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Abstract. Let κ ≥ 2 be a fixed natural number. The complete description is given of the product preserving
gauge bundle functors F on the category FκVB of flag vector bundles K = (K; K1, . . . ,Kκ) of length κ in
terms of the systems I = (I1, . . . , Iκ−1) of A-module homomorphisms Ii : Vi+1 → Vi for Weil algebras A and
finite dimensional (over R) A-modules V1, . . . ,Vκ. The so called iteration problem is investigated. The
natural affinors on FK are classified. The gauge-natural operators C lifting κ-flag-linear (i.e. with the flow
in FκVB) vector fields X on K to vector fields C(X) on FK are completely described. The concept of the
complete liftFφ of a κ-flag-linear semi-basic tangent valued p-formφ on K is introduced. That the complete
lift Fφ preserves the Frölicher-Nijenhuis bracket is deduced. The obtained results are applied to study
prolongation and torsion of κ-flag-linear connections.

1. Introduction

We assume that any manifold considered in the paper is Hausdorff, second countable, finite dimensional,
without boundary and smooth (i.e. of class C∞). All maps between manifolds are assumed to be smooth
(of class C∞).

Definition 1.1. A flag vector bundle of length κ is a system K = (K; K1, . . . ,Kκ) of a vector bundle K = (K, π,M)
together with vector sub-bundles Ki = (Ki, πi,M) of K for i = 1, . . . , κ such that K1 ⊂ K2 ⊂ · · · ⊂ Kκ = K. We call
M the basis of K. If K′ = (K′; K′1, . . . ,K

′
κ) is another flag vector bundle, a flag vector bundle map K → K′ is a vector

bundle map f : K→ K′ such that f (Ki) ⊂ K′i for i = 1, . . . , κ.

We have the trivial flag vector bundle K = (K; K1, . . . ,Kκ), where K = (Rm
× Rn1 × · · · × Rnκ , π,Rm) and

Ki = (Rm
×Rn1 × · · · ×Rni ×R0

× · · · ×R0, πi,Rm) for i = 1, . . . , κ. We will denote this trivial flag vector bundle
by Rm;n1,...,nκ .

Any flag vector bundle K = (K; K1, . . . ,Kκ) with the basis M is locally trivial. It means that there
are integers m,n1, . . . ,nκ such that for any x ∈ M there is an open neighborhood Ω ⊂ M of x such that
K|Ω = Rm;n1,...,nκ modulo flag vector bundle isomorphism.
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Some flag vector bundles appear naturally in differential geometry. For example, if q : B → X is a
bundle, then we have the flag vector bundle TB = (TB; VB,TB) of length 2 with basis B, where TB is the
tangent bundle of B and VB = ker(Tq) ⊂ TB is the vertical bundle of B. Another example, if q : E→ M is a
vector bundle, then we have the flag vector bundle (JrE)∗ = ((JrE)∗; E∗, (J1E)∗, . . . , (JrE)∗) of length r + 1 with
basis M, where (JrE)∗ is the dual of the r-jet prolongation JrE of E and the inclusions E∗ ⊂ (J1E)∗ ⊂ · · · ⊂ (JrE)∗

are dual to the jet projections JrE → Jr−1E → · · · → J1E → E. Else one example, if M = (M;F1, . . . ,Fn)
is a manifold with a flag of foliations with Fn = {M}, then we have the (obvious) flag vector bundle
TM = (TM; TF1, . . . ,TFn) of length n with basis M.

Let FκVB denotes the category of all flag vector bundles of length κ and their flag vector bundle maps
and FM denotes the category of fibred manifolds and fibred maps. The general concept of (gauge) bundle
functors can be found in [9]. We need the following particular case of it.

Definition 1.2. A gauge bundle functor on FκVB is a covariant functor F : FκVB → FM sending any FκVB-
object K with the basis M into fibred manifold pK : FK → M over M and any FκVB-map f : K → K′ with the base
map f : M→M′ into fibred map F f : FK→ FK′ over f : M→M′ and satisfying the following conditions:

(i) (Localization condition) For every FκVB-object K with the basis M and any open subset U ⊂M the inclusion
map iK|U : K|U→ K induces diffeomorphism FiK|U : F(K|U)→ p−1

K (U), and
(ii) (Regularity condition) F transforms smoothly parametrized families ofFκVB-maps into smoothly parametrized

families of FM-maps.

A gauge bundle functor F on FκVB is product preserving (ppgb-functor) if F(K × K′) = F(K) × F(K′)
for any FκVB-objects K and K′. (If K = (K; K1, . . . ,Kκ) and K′ = (K′; K′1, . . . ,K

′
κ) then (of course) K × K′ =

(K × K′; K1 × K′1, . . . ,Kκ × K′κ).)
A simple example of a ppgb-functor on FκVB is the tangent functor T sending any FκVB-object K into

the tangent bundle TK (over M) and any FκVB-map f : K→ K′ into the tangent map T f : TK→ TK′.
Given gauge bundle functors F1,F2 on FκVB, a natural transformation η : F1 → F2 is a system of base

preserving fibred maps ηK : F1K → F2K for every FκVB-object K satisfying F2 f ◦ ηK = ηK′ ◦ F1 f for every
FκVB-map f : K→ K′.

In the present note, if κ ≥ 2, we describe the ppgb-functors F on FκVB in terms of the systems
I = (I1, . . . , Iκ−1) consisting of A-module homomorphisms Ii : Vi+1 → Vi for i = 1, . . . , κ− 1, where A is a Weil
algebra (i.e. a finite dimensional real associative commutative algebra with unity of the form A = R ⊕ nA
with nilpotent ideal nA) and V1, . . . ,Vκ are finite dimensional (over R) A-modules (over commutative ring
A with unity). We study the so called iteration problem, too. Then we classify all natural affinors on
ppgb-functors and all natural liftings of the so called κ-flag-linear vector fields (i.e. with the flows being
FκVB-local isomorphisms) to ppgb-functors on FκVB. We also define the complete lifting of κ-flag-
linear semi-basic tangent valued p-forms to ppgb-functors on FκVB and observe that this complete lifting
preserves the Frölicher-Nijenuis bracket. Finally, we apply the obtained results to study curvature and
torsion of κ-flag-linear connections.

Clearly, F1VB is equivalent to the category of vector bundles VB. In [15], we described the ppgb-
functors F onVB in terms of finite dimensional (over R) A-modules V.

Product preserving (gauge) bundle functors are studied in many papers, see [1, 8, 9, 12, 14–16, 19–21].
Natural operators lifting vector fields to product preserving (gauge) bundle functors are studied in [7, 13].
Complete lifts of semi-basic tangent valued p-forms are studied in [3, 4, 17]. Natural affinors are classified
in many papers, see e.g. [2, 5, 10, 11]. Natural affinors are used to study torsion of connections, see e.g.
[2, 10].

2. The ppgb-functors F[I]

Suppose we have a system I = (I1, . . . , Iκ−1) consisting of A-module homomorphisms Ii : Vi+1 → Vi for
i = 1, . . . , κ − 1, where A is a Weil algebra and V1, . . . ,Vκ are finite dimensional (over R) A-modules. (A
rather simple but non-trivial example of such a system I is presented in the end of this section). We are
going to construct ppgb-functor F[I] : FκVB→ FM.
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We consider a FκVB-object K = (K; K1, . . . ,Kκ) with basis M and a point x ∈M. Let

Gx(K,Rm;n1,...,nκ ) := the space of germs at x of FκVB-maps K→ Rm;n1,...,nκ .

The sum map + : R × R→ R can be treated as the FκVB-maps:

+ : R1;01,...,0κ × R1;01,...,0κ → R1;01,...,0κ and

+ : R0;01,...,0i−1,1i,0i+1,...,0κ × R0;01,...,0i−1,1i,0i+1,...,0κ → R0;01,...,0i−1,1i,0i+1,...,0κ

for i = 1, . . . , κ, where 0 j = 0 and 1 j = 1 for j = 1, . . . , κ.
The multiplication map · : R × R→ R can be treated as the FκVB-maps

· : R1;01,...,0κ × R1;01,...,0κ → R1;01,...,,0κ and

· : R1;01,...,0κ × R0;01,...,0i−1,1i,0i+1,...,0κ → R0;01,...,0i−1,1i,0i+1,...,0κ

for i = 1, . . . , κ.
The constant map 1 : R→ R can be treated as the FκVB-map

1 : R1;01,...,0κ → R1;01,...,0κ

and the constant map 0 : R→ R can be treated as the FκVB-maps:

0 : R1;01,...,0κ → R1;01,...,0κ and

0 : R0;01,...,0i−1,1i,0i+1,...,0κ → R0;01,...,0i−1,1i,0i+1,...,0κ

for i = 1, . . . , κ.
Hence Gx(K,R1;01,...,0κ ) is (in obvious way) an algebra and Gx(K,R0;01,...,0i−1,1i,0i+1,...,0κ ) is (in obvious way) a

Gx(K,R1;01,...,0κ )-module for i = 1, . . . , κ.
The identity map idR : R→ R can be treated as FκVB-map

ι(i) : R0;01,...,0i,1i+1,0i+2,...,0κ → R0;01,...,0i−1,1i,0i+1,...,0κ

for i = 1, . . . , κ − 1.

