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Abstract. We study the solvability of following infinite systems of fractional boundary value problem
cDρui(t) = fi(t,ui(t))), ρ ∈ (n − 1,n), 0 < t < +∞,

ui(0) = 0, uq
i (0) = 0, cDρ−1ui(∞) =

m−2∑
j=1

β jui(ξ j).

The purpose of this work is to present a new family of measures of noncompactness in the regulated
function spaces R(R+,R∞) on unbounded interval and a fixed point theorem of Darbo type. Finally, we
give an example to show the effectiveness of the obtained result.

1. Introduction

Fractional differential equations (FDEs) rise in the fields of engineering, chemistry, physics, economics
and etc., [22, 24, 25]. Also, some basic theory for the boundary value problems (BVP) of (FDEs) has been
discussed in [7, 8, 17, 18].

The measure of noncompactness (MNC) which was first introduced by Kuratowski [16] is a powerful
tool for studying IODEs. In recent times, the regular MNC for certain Banach and Fréchet spaces defined
on an unbounded or a bounded interval and by applying fixed point theorems have many applications, see
[2–5, 10, 11, 20, 23].

The implication of a regulated function was presented in twentieth-century [6]. Moreover, some re-
searchers introduced this notion from different perspectives and represented some of its applications
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[12–14]. Particularly the approach offered in [12] seems to be transparent and appropriate. In, (2018) Banas
[9] formulated a standard for relative compactness in regulated functions on closed interval [a, b], so-called
regulated functions, and proved that the mentioned criterion is tantamount to standard obtained by D.
Frankova. Next, in (2019) Leszek Olszowy [21] build and investigate two arithmetically convenient MNC
in the spaces of regulated functions R(J) and R(J,E).

The aim of this paper is to formulate standard relative compactness in the space of functions regulated
on unbounded interval and investigate the multi-point (BVP) for the infinite systems of (FDEs)

cDρui(t) = fi(t,ui(t)), ρ ∈ (n − 1,n), 0 < t < +∞,

ui(0) = 0, uq
i (0) = 0, cDρ−1ui(∞) =

m−2∑
j=1

β jui(ξ j),
(1)

where cDρ and cDρ−1 are the Caputo fractional derivatives, n − 1 < ρ ≤ n (2 < n), q = 2, 3, . . . ,n − 1,

0 < ξ1 < ξ2 < . . . < ξm−2 < ∞, and β j > 0 , j = 1, 2, . . . ,m − 2, m ≥ 3 satisfy 0 <
m−2∑
j=1

β jξ
ρ−1
j < Γ(ρ). via a

new family of MNC in the regulated function space R(R+,R∞), using a fixed point theorem of Darbo type.
Now, we organize the paper as follows: Section 2 consists of some related preliminary material. Section 3 to
characterize the compact subsets of R(R+,R∞) and we present a new family of MNC in this space, and we
prove a version of Darbo’s fixed point theorem in R(R+,R∞). Finally, we give existence result for problem
(1) with an example.

2. preliminaries

Let (Υ, ∥ · ∥) be a real Banach space containing zero element. We mean by D(x, r) the closed ball centered
at x with radius r. For ∅ , V ⊂ Υ, the symbols V and ConvV denote the closure and closed convex hull
of V, respectively. We denote by MΥ the family of all non-empty, bounded subsets of Υ and by NΥ its
subfamily consisting of non-empty relatively compact subsets of Υ.

Theorem 2.1. ([1]) Let ∅ , G ⊆ U be convex of Hausdorff locally convex linear topological space U and H : G→ U
be a continuous mapping so that

H(G) ⊆ B ⊆ G,
with B compact. Then H has at least one fixed point.

Definition 2.2. ([22]) The fractional integral of order ρ is defined by

Iρ f (t) =
1
Γ(ρ)

∫ t

0

f (s)

(t − s)1−ρ
ds, ρ > 0,

that Γ(.) is the gamma function.

Definition 2.3. ([22]) For at least n-times continuously differentiable function f : [0,∞)→ R, the Caputo fractional
derivative of order ρ > 0 is defined by

cDρ f (t) =
1

Γ(n − ρ)

∫ t

0

f (n)(s)

(t − s)ρ−n+1
ds,

where n − 1 = [ρ].

