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Abstract. Let x > 2 be a fixed natural number. The complete description is given of the product preserving
gauge bundle functors F on the category F, V8 of flag vector bundles K = (K;Kj, ..., K,) of length x in
terms of the systems I = (I3, ..., I,_1) of A-module homomorphisms I; : Vi;; — V; for Weil algebras A and
finite dimensional (over R) A-modules V7,...,V,. The so called iteration problem is investigated. The
natural affinors on FK are classified. The gauge-natural operators C lifting x-flag-linear (i.e. with the flow
in F,.VB) vector fields X on K to vector fields C(X) on FK are completely described. The concept of the
complete lift ¥ ¢ of a k-flag-linear semi-basic tangent valued p-form ¢ on K is introduced. That the complete

lift ¥ ¢ preserves the Frolicher-Nijenhuis bracket is deduced. The obtained results are applied to study
prolongation and torsion of k-flag-linear connections.

1. Introduction

We assume that any manifold considered in the paper is Hausdorff, second countable, finite dimensional,

without boundary and smooth (i.e. of class C*). All maps between manifolds are assumed to be smooth
(of class C™).

Definition 1.1. A flag vector bundle of length « is a system K = (K; Ky, ..., Ky) of a vector bundle K = (K, t, M)
together with vector sub-bundles K; = (K, ;, M) of K fori = 1,...,x such that Ky c K, € --- € K, = K. We call
M the basis of K. If K’ = (K’; K}, ..., K}) is another flag vector bundle, a flag vector bundle map K — K’ is a vector
bundle map f : K — K’ such that f(K;) K fori=1,...,x.

We have the trivial flag vector bundle K = (K;Kj, ..., K), where K = (R" X R™ x --- X R™, 7, R") and
Ki=R"XR" X+ xR%"XROX--- xR, 7;, R") fori = 1,..., k. We will denote this trivial flag vector bundle
by Rt

Any flag vector bundle K = (K;Kj, ..., Ky) with the basis M is locally trivial. It means that there

are integers m, 1y, ..., n, such that for any x € M there is an open neighborhood Q2 ¢ M of x such that
Kiq = R""-~" modulo flag vector bundle isomorphism.
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Some flag vector bundles appear naturally in differential geometry. For example, if 4 : B — X is a
bundle, then we have the flag vector bundle TB = (TB; VB, TB) of length 2 with basis B, where TB is the
tangent bundle of B and VB = ker(Tq) C TB is the vertical bundle of B. Another example,ifg: E — Misa
vector bundle, then we have the flag vector bundle (J'E)* = ((J'E)*; E*, (J'E), ..., (J'E)*) of length r + 1 with
basis M, where (J'E)* is the dual of the r-jet prolongation J'E of E and the inclusions E* C (J'E)* C --- C (J'E)*
are dual to the jet projections J'E — JJ7'E — --- — J'E — E. Else one example, if M = (M; F1,...,Fn)
is a manifold with a flag of foliations with #, = {M]}, then we have the (obvious) flag vector bundle
TM = (TM; T#, ..., TF,) of length n with basis M.

Let V8B denotes the category of all flag vector bundles of length x and their flag vector bundle maps
and 7 M denotes the category of fibred manifolds and fibred maps. The general concept of (gauge) bundle
functors can be found in [9]. We need the following particular case of it.

Definition 1.2. A gauge bundle functor on V8 is a covariant functor F : F.VE — F M sending any F.V5-
object K with the basis M into fibred manifold px : FK — M over M and any ¥, VB-map f : K — K’ with the base
map f : M — M’ into fibred map Ff : FK — FK' over f : M — M’ and satisfying the following conditions:

(i) (Localization condition) For every F.'VB-object K with the basis M and any open subset U C M the inclusion
map ixy : KIU — K induces diffeomorphism Fig : F(K|U) — p(U), and

(ii) (Regularity condition) F transforms smoothly parametrized families of ..V B-maps into smoothly parametrized
families of ¥ M-maps.

A gauge bundle functor F on V8 is product preserving (ppgb-functor) if F(K x K’) = F(K) x F(K")
for any ¥ VB-objects K and K’. (If K = (K;Kj,...,Ky) and K" = (K’; K], ...,K}) then (of course) K X K" =
(KXK’; Ky XK, ..., Ki XK}).)

A simple example of a ppgb-functor on F, V8 is the tangent functor T sending any 7,V 8B-object K into
the tangent bundle TK (over M) and any #V8-map f : K — K’ into the tangent map Tf : TK — TK’.

Given gauge bundle functors Fy, F; on V8, a natural transformation n : F; — F; is a system of base
preserving fibred maps nx : F1K — F»K for every F,V8B-object K satisfying F» f o nx = - o F1 f for every
FVB-map f : K - K.

In the present note, if k > 2, we describe the ppgb-functors F on 7, V8 in terms of the systems
I'=(L,...,Ix1) consisting of A-module homomorphisms I; : Vi;; — Vifori=1,...,x—1, where A is a Weil
algebra (i.e. a finite dimensional real associative commutative algebra with unity of the form A = R@ngx
with nilpotent ideal ns) and V4, ..., V. are finite dimensional (over R) A-modules (over commutative ring
A with unity). We study the so called iteration problem, too. Then we classify all natural affinors on
ppgb-functors and all natural liftings of the so called k-flag-linear vector fields (i.e. with the flows being
FVB-local isomorphisms) to ppgb-functors on F.VB. We also define the complete lifting of «x-flag-
linear semi-basic tangent valued p-forms to ppgb-functors on V8 and observe that this complete lifting
preserves the Frolicher-Nijenuis bracket. Finally, we apply the obtained results to study curvature and
torsion of x-flag-linear connections.

Clearly, £1V8 is equivalent to the category of vector bundles V8. In [15], we described the ppgb-
functors F on V8 in terms of finite dimensional (over R) A-modules V.

Product preserving (gauge) bundle functors are studied in many papers, see [1, 8, 9, 12, 14-16, 19-21].
Natural operators lifting vector fields to product preserving (gauge) bundle functors are studied in [7, 13].
Complete lifts of semi-basic tangent valued p-forms are studied in [3, 4, 17]. Natural affinors are classified
in many papers, see e.g. [2, 5, 10, 11]. Natural affinors are used to study torsion of connections, see e.g.
[2,10].

