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Abstract. Let b and c be two elements in a semigroup S. This paper is devoted to studying the structures
of S||(b,c) and H(b,c) in a semigroup S, where S||(b,c) stands for the set of all (b, c)-invertible elements and
H(b,c) = {y ∈ S | bS1 = yS1, S1 y = S1c}. Denote the (b, c)-inverse of a ∈ S||(b,c) by a||(b,c). If S||(b,c) , ∅, then
H(b,c) = {a||(b,c)

| a ∈ S||(b,c)
}. We first find some new equivalent conditions for H(b,c) to be a group and analyze

its structure from the viewpoint of generalized inverses. Then a necessary and sufficient condition under
which S||(b,c) is a subsemigroup of S with the reverse order law holding for (b, c)-inverses is presented. At
last, given a, b, c, d, x, y, z ∈ S and y ∈ S||(b,c), we prove that any two of the conditions x ∈ S||(a,c), z ∈ S||(b,d) and
zy||(b,c)x ∈ S||(a,d) imply the rest one.

1. Introduction

In a monoid, if two elements a and b are invertible, then their product ab is also invertible with

(ab)−1 = b−1a−1.

The above equality is called the reverse order law for classical inverses. However, the reverse order law
is not true for generalized inverses in general. This leads to a question: under what condition the reverse
order law holds for generalized inverses. It has become a hot topic in the research of generalized inverses
and has been studied from two different aspects: elements and subsets. For instance, Greville [13] proved
that (AB)† = B†A† if and only if A†A commutes with BB∗ and A∗A commutes with BB†, for complex matrices
A and B. Cao et al. [4] provided some necessary and sufficient conditions such that (AB)# = B#A# holds for
group invertible complex matrices A and B. We refer to [5–10, 14, 21, 25] for more results on this topic from
elements aspect.

In contrast, for a semigroup S, Mary [16] gave an equivalent condition for the subset of all group
invertible elements in S to be a semigroup. Furthermore, Mary [17] proved that a completely regular
semigroup S (i.e., every element in it is group invertible) is a Clifford semigroup if and only if (ab)# = b#a#

for all a, b ∈ S. This is the main motivation of our paper. The aim of this paper is to study the structure of
the set of generalized invertible elements and the set of corresponding generalized inverses in a semigroup
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Research supported by the National Natural Science Foundation of China (No. 12171083, 11871145, 12071070), the Qing Lan

Project of Jiangsu Province, the Fundamental Research Funds for the Central Universities, the Postgraduate Research and Practice
Innovation Program of Jiangsu Province (No. KYCX20 0074).

* Corresponding author: Jianlong Chen
Email addresses: sgq112358@163.com (Guiqi Shi), jlchen@seu.edu.cn (Jianlong Chen)



G.Q. Shi, J.L. Chen / Filomat 37:9 (2023), 2743–2754 2744

S. The inverse along an element and (b, c)-inverse provide the possibility for reaching our aim because they
unify various different generalized inverses.

In 2011, Mary [15] defined that a ∈ S is invertible along d ∈ S if there exists y ∈ S satisfying the following
relations:

y ∈ dS ∩ Sd, yad = d, day = d.

If y exists, then it is unique and called the inverse of a along d (denoted by a||d). He proved that the
Moore-Penrose inverse of an element a is equal to a||a∗ and the group inverse of a is equal to a||a. The set of
all elements which are invertible along d is denoted by S||d.

In 2012, Drazin [11] introduced the (b, c)-inverse of an element in a semigroup. Let b, c ∈ S. An element
a ∈ S is (b, c)-invertible if there exists y ∈ S such that

y ∈ bS ∩ Sc, yab = b, cay = c.

If y exists, then it is unique and called the (b, c)-inverse of a (denoted by a||(b,c)). When b = c, we know that
a||(b,b) = a||b. As is well-known, the core inverse of an element a is equal to a||(a,a∗). The set of all (b, c)-invertible
elements is denoted by S||(b,c).

Drazin proved the following fact which connects the (b, c)-inverse with Green’s relations.

Lemma 1.1. ([11, Proposition 6.1]) Let a, b, c ∈ S. Then a ∈ S||(b,c) if and only if there exists y ∈ S satisfying

yay = y, bS1 = yS1, S1y = S1c.

In 1951, Green [12] defined the following equivalent relations on S:

• bLc⇔ S1b = S1c;

• bRc⇔ bS1 = cS1;

• bHc⇔ bLc and bRc;

• bDc⇔ there exists a ∈ S such that bS1 = aS1 and S1a = S1c,

where S1 stands for the monoid generated by S. All above relations are called Green’s relations. For Green’s
relation K , the K -class of b is denoted by Kb. For convenience, we denote the H-class Rb ∩ Lc by H(b,c).
Clearly, H(a,a) = Ha.