Example 2.1. We define F[I]
x K to be the space of tuples (φ,ψ1, . . . , ψκ) consisting of algebra mapsφ : Gx(K,R1;01,...,0κ )→

A and module maps ψi : Gx(K,R0;01,...,0i−1,1i,0i+1,...,0κ )→ Vi over φ for i = 1, . . . , κ satisfying

ψi(ι(i) ◦ 1) = Ii ◦ ψi+1(1) (1)

for all 1 ∈ Gx(K,R0;01,...,0i,1i+1,0i+2,...,0κ ) if i = 1, . . . , κ − 1. Let F[I]K :=
⋃

x∈M F[I]
x K. We can see that F[I]K is a fibred

manifold over M. Indeed, a FκVB- trivialization

((x j), (y j1
1 ), . . . , (y jκ

κ )) : K|Ω=̃Rm;n1,...,nκ

of K induces an FM-trivialization

((x̃ j), (ỹ j1
1 ), . . . , (ỹ jκ

κ )) : F[I]K|Ω=̃Am
× Vn1

1 × ... × Vnκ
κ (2)

defined by
x̃ j(φ,ψ1, . . . , ψκ) = φ(germx(x j)) ∈ A, ỹ jk

k (φ,ψ1, . . . , ψκ) = ψk(germx(y jk
k )) ∈ Vk,

j = 1, . . . ,m, k = 1 . . . , κ, jk = 1, . . . ,nk. The trivialization (2) is really a bijection. Indeed, any (φ,ψ1, . . . , ψκ) ∈
F[I]

x K|Ω is uniquely determined by the values

φ(germx(x j)) ∈ A, j = 1 . . . ,m
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together with the values

ψk(germx(y jq
q )) ∈ Vk, k = 1, . . . , κ, q = k, . . . , κ, jq = 1, . . . ,nq

because the module Gx(K,R0;01,...,0k−1,1k ,0k+1,...,0κ ) is free with the basis

germx(y jq
q ), q = k, . . . , κ, jq = 1, . . . ,nq.

So, using the condition (1) one can easily show that any (φ,ψ1, . . . , ψκ) as above is uniquely determined by the values

φ(germx(x j)) ∈ A, j = 1 . . . ,m and ψk(germx(y jk
k )) ∈ Vk, k = 1, . . . , κ, jk = 1, . . . ,nk

as well.
Any FκVB-map f : K→ K1 induces a FM-map F[I] f : F[I]K→ F[I]K1 such that

F[I]( f )(φ,ψ1, . . . , ψκ) := (φ ◦ f ∗x , ψ1 ◦ f ∗x , . . . , ψκ ◦ f ∗x ) ,

(φ,ψ1, . . . , ψκ) ∈ F[I]
x K, x ∈ M, where f ∗x is the pull-back with respect to f . Clearly, the resulting correspondence

F[I] : FκVB→ FM is a ppgb-functor.
If I′ = (I′1, . . . , I

′

κ−1) is another system in question and µ = (α, β1, . . . , βκ) : I→ I′ is a morphism (i.e. α : A→ A′

is a Weil algebra homomorphism and βi : Vi → V′i are module maps over α for i = 1, . . . , κ such that I′i ◦ βi+1 = βi ◦ Ii

for i = 1, . . . , κ − 1) then we have the natural transformation η[µ] : F[I]
→ F[I′] given by (φ,ψ1, . . . , ψκ) 7→

(α ◦ φ, β1 ◦ ψ1, . . . , βκ ◦ ψκ).

Lemma 2.2. (i) The functor F[I] has values in FκVB, i.e. F[I] : FκVB→ FκVB.
(ii) The natural transformation η[µ] : F[I]K→ F[I′]K is a FκVB-morphism for any FκVB-object K.

Proof. Let K = (K; K1, . . . ,Kκ) be a FκVB-object with the basis M. It is clear that F[I]K is the vector bundle
with basis TAM with the projection (φ,ψ1, . . . , ψκ) 7→ φ. For i = 1, . . . , κ we have vector sub-bundle
(F[I]K)i := {(φ,ψ1, . . . , ψκ) ∈ F[I]K | ψi+1 = · · · = ψκ = 0}.

A rather simple but non-trivial system I in question is given by the projections Ii : Ai+1
→ Ai for

i = 1, . . . , κ − 1, where A is a Weil algebra, Ai = A × · · · × A (i times) is A-module with the multiplication
a(a1, . . . , ai) = (aa1, . . . , aai) for a ∈ A and (a1, . . . , ai) ∈ Ai, and Ii(a1, . . . , ai+1) = (a1, . . . , ai) for (a1, . . . , ai+1) ∈ Ai+1.
Another system in question can be obtained from this one by replacing A on an ideal in A.

3. The system I[F]

Example 3.1. Let F : FκVB→ FM be a ppgb-functor. Let

A[F] := FR1;01,...,0κ and V[F]
i := FR0;01,...,0i−1,1i,0i+1...,0κ

for i = 1, . . . , κ. Then A[F] is a Weil algebra and V[F]
i are A[F]-modules. Indeed, the algebra operations of A[F]

are F(+) : F(R1;01,...,0κ × R1;01,...,0κ ) = A[F]
× A[F]

→ FR1;01,...,0κ = A[F] and F(·) : A[F]
× A[F]

→ A[F], where
the sum map + : R × R → R and the multiplication map · : R × R → R are treated as FκVB-maps +, · :
R1;01,...,0κ × R1;01,...,0κ → R1;01,...,0κ , the unity of A[F] is F(1) and the null is F(0). Similarly, the A[F]-module operations
of V[F]

i are F(+) : V[F]
i × V[F]

i → V[F]
i and F(·) : A[F]

× V[F]
i → V[F]

i , where the sum and multiplication maps + and ·
are treated as FκVB-maps

+ : R0;01,...,0i−1,1i,0i+1,...,0κ × R0;01,...,0i−1,1i,0i+1,...,0κ → R0;01,...,0i−1,1i,0i+1,...,0κ ,

· : R1;01,...,0κ × R0;01,...,0i1 ,1i,0i+1,...,0κ → R0;01,...,0i−1,1i,0i+1,...,0κ .
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For i = 1, . . . , κ − 1 we have a A[F]-linear map

I[F]
i := F(ι(i)) : V[F]

i+1 → V[F]
i ,

where ι(i) : R0;01,...,0i,1i+1,0i+2,...,0κ → R0;01,...,0i−1,1i,0i+1,...,0κ is the FκVB-map given by the identity map idR : R → R.
We put I[F] := (I[F]

1 , . . . , I[F]
κ−1). Any natural transformation η : F → F′ of ppgb-functors induces a morphism

µ[η] := (ηR1;01 ,...,0κ , ηR0;11 ,02 ,...,0κ , . . . , ηR0;01 ,...,0κ−1 ,1κ ) : I[F]
→ I[F′].

For example, if T is the tangent functor (onFκVB) then A[T] = D is the algebra of dual numbers, V[T]
i = D

with the D-module multiplication being the one of dual numbers for i = 1, . . . , κ, and I[T]
i = idD : V[T]

i+1 → V[T]
i

for i = 1, . . . , κ − 1.

4. The isomorphism F=̃F[I[F]]

Theorem 4.1. Let κ ≥ 2. We have F = F[I[F]] modulo the natural isomorphism.

Proof. Let K be a FκVB-object with basis M and let y ∈ FxK be a point, x ∈ M. We define a map
φy : Gx(K,R1;01,...,0κ )→ A[F] = FR1;01,...,0κ by

φy(germx(1)) = F(1)(y) ,

where 1 : K→ R1;01,...,0κ is a FκVB-map. Similarly, given i = 1, . . . , κ, we define a map

(ψy)i : Gx(K,R0;01,...,0i−1,1i,0i+1,...,0κ )→ V[F]
i = FR0;01,...,0i−1,1i,0i+1,...,0κ by

(ψy)i(germx(1)) = F(1)(y) ,
where 1 : K→ R0;01,...,0i−1,1i,0i+1,...,0κ is a FκVB-map.