2. The ppgb-functors F'!

Suppose we have a system I = (I3, ..., 1) consisting of A-module homomorphisms I; : Vi;; — V; for
i=1,...,x —1, where A is a Weil algebra and Vj,..., V, are finite dimensional (over R) A-modules. (A
rather simple but non-trivial example of such a system I is presented in the end of this section). We are
going to construct ppgb-functor FI : F. VB — F M.
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We consider a F,,V8B-object K = (K; Kj, ..., Ki) with basis M and a point x € M. Let
G+(K, R"™"~") .= the space of germs at x of 7 VB-maps K — R |
The sum map + : R X R — R can be treated as the 7 'VB-maps:

+ Rl}ol/wrox X Rl;olxm/ox N Rl;olruvox and

+: R0;01,--~,0i-1,1i,01+1 ,,,,, (1N % R0;01,~-,0i—1,1i,0i+1,--~,0x - R0;01,<--,01—1,11,0i+1 ,,,,, O

fori=1,...,x,where0;=0and 1; =1forj=1,...,x.
The multiplication map - : R X R — R can be treated as the ,'V8-maps

. Rl;oll-"/OK X Rliolz-wok - Rl;oll---uok and
. Rl;Ol/“-/Ox % R0;01,~--,0i—1,1i,0i+1,--~,0.< — RO;Olr---/Oi—l/lerHl ,,,,, Ox

fori=1,...,x.
The constant map 1 : R — R can be treated as the #'VB-map

1 - R1Ou-0c _y R101-0x
and the constant map 0 : R — R can be treated as the 7, 'VB-maps:

0: 111;01,...,0K — R1;01,...,0K and

0: RO;Olf---/Oi—l/leriH ,,,,, O R0;01,---,0i-1,1i,01+1,~--,0y<

fori=1,...,x.
Hence G.(K, R"?1~%) is (in obvious way) an algebra and G, (K, R%01--0i-1.1ibis1--0c) jg (in obvious way) a
G+(K, RV01-0).module fori=1,..., k.

The identity map idg : R — R can be treated as 7VB-map
(G R0 00 Liv1 02,0k _y ROOL-/0i=1,110i1,1-. 0
fori=1,...,x—1.

Example 2.1. Wedefine FUK to be the space of tuples (p, U1, . . ., ) consisting of algebra maps @ : G(K, R170--0c) —

Yi(Li o g) = 1 o Pipa(g) 1)

for all g € Go(K,RO--0udiaOia0cy if j =1, i = 1. Let FUIK := Uyep FUK. We can see that FUK is a fibred
manifold over M. Indeed, a F,. 'V B- trivialization

((xj)/ (y{l)/ ey (y,]:)) : K‘QiRmml""’n"'
of K induces an ¥ M-trivialization
((fj)r (ﬂ]f )/ ey (y{;)) : F[I]K|QiAm X V;” X .. X V,’:” (2)

defined by . '

@, 1,90 = plgerm (&) € A, G (@, 1, -, i) = Pr(germ, () € Vi,
j=1,....mk=1...,x jix =1,...,n The trivialization (2) is really a bijection. Indeed, any (@, y1,...,Px) €
F¥]K|Q is uniquely determined by the values

pgerm () €A, j=1...,m
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together with the values

1pk(germx(y£q))evk, k=1,...,x, g=k...,x, j;=1,...,n4

because the module G (K, R%01--O1:1u0e1,-00) §s free with the basis

germx(y,]f), g=k....,x, jg=1,...,n4

So, using the condition (1) one can easily show that any (p, 1, ..., Px) as above is uniquely determined by the values
(p(germx(xj)) €A j=1...,m and ¢k(germx(y£k)) eVibk=1,...,x, jk=1,...,1m

as well.
Any FVB-map f : K — K induces a F M-map FU f : FIIK — FUK?Y such that

FIH@ - ) = @0 fipro fi o £,

(@, 1,...,Px) € FUK, x € M, where f+ is the pull-back with respect to f. Clearly, the resulting correspondence
FU': F. VB — F Mis a ppgb-functor.

IfI' = (I3, ..., I _,) is another system in question and u = (a,p,...,Px) : I = I' isa morphism (ie. a : A — A’
is a Weil algebra homomorphism and B; : Vi — V| are module maps over a fori =1,...,x such that I o i1 = fio;
fori =1,...,x — 1) then we have the natural transformation n*1 : FUl — FI'T given by (¢, ¢1,...,¢x) —
(ao @,pror,...,Bxo 1,[11<)-

Lemma 2.2. (i) The functor FU1 has values in F, V8B, i.e. FI1 : F. VB - F V8.
(ii) The natural transformation n'#! : FIK — FUK is a F,.VB-morphism for any F,VB-object K.

Proof. Let K = (K;Ky,...,K,) be a F,VB-object with the basis M. It is clear that FIIK is the vector bundle
with basis TAM with the projection (@, 1,...,¥) = @. Fori = 1,...,x we have vector sub-bundle

(FUK); = {(p, 1, .., ) € FUIK [ iy = - = =0} O

A rather simple but non-trivial system I in question is given by the projections I; : A"l — A for
i=1,...,x— 1, where A is a Weil algebra, Al = Ax---x A (i times) is A-module with the multiplication
aay,...,a;) = (aay,...,aa;)fora € Aand (ay,...,a;) € AL, and Ii(ay, ..., ai11) = (a1, ...,a;) for(ay, ..., a1) € AL
Another system in question can be obtained from this one by replacing A on an ideal in A.

3. The system I']

Example 3.1. Let F : 7. VB — F M be a ppgb-functor. Let
A[F] = FR1;01 ..... OK and V[P] = PRO;O1,...,0,_1,1‘,0i+1...,0,{
1

fori=1,...,x. Then A" is a Weil algebra and V') are AF\-modules. Indeed, the algebra operations of AV
are F(+) : F(RW-0c x RUO-0c) = AWl x AL — FRUOU--O0c = AlFl gud F(-) : AWl x AFL — AF] where
the sum map + : R X R — R and the multiplication map - : R X R — R are treated as F,VB-maps +,- :
R0 ¢ R0k — RO the unity of AW is F(1) and the null is F(0). Similarly, the AF-module operations
of VZ[F] are F(+) : VZ[F] X VZ[F] - V}” and F(-) : AIFl x VI[F] - Vsz where the sum and multiplication maps + and -
are treated as FVB-maps

. R001,...,0i-1,1;,0i41,..., 0, 0;01,...,0i-1,1;,0i41,.., (U 0;01,...,.0i-1,1;,0i41,...,0x
+‘R 1 i-1,4i,Vi+1 KXR 1 i-1,4i,Yi+1 A_)R 1 i-1,1i,Vi+1 r»’

. R1;01,---,0x % RO}Olz-wOilr1i10i+11--»10x N R0;01,---,0i71,15,0i+1,-~,0x
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Fori=1,...,x — 1 we have a A¥)-linear map

F F F
Il[ ! = F(L(,‘)) . VL]l d Vz[ ] ’

We put 1] := (IEF ],...,IEE_]l). Any natural transforrlnation n : F — F of ppgb-functors induces a morphism
[,l[’ﬂ = (nR1;01,..,,01;,nRo;ll/oz/.,.,oK, .. .,nRo;ol,.../ox,l/lk) : I[F] d I[F ].

For example, if T is the tangent functor (on %,V B) then A"l = D is the algebra of dual numbers, Vlm =D

with the D-module multiplication being the one of dual numbers fori =1, ..., %, and Ilm =idp: VL[H - Vlm
fori=1,...,x—1.

4. The isomorphism F=F!"]

Theorem 4.1. Let k > 2. We have F = FU"'l modulo the natural isomorphism.