Lemma 1.1 shows that S||(b,c) is nonempty if and only if H(b,c) contains a regular element. In this case,
H(b,c) = {a||(b,c)

| a ∈ S||(b,c)
}. The structure of anH-class has been studied by Green [12]. He proved that Ha is

a group if and only if aHa2. We want to find some new equivalent conditions for H(b,c) to be a group from
the perspective of generalized inverses. We prove that H(b,c) is a group if and only if H(b,c) ∩ S||(b,c) , ∅ if and
only if H(b,c)S||(b,c)

∩ S||(b,c) , ∅ if and only if S||(b,c)H(b,c) ∩ S||(b,c) , ∅. In this case,

H(b,c)S||(b,c) = eS||(b,c) , S||(b,c)H(b,c) = S||(b,c)e

and
H(b,c) = eS||(b,c)e = eS||(b,c)

∩ S||(b,c)e = {a ∈ S#
∩ S||(b,c)

| a# = a||(b,c)
},

where e is the identity element of H(b,c). Furthermore, we show that S||(b,c) is a subsemigroup of S with
the reverse order law holding for (b, c)-inverses if and only if H(b,c) contains an idempotent e such that
eade = eaede for all a, d ∈ S||(b,c). Meanwhile, some semigroups between H(b,c) and S||(b,c) are presented.

If a ∈ S||d, Zhu et al. [26, Theorem 3.19] proved that b ∈ S||d if and only if bda ∈ S||d if and only if adb ∈ S||d.
If y ∈ S||(b,c), we prove that any two of the conditions x ∈ S||(a,c), z ∈ S||(b,d) and zy||(b,c)x ∈ S||(a,d) imply the rest
one. Moreover, we get that y ∈ S||(b,c) if and only if H(a,c)yH(b,d) ⊆ H(a,d) if and only if H(a,c)yH(b,d) = H(a,d),
which generalizes [19, Corollary 2.5].



G.Q. Shi, J.L. Chen / Filomat 37:9 (2023), 2743–2754 2745

2. Groups and semigroups in S||(b,c)

Throughout this paper, S is a semigroup unless otherwise specified.
Recall that a ∈ S is said to be regular if there exists b ∈ S such that aba = a, in which case b is called

an inner inverse (or a {1}-inverse) of a. The sets of all inner inverses of a and all regular elements of S are
denoted by a{1} and S{1}, respectively.

A basic lemma that we will frequently use but without further comment should be noted.

Lemma 2.1. Let a ∈ S. If a is regular and bS1 = aS1 and S1a = S1c for some b, c ∈ S, then b, c are regular and

aa−b = b, bb−a = a, ca−a = c, ac−c = a

for any a− ∈ a{1}, b− ∈ b{1} and c− ∈ c{1}.

Lemma 1.1 shows some close relation between S||(b,c) and H(b,c) as follows.

Lemma 2.2. Let b, c ∈ S.

(1) S||(b,c) , ∅ if and only if S{1} ∩H(b,c) , ∅. In this case, H(b,c) = {a||(b,c)
| a ∈ S||(b,c)

}.

(2) If S||(b,c) , ∅, then h is the (b, c)-inverse of all elements in h{1}, for any h ∈ H(b,c).

Proof. The proof is straightforward.

Lemma 2.3. Let b, c ∈ S. If a ∈ S||(b,c), then d ∈ S||(b,c) with d||(b,c) = a||(b,c) if and only if d ∈ a||(b,c)
{1}.

Proof. If d ∈ S||(b,c) with d||(b,c) = a||(b,c), then we have a||(b,c)da||(b,c) = d||(b,c)dd||(b,c) = d||(b,c). Conversely, if
d ∈ a||(b,c)

{1}, then a||(b,c)da||(b,c) = a||(b,c). Since a||(b,c)
∈ H(b,c), it follows that d ∈ S||(b,c) with d||(b,c) = a||(b,c) by Lemma

1.1.

The previous lemmas inspire us to define an equivalent relation on S||(b,c).

Proposition 2.4. Let b, c ∈ S such that S||(b,c) , ∅. For any a, d ∈ S||(b,c), define a binary relation τ as:

τ = {(a, d) ∈ S||(b,c)
× S||(b,c)

| a||(b,c) = d||(b,c)
}.

Then τ is an equivalent relation on S||(b,c) and {h{1} | h ∈ H(b,c)} is a partition of S||(b,c).
In this case,

S||(b,c) =
⋃

a∈S||(b,c)

a||(b,c)
{1} =

⋃
h∈H(b,c)

h{1}.

Proof. The reflexivity, symmetry and transitivity of τ are easy to verify. So τ is an equivalent relation on
S||(b,c). For any a ∈ S||(b,c), a||(b,c)

{1} is its equivalent class by Lemma 2.3. Then we get that

S||(b,c) =
⋃

a∈S||(b,c)

a||(b,c)
{1}.

Meanwhile, by Lemma 2.2, we know that H(b,c) = {a||(b,c)
| a ∈ S||(b,c)

}. It follows that⋃
a∈S||(b,c)

a||(b,c)
{1} =

⋃
h∈H(b,c)

h{1}.

Clearly, h{1} , ∅ for any h ∈ H(b,c). If h{1} ∩ 1{1} , ∅ for some h, 1 ∈ H(b,c), suppose that a ∈ h{1} ∩ 1{1}.
Then we have h = a||(b,c) = 1 by Lemma 2.2. Thus {h{1} | h ∈ H(b,c)} is a partition of S||(b,c).

From Lemma 2.2 and Proposition 2.4, we can see that the structure of H(b,c) is easier to handle than S||(b,c).
The following well-known result, which is called Green’s theorem, gives an equivalent condition for an
H-class to be a group.
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Lemma 2.5. ([12, Theorem 7]) Let a ∈ S. Then Ha is a group if and only if aHa2.