Recalling the definitions of operations in A[F] and V[F]
i (from Example 3.1), since F is a functor, we get

that φy is an algebra homomorphism and (ψy)i is a module map over φy.
Using similar arguments, given i = 1, . . . , κ − 1 we get

(ψy)i(ι(i) ◦ 1) = I[F]
i ◦ (ψy)i+1(1)

for all 1 ∈ Gx(K,R0;01,...,0i,1i+1,0i+2,...,0κ ). Consequently,

ΘF
K(y) := (φy, (ψy)1, . . . , (ψy)κ) ∈ F[I[F]]

x K .

So, we have the resulting FκVB-natural transformation

ΘF : F→ F[I[F]] .

We prove that ΘF
K is a diffeomorphism for any FκVB-object K.

Applying FκVB-trivialization, we can assume that K = Rm;n1,...,nκ . Since F and F[I[F]] are product pre-
serving and K is a (multi) product of R1;01,...,0κ and R0;01,...,0i−1,1i,0i+1,...,0κ for i = 1, . . . , κ, we can assume that K is
R1;01,...,0κ or R0;01,...,0i1 ,1i,0i+1,...,0κ with i = 1, . . . , κ.

If K = R1;01,...,0κ , we consider x̃1
◦ ΘF

K : FR1;01,...,0κ → AF = FR1;01,...,0κ , where x̃1 is induced by x1 = idR :
R1;01,...,0κ → R1;01,...,0κ , see Example 2.1. This composition is the identity map of FR1;01,...,0κ = A[F]. That is why,
ΘF
κ is a diffeomorphism in this case.

If K = R0;01,...,0i−1,1i,0i+1,...,0κ , ΘF
K is a diffeomorphism by the reason as above with R1;01,...,0κ replaced by

R0;01,...,0i−1,1i,0i+1,...,0κ and with x̃1 replaced by ỹ1
i , where ỹ1

i is induced by y1
i = idR : R0;01,...,0i−1,1i,0i+1,...,0κ →

R0;01,...,0i−1,1i,0i+1,...,0κ .

From Theorem 4.1 and Lemma 2.2, it follows immediately

Proposition 4.2. (i) Any ppgb-functor F : FκVB → FM on FκVB has values in FκVB, i.e. F : FκVB →
FκVB.

(ii) For any natural transformation η : F → F′ of ppgb-functors on FκVB, the fibred map η : FK → F′K is a
FκVB-morphism for any FκVB-object K.
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5. Local expression

Let F be a ppgb-functor on FκVB. By Theorem 4.1, we may assume F = F[I], where I = (I1, . . . , Iκ−1) is
a system consisting of A-module homomorphisms Ii : Vi+1 → Vi, where A is a Weil algebra and V1, . . . ,Vκ

are finite dimensional (over R) A-modules. Then we can write

FRm;n1,...,nκ = Am
× Vn1

1 × · · · × Vnκ
κ (modulo the trivialization) .

Consider a FκVB-map f : Rm;n1,...,nκ → Rm′;n′1,...,n
′
κ . It is of the form

f (x, y1, . . . , yκ) = (a j′ (x),
κ∑

q=k

nq∑
jq=1

a
q, j′k
k, jq

(x)y jq
q ) j′=1,...,m′;k=1,...,κ; j′k=1,...,n′k

,

x = (x1, . . . , xm) ∈ Rm, y1 = (y1
1, . . . , y

n1
1 ) ∈ Rn1 , ..., yκ = (y1

κ, . . . , y
nκ
κ ) ∈ Rnκ , where a j′ : Rm

→ R and

a
q, j′k
k, jq

: Rm
→ R are some smooth maps. Then we can see that the induced map F[I] f : Am

×Vn1
1 × · · · ×Vnκ

κ →

Am′
× Vn′1

1 × · · · × Vn′κ
κ is of the similar form

F[I] f (x, y1, . . . , yκ) = ((a j′ )A(x),
κ∑

q=k

nq∑
jq=1

(a
q, j′k
k, jq

)A(x) · Iq−1
k (y jq

q )) j′=1,...,m′;k=1,...,κ; j′k=1,...,n′k
,

x = (x1, . . . , xm) ∈ Am, y1 = (y1
1, . . . , y

n1
1 ) ∈ Vn1

1 ,. . . , yκ = (y1
κ, . . . , y

nκ
κ ) ∈ Vnκ

κ , where Iq−1
k := Ik◦· · ·◦Iq−1 : Vq → Vk,

(a j′ )A := TAa : TARm = Am
→ TAR = A , (a

q, j′k
k, jq

)A := TAa
q, j′k
k, jq

: Am
→ A, TA is the Weil functor of Weil algebra A

and · is the multiplication of the A-module Vk. (If q = k then Ik−1
k is the identity map of Vk.)

If µ = (α, β1, . . . , βκ) : I→ I′ is a morphism then η[µ]
Rm;n1 ,...,nκ : Am

× Vn1
1 × · · · × Vnκ

κ → A′m × V′1
n1 × · · · × V′κnκ

is of the form

η
[µ]
Rm;,n1 ,...,nκ (x, y1, . . . , yκ) = ((α(x1), . . . , α(xm)), (β1(y1

1), . . . , β1(yn1
1 )), . . . , (βκ(y1

κ), . . . , βκ(ynκ
κ ))) ,

where x = (x1, . . . , xm) ∈ Am and y1 = (y1
1, . . . , y

n1
1 ) ∈ Vn1

1 , . . . , yκ = (y1
κ, . . . , y

nκ
κ ) ∈ Vnκ

κ .

Proposition 5.1. We have

F(K1 ×M K2) = FK1 ×FM FK2 modulo (Fpr1,Fpr2) (3)

for any FκVB-objects K1 and K2 with the same basis M, i.e. if pri : K1 ×M K2 → Ki are the fiber product projections,
then so are Fpri : F(K1 ×M K2)→ FKi.

Proof. It follows easily from the above ”local expression”.

6. Iteration

Let F and F′ be ppgb-functors on FκVB. Since F and F′ have values in FκVB, we can compose F and
F′. It is clear that the composition F” = F′ ◦ F is again a ppgb-functor on FκVB. We are going to compute
I[F”] by means of I[F] and I[F′].

Lemma 6.1. We have A[F”] = A[F]
⊗ A[F′] (the tensor product over R). Moreover, the algebra multiplication of A[F”]

satisfies (a ⊗ a′)(b ⊗ b′) = (ab) ⊗ (a′b′) for any a, b ∈ A[F] and a′, b′ ∈ A[F′].

Proof. Of course, A[F], A[F′] and A[F”] are the Weil algebras of the Weil functors F̃, F̃′, F̃” :M f → FM given
by F̃M = FM, F̃′M = F′M, F̃”M = F”M, where manifolds M are treated as the FκVB-objects with bases M.
We also see that F̃” = F̃′ ◦ F̃. So, our result in question is the well-known one for Weil functors on manifolds,
see [8, 9].
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Lemma 6.2. Let i = 1, . . . , κ. Then V[F”]
i = V[F]

i ⊗ V[F′]
i (the tensor product over R). Moreover, the multiplication

of A[F”] = A[F]
⊗ A[F′] on V[F”]

i satisfies (a ⊗ a′)(u ⊗ u′) = (au) ⊗ (a′u′) for any a ∈ A[F], a′ ∈ A[F′], u ∈ V[F]
i and

u′ ∈ V[F′]
i .

Proof. Put p = dimR(A[F]), p′ = dimR(A[F′]), q = dimR(V[F]
i ) and q′ = dimR(V[F′]

i ). Choose the basis {ei1 }i1=1,...,p

of A[F] over R, the basis {e′j} j=1,...,p′ of A[F′] over R, the basis { fk}k=1,...,q of V[F]
i over R and the basis { f ′l }l=1,...,q′

of V[F′]
i over R. Then we can write A[F] = Rp , A[F′] = Rp′ , V[F]

i = Rq and V[F′]
i = Rq′ . We have ei1 fk =∑

a ca
i1k fa and e′j f ′l =

∑
b db

jl f ′b , where ca
i1k and db

jl are the real numbers. Then F(·) : A[F]
× V[F]

i = Rp
× Rq

→

Rq = V[F]
i satisfies F(·)(x, y) = (

∑
i1,k ca

i1kxi1 yk)a=1,...,q for any x = (xi1 ) ∈ Rp and any (yk) ∈ Rq. Of course,

A[F] = Rp = Rp;01,...,0κ and V[F]
i = Rq = R0;01,...0i−1,q,0i+1,...,0κ are the trivialVB-objects (and similarly for A[F′] and

V[F′]
i ). Then F”(·) = F′(F(·)) : (A[F′])p

× (V[F′]
i )q

→ (V[F′]
i )q satisfies the similar formula

F”(·)(x, y) = (
∑
i1,k

ca
i1kxi1 yk)a=1,...,q

for any x = (xi1 ) ∈ (A[F′])p and y = (yk) ∈ (V[F′]
i )q, see Section 5. So, F”(·) : Rp′p

× Rq′q
→ Rq′q satisfies

F”(·)((xi1α), (ykβ)) = (
∑

i1,k,α,β ca
i1kdb

αβx
i1αykβ) . So, F”(·) : (A[F]

⊗ A[F′]) × (V[F]
i ⊗ V[F′]

i ) → V[F]
i ⊗ V[F′]

i satisfies

F”(·)(x ⊗ x′, y ⊗ y′) = (xy) ⊗ (x′y′) for any x ∈ A[F], x′ ∈ A[F′], y ∈ V[F]
i and y′ ∈ V[F′]

i , where A[F]
⊗ A[F′] = Rpp′

modulo the basis (ei1 ⊗ e′j) and V[F]
i ⊗ V[F′]

i = Rqq′ modulo the basis ( fk ⊗ f ′l ).