Lemma 2.4. [19] Let f (t) ∈ L1(R+) be a continuous function. Then the boundary value problem of FDEs
cDρu(t) = f (t), ρ ∈ (n − 1,n), 0 < t < +∞,

u(0) = 0, uq(0) = 0, cDρ−1u(+∞) =
m−2∑
j=1

β ju(ξ j),

has a unique solution

u(t) =
1
Γ(ρ)

∫ t

0
(t − s)ρ−1 f (s)ds +

t
m−2∑
j=1

β jξ j

∫
∞

0
f (s)ds −

t
m−2∑
j=1

β j

Γ(ρ)
m−2∑
j=1

β jξ j

∫ ξ j

0
(ξ j − s)ρ−1 f (s)ds.
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Definition 2.5. [9] The function y : [c, d] → R is regulated function if for every τ ∈ [c, d) the right-sided limit
y(τ+) := lim

s→τ+
y(s) exists and for every τ ∈ (c, d] the left-sided limit y(τ−) := lim

s→τ−
y(s) exists.

Theorem 2.6. [9] Suppose that V ⊆ R([c, d]) is bounded. The set V is relatively compact in R([c, d]) iff V is
equiregulated on [c, d] i.e (a) − (b) hold:
(a) ∀ε > 0, ∃δ > 0, so that ∀v ∈ V, τ ∈ (c, d] and ς, ν ∈ (τ − δ, t) ∩ [c, d], we have |v(ς) − v(ν)| ≤ ε.
(b) ∀ε > 0, ∃δ > 0, so that ∀v ∈ V, τ ∈ [c, d) and ς, ν ∈ (τ, τ + δ) ∩ [c, d], we have |v(ς) − v(ν)| ≤ ε.

Firstly, we remind the Fréchet space R∞ the linear space of all real sequences equipped with the distance

dR∞ (v,w) = sup
{ 1

2 j

|v j − w j|

(1 + |v j − w j|)
: j ∈N

}
,

for v = (v j), w = (w j) ∈ R∞.
Now, we denote by R([0,T],R∞) the space consisting of all regulated function defined on [0,T] with values
in the space R∞.
For v = (v j(τ)) ∈ R([0,T],R∞), we put π j(v) = v j. Obviously π j(v) ∈ R([0,T],R).
If V ⊂ R([0,T],R∞) then for a fixed j ∈Nwe denote by π j(v) the following set situated in R([0,T],R)

π j(V) = {π j(v) : v ∈ V}.

The space R([0,T],R∞) will be equipped with the distance
dRT (v,w) = sup{dR∞ (v(τ),w(τ)) : τ ∈ [0,T]},

for v,w ∈ R([0,T],R∞).

3. Main results

Let R(R+,R∞) be the space of all regulated function defined on R+ with values in R∞. This space
equipped with the family of seminorms

|v|T = sup{|πi(v)(τ)| : i ≤ T, τ ∈ [0,T]},

and distance
d(v,w) = sup

{ 1
2T min{1, |v − w|T} : T ∈N

}
,

becomes a Fréchet space.

Remark 3.1.
(a) The sequence (vn) is convergent to v in R(R+,R∞) if and only if πi(vn) is uniformly convergent to πi(v) on [0,T]
for each i,T ∈N.
(b) The ∅ , V ⊂ R(R+,R∞) is bounded if the functions of the set πi(V) are uniformly bounded on [0,T] for each
i,T ∈N i.e.

sup{|πi(v)| : τ ∈ [0,T], v ∈ V} < ∞ for i,T ∈N.

By similarly way in [9, 13] we can prove

Theorem 3.2. Let V ⊆ R(R+,R∞) be bounded. The set V is relatively compact in R(R+,R∞) iff πi(V) are relatively
compact in R([0,T]) for each i,T ∈N i.e.
(a) ∀ε > 0, ∃δ > 0, such that ∀v ∈ V, τ ∈ (0,T] and ς, ν ∈ (τ − δ, τ) ∩ [0,T], we have |πi(v)(ς) − πi(v)(ν)| ≤ ε, for
i,T ∈N.
(b) ∀ε > 0, ∃δ > 0, such that ∀v ∈ V, τ ∈ [0,T) and ς, ν ∈ (τ, τ + δ) ∩ [0,T], we have |πi(v)(ς) − πi(v)(ν)| ≤ ε, for
i,T ∈N.

Now, we define ∅ ,MR(R+,R∞) ⊆ R(R+,R∞) the family of bounded and ∅ , NR(R+,R∞) ⊆ R(R+,R∞) the family
of relatively compact.

Definition 3.3. The family of mappings {µ}T∈N, µ : MR(R+,R∞) → R+, is a family regular measures of noncompact-
ness (MNC) in R(R+,R∞) if 1◦ − 10◦ hold:
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1◦ ∅ , ker{µ} = {V ∈MR(R+,R∞) : µ(V) = 0 for each T ∈N} ⊆ NR(R+,R∞).

2◦ V ⊂ U implies that µ(V) ≤ µ(U) for T ∈N.

3◦ µ(V) = µ(V) for T ∈N.

4◦ µ(ConvV) = µ(V) for T ∈N.