A direct corollary of Lemma 2.5 is: if Ha is a subsemigroup of S, then it must be a group. So we only
discuss the group structure of anH-class.

Recall that a ∈ S is group invertible if there exists x ∈ S such that

xa2 = a, ax2 = x, ax = xa.

If such x exists, then it is unique and called the group inverse of a (denoted by a#). An element e satisfying
e2 = e is called an idempotent, obviously e is group invertible with e# = e. The sets of all idempotents and
group invertible elements in S are denoted by E(S) and S#, respectively.

We note that a ∈ S is group invertible if and only if aHa2.

Lemma 2.6. ([1, Lemma 1]) Let a ∈ S. Then a ∈ S# if and only if a ∈ Sa2
∩ a2S. In this case, a# = uav for any

u, v ∈ S such that ua2 = a2v = a.

Combining the previous results, it is easy to see that

E(S) ∩H(b,c) , ∅ ⇔ H(b,c) is a group⇔ S#
∩H(b,c) , ∅.

We want to give some equivalent conditions for H(b,c) to be a group from the perspective of generalized
inverses.

We know that H(b,c) is an H-class in S, which can be restated as follows: if w ∈ H(b,c), then H(b,c) = Hw.
The following lemma comes directly from this fact and can also be found in [3, Remark 2.2 (1)] and [18,
Proposition 1.4].

Lemma 2.7. Let b, c, d,w ∈ S. If w ∈ H(b,c), then d ∈ S||(b,c) if and only if d ∈ S||w. In this case,

d||(b,c) = d||w.

Lemma 2.7 provides a way to express the (b, c)-inverse as the inverse along some element, so we can use
it to get equivalent conditions for the (b, c)-inverse of some element to be group invertible.

Proposition 2.8. Let b, c ∈ S. If a ∈ S||(b,c), then the following conditions are equivalent:

(1) a||(b,c)
∈ S||(b,c);

(2) a||(b,c)
∈ S#;

(3) E(S) ∩H(b,c) , ∅.

In this case, H(b,c) contains only one idempotent e and

(a||(b,c))||(b,c) = (a||(b,c))# = eae, and e = a||(b,c)(a||(b,c))#.

Proof. (1) ⇔ (2). By Lemma 2.7, we know that a||(b,c)
∈ S||(b,c) if and only if a||(b,c) is invertible along a||(b,c),

which is also equivalent to a||(b,c)
∈ S# by [15, Theorem 11]. In this case,

(a||(b,c))# = (a||(b,c))||a
||(b,c)
= (a||(b,c))||(b,c).

(2)⇒ (3). If a||(b,c)
∈ S#, then we have

a||(b,c)(a||(b,c))#S1 = a||(b,c)S1 = bS1 and S1c = S1a||(b,c) = S1(a||(b,c))#a||(b,c).

It means that a||(b,c)(a||(b,c))#
∈ E(S) ∩H(b,c). If e and f are two idempotents in H(b,c), then e = f because eH f .

(3)⇒ (2). Since a||(b,c)
∈ H(b,c) = He, suppose that e = xa||(b,c) = a||(b,c)y. It follows that

(a||(b,c))2y = a||(b,c)e = a||(b,c) = ea||(b,c) = x(a||(b,c))2.

Thus, by Lemma 2.6, a||(b,c)
∈ S# with

(a||(b,c))# = xa||(b,c)y = xa||(b,c)aa||(b,c)y = eae.
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Remark 2.9. According to [20, Theorem 3], we know that E(S)∩H(b,c) , ∅ if and only if cb ∈ H(c,b). If S is a monoid,
then cb ∈ H(c,b) is equivalent to 1 ∈ S||(b,c) by [11, Theorem 2.2]. As 1||(b,c)1||(b,c) = 1||(b,c), which means that 1||(b,c) is the
identity element of H(b,c) in this case.

If H(b,c) contains an idempotent e, we know that e is the identity element in group H(b,c). An interesting
fact is that e is also (b, c)-invertible and it will play an important role in sequel discussion.

Lemma 2.10. Let b, c ∈ S. If H(b,c) contains an idempotent e, then

(1) e ∈ S||(b,c) with e||(b,c) = e and a||(b,c)ae = e = eaa||(b,c) for any a ∈ S||(b,c);

(2) ea, ae ∈ S||(b,c) with (ea)||(b,c) = (ae)||(b,c) = a||(b,c) for any a ∈ S||(b,c);

(3) aed ∈ S||(b,c) with (aed)||(b,c) = d||(b,c)a||(b,c) for any a, d ∈ S||(b,c).

Proof. (1) Since eee = e and e ∈ H(b,c), it is clear that e ∈ S||(b,c) with e||(b,c) = e. For any a ∈ S||(b,c), we have
a||(b,c)ae = e = eaa||(b,c) by Lemma 2.1.

(2) Since e is the identity element of H(b,c), it follows that

a||(b,c)aea||(b,c) = a||(b,c) = a||(b,c)eaa||(b,c),

which shows that ae, ea ∈ a||(b,c)
{1}. By Lemma 2.3, ae, ea ∈ S||(b,c) with (ae)||(b,c) = (ea)||(b,c) = a||(b,c).