Lemma 6.3. Let i = 1, . . . , κ − 1. Then I[F”]
i (u ⊗ u′) = I[F]

i (u) ⊗ I[F′]
i (u′) for any u ∈ V[F]

i+1 and u′ ∈ V[F′]
i+1 .

Proof. The proof is similar to the one of the previous lemma. More precisely, we analyze local expression
of F”(ι(i)).

Summing up we have

Theorem 6.4. Let F and F′ be ppgb-functors on FκVB. Then I[F′◦F] = I[F]
⊗ I[F′], where the tensor product is

explained in Lemmas 6.1-6.3. Consequently, the exchange isomorphism ex : I[F′]
⊗ I[F]

→ I[F]
⊗ I[F′] induces the

isomorphism η[ex] : FF′ → F′F of ppgb-functors on FκVB. Roughly speaking, any two ppgb-functors on FκVB
commute.

7. The natural affinors on ppgb-functors

Let F be a ppgb-functor onFκVB. Composing the tangent functor T with F we get TF. It is a ppgb-functor
on FκVB. After Example 3.1 we remarked that A[T] = D, V[T]

i = D for i = 1, . . . , κ, and I[T] = (idD, . . . , idD).
Then A[TF] = A[F]

⊗D = A[F]
× A[F] with the algebra multiplication

(a1, a2)(b1, b2) = (a1b1, a2b1 + a1b2)

for any a1, a2, b1, b2 ∈ A[F], see Theorem 6.4. Moreover, given i ∈ {1, . . . , κ}, V[TF]
i = V[F]

i ⊗D = V[F]
i ×V[F]

i with
the A[F]

× A[F]-module multiplications

(a1, a2)(v1, v2) = (a1v1, a2v1 + a1v2)

for any a1, a2 ∈ A[F], v1, v2 ∈ V[F]
i . Moreover, given i ∈ {1, ..., κ − 1},

I[TF]
i (v1, v2) = (I[F]

i (v1), I[F]
i (v2))

for any v1, v2 ∈ V[F]
i+1.
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For any c ∈ A[F] we define αc : A[F]
× A[F]

→ A[F]
× A[F] by αc(a1, a2) = (a1, ca2) for any a1, a2 ∈ A[F] and

given i ∈ {1, . . . , κ} we define βi
c : V[F]

i × V[F]
i → V[F]

i × V[F]
i by βc(v1, v2) = (v1, cv2) for any v1, v2 ∈ V[F]

i . Then
(αc, β1

c , . . . , β
κ
c ) is a morphism I[TF]

→ I[TF]. Hence we have the corresponding natural transformation

af(c) : TFK→ TFK .

Locally,

af(c) : T((A[F])m
× (V[F]

1 )n1 × ... × (V[F]
κ )nκ )→ T((A[F])m

× (V[F]
1 )n1 × ... × (V[F]

κ )nκ ) satisfies

af(c)((a, v1, . . . , vκ), (b,u1, . . . ,uκ)) = ((a, v1, . . . , vκ), c(b,u1, . . . ,uκ)) (4)

(modulo the obvious identification) for a, b ∈ (A[F])m and vi,ui ∈ (V[F]
i )ni , i = 1, . . . , κ. So, af(c) is an affinor

on FK. Since af(c) is a natural transformation of ppgb-functors on FκVB, then af(c) : TFK → TFK is a
FκVB-morphism.

Let FκVBm,n1,...,nκ be the category of all FκVB-objects K being locally isomorphic with Rm;n1,...,nκ with
local FκVB-isomorphisms between them as morphisms.

Definition 7.1. A FκVBm,n1,...,nκ -natural affinor on F is a FκVBm,n1,...,nκ -invariant family B of affinors B : TFK→
TFK on FK for anyFκVBm,n1,...,nκ -object K. It means that TF f ◦B = B◦TF f for anyFκVBm,n1,...,nκ -map f : K→ K′.

Theorem 7.2. Let m,n1, . . . ,nκ be non-negative integers with m ≥ 2. Any FκVBm,n1,...,nκ -natural affinor B on F is
af(c) for some c ∈ A[F].

Proof. Of course, B is determined by affinor B : TFRm;n1,...,nκ → TFRm;n1,...,nκ on FRm;n1,...,nκ = (A[F])m
×

(V[F]
1 )n1 ... × (V[F]

κ )nκ . Then (modulo the standard identification) we have B : FRm;n1,...,nκ × FRm;n1,...,nκ →

FRm;n1,...,nκ × FRm;n1,...,nκ and we can write

B(x, y) = (x, B̃(x, y))

for all x, y ∈ FRm;n1,...,nκ , where B̃(x, y) ∈ FRm;n1,...,nκ is linear in y. Using the invariance of B with respect to the
homotheties t · idRm;n1 ,...,nκ , t > 0, we get the homogeneity condition B̃(tx, ty) = tB̃(x, y), i.e. B̃(tx, y) = B̃(x, y) .
Consequently, B̃(x, y) is independent of x. So, we can write

B((a,u1, . . . ,uκ), (b, v1, . . . , vκ))

= ((a,u1, . . . ,uκ), (α(b, v1, . . . , vκ), β1(b, v1, . . . , vκ), . . . , βκ(b, v1, . . . , vκ)))

for all a, b ∈ (A[F])m, u1, v1 ∈ (V[F]
1 )n1 , . . . ,uκ, vκ ∈ (V[F]

κ )nκ , where α(b, v1, . . . , vκ) ∈ (A[F])m is linear in
(b, v1, . . . , vκ) and β1(b, v1, . . . , vκ) ∈ (V[F]

1 )n1 is linear in (b, v1, . . . , vκ) and ... and βκ(b, v1, . . . , vκ) ∈ (V[F]
κ )nκ

is linear in (b, v1, . . . , vκ).
Let φt,t1,...,tκ : Rm;n1,...,nκ → Rm;n1,...,nκ be given by

φt,t1,...,tκ (x, y1, . . . , yκ) = (tx, t1y1, . . . , tκyκ)

for all x ∈ Rm and y1 ∈ Rn1 and ... and yκ ∈ Rnκ , where t, t1, . . . , tκ are positive real numbers. It is
a FκVBm,n1,...,nκ -map. Then, using the invariance of B with respect to φt,t1,...,tκ , we get the homogeneity
condition

α(tb, t1v1, . . . , tκvκ) = tα(b, v1, . . . , vκ) .

Consequently, α(b, v1, . . . , vκ) is linear in b and independent of v1, . . . , vκ. Similarly, β1(b, v1, . . . , vκ) is linear in
v1 and independent of b, v2, . . . , vκ, and ... and βκ(b, v1, . . . , vκ) is linear in vκ and independent of b, v1, . . . , vκ−1.

So, we can write

B((a,u1, . . . ,uκ), (b, v1, . . . , vκ)) = ((a,u1, . . . ,uκ), (α(b), β1(v1), . . . , βκ(vκ)))
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for all a, b ∈ (A[F])m, u1, v1 ∈ (V[F]
1 )n1 , ...,uκ, vκ ∈ (V[F]

κ )nκ ,where α(b) ∈ (A[F])m is linear in b and β1(v1) ∈ (V[F]
1 )n1

is linear in v1 and ... and βκ(vκ) ∈ (V[F]
κ )nκ is linear in vκ.