Proof. Let K be a F,VB-object with basis M and let y € F,K be a point, x € M. We define a map
Py : Gl RI-0) — AIFT = FRID--0: by

py(germ,(9)) = F(9)(y) ,
where g : K — R0 s a F VB-map. Similarly, giveni =1,...,x, we define a map

Recalling the definitions of operations in APl and VZ[F] (from Example 3.1), since F is a functor, we get
that ¢, is an algebra homomorphism and (¢,); is a module map over ¢,.
Using similar arguments, giveni=1,...,x — 1 we get

Wity og) = IEF] o (1y)i+1(9)
for all g € Gy(K, R%01-0ilinOis2-00) " Consequently,

O () = (@y W1, ..., (Wy)e) € FLIK .

So, we have the resulting ¥,V 8-natural transformation
e :F— FI',

We prove that O is a diffeomorphism for any . VB-object K.

Applying 7.V B-trivialization, we can assume that K = R""~-". Since F and FI'"'l are product pre-
serving and K is a (multi) product of R%01-0« and R%01--0i1dilis1--Oc for { = 1,..., %, we can assume that K is
RW0u-Oc op RO Al D with § =1, x.

If K = R0, we consider &' o ©F : FRW-0« — AF = FRI01-0 where ' is induced by x' = idg :

e — R , see Example 2.1. This composition is the identity map o Wi = . That is why,
R0 — R0 Example 2.1. Th posit the identity map of FRY10« = A1, That is why,
Ot is a diffeomorphism in this case.

If K = R%-0mdili--0c - @F is a diffeomorphism by the reason as above with R¥% replaced by
ROOu--0i11ilit- 05 and with &' replaced by i, where 7! is induced by y! = idg : R¥0-Om b0
RO01,-+0i-11:,0i41,--0x O

From Theorem 4.1 and Lemma 2.2, it follows immediately

Proposition 4.2. (i) Any ppgb-functor F : F VB — F M on F. VB has values in F.VSB, ie. F:F VB —
F V8.

(ii) For any natural transformation n : F — F’ of ppgb-functors on VB, the fibred map n : FK — F'Kis a
FVB-morphism for any F,VB-object K.
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5. Local expression

Let F be a ppgb-functor on F, V8. By Theorem 4.1, we may assume F = Fll, where I = (I, ..., I,_1) is
a system consisting of A-module homomorphisms I; : Vi1 — V;, where A is a Weil algebra and V3,..., Vi
are finite dimensional (over R) A-modules. Then we can write

FR™MrM = AM x VT x -+ x Vi< (modulo the trivialization) .

Consider a 7 VB-map f : R~ — R~ 1t is of the form

Kk Mg

i Dk (y,))
fyn, -y =@ (), Z Z A COYy ) =1, k=1, =1

q=k js=1

x =@ ") eR, y1o= (Y, 0) €ERY Ly = (Vs ) € R™, where o/ @ R” — R and
s
kjy /
A™ X V1 x -+ x Vi is of the similar form

a,/*: R™ — R are some smooth maps. Then we can see that the induced map FU1f : A" x V' x--- x Vi* —

kMg
i @i 1,
F[I]f(x/ ]/1, ey ]/1:) = ((&l] )A(x)r 2 Z(ﬂk,jj;)A(X) . IZ (yziq))j'=1,...,m’;k:l,...,K;j]’f=1 ..... n}’( 7
g=k jy=1

My

x=@ . M eA =Wl ) EVT e = (WL ) € Vz“,wherel;f1 =00l : Vg >V,

@A =T%: T'R"=A" > T’ R=A, (aZ';2 = TAaZ';2 : A" — A, T4 is the Weil functor of Weil algebra A
2 /Ja

and - is the multiplication of the A-module V. (If g = k then I’,:‘l is the identity map of V.)

If u = (o, pBi,...,Bx) : I » I' is a morphism then r]if,,],ml PATX VX XV = ATV X X VT

is of the form

T]ifﬂ]l;,ﬂl,...,nk (X, Yiyeo oy yK) = ((a(xl)’ (R a(xm))/ (,31(}/%)/ ceey ﬁl(y?l))r sy (/31\(y;1<)/ cee /ﬁk(yzk))) ’

wherex = (x!,...,.x") e A" and y1 = (y},..., Vi) € V' ...y = (Yh -, YR°) € VI

..... i

Proposition 5.1. We have

F(K1 Xp K3) = FKq Xpm FKy modulo (Fpry, Fpra) 3)
for any FVB-objects Ky and Ky, with the same basis M, i.e. if pr; : K1 Xp Ko — K are the fiber product projections,
then so are Fpr; : F(K; Xp Kp) — FK;.

Proof. It follows easily from the above “local expression”. [J

6. Iteration

Let F and F’ be ppgb-functors on #V8. Since F and F’ have values in V8, we can compose F and
F’. Tt is clear that the composition F” = F’ o F is again a ppgb-functor on V8. We are going to compute
I'F'I' by means of Il and I1F'].

Lemma 6.1. We have A¥"1 = AIFl® AW (the tensor product over R). Moreover, the algebra multiplication of AF”]
satisfies (a®a’)(b® V') = (ab) ® (a'V’) for any a,b € A and a’, b’ € AIF'L.

Proof. Of course, A1, AlFl and AIF' are the Weil algebras of the Weil functors F, F/, F” : Mf — ¥ M given
by FM = FM, F'M = F’'M, F”M = F”M, where manifolds M are treated as the ¥,V B-objects with bases M.
We also see that F” = [’ o F. So, our result in question is the well-known one for Weil functors on manifolds,
see[8,9]. O
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Lemma 6.2. Leti=1,...,x. Then Vl[F 1= VI[F e Vl[,F/] (the tensor product over R). Moreover, the multiplication
. : F] e o _ / [F]
of APl = APl @ AIFT on Vi satisfies (a @ a')(u @ u') = (au) ® (a'w’) for any a € AP, o € AW, u € V" and
w eVl
1

Proof. Put p = dimg(A), p’ = dimg(AF), g = dimR(Vl[F]) and g’ = dimR(Vl[F']). Choose the basis {e;, }i,-1,..»
of V}p] over R. Then we can write AFl = R? , AF1 = RV, VZ[F] = R7 and Vl[p] = RY . We have ¢, f; =

Cfaand if) = 1, d’;lfl; , where ¢ and d]b.l are the real numbers. Then F() : Al x VIl = R¥ x R7 —
Al = RP = RPOU-0x and VI = R7 = RO0-0-00.0:1-0x are the trivial VB-objects (and similarly for A and
Vl[,F/]). Then F”(:) = F'(F()) : (AIFTy? x (V}F'J)q - (VZ[F,])q satisfies the similar formula