(3) It suffices to show that d||(b,c)a||(b,c) is the (b, c)-inverse of aed. In fact, noting that d||(b,c)a||(b,c)
∈ H(b,c), we

get that
d||(b,c)a||(b,c)aedd||(b,c)a||(b,c) = d||(b,c)edd||(b,c)a||(b,c) = d||(b,c)ea||(b,c) = d||(b,c)a||(b,c).

So aed ∈ S||(b,c) with (aed)||(b,c) = d||(b,c)a||(b,c) by Lemma 2.3.

Based on the previous results, we obtain some new equivalent conditions for H(b,c) to be a group.

Theorem 2.11. Let b, c ∈ S. Then the following conditions are equivalent:

(1) H(b,c) is a group;

(2) H(b,c) ∩ S# , ∅;

(3) H(b,c) ∩ S||(b,c) , ∅;

(4) ⟨H(b,c)⟩ ∩ S||(b,c) , ∅;

(5) {a ∈ S#
∩ S||(b,c)

| a# = a||(b,c)
} , ∅;

(6) {a ∈ S||(b,c)
| aa||(b,c) = a||(b,c)a} , ∅;

(7) H(b,c)S||(b,c)
∩ S||(b,c) , ∅;

(8) S||(b,c)H(b,c) ∩ S||(b,c) , ∅.

In this case, H(b,c) ⊆ S#
∩ S||(b,c), XS||(b,c) = eS||(b,c) and S||(b,c)X = S||(b,c)e for any nonempty X ⊆ H(b,c), where e is the

identity element of H(b,c).

Proof. (1)⇔ (2). It is clear by Lemma 2.5.
(2)⇔ (3). Suppose that h ∈ H(b,c). By a similar discussion as the proof of (1)⇔ (2) in Proposition 2.8, we

can prove that h ∈ S||(b,c) if and only if h ∈ S#.
Thus, if H(b,c) is a group, then it is obvious that H(b,c) ⊆ S#, which also implies that H(b,c) ⊆ S||(b,c) by the

proof above.
(3)⇒ (4). Obviously.
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(4)⇒ (2). Suppose that y ∈ H(b,c). Then H(b,c) ⊆ yS1 by definition. Noting that yS1 is a subsemigroup of
S, we have ⟨H(b,c)⟩ ⊆ yS1. If x ∈ ⟨H(b,c)⟩ ∩ S||(b,c), then x = ys for some s ∈ S1. Meanwhile, since x ∈ S||(b,c), it
follows that x ∈ S||y by Lemma 2.7. So

y = yxx||y = y2sx||y ∈ y2S.

Dually, we can prove that y ∈ Sy2. This proves that y ∈ S# by Lemma 2.6.
(1)⇒ (5). If H(b,c) is a group, then its identity element e ∈ S||(b,c) with e||(b,c) = e by Lemma 2.10. And e2 = e,

so e ∈ S# with e# = e. It follows that e ∈ {a ∈ S#
∩ S||(b,c)

| a# = a||(b,c)
}.

(5)⇒ (6). If a ∈ S#
∩ S||(b,c) such that a# = a||(b,c), then aa||(b,c) = aa# = a#a = a||(b,c)a.

(6)⇒ (2). If a ∈ S||(b,c) such that aa||(b,c) = a||(b,c)a, combining with a||(b,c)aa||(b,c) = a||(b,c), then we have a||(b,c)
∈ S#

by Lemma 2.6.
(1)⇒ (7). If H(b,c) is a group with e as its identity element, then xa = xea for any x ∈ H(b,c) and a ∈ S||(b,c).

Since x ∈ S||(b,c) by Proposition 2.8, it follows that xa = xea ∈ S||(b,c) by Lemma 2.10.
Without loss of generality, we may prove xS||(b,c) = eS||(b,c) for x ∈ X. It is clear that xS||(b,c)

⊆ eS||(b,c)

because xa = exa and xa ∈ S||(b,c), for any a ∈ S||(b,c). Noting that x ∈ S||(b,c) by Proposition 2.8, we have
ea = exx||(b,c)a = xx||(b,c)a ∈ xS||(b,c), for any a ∈ S||(b,c). Since the choice of x ∈ X is arbitrary, it follows that
XS||(b,c) = eS||(b,c).

(7)⇒ (2). If xa ∈ S||(b,c) for some x ∈ H(b,c) and a ∈ S||(b,c), then xa ∈ S||x = S||a||(b,c)
by Lemma 2.7. On one

hand, x = xxa(xa)||(b,c)
⊆ x2S. On the other hand, we have a||(b,c) = (xa)||(b,c)xaa||(b,c) = (xa)||(b,c)x. It follows that

x = xaa||(b,c) = xa(xa)||(b,c)x = xa(xa)||(b,c)x−x2
∈ Sx2,

where x− ∈ x{1}. So x ∈ S# by Lemma 2.6.
(1)⇒ (8)⇒ (2). The proof is dual to that of (1)⇒ (7)⇒ (2).

From the previous discussion, we know that H(b,c) ⊆ S#
∩ S||(b,c) when H(b,c) is a group. However, the

converse inclusion is not right in general.