5◦ µ(ϑV + (1 − ϑ)U) ≤ ϑµ(V) + (1 − ϑ)µ(U) for ϑ ∈ [0, 1], and T ∈N.

6◦ If {V j} ∈MR(R+,R∞), V j = V j, V j+1 ⊂ V j for j ∈N and if lim
j→∞
µ(V j) = 0 for each T ∈N, then V∞ =

∞⋂
j=1

V j , ∅.

7◦ µ(V ∪U) = max{µ(V), µ(U)} for T ∈N.

8◦ µ(V +U) ≤ µ(V) + µ(U) for T ∈N.

9◦ µ(ϑV) = |ϑ|µ(V) for T ∈N and ϑ ∈ R.

10◦ ker{µ} = NR(R+,R∞) for T ∈N.

Assume that pi : R+ → (0,∞) (i ∈N) is a sequence of functions. for Z ∈MR(R+,R∞) and T ∈N putting

ω−T (πi(z), τ, ε) = sup{|πi(z)(u) − πi(z)(v)| : u, v ∈ (τ − ε, τ) ∩ [0,T]}, τ ∈ (0,T],

ω+T (πi(z), τ, ε) = sup{|πi(z)(u) − πi(z)(v)| : u, v ∈ (τ, τ + ε) ∩ [0,T]}, τ ∈ [0,T),

The quantities ω−T(πi(z), τ, ε) and ω+T(πi(z), τ, ε) can be interpreted as left hand and right hand sided moduli
of convergence of the function z at the point τ, for T ∈N. Further,

ω−T (πi(Z), τ, ε) = sup{ω−T (πi(z), τ, ε) : z ∈ Z}, τ ∈ (0,T],

ω+T (πi(Z), τ, ε) = sup{ω+T (πi(z), τ, ε) : z ∈ Z}, τ ∈ [0,T),

and
ω−T (πi(Z), ε) = sup

τ∈(0,T]
ω−T (πi(Z), τ, ε),

ω+T (πi(Z), ε) = sup
τ∈[0,T)

ω+T (πi(Z), τ, ε),

ω−T (πi(Z)) = lim
ε→0+
ω−T (πi(Z), ε),

ω+T (πi(Z)) = lim
ε→0+
ω+T (πi(Z), ε),

Now, we define
ω−T (Z) = sup{pi(T)ω−T (πi(Z)), i ∈N}, τ ∈ (0,T],

ω+T (Z) = sup{pi(T)ω+T (πi(Z)), i ∈N}, τ ∈ [0,T),

and
µ−(Z) = sup{ω−T (Z), T ∈N},

µ+(Z) = sup{ω+T (Z), T ∈N},

Finally, we define

µ(Z) = µ−(Z) + µ+(Z). (2)

Theorem 3.4. The family of mappings {µ}T∈N, µ :MR(R+,R∞) → [0,+∞) given by (2) fulfills the assumptions 1◦-10◦

of Definition 3.3.

Proof. Assume that Z ∈ ker{µ}, thenµ(Z) = µ−(Z)+µ+(Z) = 0 since∀T, pi(T) , 0 therefore, lim
ε→0+
ω−T(πi(Z), ε) =

0 and lim
ε→0+
ω+T(πi(Z), ε) = 0. Fix an arbitrary η > 0. Then ω−T(πi(Z), ε) < η

2 and ω+T(πi(Z), ε) < η
2 for enough

small ε > 0. So by definition of µ(Z),we get

ω+T (πi(Z), ε)) + ω−T (πi(Z), ε) < η.
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Hence, we have

ω−T (πi(z), τ, ε) = sup{|πi(z)(u) − πi(z)(v)| : u, v ∈ (τ − ε, τ) ∩ [0,T]} <
η

2
, τ ∈ (0,T],

and

ω+T (πi(z), τ, ε) = sup{|πi(z)(u) − πi(z)(v)| : u, v ∈ (τ, τ + ε) ∩ [0,T]} <
η

2
, τ ∈ [0,T),

∀ z ∈ Z and ∀ T ∈ N. By Theorem 3.2, we deduce that the closure of Z is compact and ker{µ} ⊆ NR(R+,R∞).
So 1◦ holds.
The prove of 2◦ is clearly.
We prove 3◦. Let Z ∈MR(R+,R∞) and z ∈ Z. So, ∃ a sequence {zn} ⊆ Z so that {zn} converges to z in R(R+,R∞).
Thus for every ξ > 0 ∃ n0 ∈N so that ∀ n ≥ n0, |πi(zn) − πi(z)|T ≤ ξ, for T ∈N. So, for each τ ∈ [0,T] we get

lim
n→∞
πizn(τ) = πiz(τ).