F()0y) = () ey hamt, g
il,k
for any x = (x1) € (AP and y = (%) € (VIF1)7, see Section 5. So, F”()) : R¥? x R77 — R7Y satisfies
F7 (), () = (T, ks € 0 YF) . So, F7() : (A @ AF) x (Vi e VIl - vifl @ VIF1 satisfies
F'(Yx®x,y®y) = (xy) ® (x'y’) for any x € Ay e AP y e VIFland i € VIF], where AlFl @ AIF1 = RP
modulo the basis (¢;, ® e;) and V}F] ® VI[F] = R% modulo the basis (f; ® - O
Lemma 6.3. Leti=1,...,x— 1. Then IZ[F”](M Qu') = Ilm(u) ®II[F/](u’)for any u € VI and w e vIF],

i+1 i+1

Proof. The proof is similar to the one of the previous lemma. More precisely, we analyze local expression
of F”(L(j)). O

Summing up we have

Theorem 6.4. Let F and F' be ppgb-functors on FVB. Then IF°Fl = [l @ [IF'] where the tensor product is
explained in Lemmas 6.1-6.3. Consequently, the exchange isomorphism ex : IF'1 ® Il — [IFl @ [F'] induces the
isomorphism 1\ : FF' — F'F of ppgb-functors on FVB. Roughly speaking, any two ppgb-functors on F. VB
commute.

7. The natural affinors on ppgb-functors

Let Fbe a ppgb-functor on V8. Composing the tangent functor T with F we get TF. Itis a ppgb-functor
on F. V8. After Example 3.1 we remarked that A"l = D, Vlm =Dfori=1,...,x and I'"l = (idp, ..., idp).
Then ATl = AlFl @ D = AlFl x AUl with the algebra multiplication

(a1,a2)(b1, bz) = (a1by, a2by + a1 by)

for any ay,a;,b1, b, € AlFl see Theorem 6.4. Moreover, givenie (l,...,x}, V}TF] = VI[F] ®D = VI[F] X VI[F] with
the Alfl x Alfl-module multiplications

(a1,a2)(v1,02) = (@101, 8201 + A102)
for any ay,a; € AFl vy, 0, € V}F]. Moreover, giveni € {1, ...,k — 1},
[TF] _ (1lF] [F]
L (01,02) = (I; (1), I} (v2))

F
for any vy, v; € V1[+]1.
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For any ¢ € Al we define a. : AlFl x AlFl — AWl x A by a.(ay,az) = (a1, ca,) for any ay,a, € A¥ and
giveni € {1,...,«x} we define ‘B’c : VI[F] X VI[F] - VZ[F] X VZ[F] by Bc(v1,v2) = (v1,cv2) for any vy, v, € VI[F]. Then
(ac, B, ..., Br) is a morphism IITF1 — [ITFl. Hence we have the corresponding natural transformation

af(c) : TFK —» TFK .
Locally,

af(c) : T((AFY" x (VIFym x.ox (Vi) — (Al (viFyn s ox () satisfies

af(c)((a, Olyeevy UK)/ (b/ ZAVEREY; uK)) = ((a/ Vly+-+y vK)/ C(br Uui,..., uK)) (4)

(modulo the obvious identification) for a,b € (A¥1)" and v;, u; € (V}F ])”*', i=1,...,x. So, af(c) is an affinor
on FK. Since af(c) is a natural transformation of ppgb-functors on ¥, V%, then af(c) : TFK — TFK is a
FVB-morphism.

Let £ VB, n,,..n, be the category of all ¥,V B-objects K being locally isomorphic with R™"~" with
local 7,V B-isomorphisms between them as morphisms.

Definition 7.1. A 7V B, n,,.. n.-natural affinor on F is a FeV By n,,.. n.-invariant family B of affinors B : TFK —
TFK on FK for any VB n,,...n.-0bject K. It means that TFf oB = BoTFf for any ¥V By, n.-map f : K = K.

Theorem 7.2. Let m,ny, ..., n, be non-negative integers with m > 2. Any FV By n,,.. n.-natural affinor B on F is
af(c) for some c € AlFL.

Proof. Of course, B is determined by affinor B : TFR™™~" — TFR™M~M on FR™M~m = (AFlym x
(VEF])’“... X (V,[f])”K . Then (modulo the standard identification) we have B : FR™™" x FR™M:M —
FR™Methe ¢ FR™MMe and we can write

B(x,y) = (x, B(x,y))

for all x, y € FR™™~"s where B(x, y) € FR"™™~" is linear in y. Using the invariance of B with respect to the
homotheties ¢ - idgrmm..n, t > 0, we get the homogeneity condition B(tx, ty) = tB(x, y), i.e. B(tx,y) = B(x,y) .

Consequently, B(x, y) is independent of x. So, we can write
B((ﬂ, Utyenn, uK)/ (bl Oly+evy vK))

=((a,u1,..., u), (ab,v1,...,00), P10, 01, ..., 0¢), ..., Bi(b, 01, . .., U)))
for all a,b € (AF)y", uy, v, € (VgF])”l,...,uK,vK e (VI where a(b,v,...,0) € (A" is linear in
(b,v1,...,v,) and Bi(b,v1,...,v,) € (VI is linear in (b,v1,...,v,) and ... and Be(b,v1,...,v,) € (V)™
is linear in (b, vy, . .., V).
Let ¢y4,,. ¢ @ R — R be given by

(Pt,h,...,tK (x/ ]/1/ ey yk) = (tx/ tl]/ll ceey tkyk)

for all x € R" and y; € R™ and ... and y, € R™, where t,t,...,t, are positive real numbers. It is
a VB, n-map. Then, using the invariance of B with respect to @,y :, we get the homogeneity
condition

a(th, vy, ..., 4oy = ta(b, vy, ..., 0x) -

Consequently, a(b, vy, . .., v,) islinear in b and independent of vy, . . ., v.. Similarly, 1(b, vy, ..., vi) is linear in
v; and independentof b, vy, ..., v, and ... and (b, vy, . .., vy) is linear in v, and independent of b, vy, . . ., Vy_1.
So, we can write

B((a,u1, ..., 1), (b,v1, ..., 00) = ((@,u, ..., u), (@(b), Br(v1), .. ., P(vi)))
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foralla,b € (A", uy, v, € (VEF])’“, oyt 0 € (VI where a(b) € (AF)" is linear in b and B (v1) € (VEH)’11
is linear in v1 and ... and B (vy) € (V,EP])”K is linear in v.
Let ¢ : R™"he — R be given by

P Y1, Y = @+ Xy Xy, e+ X )
forall x = (x!,...,x") € R" and y1 € R and ... and y, € R™. Itis a F VB, n,-map on the open and
dense subset in R~ satisfying x! # —1. Then, using the invariance of B with respect to ¢ and the local
expression for TFp, we get the conditions
((a +a‘a,uy +a‘uy,...), (@b +ab + bla),ﬁl(vl +ato; +bluy),...))
= ((a+a'a,uy +a'uy,...), (a(b) +a'a®) + a'(b)a, B1(v1) + a'B1(v1) + &' (b)uy, .. .))
foralla,b € (A¥)" and uy, v, € (VEFJ)”1 and ... and uy, v, € (VI where we write (al(a), ..., a"(a)) = a(a) €