Let φ : Rm;n1,...,nκ → Rm;n1,...,nκ be given by

φ(x, y1, . . . , yκ) = (x + x1x, y1 + x1y1, . . . , yκ + x1yκ)

for all x = (x1, . . . , xm) ∈ Rm and y1 ∈ Rn1 and ... and yκ ∈ Rnκ . It is a FκVBm,n1,...,nκ -map on the open and
dense subset in Rm;n1,...,nκ satisfying x1 , −1. Then, using the invariance of B with respect to φ and the local
expression for TFφ, we get the conditions

((a + a1a,u1 + a1u1, . . . ), (α(b + a1b + b1a), β1(v1 + a1v1 + b1u1), . . . ))

= ((a + a1a,u1 + a1u1, . . . ), (α(b) + a1α(b) + α1(b)a, β1(v1) + a1β1(v1) + α1(b)u1, . . . ))

for all a, b ∈ (A[F])m and u1, v1 ∈ (V[F]
1 )n1 and ... and uκ, vκ ∈ (V[F]

κ )nκ , where we write (α1(a), . . . , αm(a)) = α(a) ∈
(A[F])m and (α1(b), . . . , αm(b)) = α(b) ∈ (A[F])m and (a1, . . . , am) = a ∈ (A[F])m and (b1, . . . , bm) = b ∈ (A[F])m.
Then

α(a1b) + α(b1a) = a1α(b) + α1(b)a ,

β1(a1v1) + β1(b1u1) = a1β1(v1) + α1(b)u1 ,

...................

βκ(a1vκ) + βκ(b1uκ) = a1βκ(vκ) + α1(b)uκ .

Putting a1 = 1, we get

α(b1a) = α1(b)a , β1(b1u1) = α1(b)u1 , . . . , βκ(b1uκ) = α1(b)uκ .

Then putting b = (1, 0, . . . , 0) ∈ (A[F])m, we get

α(a) = c1a , β1(u1) = c1u1 , . . . , βκ(uκ) = c1uκ

for any a = (a1, . . . , am) ∈ (A[F])m with a1 = 1 and any u1 ∈ (V[F]
1 )n1 and ... and uκ ∈ (V[F]

κ )nκ , where
c1 := α1(1, 0, . . . , 0) ∈ A[F]. Quite similarly (replacing 1 by i ∈ {1, . . . ,m}) we get

α(a) = cia , β1(u1) = ciu1 , . . . , βκ(uκ) = ciuκ

for any a = (a1, . . . , am) ∈ (A[F])m with ai = 1 and any u1 ∈ (V[F]
1 )n1 and ... and uκ ∈ (V[F]

κ )nκ , where
ci := αi(0, . . . , 1, . . . , 0) ∈ A[F] (1 in i-th position). Then

α(a) = ca , β1(u1) = cu1 , . . . , βκ(uκ) = cuκ

for any a = (a1, . . . , am) ∈ (A[F])m and any u1 ∈ (V[F]
1 )n1 and ... and uκ ∈ (V[F]

κ )nκ , where c = c1 = · · · = cm ∈ A[F].
That c1 = · · · = cm follows from the invariance of B with respect to the permutations of the base coordinates.
Then

B((a,u1, . . . ,uκ), (b, v1, . . . , vκ)) = ((a,u1, . . . ,uκ), (cb, cv1, . . . , cvκ))

for all a, b ∈ (A[F])m, u1, v1 ∈ (V[F]
1 )n1 , . . . ,uκ, vκ ∈ (V[F]

κ )nκ , where c ∈ A[F] is as above. Then B = af(c), as
well.
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8. The natural vector fields on ppgb-functors

Let I = (I1, . . . , Iκ−1) be a system (as in Section 1) consisting of A-module homomorphisms Ii : Vi+1 → Vi
for i = 1, ..., κ − 1, where A is a Weil algebra and V1, ...,Vκ are finite dimensional (over R) A-modules.

Definition 8.1. A derivation of I is a system D = (α̃, β̃1, ..., β̃κ) of R-linear maps α̃ : A → A and β̃i : Vi → Vi for
i = 1, ..., κ such that

α̃(ab) = aα̃(b) + α̃(a)b , β̃i(avi) = aβ̃i(vi) + α̃(a)vi

for all a, b ∈ A, vi ∈ Vi and i = 1, ..., κ and
β̃i ◦ Ii = Ii ◦ β̃i+1

for i = 1, ..., κ − 1.

Let F = F[I] be the ppgb-functor on FκVB from I. Using a derivation D = (α̃, β̃1, ..., β̃κ) of I we can
define canonical vector field Op(D) on FK for any FκVB-object K as follows. We define α : A→ A ×A and
βi : Vi → Vi × Vi for i = 1, ..., κ by

α(a) = (a, α̃(a)) , βi(vi) = (vi, β̃i(vi)) ,

a ∈ A, vi ∈ Vi, i = 1, ..., κ.
It is easy to see that (α, β1, ..., βκ) is a morphism I → I ⊗ I[T]. So, we have the corresponding natural

transformation Op(D) : FK → TFK for any FκVB-object K. Locally Op(D) : Am
× Vn1

1 × ... × Vnκ
κ →

T(Am
× Vn1

1 × ... × Vnκ
κ ) satisfies the formula

Op(D)((a j), (v j1
1 ), ..., (v jκ

κ )) = (((a j), (v j1
1 ), ..., (v jκ

κ )), ((α̃(a j)), (β̃1(v j1
1 )), ..., (β̃κ(v jκ

κ ))))

(modulo the standard identification) for any (a j) ∈ Am, (v j1
1 ) ∈ Vn1

1 , ..., (v jκ
κ ) ∈ (V[F]

κ )nκ . Hence Op(D) is a
vector field on FK for any FκVB-object K.

Definition 8.2. A FκVBm,n1,...,nκ -natural vector field on F is a FκVBm,n1,...,nκ -invariant family L of vector fields

L ∈ X(FK)

for any FκVBm,n1,...,nκ -object K. It means that TF f ◦ L = L ◦ F f for any FκVBm,n1,...,nκ -map f : K→ K′.

Proposition 8.3. Let m,n1, ...,nκ be positive integers. Any FκVBm,n1,...,nκ -natural vector field L on F is of the form

L = Op(D)

for some derivation D of I[F].

Proof. Of course, L is determined by the vector field L on FRm;n1,...,nκ = (A[F])m
× (V[F]

1 )n1 ... × (V[F]
κ )nκ , i.e.

L : FRm;n1,...,nκ → (A[F]
× A[F])m

× (V[F]
1 × V[F]

1 )n1 × ... × (V[F]
κ × V[F]

κ )nκ . We can write

L = ((α j), (β j1
1 ), ..., (β jκ

κ )) ,

where
α j : (A[F])m

× (V[F]
1 )n1 × ... × (V[F]

κ )nκ → A[F]
× A[F]

and
β jk

k : (A[F])m
× (V[F]

1 )n1 × ... × (V[F]
κ )nκ → V[F]

k × V[F]
k ,

j = 1, ...,m, jk = 1, ...,nk, k = 1, ..., κ.
Let ((x j), (y j1

1 ), ..., (y jκ
κ )) be the usual coordinates on Rm;n1,...,nκ . By the invariance of L with respect to the

FκVBm;n1,...,nκ -maps
((t jx j), (t j1

1 y j1
1 ), ..., (t jκ

κ y jκ
κ )) : Rm;n1,...,nκ → Rm;n1,...,nκ
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for all real numbers t j , 0 and t jk
k , 0 and by the homogeneous function theorem, given j ∈ {1, ...,m} we

have
α j(a, v1, ..., vκ) = (a j, α̃ j(a j)) ,

where a = (a1, ..., am) ∈ Am, v1 ∈ (V[F]
1 )n1 , ..., vκ ∈ (V[F]

κ )nκ and where α̃ j : A→ A is the R-linear map. Moreover,
given k ∈ {1, ..., κ} and jk ∈ {1, ...,nk},

β jk
k (a, v1, ..., vκ) = (v jk

k , β̃
jk
k (v jk

k )) ,

where a ∈ (A[F])m, v1 ∈ (V[F]
1 )n1 , ..., vk = (v1

k , ..., v
nk
k ) ∈ (V[F]

k )nk , ..., vκ ∈ (V[F]
κ )nκ and where β̃ jk

k : V[F]
k → V[F]

k is the
R-linear map.

Applying the invariance of L with respect to the permutations of coordinates, we deduce that all α̃ j are
equal and all β̃ j1

1 are equal and ... and all β̃ jκ
κ are equal. Then we can write

L(a, v1, ..., vκ) = ((a j, α̃(a j)), (v j1
1 , β̃1(v j1

1 )), ..., (v jκ
κ , β̃κ(v jκ

κ )))

for a = (a j) ∈ (A[F])m, v1 = (v j1
1 ) ∈ (V[F]

1 )n1 , ..., vκ = (v jκ
κ ) ∈ (V[F]

κ )nκ , where α̃ : A[F]
→ A[F], β̃1 : V[F]

1 →

V[F]
1 , ..., β̃κ : V[F]

κ → V[F]
κ are the R-linear maps.

