r
(

B A2 A3 A4 A1

)
= r(A2, A3, A4, A1), (33)

r
(

B A2 A4 A1
B3 0 0 0

)
= r(A2, A4, A1) + r

(
B3

)
, (34)

r
(

B A3 A4 A1
B2 0 0 0

)
= r(A3, A4, A1) + r

(
B2

)
, (35)

r

 B A4 A1
B2 0 0
B3 0 0

 = r
(

B2
B3

)
+ r(A4, A1), (36)

r
(

B A2 A3 A1
B4 0 0 0

)
= r(A2, A3, A1) + r

(
B4

)
, (37)

r

 B A2 A1
B3 0 0
B4 0 0

 = r
(

B3
B4

)
+ r(A2, A1), (38)
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r

 B A3 A1
B2 0 0
B4 0 0

 = r
(

B2
B4

)
+ r(A3, A1), (39)

r


B A1
B2 0
B3 0
B4 0

 = r

 B2
B3
B4

 + r(A1), (40)

r


B A2 A1 0 0 0 A4
B3 0 0 0 0 0 0
0 0 0 −B A3 A1 A4
0 0 0 B2 0 0 0

B4 0 0 B4 0 0 0

 = r

 B3 0
0 B2

B4 B4

 + r
(

A2 A1 0 0 A4
0 0 A3 A1 A4

)
, (41)

respectively. Therefore, we need to prove that (15) to (23) hold if and only if (33) to (41) hold. Let that

X0 = E†1C1 + LE1 E†5(C2 − E2E†1C1F2)F†2,

Y0 = E†3(C3 − E2A) + LE3 E†6(C4 − E1AF4 − E4E†3(C3 − E2A)F4)F†4.

Then it is easy to check that X0,Y0 satisfy

E1X0 = C1, E2X0F2 = C2,

E3Y0 =C3 − E2A, E4Y0F4 = C4 − E1AF4.
(42)

By (9), we have that B = G − F1AF3 − F1X0 − Y0F3. It follows from Lemma 2.1 and (42) that

(33)⇔ r
(
B F1LE1 LE3 LE6 LE3 F1LE1 LE5

)
= r

(
F1LE1 LE3 LE6 LE3 F1LE1 LE5

)
⇔ r

B F1 I
0 E1 0
0 0 E3

 =
F1 I
E1 0
0 E3


⇔ r

(
C1 E1

C3F3 − E2AF3 + E3F1AF3 − E3G −E3F1

)
= r

(
E1
−E3F1

)
⇔ (15),

(40)⇔ r


B F1LE1 LE5

RF2 0
F3 0

RF4 F3 0

 = r

 RF2

F3
RF4 F3

 + r(F1LE1 LE5 )

⇔ r


B F1 0 0
I 0 F2 0

F3 0 0 0
0 E1 0 0
0 E2 0 0

 =
 I F2 0
F3 0 0
F3 0 F4

 + r

F1
E1
E2



⇔ r


F1 GF2
0 F3F2

E1 C1F2
E2 C2

 = r
(
F3F2

)
+ r

F1
E1
E2

⇔ (22).
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Similarly, we have that (34) to (39) hold if and only if (16) to (21) hold.

(41)⇔ r


B F1LE1 F1LE1 LE5 0 0 0 LE3

F3 0 0 0 0 0 0
0 0 0 −B LE3 LE6 F1LE1 LE5 LE3

0 0 0 RF2 0 0 0
RF4 F3 0 0 RF4 F3 0 0 0



= r

 F3 0
0 RF2

RF4 F3 RF4 F3

 + r
(

F1LE1 F1LE1 LE5 0 0 LE3

0 0 LE3 LE6 F1LE1 LE5 LE3

)

⇔ r



F3 0 0 0 0
0 0 0 F3F2 F4

C1 E1 0 0 0
E3G E3F1 E3F1 E3GF2 + E2AF3F2 − C3F3F2 E3F1AF4
E4G E4F1 E4F1 E4GF2 C4 − E1AF4 + E4F1AF4

0 0 E1 C1F2 0
0 0 E2 C2 0

E3G E3F1 0 0 0


= r

(
F3 0 0
0 F3F2 F4

)
+ r


E1 0

E3F1 E3F1
E4F1 E4F1

0 E1
0 E2

⇔ (23).

Now, we give an example to verify the main results of this paper.
Example 3.2 For system (4), we consider case of n = 4 and k = 2. Let

A5 = (i, 1, j, k), A5 = (1, i, i, j), A7 =

(
j k 0 1
0 i 1 0

)
,

B5 =


0 1 0 0
1 0 0 0
0 0 i j
0 0 k 1

 , B6 =


i j 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , B7 =


0 1
1 0
i k
0 j

 , K =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 .
According to (6)-(8), we get, noting K−1 = K, that

E1 =
(
i 1

)
, E2 =

(
i 1

)
, E3 =

(
j i

)
, E4 =

(
j i

)
,

F1 =

(
k j
i 0

)
, F2 =

(
1 0
i j

)
, F3 =

(
0 j
i k

)
, F4 =

(
k 1
i j

)
, G =

(
j − 2 −i − 2j
−1 − j 1

)
,

C1 =
(
−1 0

)
, C2 =

(
−1 0

)
, C3 =

(
i 0

)
, C4 =

(
−j −i

)
, A =

(
0 j
i 0

)
.
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It is easy to compute that (13)-(23) are satisfied and the 2-reducible solution

Z = K
(
X A
0 Y

)
K−1

=


0 0 i 0
i 0 0 j
0 0 0 0
0 0 0 i

 ,
where X =

(
i 0
0 0

)
, Y =

(
0 i
0 0

)
.

4. Conclusion

We have established the necessary and sufficient conditions for the system (4) to have a solution
Z ∈Hn×n

k and give an expression of this solution of the system. We also have designed a numerical example
to illustrate the main result of this paper. It is worthy to see that the results in this paper are also available
for both the real number filed and the complex number field. Moreover, the results of this paper can be
generalized to the corresponding system of quaternion tensor equations.
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