(AFy™ and (al(b),...,a" (b)) = a(b) € (A" and (@',...,a") = a € (AF])" and (b, ...,b") = b € (AFly",
Then

a@'b) + a(bla) = ala®) + ol (),
Bi(a'01) + BB wr) = a'Ba(or) + o' (b)us

Be@') + Be(b' ) = a'Br(0,) + ' (D)t -

Putting a' = 1, we get
a(bla) = a'(b)a, p1(b'ur) = a' D)y, ..., B uy) = & (b)u, .
Then putting b = (1,0,...,0) € (AF)", we get
a(a) = cia, P1(ur) = cruy ..., Pi(x) = cri

for any a = (a',...,a") € (AFy" with a' = 1 and any u; € (VF])T‘l and ... and u, € (V,[(F])”“, where
¢ == al(1,0,...,0) € AFl. Quite similarly (replacing 1 by i € {1,...,m}) we get

a(a) =ca, Pr(ur) = ciur, ..., Bu(Uy) = Ciliye

for any a = (a',...,a") € (AFy" with ' = 1 and any u; € (VEH)’11 and ... and u, € (V= where
¢i:=a'0,...,1,...,0) € Al (1 in i-th position). Then

a(@) =ca, pi(ur) =cuy,...,Bx(uy) = cuy

foranya = (a,...,a") € (AF)" and any u; € (V%Fl)’11 and ... and u, € (VI wherec=c¢; = -+ = ¢, € AL,
Thatc¢; = --- = ¢y, follows from the invariance of B with respect to the permutations of the base coordinates.
Then

B((a,u1,...,uy), (b,v1,...,0¢) = ((a,uy,...,u), (cb,coy, ..., coe))

for all a,b € (AF)y", uy,v; € (VgF])'“,...,uK, v € (VY™ where ¢ € Al is as above. Then B = af(c), as
well. O
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8. The natural vector fields on ppgb-functors

LetI = (ly,...,I«1) be a system (as in Section 1) consisting of A-module homomorphisms I; : Vi1 — V;
fori=1,..,x — 1, where A is a Weil algebra and V7, ..., V. are finite dimensional (over R) A-modules.

Definition 8.1. A derivation of I is a system D = (&, B1, ..., i) of R-linear maps & : A — A and p; : Vi — V; for
i=1,...,x such that
a(ab) = aa(b) + da)b , Bi(avy) = api(vi) + aa);

foralla,be A, vie Viandi=1,..., x and ) )
Bioli=1IiopBin
fori=1,..,x-1

Let F = Fl be the ppgb-functor on V8 from I. Using a derivation D = (&,f1, ..., ) of I we can
define canonical vector field Op(D) on FK for any ¥,V 8-object K as follows. We definea: A - A X A and
ﬁi Vi VixV; fori=1,..,x by

a(a) = (a,&a)) , Pi(vi) = (v;, Bi(y))

a€eAvieV,i=1,..,x.

It is easy to see that («, 1, ..., f«) is @a morphism [ — I ® 1M, So, we have the corresponding natural
transformation Op(D) : FK — TFK for any 7 V8-object K. Locally Op(D) : A" x V" X .. X V¥ —
T(A™ X V' X ... X V,*) satisfies the formula

Op(D)((@), @}), ..., @) = (@), @), ..., @), (@@)), Br (@), ..., Br(@)))

(modulo the standard identification) for any (a/) € A™, (v]f) evih, ., (v{:) € (V,[f ])”". Hence Op(D) is a
vector field on FK for any 7,V 8-object K.

Definition 8.2. A V8B, ., n -natural vector field on F is a FV By, -invariant family L of vector fields
L € X(FK)
for any FV By, u,....n.-0bject K. It means that TFf oL = L o Ff for any VB n,,. n.-map f : K — K.
Proposition 8.3. Let m, ny, ..., ny be positive integers. Any FeV By ... n.-natural vector field L on F is of the form
L =Op(D)
for some derivation D of IIF].

Proof. Of course, L is determined by the vector field L on FR™™"-m = (AFlym x (VglE hm s (Vi e
L: FR™mms — (AL s ATy s (VL plFhym e o (I x VIl We can wrrite

L= (@), B, B,

where
o+ (A s (VI xox (VI — AlF x Al

and ‘
Bl APy s (Vi s (v o v v
j = 1, .., m, jk = 1, ...,nk! k= 1, e, K
Let ((x/), (yf), vy (y{;")) be the usual coordinates on R™™"" . By the invariance of L with respect to the
F«VBumn,..n,-maps
((F2), (1Y), e (EEYE) 2 R RO
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for all real numbers #/ # 0 and t,ik # 0 and by the homogeneous function theorem, given j € {1,...,m} we
have ‘ S
Olj(a, Ul, cesy UK) = (ﬂ], [}?](a])) 4

wherea = (a!,...,a") € A", v, € (V%FI)’”, vy U € (VLF])"K and where @ : A — A is the R-linear map. Moreover,
givenk € {1,..,«x} and ji € {1,..., m},

ik(a, V1, ey UK) = (vik’ "'ik(vik)) 12

where a € (AFy", v, € (VEF])nl,...,vk = (v,,..,v}") € (V,EF])”k,..., 0, € (VI and where ﬁ]](k : VIEF] - VIEF] is the
R-linear map.

Applying the invariance of L with respect to the permutations of coordinates, we deduce that all &’ are
equal and all #]' are equal and ... and all B’ are equal. Then we can write

L(a,v1, .., v¢) = (@, &al)), @', fr @), ..., @), Be(0)))

fora = (/) € (A", v, = (') e (VI | oe = (@) € (VIFy™, where @ : APl — A, g, VIFl
VEF] S ey EK : V,[\,F] — V,[\,F] are the R-linear maps.

Next, applying the invariance of L with respect to the (locally defined) VB, ,, . n,-map ((x/ +
7)), (y’ll1 ), (y{;‘)) s Rt — RMMeMx e derive that

a(a + a*) = aa) + (a(a))?

for any a € AlFl, where a : AFl — AlFl x Alfl is given by a(a) = (a, &(a)) for a € AFl, and where AFl x AlFl is
the Weil algebra A"l = AIFl ® D. Then a(a?) = (a(a))? for any a € Alfl. By the polarization, a(ab) = a(a)a(b)
foranya,b € APl Then

(ab, (ab)) = (a, &(a))(b, G(b)) = (ab, ac(b) + &(@)b) .

Hence @(ab) = aa(b) + &(a)b for any a,b € A1,

Similarly, given k € {1, ..., x}, applying the invariance of L with respect to the (locally defined)
FeVBuny,..n-map ((x1), (y]ll1 ) e (yik +x! y}];"), " (y{;“)) : R — R we derive that fi(av) = aBi(v) +
a(a)o for any a € Alfland v € V]EF].