Example 2.12. In the semigroup S = {
[ x1 x2

0 0
]
|x1, x2 ∈ C}. Let a =

[
1 −i
0 0

]
and b =

[
1 0
0 0

]
. Then a ∈ S# with a# =

[
1 −i
0 0

]
and a ∈ S||(a,b) with a||(a,b) =

[
1 0
0 0

]
. Obviously, a||(a,b)

∈ S#, it follows that H(a,b) is a group. But S1a , S1b, which means
that a < H(a,b).

It is natural to ask: when does a group invertible (or (b, c)-invertible) element belong to H(b,c)? The
following proposition answers this question and shows the structure of H(b,c).

Proposition 2.13. Let b, c ∈ S. If H(b,c) contains an idempotent e, then

(1) eS||(b,c) is a subsemigroup of S and
eS||(b,c) = {a ∈ S||(b,c)

| a = ea};

(2) S||(b,c)e is a subsemigroup of S and
S||(b,c)e = {a ∈ S||(b,c)

| a = ae};

(3)
H(b,c) = eS||(b,c)e = eS||(b,c)

∩ S||(b,c)e

= {a ∈ S||(b,c)
| a = ae = ea}

= {a ∈ S#
∩ S||(b,c)

| a# = a||(b,c)
}.

Proof. (1) It is not hard to check that

eS||(b,c) = {a ∈ S||(b,c)
| a = ea}.
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For any a, d ∈ S||(b,c), we know that eaed ∈ eS||(b,c) by Lemma 2.10.
(2) It can be proved similarly.
(3) Since H(b,c) is a group, we have that H(b,c) ⊆ S||(b,c), which leads to

H(b,c) ⊆ {a ∈ S||(b,c)
| a = ae = ea}.

It is obvious that {a ∈ S||(b,c)
| a = ae = ea} ⊆ eS||(b,c)e.

And for any a ∈ S||(b,c), since H(b,c) contains an idempotent e, we have a||(b,c)
∈ S# with (a||(b,c))# = eae by

Proposition 2.8. Then eae ∈ S# with (eae)# = a||(b,c). Meanwhile, eae ∈ S||(b,c) with (eae)||(b,c) = a||(b,c) by Lemma
2.10. This proves that

eS||(b,c)e ⊆ {a ∈ S#
∩ S||(b,c)

| a# = a||(b,c)
}.

If a ∈ S#
∩ S||(b,c) and a# = a||(b,c), we know that

aS1 = aa#S1 = a#aS1 = a||(b,c)aS1 = bS1

and
S1a = S1a#a = S1aa# = S1aa||(b,c) = S1c.

So {a ∈ S#
∩ S||(b,c)

| a# = a||(b,c)
} ⊆ H(b,c).

Combining the above inclusions, we have that

H(b,c) = {a ∈ S||(b,c)
| a = ae = ea} = eS||(b,c)e = {a ∈ S#

∩ S||(b,c)
| a# = a||(b,c)

}.

It is clear that eS||(b,c)e = eS||(b,c)
∩ S||(b,c)e.

If H(b,c) contains an idempotent, we know that H(b,c) ⊆ S||(b,c). It is easy to see that H(b,c) is a maximal
subgroup of S, so we have the following result.

Proposition 2.14. Let b, c ∈ S such that E(S) ∩ H(b,c) , ∅. Then S||(b,c) is a proper subgroup of S if and only if
S||(b,c) = H(b,c).

If S has the identity element, then we get an interesting result as follows.

Corollary 2.15. Let S be a monoid and b, c ∈ S. Then S||(b,c) is a proper subgroup of S such that 1 ∈ S||(b,c) if and only
if b is right invertible and c is left invertible.

Next we consider under what condition S||(b,c) becomes a subsemigroup of S.
Wang et al. [23, Theorem 4.4] gave a criterion for two given (b, c)-invertible elements satisfying the

reverse order law of (b, c)-inverses. We want to find a criterion for all elements in S||(b,c) to satisfy the reverse
order law of (b, c)-inverses.

Let R be a unitary ring and d, x, y ∈ R. If d ∈ R# and x, y ∈ R||d, Benı́tez and Boasso [2, Theorem 6.3]
proved that xy ∈ R||d with (xy)||d = y||dx||d if and only if dd#x(1− dd#)ydd# = 0 by using Pierce decomposition.
We have the following result for a semigroup S.

Theorem 2.16. Let b, c ∈ S. Then S||(b,c) is a subsemigroup of S with reverse order law holding for (b, c)-inverses if
and only if H(b,c) contains an idempotent e such that

eade = eaede

for all a, d ∈ S||(b,c).

Proof. If S||(b,c) is a subsemigroup of S with the reverse order law holding for (b, c)-inverses. Suppose that
a ∈ S||(b,c). Since the reverse order law holds for (b, c)-inverse, it follows that (a2)||(b,c) = (a||(b,c))2. Meanwhile,
according to Lemma 2.7, a2

∈ S||a||(b,c)
. Then we have

a||(b,c) = a||(b,c)a2(a||(b,c))2
∈ S(a||(b,c))2.
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Similarly, a||(b,c)
∈ (a||(b,c))2S. This proves that a||(b,c)

∈ S#. So there exists an idempotent e in H(b,c) by Proposition
2.8.