In addition, let us fix arbitrarily ε > 0. So, for a fixed τ ∈ (0,T] and for u, v ∈ (τ − ε, τ) ∩ [0,T],we get
lim

n→∞
|πizn(u) − πizn(v)| = |πiz(u) − πiz(v)|,

as the sequence (zn) is uniformly convergent to the function z on [0,T] for T ∈N. So for each ε > 0,we get

µ−(Z) ≤ µ−(Z) + ε.

By taking ε→ 0 and combined with the assumption 2◦ we have

µ−(Z) = µ−(Z). (3)

Also, for a fixed τ ∈ [0,T) and for u, v ∈ (τ, τ + ε) ∩ [0,T],we obtain
lim

n→∞
|πizn(u) − πizn(v)| = |πiz(u) − πiz(v)|,

so µ+(Z) ≤ µ+(Z) and axiom 2◦ we obtain

µ+(Z) = µ+(Z), (4)

by (3) and (4) we deduce µ(Z) = µ(Z).
Now, for arbitrary functions z,w ∈ R(R+,R∞) we obtain

ω−T (πi(z + w), τ, ε) ≤ ω−T (πi(z), τ, ε) + ω−T (πi(w), τ, ε), (5)

ω+T (πi(z + w), τ, ε) ≤ ω+T (πi(z), τ, ε) + ω+T (πi(w), τ, ε), (6)

By (5) and (6) we have µ+(Z +W) ≤ µ+(Z) + µ+(W) and µ−(Z +W) ≤ µ−(Z) + µ−(W), and for arbitrary
function z ∈ R(R+,R∞) and ϑ ∈ R,we have

ω−T (πi(ϑz), τ, ε) = |ϑ|ω−T (πi(z), τ, ε), (7)

ω+T (πi(ϑz), τ, ε) = |ϑ|ω+T (πi(z), τ, ε). (8)

And by (7) and (8) we have µ+(ϑZ) = |ϑ|µ+(Z) and µ−(ϑZ) = |ϑ|µ−(Z). So, we can easily see that for an
arbitrary set Z ∈MR(R+,R∞) and ϑ ∈ R

µ(Z +W) ≤ µ(Z) + µ(W), µ(ϑZ) = |ϑ|µ(Z).

Then, the axioms 7◦, 8◦ and 9◦ hold.
By the same reasoning as above we have

µ(convZ) ≤ µ(Z),
for an arbitrary set Z ∈MR(R+,R∞). Combining the above inequality and axiom 2◦,we obtain

µ(convZ) = µ(Z),

therefore assumption 4◦ holds, by similar way the assumption 5◦ holds.
We prove 6◦, let Z j ∈MR(R+,R∞), Z j = Z j, Z j+1 ⊂ Z j for j = 1, 2, . . . and lim

j→∞
µ(Z j) = 0 for each T. ∀ j ∈N, take

an z j ∈ Z j. Claim: F = {z j} is compact in R(R+,R∞). Suppose that ε > 0 be fixed and take any T ∈ N. Since
lim
j→∞
µ(Z j) = 0, then ∃ζ ∈N sufficiently large so that for each T ∈N

µ(Zζ) < ε.
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Since ∀ T, pi(T) , 0, so, exists δ1 > 0 enough small so that
ω−T (πi(Zm), δ1) < ε ∀ m ≥ ζ.

and
ω+T (πi(Zm), δ1) < ε ∀ m ≥ ζ.

So, ∀ m ≥ ζwe have
sup{|πi(zm)(u) − πi(zm)(v)| : u, v ∈ (τ − δ1, τ) ∩ [0,T]} < ε τ ∈ (0,T],

and
sup{|πi(zm)(u) − πi(zm)(v)| : u, v ∈ (τ, τ + δ1) ∩ [0,T]} < ε τ ∈ [0,T).

Since the set {z1, z2, . . . , zζ−1} is compact, then for each j ∈ {1, 2, . . . , ζ − 1} ∃δ2 > 0 so that
{|πi(z j)(u) − πi(z j)(v)| : u, v ∈ (τ − δ2, τ) ∩ [0,T]} < ε τ ∈ (0,T],

and
{|πi(z j)(u) − πi(z j)(v)| : u, v ∈ (τ, τ + δ2) ∩ [0,T]} < ε τ ∈ [0,T),

Hence, by taking δ := min{δ1, δ2} the assumptions of Theorem 3.2 hold so {z j} is relatively compact.
Therefore, a subsequence {zn j } and z0 ∈ R(R+,R∞) exist such that {zn j } converges to z0. Since z j ∈ Z j, Z j = Z j
and Z j+1 ⊂ Z j ∀ j ∈N, we have

z0 ∈

∞⋂
j=1

Z j = Z∞,

that completes the proof of 6◦.
Finally, we check ker{µ} = NR(R+,R∞).Take T ∈N and Z ∈ NR(R+,R∞), then Z is relatively compact in R(R+,R∞).
According Theorem 3.2, ∀ ε > 0 ∃ 0 < δ′ < ε so that