Similarly, given k € {1,..,x — 1}, applying the invariance of L with respect to the FVB,.4,,.. n.-map
(), (y{l )y e (y]];k Yy ) (y)) : Rmmette — RMmrns | we obtain that I][(F] 0 fri1(©) = By o I][CF](D) for any

[F]
vE Vk+1.

Hence D := (&, f1, ..., Bx) is a derivation of IIf], and L = Op(D). O
9. Lifting k-flag-linear vector fields to ppgb-functors
Let Kbe a £ V8B, ... n.-Object.
Definition 9.1. A vector field Z on K is called x-flag-linear if the map Z : K — TK is a FVB-morphism.
Lemma 9.2. A x-flag-linear vector field Z : K — TK on K is projectable.
Proof. We have the underlying map Z: M — TM. Itis a vector field on M. [
Using local expression of F,VB-morphisms one can easily get

Lemma 9.3. A vector field Z on K is x-flag-linear if and only if in any FeV By, p,,..n, coordinate system
O, Y2 =1, k=1, =1, it 15 OF the form

_ym ir1 E K K n n Dl o1 Ji_d
Z = 27:1 bi(x*, ...xm)a—xj + Yot Zq:k Z]{:l quqzl bk,j:(x , ...,xm)yqq _3yj’/‘ , (5)
k

where b, bZ’;k :R™ - R.
r]q
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Then we immediately obtain

Lemma 9.4. Let A € R. If Z;, Z, are x-flag-linear vector fields, then so are Z1 + Z and AZy and [Z1,Z5]. In other
words, the space Xy_rrac-1iv(K) of k-flag-linear vector fields Z on K is the Lie subalgebra in X(K).

Lemma 9.5. If Z is a x-flag-linear vector field on K and f : M — R is a map, then f o 7 - Z is x-flag-linear.
From Lemma 9.3 we else obtain

Lemma 9.6. A vector field Z on K is k-flag-linear if and only if the flow of Z is formed by (local) FV By, n -Maps.
Similarly as in the manifold case we have

Lemma 9.7. Let Z be a k-flag-linear vector field on a FV By, p,,..n.-0bject K such that the underlying vector field Z
on basis M is non-zero at a point x, € M. Then there exists a local F.cV By, p,,.. n.-co0rdinate system (x',..)on K

with centrum x, such that Z = a%.

Proof. We can assume K = R""" and x, = 0 and Zy = %IO‘ Let {¢¢} be the flow of Z. Then ® : K — K

defined by ®(x!, ...) = ¢, (0, x2,...)is a local FVByn,. n.-isomorphism transforming % toZ. O
Let F be a ppgb-functor on ¥, V8.
Proposition 9.8. Let Z : K — TK be a x-flag-linear vector field on a ..V By ... n.-0bject K. Then
FZ:=n"loFZ:FK— TFK
is a k-flag-linear vector field on FK. Moreover, ¥ Z depends linearly on Z.

Proof. That ¥Z is a FVB-morphism follows from Proposition 4.2. The rest follows easily from the local
expression of FZ : FK — FTK and n/*l : FTK — TFK. O

Definition 9.9. An F VB, n,,..n.-gauge-natural operator lifting x-flag-linear vector fields Z on F VB ... n.-
objects K into vector fields C(Z) on FK is a FV B n,,...n.-invariant family C of reqular operators (functions)

C: Xi—rrac-uin(K) = X(FK)

for any F VB n,,..n.-0bject K. The F VB n,,.. n.-invariance of C means that if Z € X_rrac-uin(K) and Z' €
Xy—rrag-LiN(K’) are f-related (i.e. Tf o Z = Z' o f) for FVByn,,.n-map f : K = K’, then C(Z) and C(Z’) are
Ff-related. The regularity of C means that C transforms smoothly parametrized families of k-flag-linear vector fields
into smoothly parametrized families of vector fields.

Theorem 9.10. Let m, ny, ..., n, be positive integers. Let F be a ppgb-functor on F,.VB. Any FVBun,.n.-
gauge-natural operator C in the sense of Definition 9.9 is of the form

C(Z) = af(c) o FZ + Op(D)
for a (uniquely determined by C) element c € A¥! and a (uniquely determined by C) derivation D of IIF].

Proof. Consider an operator C in question. Because of Proposition 8.3, C(0) = Op(D). So, replacing C by
C - C(0), we may assume C(0) = 0.
Define C : R x (AFly" x (VIHyn x s (VEyne — (AFym x (viFym s ox (vl by

((a, vl...,vK),E(t,a,vl,...,vK)) =C i.‘i @a,v1,..-,0¢),
ox!
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teR, a=()e A", v ¢ (VEH)’11 0 € (VIFye Because of Lemma 9.7, C is uniquely determined by
E(l, —,—,—,—). Because of the invariance of C with respect to the homotheties 7id : R""" — R™"™~"« for
T # 0 and the homogeneous function theorem, C is R-linear. Then, since C(0) = 0, we have

C(1,4,01, ..., v) = C(1) € (AFy" x (VEym o (vEFlyne
Now, because of the invariance of C with respect to the . V8B,,,.., .+ -maps

(xl, TXZ, o ,l_xm’ (Tyil)/ . (T]/{(K)) . Rm;,m,...,nK N Rm;m ..... My

for T # 0, where ((x/), (yjll1 ), eeer (y{f)) are the usual coordinates on R™""" we derive that

C(1) € A¥I x {0} x ... x {0} .

So, the vector space of all such C is of dimension < dimg(Af!). Then the dimension argument ends the
proof.
O

Lemma 9.11. Let Z be a x-flag-linear vector field on K and f : M — R be a map. Then
F(fon-Z)y=FfoFn-¥Z, (6)

where i : K — M is the projection being ¥ VB-map (we treated M as the trivial F,VB-object) and Ff : FM —
FR = A and where a - y := af(a)(y) for a € A¥ and y € TFK.

Proof. By Lemma 9.5, both sides of (6) have sense. By the linearity of ¥, we can assume Z is not n-vertical.
Then by Lemma 9.7 we can assume K = R""~" and Z = %. Then we can assume K = M is a manifold
and Z is a vector field on M. Then our formula is the well-known one ¥ (fZ) = Ff - ¥ Z for Weil functors F
on manifolds. O

If Z and Z, are k-flag- linear vector fields on K then so is [Z, Z1], see Lemma 9.4.
Proposition 9.12. For any x-flag-linear vector fields Z and Zy on K and any a,a, € A¥1 it holds

[af(a) o F Z, af(a1) o F Z1] = af(aar) o F([Z, Z1]) 7)
Proof. We can assume that K = R"™"" 7 = % and Z; = f(xl, ey X™Z5, where Z, = % or ué”id, where
ouf
k=1,..,x,q9=k..x, o=l ok jg=1,mgj=1,..,m ’
If 7, = %, then the formula is the well-know one for Weil functors on manifolds.