Next, applying the invariance of L with respect to the (locally defined) FκVBm,n1,...,nκ -map ((x j +

(x j)2), (y j1
1 ), (y jκ

κ )) : Rm;,n1,...,nκ → Rm;n1,...,nκ , we derive that

α(a + a2) = α(a) + (α(a))2

for any a ∈ A[F], where α : A[F]
→ A[F]

× A[F] is given by α(a) = (a, α̃(a)) for a ∈ A[F], and where A[F]
× A[F] is

the Weil algebra A[TF] = A[F]
⊗D. Then α(a2) = (α(a))2 for any a ∈ A[F]. By the polarization, α(ab) = α(a)α(b)

for any a, b ∈ A[F]. Then
(ab, α̃(ab)) = (a, α̃(a))(b, α̃(b)) = (ab, aα̃(b) + α̃(a)b) .

Hence α̃(ab) = aα̃(b) + α̃(a)b for any a, b ∈ A[F].
Similarly, given k ∈ {1, ..., κ}, applying the invariance of L with respect to the (locally defined)

FκVBm;n1,...,nκ -map ((x j), (y j1
1 ), ..., (y jk

k + x1y jk
k ), ..., (y jκ

κ )) : Rm;n1,...,nκ → Rm;n1,...,nκ , we derive that β̃k(av) = aβ̃k(v)+
α̃(a)v for any a ∈ A[F] and v ∈ V[F]

k .
Similarly, given k ∈ {1, .., κ − 1}, applying the invariance of L with respect to the FκVBm;n1,...,nκ -map

((x j), (y j1
1 ), ..., (y jk

k + y1
k+1), ..., (y jκ

κ )) : Rm;n1,...,nκ → Rm;n1,...,nκ , we obtain that I[F]
k ◦ β̃k+1(v) = β̃k ◦ I[F]

k (v) for any
v ∈ V[F]

k+1.
Hence D := (α̃, β̃1, ..., β̃κ) is a derivation of I[F], and L = Op(D).

9. Lifting κ-flag-linear vector fields to ppgb-functors

Let K be a FκVBm,n1,...,nκ -object.

Definition 9.1. A vector field Z on K is called κ-flag-linear if the map Z : K→ TK is a FκVB-morphism.

Lemma 9.2. A κ-flag-linear vector field Z : K→ TK on K is projectable.

Proof. We have the underlying map Z : M→ TM. It is a vector field on M.

Using local expression of FκVB-morphisms one can easily get

Lemma 9.3. A vector field Z on K is κ-flag-linear if and only if in any FκVBm,n1,...,nκ coordinate system
(x j, y jk

k ) j=1,...,m;k=1,...,κ; jk=1,...,nk it is of the form

Z =
∑m

j=1 b j(x1, ...xm) ∂
∂x j +

∑κ
k=1

∑κ
q=k

∑nk
j′k=1

∑nq

jq=1 b
q, j′k
k, jq

(x1, ..., xm)y jq
q

∂

∂y
j′k
k

, (5)

where b j, b
q, j′k
k, jq

: Rm
→ R.
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Then we immediately obtain

Lemma 9.4. Let λ ∈ R. If Z1,Z2 are κ-flag-linear vector fields, then so are Z1 + Z2 and λZ1 and [Z1,Z2]. In other
words, the space Xκ−FLAG−LIN(K) of κ-flag-linear vector fields Z on K is the Lie subalgebra in X(K).

Lemma 9.5. If Z is a κ-flag-linear vector field on K and f : M→ R is a map, then f ◦ π · Z is κ-flag-linear.

From Lemma 9.3 we else obtain

Lemma 9.6. A vector field Z on K is κ-flag-linear if and only if the flow of Z is formed by (local)FκVBm,n1,...,nκ -maps.

Similarly as in the manifold case we have

Lemma 9.7. Let Z be a κ-flag-linear vector field on a FκVBm,n1,...,nκ -object K such that the underlying vector field Z
on basis M is non-zero at a point xo ∈ M. Then there exists a local FκVBm,n1,...,nκ -coordinate system (x1, ....) on K
with centrum xo such that Z = ∂

∂x1 .

Proof. We can assume K = Rm;n1,...,nκ and xo = 0 and Z
|0 =

∂
∂x1 |0. Let {φt} be the flow of Z. Then Φ : K → K

defined by Φ(x1, ...) = φx1 (0, x2, ...) is a local FκVBm,n1,...,nκ -isomorphism transforming ∂
∂x1 to Z.

Let F be a ppgb-functor on FκVB.

Proposition 9.8. Let Z : K→ TK be a κ-flag-linear vector field on a FκVBm,n1,...,nκ -object K. Then

FZ := η[ex]
◦ FZ : FK→ TFK

is a κ-flag-linear vector field on FK. Moreover, FZ depends linearly on Z.

Proof. That FZ is a FκVB-morphism follows from Proposition 4.2. The rest follows easily from the local
expression of FZ : FK→ FTK and η[ex] : FTK→ TFK.

Definition 9.9. An FκVBm,n1,...,nκ -gauge-natural operator lifting κ-flag-linear vector fields Z on FκVBm,n1,...,nκ -
objects K into vector fields C(Z) on FK is a FκVBm,n1,...,nκ -invariant family C of regular operators (functions)

C : Xκ−FLAG−LIN(K)→ X(FK)

for any FκVBm,n1,...,nκ -object K. The FκVBm,n1,...,nκ -invariance of C means that if Z ∈ Xκ−FLAG−LIN(K) and Z′ ∈
Xκ−FLAG−LIN(K′) are f -related (i.e. T f ◦ Z = Z′ ◦ f ) for FκVBm,n1,...,nκ -map f : K → K′, then C(Z) and C(Z′) are
F f -related. The regularity of C means that C transforms smoothly parametrized families of κ-flag-linear vector fields
into smoothly parametrized families of vector fields.

Theorem 9.10. Let m,n1, ...,nκ be positive integers. Let F be a ppgb-functor on FκVB. Any FκVBm,n1,...,nκ -
gauge-natural operator C in the sense of Definition 9.9 is of the form

C(Z) = af(c) ◦ FZ +Op(D)

for a (uniquely determined by C) element c ∈ A[F] and a (uniquely determined by C) derivation D of I[F].

Proof. Consider an operator C in question. Because of Proposition 8.3, C(0) = Op(D). So, replacing C by
C − C(0), we may assume C(0) = 0.

Define C : R × (A[F])m
× (V[F]

1 )n1 × ... × (V[F]
κ )nκ → (A[F])m

× (V[F]
1 )n1 × ... × (V[F]

κ )nκ by

((a, v1..., vκ),C(t, a, v1, ..., vκ)) = C
(
t
∂

∂x1

)
(a, v1, ..., vκ) ,
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t ∈ R, a = (a j) ∈ (A[F])m, v1 ∈ (V[F]
1 )n1 , ..., vκ ∈ (V[F]

κ )nκ . Because of Lemma 9.7, C is uniquely determined by
C(1,−,−,−,−). Because of the invariance of C with respect to the homotheties τid : Rm;n1,...nκ → Rm;n1,...,nκ for
τ , 0 and the homogeneous function theorem, C is R-linear. Then, since C(0) = 0, we have

C(1, a, v1, ..., vκ) = C(1) ∈ (A[F])m
× (V[F]

1 )n1 × ... × (V[F]
κ )nκ .

Now, because of the invariance of C with respect to the FκVBm;n1,...,nκ -maps

(x1, τx2, ..., τxm, (τy j1
1 ), ..., (τy jκ

κ )) : Rm;,n1,...,nκ → Rm;n1,...,nκ

for τ , 0, where ((x j), (y j1
1 ), ..., (y jκ

κ )) are the usual coordinates on Rm;,n1,...,nκ , we derive that

C(1) ∈ A[F]
× {0} × ... × {0} .

So, the vector space of all such C is of dimension ≤ dimR(A[F]). Then the dimension argument ends the
proof.

Lemma 9.11. Let Z be a κ-flag-linear vector field on K and f : M→ R be a map. Then

F ( f ◦ π · Z) = F f ◦ Fπ · FZ , (6)

where π : K → M is the projection being FκVB-map (we treated M as the trivial FκVB-object) and F f : FM →
FR = A[F] and where a · y := af(a)(y) for a ∈ A[F] and y ∈ TFK.

Proof. By Lemma 9.5, both sides of (6) have sense. By the linearity of F , we can assume Z is not π-vertical.
Then by Lemma 9.7 we can assume K = Rm;n1,...,nκ and Z = ∂

∂x1 . Then we can assume K = M is a manifold
and Z is a vector field on M. Then our formula is the well-known one F ( f Z) = F f · FZ for Weil functors F
on manifolds.