{|πi(z)(u) − πi(z)(v)| : u, v ∈ (τ − δ′, τ) ∩ [0,T]} < ε τ ∈ (0,T],

∀ z ∈ Z. By applying Theorem 3.2, for any ε > 0 ∃ 0 < δ′′ < ε so that
{|πi(z)(u) − πi(z)(v)| : u, v ∈ (τ, τ + δ′′) ∩ [0,T]} < ε τ ∈ [0,T),

∀ z ∈ Z. Putting δ = min{δ′, δ′′}. Then, ∀ z ∈ Z,we get
ω−T (πi(z), τ, δ) = sup{|πi(z)(u) − πi(z)(v)| : u, v ∈ (τ − δ, τ) ∩ [0,T]} ≤ ε τ ∈ (0,T],

ω+T (πi(z), τ, δ) = sup{|πi(z)(u) − πi(z)(v)| : u, v ∈ (τ, τ + δ) ∩ [0,T]} ≤ ε τ ∈ [0,T),

It in turn implies that
µ(Z) = µ−(Z) + µ+(Z) ≤ 2ε.

Taking ε→ 0, then δ→ 0 and µ(Z) = 0, ∀ T ∈N. By condition 1◦, we have ker{µ} = NR(R+,R∞).

Theorem 3.5. Let ∅ , C = C ⊆ R(R+,R∞) is bounded, convex and the mapping F : C → C is continuous. If for
each T ∈N ∃ 0 ≤ LT < 1 so that

µ(FZ) ≤ LTµ(Z), (9)

for each Z ⊂ C. Then F has at least one fixed point in the set C.

Proof. First, we define a sequence {Cm} by taking C0 = C and Cm = Conv(FCm−1), m ≥ 1. We have C1 =
Conv(FC0) ⊆ C0, therefore by continuing this process we get

C0 ⊇ C1 ⊇ C2 ⊇ . . . .

If µ(CN) = 0 for some N > 0 and ∀ T, then CN is relatively compact and Theorem 2.1 grantees that F has a
fixed point. Otherwise, let T ≥ 0, so that µ(Cm) , 0 for any m ≥ 0. From relation (9) we have

µ(Cm+1) = µ(Conv(FCm)) = µ(FCm) ≤ LTµ(Cm). (10)

Since LT ∈ [0, 1), then {µ(Cm)} is a positive decreasing sequence of real numbers. So, there is an r ≥ 0 so that
µ(Cm)→ r as m→∞.We show that r = 0. Suppose, to the contrary that r > 0. Then by (10) we get

lim sup
m→∞

µ(Cm+1) ≤ lim sup
m→∞

LTµ(Cm).

It enforces that 1 ≤ LT, which is a contradiction. Consequently r = 0, and so µ(Cm) → 0, as m → ∞.

Employing condition 6◦ of Definition 3.3, we deduce that ∅ ,
∞⋂

m=1

Cm = C∞ ⊂ C is convex and closed.

Furthermore, C∞ is invariant under F, and C∞ ∈ ker{µ}. By using Theorem 2.1 F has a fixed point.
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4. Application

In the following part, we prove the solvability of equation (1) in the Fréchet spaces R(R+,R∞). Finally,
we give an example to show the usefulness of our result.
Assume that:
(i) The functions fi : R+ × R∞ → R (i ∈ N) are continuous and regulated and ∃ increasing functions
φi, θi : R+ → [0,+∞) so that φi(τ)→ 0, and θi(τ)→ 0 as τ→ 0, φi ∈ L1([0,∞)) and the inequalities

| fi(s,ui) − fi(s, vi)| ≤ φi(|ui − vi|),∫
∞

0
| fi(s,ui) − fi(s, vi)|ds ≤Mθi(|ui − vi|),

∀ s ∈ R+, ui, vi ∈ R and M > 0 hold. Also

N = sup{| fi(s, 0)| : s ∈ [0,∞), i ∈N} < ∞, and G =
∫
∞

0
| fi(s, 0)|ds < ∞.

(ii) For each T ∈N, ∃ ri(T) > 0 that is a solution of the inequality

(φi(ri(T)) +N)(
Tρ

ρΓ(ρ)
+

T(
m−2∑
j=1

β j)ξ
ρ
j

ρΓ(ρ)
m−2∑
j=1

β jξ j

) + (Mθi(ri(T)) + G)
T

m−2∑
j=1

β jξ j

≤ ri(T).

Theorem 4.1. Under conditions (i) and (ii) the equation (1) has at least one solution in the R(R+,R∞).