If d ∈ S||(b,c), then by reverse order law we know that (ad)||(b,c) = d||(b,c)a||(b,c). Because ad ∈ S||e, we have

e = eadd||(b,c)a||(b,c).

Multiplying by aede on the right of above equality yields that

eaede = eadd||(b,c)a||(b,c)aede = eadd||(b,c)de = eade.

Conversely, if there exists an idempotent e in H(b,c) such that eade = eaede for all a, d ∈ S||(b,c), then
d||(b,c)a||(b,c)

∈ H(b,c) because H(b,c) is a group. Meanwhile,

d||(b,c)a||(b,c)add||(b,c)a||(b,c) = d||(b,c)a||(b,c)aedd||(b,c)a||(b,c) = d||(b,c)a||(b,c).

Thus, ad ∈ S||(b,c) with (ad)||(b,c) = d||(b,c)a||(b,c) by Lemma 2.3.

We have given equivalent conditions for H(b,c) to be a group and S||(b,c) to be a semigroup with the reverse
order law holding. Next we give some semigroups between H(b,c) and S||(b,c).

Proposition 2.17. Let b, c ∈ S. If H(b,c) contains an idempotent e, then

M(b,c) := {a ∈ S||(b,c)
| ae = ea} = {a ∈ S||(b,c)

| aa||(b,c) = a||(b,c)a},

Mr
(b,c) := {a ∈ S||(b,c)

| ae = eae} = {a ∈ S||(b,c)
| aa||(b,c) = e}

and
Ml

(b,c) := {a ∈ S||(b,c)
| ea = eae} = {a ∈ S||(b,c)

| a||(b,c)a = e}

are semigroups containing H(b,c). Moreover, M(b,c) =Mr
(b,c) ∩Ml

(b,c).

Proof. It is obvious that H(b,c) ⊆ M(b,c). We first prove that {a ∈ S||(b,c)
| ae = ea} = {a ∈ S||(b,c)

| aa||(b,c) = a||(b,c)a}.
Suppose that a ∈ S||(b,c) such that aa||(b,c) = a||(b,c)a. Since a||(b,c)aa||(b,c) = a||(b,c), it follows that a||(b,c)

∈ S# with
(a||(b,c))# = aa||(b,c)a by Lemma 2.6. Then e = a||(b,c)(a||(b,c))# = a||(b,c)a = aa||(b,c) by Proposition 2.8. So we have
ae = aa||(b,c)a = ea. Conversely, if ae = ea for some a ∈ S||(b,c), then

aa||(b,c) = aea||(b,c) = eaa||(b,c) = e = a||(b,c)ae = a||(b,c)ea = a||(b,c)a.

Then we check that {a ∈ S||(b,c)
| ae = eae} = {a ∈ S||(b,c)

| aa||(b,c) = e}. In fact, multiplying by a||(b,c) on the
right of ae = eae yields that aa||(b,c) = e. Conversely, if aa||(b,c) = e, then we have ae = aa||(b,c)ae = eae.

Similarly, {a ∈ S||(b,c)
| ea = eae} = {a ∈ S||(b,c)

| a||(b,c)a = e}.
Next, we prove that M(b,c) is a subsemigroup of S. If a, d ∈M(b,c), then eade = eeade = eaede, which follows

that ad ∈ S||(b,c) according to the proof of Theorem 2.16. Meanwhile, we have ade = aed = ead. So ad ∈ M(b,c).
It can be proved similarly that Mr

(b,c) and Ml
(b,c) are subsemigroups of S.

Finally, we show that M(b,c) =Mr
(b,c)∩Ml

(b,c). It is clear that M(b,c) ⊆Mr
(b,c)∩Ml

(b,c) because ae = ea = eea = eae
and ea = ae = aee = eae for any a ∈ M(b,c). If a ∈ Mr

(b,c) ∩ Ml
(b,c), then ae = eae = ea. This proves that

Mr
(b,c) ∩Ml

(b,c) ⊆M(b,c).

Remark 2.18. (1) H(b,c) may be a proper subgroup of M(b,c). For example, in the semigroup S = {
[ x1 x2 x3

x4 x5 x6
0 0 0

]
|xi ∈

C for 1 ≤ i ≤ 6}, let a =
[

1 0 0
0 0 1
0 0 0

]
and b =

[
1 0 0
0 0 0
0 0 0

]
. Then a ∈ S||(b,b) with a||(b,b) =

[
1 0 0
0 0 0
0 0 0

]
. Evidently, a||(b,b)

∈ S#, it

follows that H(b,b) is a group with the identity element e =
[

1 0 0
0 0 0
0 0 0

]
. We can verify that ae = ea, but S1a , S1b. This

illustrates that a is in M(b,b) but not in H(b,b).
(2) M(b,c) may be a proper subsemigroup of Mr

(b,c). For example, considering in the semigroup S = Z2×2, let

a =
[

1 −1
0 0

]
and b =

[
1 0
−1 0

]
. Then a ∈ S||(a,b) with a||(a,b) =

[
1 0
0 0

]
. Clearly, a||(a,b)

∈ S#, so H(a,b) is a group with the

identity element e =
[

1 0
0 0

]
. It is easy to check that aa||(a,b) = e , a||(a,b)a, which means that a ∈Mr

(a,b) but a <M(a,b).
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3. The (b, c)-invertibility of a special triple product

Let a, b, c, d, e ∈ S. If a ∈ S||d, Zhu et al. [26, Theorem 3.19] proved that b ∈ S||d if and only if bda ∈ S||d if
and only if adb ∈ S||d. Mosić et al. [22, Theorem 2.9] proved that a ∈ S||(b,c) if and only if abd ∈ S||(b,c) when
d ∈ S||(b,b), as well as a ∈ S||(b,c) if and only if eca ∈ S||(b,c) when e ∈ S||(c,c). The following theorem generalizes
above results.