For others Z,, using formula (6) and the well-known formula a¥ Z(a:F f) = aa1F(Z(f)) for Weil functor
on manifolds, we derive

[af(a) o FZ af(a1) o F (fZo)] =la-FZ anFf - FZy] =
= af Z(ar1Ff) - F Zo = amiF(Z(f)) - F Z> = aay - F(Z(f)Z2) = af(aar) o F([Z, Z1]).

O

Lemma 9.13. For any x-flag-linear vector field Z on FK and any a € AW, the vector field af(a) o Z is also a
x-flag-linear vector field on FK.

Proof. Since af(a) : TFK — TFK is a "V B-natural transformation, then it is a #V8B-morphism. So, since
Z: FK — TFKis a £ VB-morphism, then so is af(a) o Z : FK — TFK. Since af(a) : TFK — TFK is an affinor
on FK and Z is a vector field on FK, then af(a) o Z is a vector field on FK. O
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10. The complete lifting of x-flag-linear semi-basic tangent valued p-forms

Definition 10.1. If 7w : K — M is a fibred manifold, a projectable semi-basic tangent valued p-form on K is a section
¢ : K — APT"M ® TK such that ¢(X4, ..., X;,) is a projectable vector field on K for any vector fields X, ..., X, on M.

Given a projectable semi-basic tangent valued p-form ¢ : K — AYT*M ® TK we have the underlying
tangent valued p-form ¢ : M — APT*"M ® TM on M such that ¢(Xj, ..., X}) is the underlying vector field of

p(Xy, ..., Xp) for any vector fields X1, ..., Xy on M. Let Kbe a 7—}(_V8m,nl,.,_,nk—object with basis M.

Definition 10.2. A «-flag-linear semi-basic tangent valued p-form on K is a projectable semi-basic tangent valued
p-form ¢ : K — APT*M ® TK on (fibered manifold) K such that ¢(Xy, ..., X,) is a x-flag-linear vector field on K for
any vector fields X1, ..., X, on the basis M of K.

Because of Lemma 9.3, any «x-flag-linear semi-basic tangent valued p-form ¢ on K has (in any
FVBy .. n.-coordinates (x, yik) j= 1, k=1, ;ji=1,...n, ON K) the expression
_\ym i J K K n ny 9.y )
¢ = Zj:l PG+ Yia Zq:k Zj[:l jr=1 @k,j: ®R Yy @ (8)
for (uniquely determined) real valued p-forms ¢/ and (pZ’;k (and vice-versa), where (v ®g Z)(Xy, ..., X}) :=
7]q
(X1, ..., Xp)om - Z.

Lemma 10.3. A section ¢ : K — APT*"M ® TK is a k-flag-linear semi-basic tangent valued p-form on K if and only
if @ : TM X1 ... Xpe TM X K — TK is a FVB-morphism from the F,VB-object TM Xy ... Xpp TM X K (with
basis TM Xy ... Xpr TM Xy M) to TK (with basis TM).

Proof. We may assume K = R™™M~"_ Then ¢ : R™Pmn-mc — R2W2m-2%  Now, the lemma is an
immediate consequence of the following clear fact (being the consequence of the local expression of V8-
morphisms): ¢ is a FVB-morphism if and only if (-, x,, =) : R™M-M — R2M2m.-20 jg F Y B-morphism
for any x, e R”". O

Let F be a ppgb-functor on V8. Consider a k-flag-linear semi-basic tangent valued p-form ¢ : K —
NT'M® TK on K. Applying F to the FVB-morphism ¢ : TM Xp1 ... Xy TM Xy K — TK, we produce a
FVB-morphism Fo : FTM Xru ... Xpp FTM Xpy FK — FTK. Then applying the exchange isomorphism
nle*l, we obtain a 7 VB-morphism

Fo =0 o Fpo (™)™ x ... x ()1 x idpk) : TFM Xpps ... Xpng TFM Xppg FK — TFK .

Theorem 10.4. The above morphism F ¢ is the unique x-flag-linear semi-basic tangent valued p-form F¢ : FK —
ANT*FM ® TFK on FK such that

F p(af(ar) o F Xy, ..., af(ay) o FX,) = af(ay - ... - ap) o F(p(Xy, ..., X)) 9)
for any vector fields X1, ..., X, on M and any ay, ...,a, € AlFL,
Proof. We may assume K = R"™"" and ¢ is of the form (8). Then
Fo:= 27121 7"(pj ®AlF) 7:% + Yo Z,,K:k Z?f:l ):7::1 7"@,2’; ®alr) T(yf,” ﬁyL];‘) ’
k
where Fw := Fw o ()™ x ... x (1) : TFM Xpp1 ... Xxpst TEM — AWl is the so called complete lift

of a p-form w : TM X1 ... Xy TM — Ron M to F, (Fw ®4in FZ)(Y1, ..., Y}) := Faw(Yy,...,Yp) o Fu - FZ for
Yi,.., Y, € X(FR™), and ¢ - v := af(c)(v), ¢ € AlFl, v € TFK.
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It is a well-known fact (from the theory of usual Weil functors F on manifolds) that ¥ w is a Alfl-valued
p-form on FM such that

Fw(af(ar) o FXy,...,af(ay) o FX,) = ay - ... - ap - Fw(Xy, ..., X))

for any vector fields Xj, ..., X, on M and any ay, ...,a, € AUl That is why we have (9) for any vector fields
X1,..., Xy, on M and any 4y, ...,a, € APl Tt is also a well-known fact (from the theory of usual Weil functors
F on manifolds) that the vector fields af(c) o F(X) for all X € X(M) and all c € Al generate (over C*(FM))
the module X(FM). So, the unique part of the theorem holds, too. [

Definition 10.5. The x-flag-linear semi-basic tangent valued p-form ¥ ¢ : FK — APT*FM ® TFK on FK satisfying
condition (9) from Theorem 10.4 is called the complete lift of ¢ to F.

11. The F-N-bracket and k-flag-linear (semi-basic) tangent valued p-forms

Lemma 11.1. Let © : K — M be a fibred manifold. Given a projectable semi-basic tangent valued p-form ¢ :
K — A'T*M ® TK on K and a projectable semi-basic tangent valued q-form ¢ : K - AT*M ® TK on K the
Frolicher-Nijenhuis bracket (F-N-bracket) [[@, 1] is (again) a projectable semi-basic tangent valued (p + q)-form
[lo, ¢]] : K = APHT"M ® TK on K satisfying

[[()0/ l1[}]]()(1/ ceey XP'*‘Z) =
’%'7! Lo signol@(Xon, s Xop), Y(Xope1), - Xoprg))]

|(;11)! Z Sigl’lOlp([(P(Xalr o Jp)/XO'(p+1)]/Xo'(p+2),...)