Proof. Define the operator F : R(R+,R∞)→ R(R+,R∞) by:

(Fu)(t) = (πi(Fu)(t))

=
( 1
Γ(ρ)

∫ t

0
(t − s)ρ−1 fi(s,ui)ds +

t
m−2∑
j=1

β jξ j

∫
∞

0
fi(s,ui)ds −

t
m−2∑
j=1

β j

Γ(ρ)
m−2∑
j=1

β jξ j

∫ ξ j

0
(ξ j − s)ρ−1 fi(s,ui)ds

)
.

where u(t) = (ui(t))∞i=1 ∈ R(R+,R∞). First, we prove that Fu ∈ R(R+,R∞), for u ∈ R(R+,R∞). Select arbitrary
T ∈N, t ∈ [0,T] and i ∈N. By using assumption (i), we have

|πi(Fu)(t)|

=
∣∣∣∣ 1
Γ(ρ)

∫ t

0
(t − s)ρ−1 fi(s,ui)ds +

t
m−2∑
j=1

β jξ j

∫
∞

0
fi(s,ui)ds −

t
m−2∑
j=1

β j

Γ(ρ)
m−2∑
j=1

β jξ j

∫ ξ j

0
(ξ j − s)ρ−1 fi(s,ui)ds

∣∣∣∣

≤
1
Γ(ρ)

∫ t

0
(t − s)ρ−1(| fi(s,ui) − fi(s, 0)| + | fi(s, 0)|)ds +

t
m−2∑
j=1

β jξ j

∫
∞

0
(| fi(s,ui) − fi(s, 0)| + | fi(s, 0)|)ds

+

t
m−2∑
j=1

β j

Γ(ρ)
m−2∑
j=1

β jξ j

∫ ξ j

0
(ξ j − s)ρ−1(| fi(s,ui) − fi(s, 0)| + | fi(s, 0)|)ds

≤
1
Γ(ρ)

∫ t

0
(t − s)ρ−1(φi(|ui(s)|) +N)ds +

t
m−2∑
j=1

β jξ j

(Mθi(|ui(s)|) + G)
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+

t
m−2∑
j=1

β j

Γ(ρ)
m−2∑
j=1

β jξ j

∫ ξ j

0
(ξ j − s)ρ−1(φi(|ui(s)|) +N)ds

≤ (φi(|ui(s)|) +N)(
tρ

ρΓ(ρ)
+

t(
m−2∑
j=1

β j)ξ
ρ
j

ρΓ(ρ)
m−2∑
j=1

β jξ j

) + (Mθi(|ui(s)|) + G)
t

m−2∑
j=1

β jξ j

.

So by supremum on t we obtain

|(Fu)|T ≤ (φi(|ui|T) +N)(
Tρ

ρΓ(ρ)
+

T(
m−2∑
j=1

β j)ξ
ρ
j

ρΓ(ρ)
m−2∑
j=1

β jξ j

) + (Mθi(|ui|T) + G)
T

m−2∑
j=1

β jξ j

. (11)

Also, for u ∈ R(R+,R∞), t ∈ [0,T), ε > 0 for T ∈N and t1, t2 ∈ (t, t + ε) ∩ [0,T], t1 ≤ t2.We get
|πi(Fu)(t2) − πi(Fu)(t1)|

≤
1
Γ(ρ)

( ∫ t1

0
((t2 − s)ρ−1

− (t1 − s)ρ−1)(| fi(s,ui) − fi(s, 0)| + | fi(s, 0)|)ds

+

∫ t2

t1

(t2 − s)ρ−1(| fi(s,ui) − fi(s, 0)| + | fi(s, 0)|)ds

+
|t2 − t1|

m−2∑
j=1

β jξ j

∫
∞

0
(| fi(s,ui) − fi(s, 0)| + | fi(s, 0)|)ds

+

|t2 − t1|

m−2∑
j=1

β j

Γ(ρ)
m−2∑
j=1

β jξ j

∫ ξ j

0
(ξ j − s)ρ−1(| fi(s,ui) − fi(s, 0)| + | fi(s, 0)|)ds

≤
(φi(|ui(s)|) +N)

Γ(ρ)

( ∫ t1

0
(t2 − s)ρ−1

− (t1 − s)ρ−1ds +
∫ t2

t1

(t2 − s)ρ−1ds
)

+
(Mθi(|ui(s)|) + G)

m−2∑
j=1

β jξ j

|t2 − t1| +

(φi(|ui(s)|) +N)
m−2∑
j=1

β j

Γ(ρ)
m−2∑
j=1

β jξ j

|t2 − t1|

∫ ξ j

0
(ξ j − s)ρ−1ds.