Theorem 3.1. Let a, b, c, d, x, y, z ∈ S.

(1) If x ∈ S||(a,c) and y ∈ S||(b,c), then z ∈ S||(b,d) if and only if zy||(b,c)x ∈ S||(a,d).

(2) If z ∈ S||(b,d) and y ∈ S||(b,c), then x ∈ S||(a,c) if and only if zy||(b,c)x ∈ S||(a,d).

In these cases,
(zy||(b,c)x)||(a,d) = x||(a,c)yz||(b,d),

z||(b,d) = y||(b,c)x(zy||(b,c)x)||(a,d)

and
x||(a,c) = (zy||(b,c)x)||(a,d)zy||(b,c).

Proof. (1) If z ∈ S||(b,d), we only need to show that zy||(b,c)x ∈ S||(a,d) with (zy||(b,c)x)||(a,d) = x||(a,c)yz||(b,d). Actually,
we have

d(zy||(b,c)x)(x||(a,c)yz||(b,d)) = dzy||(b,c)yz||(b,d) = dzz||(b,d) = d

and
(x||(a,c)yz||(b,d))(zy||(b,c)x)a = x||(a,c)yy||(b,c)xa = x||(a,c)xa = a.

Obviously, x||(a,c)yz||(b,d)
∈ aS ∩ Sd.

Conversely, if zy||(b,c)x ∈ S||(a,d), it can be verified that

dz[y||(b,c)x(zy||(b,c)x)||(a,d)] = d

and

[y||(b,c)x(zy||(b,c)x)||(a,d)]zb

= y||(b,c)x(zy||(b,c)x)||(a,d)zy||(b,c)yb

= y||(b,c)x(zy||(b,c)x)||(a,d)zy||(b,c)xx||(a,c)yb

= y||(b,c)xx||(a,c)yb

= y||(b,c)yb
= b.

Meanwhile, it is easy to see that y||(b,c)x(zy||(b,c)x)||(a,d)
∈ bS ∩ Sd. So z ∈ S||(b,d) with z||(b,d) = y||(b,c)x(zy||(b,c)x)||(a,d).

(2) The proof is dual to that of (1).

By Lemma 2.2, we can restate Theorem 3.1 as follows.

Corollary 3.2. Let a, b, c, d, x, z ∈ S.

(1) If bDc and S||(a,c) , ∅, then z ∈ S||(b,d) if and only if zH(b,c)S||(a,c)
⊆ S||(a,d).

(2) If bDc and S||(b,d) , ∅, then x ∈ S||(a,c) if and only if S||(b,d)H(b,c)x ⊆ S||(a,d).

As a special case of Theorem 3.1, we have the following result.

Corollary 3.3. Let b, c, d, x, z ∈ S.

(1) If x ∈ S||(b,c), then z ∈ S||(c,d) if and only if zcx ∈ S||(b,d).
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(2) If z ∈ S||(c,d), then x ∈ S||(b,c) if and only if zcx ∈ S||(b,d).

In these cases,
(zcx)||(b,d) = x||(b,c)c−z||(c,d), z||(c,d) = cx(zcx)||(b,d), x||(b,c) = (zcx)||(b,d)zc,

for any c− ∈ c{1}.

Let a, d ∈ S. Mary and Patrı́cio [19, Corollary 2.5] proved that a ∈ S||d if and only if HdaHd = Hd. We have
an analogous result for (b, c)-inverses.

Proposition 3.4. Let a, b, c, d, y ∈ S. If aDc and bDd, then the following conditions are equivalent:

(1) y ∈ S||(b,c);

(2) H(a,c)yH(b,d) ⊆ H(a,d);

(3) H(a,c)yH(b,d) = H(a,d).

Proof. (1) ⇔ (2). If u ∈ H(a,c) and w ∈ H(b,d), then wS1 = bS1 and S1u = S1c by definition. It follows that
y ∈ S||(b,c) if and only if y ∈ S||(w,u) with y||(b,c) = y||(w,u). By [11, Theorem 2.2], we know that y ∈ S||(w,u) if and
only if uyw ∈ H(u,w). And H(u,w) = H(a,d) because uS1 = aS1 and S1w = S1d. Thus, y ∈ S||(b,c) if and only if
H(a,c)yH(b,d) ⊆ H(a,d).

(2)⇒ (3). If u ∈ H(a,c) and w ∈ H(b,d) such that uyw ∈ H(a,d), then we know that y ∈ S||(w,u) from the proof
above. It follows that uyw is regular by [23, Proposition 3.3]. So we have h = h(uyw)−uyw for any h ∈ H(a,d)
by Lemma 2.1. Noting that (uyw)− ∈ S||(a,d) from Lemma 2.2, it can be proved that h(uyw)−u ∈ H(a,c) by a
similar discussion as (1)⇔ (2). Thus, H(a,d) ⊆ H(a,c)yH(b,d).