(;7 11))41' Z Slgno(P([lP(Xoh Uq) Xo(q+1 I Xg(q+2), ) (10)
+m Yo signo(@([Xo1, Xo2], Xo3, ), Xo(pr2), )

1)
+%Z SlgnUQO(lP([Xol,on] XO‘3/ ) Xo(q+2)/ )

for any vector fields X, ..., Xp+q on M, where sums are over all permutations o : {1,...,p +q} = {1,...,p + q}.
Proof. It is well-known fact, see e.g. [6]. [

Proposition 11.2. Let K be a F,VB-object with basis M. Let ¢ : K = N'T"M ® TK be a x-flag-linear (then
projectable) semi-basic tangent valued p-form on K and i : K — ATT*M ® TK be a x-flag-linear semi-basic tangent
valued q-form on K. Then the Frolicher-Nijenhuis bracket [[@, P]] : K = AP*TT*"M® TK of ¢ and 1 is a k-flag-linear
semi-basic tangent valued (p + q)-form on K.

Proof. 1t is a simple consequence of formula (10) and Lemma 9.4 and Definition 10.2. [J

Let ¢ : K = A’T"M ® TK be a x-flag-linear semi-basic tangent valued p-form on K and let ¢y : K —
ANTT*"M ® TK be a x-flag-linear semi-basic tangent valued g-form on K. Then we have the x-flag-linear
semi-basic tangent valued (p + q)-form [[¢, 1]] on K, and then we have the k-flag-linear semi-basic tangent
valued (p + q)-form 7 ([[¢,]]) on FK. On the other hand, we have the x-flag-linear semi-basic tangent
valued p-form ¥ ¢ on FK and we have the x-flag-linear semi-basic tangent valued g-form ¥ on FK, and
then we have the x-flag-linear semi-basic tangent valued (p + q)-form [[F ¢, ¥ ¢]] on FK.

Theorem 11.3. We have

F (e, 1) = [[Fo, 7911 (11)

Proof. The proof is almost (algebraically) the same as the one of Theorem 2 in [18]. More detailed, using
Theorem 10.4 and Proposition 9.12 and Lemma 11.1 one can easily show that the left hand side of (11) at
(af(ay) 0 F X1, ..., af(ap14)F Xp14) is equal to the right hand side of (11) at (af(a;) o F X1, ..., af(a,14) © F Xp4) for
any ay, ..., ayq € Al and any vector fields Xj, ..., Xprg on M. [
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12. An application to prolongation of x-flag-linear connections

Let K be a ¥,V 8B-object with basis M.

Definition 12.1. A x-flag-linear connection in K — M is a «-flag-linear semi-basic tangent valued 1-form T : K —
T*M ® TK on K such that the underlying vector field of I'(X) is equal to X for any vector field X on basis M.

Let F be a ppgb-functor on ¥, V8.

Lemma 12.2. Given a x-flag-linear connection I in K — M, its complete lift FT is a k-flag-linear connection in
FK —» FM.

Proof. Since I'(X) is a x-flag-linear vector field on K with the underlying vector field equal to X, then
FT(af(a) o FX) = af(a) - F(I'(X)) is a k-flag-linear vector field with the underlying vector field equal to
af(a) o ¥ X. Then FT(Y) is a k-flag-linear vector field with the underlying vector field equal to Y for any
vector field Y € X(FM). O

Definition 12.3. A curvature of a k-flag-linear connection I' in K — M is
1
Rp = 5[[r, I]:K— A’T'M® VK.

Equivalently, Rr(X1, Xo) = [[(X41), [(X2)] = T([X1, X2]) for any X1, X, € X(M).
Theorem 12.4. It holds

Ryr = F(Rr) - (12)
Proof. By (11), [[FT, FT1] = F ([T, T]]).

[

13. An application to torsion of x-flag-linear connections in FK - M

Let F be a ppgb-functor on VB and Kbe a £, V8, ., . -object with basis M. Then we have the fibred
manifold px : FK — M (or simply FK — M). We have also the F,'V8-object FK with basis FM.

Definition 13.1. A «k-flag-linear semi-basic tangent valued p-form on FK — M is a projectable semi-basic tangent
valued p-form ¢ : FK — ANT*M® TFK on (fibered manifold) FK (with basis M) such that (additionally) p(X, ..., Xp)
is a x-flag-linear vector field on F,VB-object FK (with basis FM) for any vector fields X, ..., X, on M.

Proposition 13.2. Let ¢ : FK — A’T*M ® TFK be a k-flag-linear (then projectable) semi-basic tangent valued
p-form on FK — M and ¢ : FK — AT*M ® TFK be a k-flag-linear semi-basic tangent valued q-form on FK — M.
Then the F-N bracket [[@,{]] : FK — APYT*M ® TFK of ¢ and ¢ is a x-flag-linear semi-basic tangent valued
(p + q)-form on FK — M.

Proof. 1t is a simple consequence of formula (10) and Lemma 9.4 and Definition 13.1. [

Definition 13.3. A «x-flag-linear connection in FK — M is a k-flag-linear semi-basic tangent valued 1-form I :
FK — T"M ® TFK on FK — M such that the underlying vector field of I'(X) is equal to X for any vector field X on
basis M.

LetI' : FK — T"M ® TFK be a x-flag-linear connection in FK — M and let B : TFK — TFK be a
FVBy .. n.-natural affinor on FK. If m > 2, then B = af(c) for some ¢ € AlFl. Then, because of Lemma
9.13, B o I'(X) is a k-flag-linear vector field on FK for any vector field X on M. Moreover, if c = A + 1, where
A € R and 7 is nilpotent, then B o I'(X) is projectable with the underlying vector field AX. So, BoT'and I’
are k-flag-linear semi-basic tangent valued 1-forms on FK — M, where (B o I')(X) := B o I'(X) for any vector
field X on M.
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Definition 13.4. The F-N bracket
() :=[[[,BoI]]

is called the torsion of type B of T.

Theorem 13.5. Let F and I and B be as above. Assume m,ny, ..., n, are non-negative integers with m > 2. The
torsion of type B of T is a k-flag-linear semi-basic tangent valued 2-form t8(T') : FK — A*T*M ® VFK on FK. If
B = af(c), wherec = A + n, A € R, n € Al is a nilpotent, then

DX, Y) = 2ARe(X, Y) + [[(X), af(n) o T(Y)] - [[(Y), af(n) o [(X)] - af() o T([X, Y])
for any vector fields X and Y on M.
Proof. We apply the formulas of the F-N-bracket and of the curvature. [

Remark 13.6. In particular, if K = (M; M, M, ...,M) and F = T and B = | is the almost tangent structure (i.e.
Al =D, c=n=(0,1) € D, A = 0), then U (T') is (almost) the usual torsion of a usual linear connection T on
M. Indeed, if xY, ..., x™ are local coordinates on M and x1, ..., x™, yl, ..., Y™ the induced coordinates on TM, then
J=Yrdxe® % IfT(Z) = & —Fi?j(x)yfaiyk , then JoT(5%) = % Then U(T)(3%, %) = (r’;]. - r;.)(;’? (the
Einstein summation convention is used). Therefore our definition of torsion generalizes the classical concept of torsion
of (usual) linear connection and joint the classical curvature and the classical torsion of linear connection. In [10],

the authors define the torsion of T of type B as the F-N-bracket [[T, B]].
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