Then, we have
|πi(Fu)(t2) − πi(Fu)(t1)|

≤
(φi(|ui(s)|) +N)

ρΓ(ρ)

(
2(t2 − t1)ρ + tρ1 − tρ2 +

ξ
ρ
j

m−2∑
j=1

β j

m−2∑
j=1

β jξ j

|t2 − t1|
)
+

(Mθi(|ui(s)|) + G)
m−2∑
j=1

β jξ j

|t2 − t1|.

Since, t1, t2 ∈ (t, t+ε)∩ [0,T] so |t2− t1| → 0, (t2− t1)ρ → 0 as ε→ 0, and we have used the fact that tρ1 − tρ2 ≤ 0
(because t1 ≤ t2). Then we deduce

|πi(Fu)(t2) − πi(Fu)(t1)| → 0. (12)
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Similarly, let us fix t ∈ (0,T], ε > 0 for T ≥ 0 and for t1, t2 ∈ (t − ε, t) ∩ [0,T] (t1 ≤ t2) we have
|πi(Fu)(t2) − πi(Fu)(t1)|

≤
(φi(|ui(s)|) +N)

ρΓ(ρ)

(
2(t2 − t1)ρ + tρ1 − tρ2 +

ξ
ρ
j

m−2∑
j=1

β j

m−2∑
j=1

β jξ j

|t2 − t1|
)
+

(Mθi(|ui(s)|) + G)
m−2∑
j=1

β jξ j

|t2 − t1|.

Since, t1, t2 ∈ (t−ε, t)∩ [0,T] so |t2− t1| → 0, (t2− t1)ρ → 0 as ε→ 0, and we have used the fact that tρ1 − tρ2 ≤ 0
(because t1 ≤ t2). Then we get

|πi(Fu)(t2) − πi(Fu)(t1)| → 0. (13)

So by (11), (12) and (13) we obtain Fu ∈ R(R+,R∞). Relation (11) implies that the operator F transforms of
R(R+,R∞) into itself. Now, if we define the subset BR(R+,R∞)(0, ri(t)) of R(R+,R∞) by:

BR(R+ ,R∞)(0, ri(t)) = {u = (ui) ∈ R(R+,R∞) : |u|T ≤ ri(t) for, t > 0},

then the ∅ , B = B ⊆ R(R+,R∞) is bounded and convex and assumption (ii) ensures that F transforms
BR(R+,R∞)(0, ri(t)) into itself.
Now, we prove that F is continuous on B. Fix u = (ui) ∈ BR(R+,R∞)(0, ri(t)) and take a sequence (un,i) ∈
BR(R+,R∞)(0, ri(t)) such that un = (un,i)→ u = (ui). For t ∈ [0,T], T ∈Nwe get

|πi(Fun)(t) − πi(Fu)(t)|

≤

∣∣∣∣ 1
Γ(ρ)

∫ t

0
(t − s)ρ−1( fi(s,un,i) − fi(s,ui))ds

∣∣∣∣ + t
m−2∑
j=1

β jξ j

∣∣∣∣ ∫ ∞
0

( fi(s,un,i) − fi(s,ui))ds
∣∣∣∣

+

t
m−2∑
j=1

β j

Γ(ρ)
m−2∑
j=1

β jξ j

∣∣∣∣ ∫ ξ j

0
(ξ j − s)ρ−1( fi(s,un,i) − fi(s,ui))ds

∣∣∣∣

≤
φi(|un,i(s) − ui(s)|)

Γ(ρ)

( ∫ t

0
(t − s)ρ−1ds +

t
m−2∑
j=1

β j

Γ(ρ)
m−2∑
j=1

β jξ j

∫ ξ j

0
(ξ j − s)ρ−1ds

)

+Mθi(|un,i(s) − ui(s)|)
t

m−2∑
j=1

β jξ j

≤
φi(|un,i(s) − ui(s)|)

ρΓ(ρ)

(
tρ +

t(
m−2∑
j=1

β j)ξ
ρ
j

m−2∑
j=1

β jξ j

)
+Mθi(|un,i(s) − ui(s)|)

t
m−2∑
j=1

β jξ j

.

Then we get

|(Fun) − (Fu)|T ≤
φi(|un − u)|T
ρΓ(ρ)

(
Tρ +

T(
m−2∑
j=1

β j)ξ
ρ
j

m−2∑
j=1

β jξ j

)
+Mθi(|un − u|T)

T
m−2∑
j=1

β jξ j

.