(3)⇒ (2). Obviously.

Remark 3.5. If u ∈ H(a,c) and w ∈ H(b,d) such that uyw ∈ H(a,d), then y ∈ S||(w,u) = S||(b,c) with y||(w,u) = y||(b,c) by the
proof above. According to [24, Theorem 2.7], we have y||(b,c) = y||(w,u) = w(uyw)−u for any (uyw)− ∈ (uyw){1}.

In a ring R, if x, y ∈ R||(b,c), then x||(b,c)xy||(b,c) = y||(b,c) and x||(b,c)yy||(b,c) = x||(b,c) by Lemma 2.1. It follows that

x||(b,c)(x + y)y||(b,c) = x||(b,c) + y||(b,c).

Combining this fact with Proposition 3.4, we obtain the following additive property.

Corollary 3.6. Let b, c ∈ R. If x, y ∈ R||(b,c), then x + y ∈ R||(b,c) if and only if x||(b,c) + y||(b,c)
∈ H(b,c). In this case,

(x + y)||(b,c) = y||(b,c)(x||(b,c) + y||(b,c))−x||(b,c),

for any (x||(b,c) + y||(b,c))− ∈ (x||(b,c) + y||(b,c)){1}.

Taking a = b and c = d in Theorem 3.1 and Proposition 3.4, we have the following result.

Corollary 3.7. Let b, c ∈ S.

(1) If x, y, z ∈ S||(b,c), then zy||(b,c)x ∈ S||(b,c).

(2) If u,w ∈ H(b,c) and y ∈ S||(b,c), then uyw ∈ H(b,c).

As an application of Corollary 3.7, we can construct many completely regular subsemigroups of S.

Proposition 3.8. Let b, c ∈ S. If ∅ , Y ⊆ S||(b,c) and ∅ , X ⊆ H(b,c), then XS||(b,c), S||(b,c)X, YH(b,c) and H(b,c)Y are
completely regular subsemigroups of S.
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Proof. According to Corollary 3.7, it is easy to see that XS||(b,c)XS||(b,c)
⊆ XS||(b,c) and S||(b,c)XS||(b,c)X ⊆ S||(b,c)X.

Thus, XS||(b,c) and S||(b,c)X are subsemigroups of S.
Similarly, YH(b,c)YH(b,c) ⊆ YH(b,c) and H(b,c)YH(b,c)Y ⊆ H(b,c)Y imply that YH(b,c) and H(b,c)Y are subsemi-

groups of S by Corollary 3.7.
Suppose that x ∈ H(b,c) and a ∈ S||(b,c). According to Lemma 2.7, we have a ∈ S||x, which follows that

ax, xa ∈ S# by [15, Theorem 7]. This proves that all above semigroups are completely regular.

Note that XS||(b,c) = eS||(b,c) and S||(b,c)X = S||(b,c)e when H(b,c) is a group with the identity element e by
Theorem 2.11.

We know that a completely regular semigroup can be expressed as the union of all its (maximal)
subgroups. And it is clear that

YH(b,c) =
⋃
a∈Y

aH(b,c).

An interesting fact is that aH(b,c) is indeed a subgroup of YH(b,c) by the following proposition.

Proposition 3.9. Let b, c ∈ S. If a ∈ S||(b,c), then

aH(b,c) = Haa||(b,c) and H(b,c)a = Ha||(b,c)a.

Proof. We only prove that aH(b,c) = Haa||(b,c) here, and the proof of H(b,c)a = Ha||(b,c)a is similar.
By [12, Lemma], we know that λa : x 7→ ax is a L-class preserving bijection from Ra||(b,c) to Raa||(b,c) . It

follows that

aH(b,c) = a(Ra||(b,c) ∩ Laa||(b,c) ) = λa(Ra||(b,c) ∩ Laa||(b,c) ) = Raa||(b,c) ∩ Laa||(b,c) = Haa||(b,c) .

Meanwhile, according to [20, Theorem 3], we have

a||(b,c)Haa||(b,c) = H(b,c) = Ha||(b,c)aa||(b,c).

By Proposition 3.9, we have the following corollary.

Corollary 3.10. Let b, c, e, f ∈ S. If a ∈ S||(b,c) and d ∈ S||(e, f ), then

(1) aa||(b,c) = d||(e, f )d if and only if aH(b,c) = H(e, f )d;

(2) aa||(b,c) = dd||(e, f ) if and only if aH(b,c) = dH(e, f ).

Proof. (1) If aa||(b,c) = d||(e, f )d, then aH(b,c) = Haa||(b,c) = Hd||(e, f )d = H(e, f )d by Proposition 3.9.
Conversely, if aH(b,c) = H(e, f )d, then Haa||(b,c) = aH(b,c) = H(e, f )d = Hd||(e, f )d. So we have aa||(b,c)

Hd||(e, f )d, which
implies that aa||(b,c) = d||(e, f )d.

(2) can be proved similarly.
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[9] D. S. Cvetković-Ilić, J. Nikolov, Reverse order laws for {1, 2, 3}-generalized inverses, Appl. Math. Comput. 234 (2014) 114–117.
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