If Z and Z1 are κ-flag- linear vector fields on K then so is [Z,Z1], see Lemma 9.4.

Proposition 9.12. For any κ-flag-linear vector fields Z and Z1 on K and any a, a1 ∈ A[F] it holds

[af(a) ◦ FZ, af(a1) ◦ FZ1] = af(aa1) ◦ F ([Z,Z1]) (7)

Proof. We can assume that K = Rm;n1,...,nκ , Z = ∂
∂x1 and Z1 = f (x1, ..., xm)Z2, where Z2 =

∂
∂x j or u jq

q
∂

∂u
j′k
k

, where

k = 1, ..., κ, q = k, ..., κ, j′k = 1, ...,nk, jq = 1, ...,nq, j = 1, ...,m.
If Z2 =

∂
∂x j , then the formula is the well-know one for Weil functors on manifolds.

For others Z2, using formula (6) and the well-known formula aFZ(a1F f ) = aa1F(Z( f )) for Weil functor
on manifolds, we derive

[af(a) ◦ FZ, af(a1) ◦ F ( f Z2)] = [a · FZ, a1F f · FZ2] =
= aFZ(a1F f ) · FZ2 = aa1F(Z( f )) · FZ2 = aa1 · F (Z( f )Z2) = af(aa1) ◦ F ([Z,Z1]).

Lemma 9.13. For any κ-flag-linear vector field Z on FK and any a ∈ A[F], the vector field af(a) ◦ Z is also a
κ-flag-linear vector field on FK.

Proof. Since af(a) : TFK → TFK is a FκVB-natural transformation, then it is a FκVB-morphism. So, since
Z : FK→ TFK is a FκVB-morphism, then so is af(a) ◦ Z : FK→ TFK. Since af(a) : TFK→ TFK is an affinor
on FK and Z is a vector field on FK, then af(a) ◦ Z is a vector field on FK.
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10. The complete lifting of κ-flag-linear semi-basic tangent valued p-forms

Definition 10.1. If π : K→M is a fibred manifold, a projectable semi-basic tangent valued p-form on K is a section
φ : K→ ∧pT∗M ⊗ TK such that φ(X1, ...,Xp) is a projectable vector field on K for any vector fields X1, ...,Xp on M.

Given a projectable semi-basic tangent valued p-form φ : K → ∧pT∗M ⊗ TK we have the underlying
tangent valued p-form φ : M → ∧pT∗M ⊗ TM on M such that φ(X1, ...,Xp) is the underlying vector field of
φ(X1, ...,Xp) for any vector fields X1, ...,Xp on M. Let K be a FκVBm,n1,...,nκ -object with basis M.

Definition 10.2. A κ-flag-linear semi-basic tangent valued p-form on K is a projectable semi-basic tangent valued
p-form φ : K → ∧pT∗M ⊗ TK on (fibered manifold) K such that φ(X1, ...,Xp) is a κ-flag-linear vector field on K for
any vector fields X1, ...,Xp on the basis M of K.

Because of Lemma 9.3, any κ-flag-linear semi-basic tangent valued p-form φ on K has (in any
FκVBm,n1,...,nκ -coordinates (x j, y jk

k ) j=1,...,m;k=1,...,κ; jk=1,...,nk on K) the expression

φ =
∑m

j=1 φ
j
⊗

∂
∂x j +

∑κ
k=1

∑κ
q=k

∑nk
j′k=1

∑nq

jq=1 φ
q, j′k
k, jq
⊗R y jq

q
∂

∂y
j′k
k

(8)

for (uniquely determined) real valued p-forms φ j and φ
q, j′k
k, jq

(and vice-versa), where (ω ⊗R Z)(X1, ...,Xp) :=
ω(X1, ...,Xp) ◦ π · Z.

Lemma 10.3. A section φ : K→ ∧pT∗M ⊗ TK is a κ-flag-linear semi-basic tangent valued p-form on K if and only
if φ : TM ×M ... ×M TM ×M K → TK is a FκVB-morphism from the FκVB-object TM ×M ... ×M TM ×M K (with
basis TM ×M ... ×M TM ×M M) to TK (with basis TM).

Proof. We may assume K = Rm;n1,...,nκ . Then φ : Rm+pm;n1,...,nκ → R2m;2n1,...,2nκ . Now, the lemma is an
immediate consequence of the following clear fact (being the consequence of the local expression of FκVB-
morphisms): φ is a FκVB-morphism if and only if φ(−, xo,−) : Rm;n1,...,nκ → R2m;2n1,...,2nκ is FκVB-morphism
for any xo ∈ Rpm.

Let F be a ppgb-functor on FκVB. Consider a κ-flag-linear semi-basic tangent valued p-form φ : K →
∧

pT∗M ⊗ TK on K. Applying F to the FκVB-morphism φ : TM ×M ... ×M TM ×M K → TK, we produce a
FκVB-morphism Fφ : FTM ×FM ... ×FM FTM ×FM FK → FTK. Then applying the exchange isomorphism
η[ex], we obtain a FκVB-morphism

Fφ := η[ex]
◦ Fφ ◦ ((η[ex])−1

× ... × (η[ex])−1
× idFK) : TFM ×FM ... ×FM TFM ×FM FK→ TFK .

Theorem 10.4. The above morphism Fφ is the unique κ-flag-linear semi-basic tangent valued p-form Fφ : FK →
∧

pT∗FM ⊗ TFK on FK such that

Fφ(af(a1) ◦ FX1, ..., af(ap) ◦ FXp) = af(a1 · ... · ap) ◦ F (φ(X1, ...,Xp)) (9)

for any vector fields X1, ...,Xp on M and any a1, ..., ap ∈ A[F].

Proof. We may assume K = Rm;n1,...,nκ and φ is of the form (8). Then

Fφ :=
∑m

j=1 Fφ
j
⊗A[F] F

∂
∂x j +

∑κ
k=1

∑κ
q=k

∑nk
j′k=1

∑nq

jq=1 Fφ
q, j′k
k, jq
⊗A[F] F

(
y jq

q
∂

∂y
j′k
k

)
,

where Fω := Fω ◦ ((η[ex])−1
× ... × (η[ex])−1) : TFM ×FM ... ×FM TFM → A[F] is the so called complete lift

of a p-form ω : TM ×M ... ×M TM → R on M to F, (Fω ⊗A[F] FZ)(Y1, ...,Yp) := Fω(Y1, ...,Yp) ◦ Fπ · FZ for
Y1, ...,Yp ∈ X(FRm), and c · v := af(c)(v), c ∈ A[F], v ∈ TFK.



M. Doupovec et al. / Filomat 37:9 (2023), 2755–2771 2769

It is a well-known fact (from the theory of usual Weil functors F on manifolds) that Fω is a A[F]-valued
p-form on FM such that

Fω(af(a1) ◦ FX1, ..., af(ap) ◦ FXp) = a1 · ... · ap · F(ω(X1, ...,Xp))

for any vector fields X1, ...,Xp on M and any a1, ..., ap ∈ A[F]. That is why we have (9) for any vector fields
X1, ...,Xp on M and any a1, ..., ap ∈ A[F]. It is also a well-known fact (from the theory of usual Weil functors
F on manifolds) that the vector fields af(c) ◦ F (X) for all X ∈ X(M) and all c ∈ A[F] generate (over C∞(FM))
the module X(FM). So, the unique part of the theorem holds, too.

Definition 10.5. The κ-flag-linear semi-basic tangent valued p-form Fφ : FK→ ∧pT∗FM ⊗ TFK on FK satisfying
condition (9) from Theorem 10.4 is called the complete lift of φ to F.

11. The F-N-bracket and κ-flag-linear (semi-basic) tangent valued p-forms

Lemma 11.1. Let π : K → M be a fibred manifold. Given a projectable semi-basic tangent valued p-form φ :
K → ∧pT∗M ⊗ TK on K and a projectable semi-basic tangent valued q-form ψ : K → ∧qT∗M ⊗ TK on K the
Frölicher-Nijenhuis bracket (F-N-bracket) [[φ,ψ]] is (again) a projectable semi-basic tangent valued (p + q)-form
[[φ,ψ]] : K→ ∧p+qT∗M ⊗ TK on K satisfying

[[φ,ψ]](X1, ...,Xp+q) =
1

p!q!

∑
σ signσ[φ(Xσ1, ...,Xσp), ψ(Xσ(p+1), ...,Xσ(p+q))]

+ −1
p!(q−1)!

∑
σ signσψ([φ(Xσ1, ...,Xσp),Xσ(p+1)],Xσ(p+2), ...)