Since un → u and by condition (i) φi(t)→ 0, θi(t)→ 0, as t→ 0. Then (Fun)→ (Fu) i.e. F is continuous.
Eventually, we show that F satisfying the relation (9). Let ∅ , U ⊆ BR(R+,R∞)(0, ri(t)) be bounded. Next, fix
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arbitrarily t ∈ [0,T) and ε > 0. Select a function u ∈ U and t1, t2 ∈ (t, t + ε) ∩ [0,T]. Then, by (12) we have

ω+T (πi(Fu), t, ε) ≤
(φi(|ui|T +N)
ρΓ(ρ)

(
2(t2 − t1)ρ +

ξ
ρ
j

m−2∑
j=1

β j

m−2∑
j=1

β jξ j

|t2 − t1|
)
+

(Mθi(|ui)|T + G)
m−2∑
j=1

β jξ j

|t2 − t1|.

Taking ε→ 0 we obtain

ω+T (πi(Fu), t) ≤ 0. (14)

Similarly, for t ∈ (0,T] and t1, t2 ∈ (t − ε, t) ∩ [0,T] by virtue of (13) we have

ω−T (πi(Fu), t, ε) ≤
(φi(|ui|T +N)
ρΓ(ρ)

(
2(t2 − t1)ρ +

ξ
ρ
j

m−2∑
j=1

β j

m−2∑
j=1

β jξ j

|t2 − t1|
)
+

(Mθi(|ui)|T + G)
m−2∑
j=1

β jξ j

|t2 − t1|.

Taking ε→ 0 we obtain

ω−T (πi(Fu), t) ≤ 0. (15)

By supremum on t of (14) and (15) we get

ω+T (πi(Fu)) ≤ 0, and ω−T (πi(Fu)) ≤ 0.

Also, for t ∈ (0,T] we get
ω−T (FU) = sup{pi(T)ω−T (πi(FU)), i ∈N} ≤ 0,

and for t ∈ [0,T) we get
ω+T (FU) = sup{pi(T)ω+T (πi(FU)), i ∈N} ≤ 0.

Hence
µ−(FU) = sup{ω−T (FU), T > 0} ≤ 0,

and
µ+(FU) = sup{ω+T (FU), T > 0} ≤ 0.

Finally,

µ(FU) = µ−(FU) + µ+(FU) = 0,

or equivalently,

µ(FU) ≤ LTµ(U),

where LT = 0. From Theorem 3.5, F has a fixed point u(t) = ui(t) in R(R+,R∞) belonging to the set
BR(R+,R∞)(0, ri(t)),which implies that the equation (1) has at least one solution in R(R+,R∞).

Example 4.2. Consider the following equation
cD

3
2 ui(t) =

sin(ui(t)+1) cos(t+3)
1+s2

i+1∑
k=i

1
(k + 1)k

,

u(0) = 0, u′′(0) = 0, lim
t→+∞

cD
1
2 ui(+∞) =

3∑
j=1

1
2 j

ui(( j + 1)2),

(16)

see that Eq. (16) is a particular case of the Eq. (1) when ρ = 3
2 , m = 5, β j =

1
2 j , ξ j = ( j + 1)2, and fi(t,ui) =

sin(ui+1) cos(t+3)
1+t2

i+1∑
k=i

1
(k + 1)k

(t ∈ [0,+∞), and ui ∈ R). Take φi(t) = θi(t) = 1
2 t and M = π2 , then the condition (i) of

Theorem 4.1 holds. Since, for s ∈ R+ and ui, vi ∈ R, we get

| fi(s,ui) − fi(s, vi)| = |

i+1∑
k=i

1
(k + 1)k

cos(s + 3)
1 + s2 (sin(ui + 1) − sin(vi + 1))|
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≤
1
2
| sin(ui + 1) − sin(vi + 1)|

≤
1
2
|ui − vi| = φi(|ui − vi|),

and also we have∫
∞

0
| fi(s,ui) − fi(s, vi)|ds =

∫
∞

0
|

i+1∑
k=i

1
(k + 1)k

cos(s + 3)
1 + s2 (sin(ui + 1) − sin(vi + 1))|

≤
1
2
|ui − vi|

∫
∞

0

1
1 + s2 ds =

1
2
|ui − vi| lim

t→+∞

∫ t

0

1
1 + s2 ds

=
1
2
|ui − vi| lim

t→+∞
arctan s

∣∣∣t
0

=
π
2
θi(|ui − vi|).

Note that fi(t,ui(t)) ∈ L1([0,+∞)) and regulated functions. Next, we have

N = sup
{
|

i+1∑
k=i

1
(k + 1)k

cos(s + 3) sin(1)
1 + s2 |, s ∈ R+

}
=

0.017
2
,

and

G =
∫
∞

0
|

i+1∑
k=i

1
(k + 1)k

cos(s + 3)(sin(1)
1 + s2 |ds ≤

1
2

sin(1)
∫
∞

0

1
1 + s2 ds =

0.017π
4

< ∞.

Also, the condition (ii) holds. Then, Theorem 4.1 grantees that Eq. (16) has at least one solution in R(R+,R∞).
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