+
(−1)pq

(p−1)q!

∑
σ signσφ([ψ(Xσ1, ...,Xσq),Xσ(q+1)],Xσ(q+2), ...)

+
(−1)p−1

(p−1)!(q−1)!2!

∑
σ signσψ(φ([Xσ1,Xσ2],Xσ3, ...),Xσ(p+2), ...)

+
(−1)(p−1)q

(p−1)!(q−1)!2!

∑
σ signσφ(ψ([Xσ1 ,Xσ2],Xσ3, ...),Xσ(q+2), ...)

(10)

for any vector fields X1, ...,Xp+q on M, where sums are over all permutations σ : {1, ..., p + q} → {1, ..., p + q}.

Proof. It is well-known fact, see e.g. [6].

Proposition 11.2. Let K be a FκVB-object with basis M. Let φ : K → ∧pT∗M ⊗ TK be a κ-flag-linear (then
projectable) semi-basic tangent valued p-form on K and ψ : K → ∧qT∗M ⊗ TK be a κ-flag-linear semi-basic tangent
valued q-form on K. Then the Frölicher-Nijenhuis bracket [[φ,ψ]] : K→ ∧p+qT∗M⊗TK of φ and ψ is a κ-flag-linear
semi-basic tangent valued (p + q)-form on K.

Proof. It is a simple consequence of formula (10) and Lemma 9.4 and Definition 10.2.

Let φ : K → ∧pT∗M ⊗ TK be a κ-flag-linear semi-basic tangent valued p-form on K and let ψ : K →
∧

qT∗M ⊗ TK be a κ-flag-linear semi-basic tangent valued q-form on K. Then we have the κ-flag-linear
semi-basic tangent valued (p + q)-form [[φ,ψ]] on K, and then we have the κ-flag-linear semi-basic tangent
valued (p + q)-form F ([[φ,ψ]]) on FK. On the other hand, we have the κ-flag-linear semi-basic tangent
valued p-form Fφ on FK and we have the κ-flag-linear semi-basic tangent valued q-form Fψ on FK, and
then we have the κ-flag-linear semi-basic tangent valued (p + q)-form [[Fφ,Fψ]] on FK.

Theorem 11.3. We have

F ([[φ,ψ]]) = [[Fφ,Fψ]] . (11)

Proof. The proof is almost (algebraically) the same as the one of Theorem 2 in [18]. More detailed, using
Theorem 10.4 and Proposition 9.12 and Lemma 11.1 one can easily show that the left hand side of (11) at
(af(a1) ◦FX1, ..., af(ap+q)FXp+q) is equal to the right hand side of (11) at (af(a1) ◦FX1, ..., af(ap+q) ◦FXp+q) for
any a1, ..., ap+q ∈ A[F] and any vector fields X1, ...,Xp+q on M.
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12. An application to prolongation of κ-flag-linear connections

Let K be a FκVB-object with basis M.

Definition 12.1. A κ-flag-linear connection in K→M is a κ-flag-linear semi-basic tangent valued 1-form Γ : K→
T∗M ⊗ TK on K such that the underlying vector field of Γ(X) is equal to X for any vector field X on basis M.

Let F be a ppgb-functor on FκVB.

Lemma 12.2. Given a κ-flag-linear connection Γ in K → M, its complete lift F Γ is a κ-flag-linear connection in
FK→ FM.

Proof. Since Γ(X) is a κ-flag-linear vector field on K with the underlying vector field equal to X, then
F Γ(af(a) ◦ FX) = af(a) · F (Γ(X)) is a κ-flag-linear vector field with the underlying vector field equal to
af(a) ◦ FX. Then F Γ(Y) is a κ-flag-linear vector field with the underlying vector field equal to Y for any
vector field Y ∈ X(FM).

Definition 12.3. A curvature of a κ-flag-linear connection Γ in K→M is

RΓ :=
1
2

[[Γ,Γ]] : K→ ∧2T∗M ⊗ VK .

Equivalently, RΓ(X1,X2) = [Γ(X1),Γ(X2)] − Γ([X1,X2]) for any X1,X2 ∈ X(M).

Theorem 12.4. It holds

RF Γ = F (RΓ) . (12)

Proof. By (11), [[F Γ,F Γ]] = F ([[Γ,Γ]]).

13. An application to torsion of κ-flag-linear connections in FK → M

Let F be a ppgb-functor onFκVB and K be aFκVBm,n1,...,nκ -object with basis M. Then we have the fibred
manifold pK : FK→M (or simply FK→M). We have also the FκVB-object FK with basis FM.

Definition 13.1. A κ-flag-linear semi-basic tangent valued p-form on FK → M is a projectable semi-basic tangent
valued p-form φ : FK→ ∧pT∗M⊗TFK on (fibered manifold) FK (with basis M) such that (additionally) φ(X1, ...,Xp)
is a κ-flag-linear vector field on FκVB-object FK (with basis FM) for any vector fields X1, ...,Xp on M.

Proposition 13.2. Let φ : FK → ∧pT∗M ⊗ TFK be a κ-flag-linear (then projectable) semi-basic tangent valued
p-form on FK → M and ψ : FK → ∧qT∗M ⊗ TFK be a κ-flag-linear semi-basic tangent valued q-form on FK → M.
Then the F-N bracket [[φ,ψ]] : FK → ∧p+qT∗M ⊗ TFK of φ and ψ is a κ-flag-linear semi-basic tangent valued
(p + q)-form on FK→M.

Proof. It is a simple consequence of formula (10) and Lemma 9.4 and Definition 13.1.

Definition 13.3. A κ-flag-linear connection in FK → M is a κ-flag-linear semi-basic tangent valued 1-form Γ :
FK → T∗M ⊗ TFK on FK → M such that the underlying vector field of Γ(X) is equal to X for any vector field X on
basis M.

Let Γ : FK → T∗M ⊗ TFK be a κ-flag-linear connection in FK → M and let B : TFK → TFK be a
FκVBm,n1,...,nκ -natural affinor on FK. If m ≥ 2, then B = af(c) for some c ∈ A[F]. Then, because of Lemma
9.13, B ◦ Γ(X) is a κ-flag-linear vector field on FK for any vector field X on M. Moreover, if c = λ + n, where
λ ∈ R and n is nilpotent, then B ◦ Γ(X) is projectable with the underlying vector field λX. So, B ◦ Γ and Γ
are κ-flag-linear semi-basic tangent valued 1-forms on FK→M, where (B ◦ Γ)(X) := B ◦ Γ(X) for any vector
field X on M.
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Definition 13.4. The F-N bracket
τB(Γ) := [[Γ,B ◦ Γ]]

is called the torsion of type B of Γ.

Theorem 13.5. Let F and Γ and B be as above. Assume m,n1, ...,nκ are non-negative integers with m ≥ 2. The
torsion of type B of Γ is a κ-flag-linear semi-basic tangent valued 2-form τB(Γ) : FK → ∧2T∗M ⊗ VFK on FK. If
B = af(c), where c = λ + n, λ ∈ R, n ∈ A[F] is a nilpotent, then

τB(Γ)(X,Y) = 2λRΓ(X,Y) + [Γ(X), af(n) ◦ Γ(Y)] − [Γ(Y), af(n) ◦ Γ(X)] − af(n) ◦ Γ([X,Y])

for any vector fields X and Y on M.

Proof. We apply the formulas of the F-N-bracket and of the curvature.

Remark 13.6. In particular, if K = (M; M,M, ...,M) and F = T and B = J is the almost tangent structure (i.e.
A[F] = D, c = n = (0, 1) ∈ D, λ = 0), then τJ(Γ) is (almost) the usual torsion of a usual linear connection Γ on
M. Indeed, if x1, ..., xm are local coordinates on M and x1, ..., xm, y1, ..., ym the induced coordinates on TM, then
J =

∑m
i=1 dxi

⊗
∂
∂yi . If Γ( ∂

∂xi ) = ∂
∂xi − Γ

k
i j(x)y j ∂

∂yk , then J ◦ Γ( ∂
∂xi ) = ∂

∂yi . Then τJ(Γ)( ∂
∂xi ,

∂
∂x j ) = (Γk

i j − Γ
k
ji)

∂
∂yk (the

Einstein summation convention is used). Therefore our definition of torsion generalizes the classical concept of torsion
of (usual) linear connection and joint the classical curvature and the classical torsion of linear connection. In [10],
the authors define the torsion of Γ of type B as the F-N-bracket [[Γ,B]].
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[3] A. Cabras, I. Kolář, Prolongation of tangent valued forms to Weil bundles, Archivum Mathematicum (Brno) 31 (1995), 139–145.
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