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Biharmonic curves along Riemannian maps

Gizem Köprülü Karakaşa, Bayram Şahina,∗

aEge University, Faculty of Science, Department of Mathematics, 35100, İzmir, Türkiye

Abstract. In this paper, the transformation of a bi-harmonic curve on the total manifold into a bi-harmonic
curve on the base manifold along a Riemannian map between Riemannian manifolds is examined. In
this direction, first, necessary and sufficient conditions are obtained for the Riemannian map between two
Riemannian manifolds for the curve on the total manifold to be bi-harmonic curve on the base manifold.
Afterwards, the case that the total manifold is a complex space form was taken into consideration and
the bi-harmonic character of the curve on the base manifold was examined by considering appropriate
conditions on the basic notions of the Riemannian map.

1. Introduction

Many notions in differential geometry can be viewed as a map. Curves and surfaces, which are really
the most basic notions in differential geometry, are also maps after all. For this reason, examining the
behavior of curve, surface or submanifold along a map between two given manifolds will be very useful
for us to understand both the geometry of the manifolds and the character of the map.

In this direction, the second author and his co-authors investigated the geometry of manifolds and the
character of the map itself by examining the behavior of various curves (elastic curve, circle, helix) under a
given immersion, submersion or Riemannian map, [16], [17], [18], [19].

Theory of harmonic maps has been applied into various fields in differential geometry. Harmonic maps
F : (M, 1)→ (N, 1N) between Riemannian manifolds are the critical points of the energy E(F) = 1

2

∫
M |dF|2υ1,

and they are therefore the solutions of the corresponding Euler-Lagrange equation. This equation is giving
by the vanishing of the tension field τ(F) = trace∇dF. On the other hand, Jiang [4] studied first and second
variation formulas of the bienergy functional E2(F) whose critical points are called as biharmonic maps.
There have been a rich literature on biharmonic maps like as harmonic maps. In [21], S. B. Wang studied the
first variational formula of the tri-energy E3. The critical points are called triharmonic maps. Notice that,
every harmonic curve is a triharmonic curve. However, biharmonic curves are not necessary triharmonic
curves and, vice versa, triharmonc curves do not need to be biharmonic, [9].

The authors of the present paper studied the behavior of biharmonic and triharmonic curves along a
Riemann submersion between manifolds, [5], [6]. Using the behavior of the curve, they obtained results
about the geometry of manifolds and the character of Riemann submersions.
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In this paper, we study biharmonic curves along Riemannian maps between Riemannian manifolds
and we study curves along Riemannian maps from complex space form onto Riemannian manifolds. We
considered the curve as horizontal curve. If the curve is considered as a general curve, it seems quite
complicated the control the resulting equation in this case. In 2, we present the basic information needed
for this paper. In 3, we investigate necessary and sufficient conditions for the curves along Riemannian maps
from Riemannian manifolds to be biharmonic. Then, we investigate necessary and sufficient conditions
for the Frenet curves along Riemannian maps from Riemannian manifolds to be biharmonic. In 4, we
investigate necessary and sufficient conditions for the curves along Riemannian maps from complex space
forms to be biharmonic. Then, we investigate necessary and sufficient conditions for the Frenet curves
along Riemannian maps from complex space forms to be biharmonic.

2. Preliminaries

In this section, we recall some basic notions and results which will be needed throughout the paper [1],
[2], [3], [8], [10], [11], [12], [14], [15], [20], [21], [22], [23].

Let F : (Mm, 1M) −→ (Nn, 1N) be a smooth map between Riemannian manifolds such that 0 <
rankF ⩽ min{m,n} , where dimM = m and dimN = n. Then, the kernel space of F∗ by Vp = kerF∗p at p ∈ M
and consider the orthogonal complementary space Hp = (kerF∗p)⊥ to kerF∗p . Then TpM of M at p has the
following decomposition

TpM = kerF∗p ⊕ (kerF∗p)⊥ =Vp ⊕Hp

Since rankF ⩽ min{m,n}, always we have (ran1eF∗p)⊥. In this way, tangent space TF(p)N of N at F(p) ∈ N has
the following decomposition

TF(p)N = ran1eF∗p ⊕ (ran1eF∗p)⊥.

Now, a smooth map F : (Mm, 1M) −→ (Nn, 1N) is called Riemannian map at p1 ∈M if the horizontal restriction
Fh
∗p1

satisfies the equation

1M(X,Y) = 1N(F∗X,F∗Y) (1)

for X,Y ∈ Γ((kerF∗)⊥). So that isometric immersions and Riemannian submersions are particular Riemannian
map , respectively with kerF∗ = {0} and (ran1eF∗)⊥ = {0}.
Let F : (M, 1M) → (N, 1N) be a Riemannian map between two Riemannian manifolds of dimensions m and
n respectively. The second fundamental form of a map is defined by

(∇F∗)(X,Y) =
N

∇
F

XF∗Y − F∗(
M
∇XY) (2)

for any vector fields X, Y on M, where
M
∇ is the Levi-Civita cennection of M and

N
∇

F is the pull-back of the

connection
N
∇ of N to the induced vector bundle F−1(TN). It is well known that ∇F∗ is symmetric. It is

known from [13] that, second fundamental form (∇F∗)(X,Y),∀X,Y ∈ Γ((kerF∗)⊥), of a Riemannian map has
no components in ran1eF∗. Then, we have

(∇F∗)(X,Y) ∈ Γ((ran1eF∗)⊥),∀X,Y ∈ Γ((kerF∗)⊥).

Let F be a Riemannian map from a Riemannian manifold (M, 1M) to a Riemannian manifold (Nn, 1N). Then
we define T andA as

AEF = H
M
∇HEVF +V

M
∇HEHF (3)

TEF = H
M
∇VEVF +H

M
∇VEHF (4)
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where
M
∇ is the Levi-Civita connection of 1M. We can see that these tensor fields are O’Neill’s tensor fields

which were defined for Riemannian submersions. For any E ∈ Γ(TM), TE and AE are skew -symmetric
operators on (Γ(TM), 1M) reversing the horizontal and the vertical distributions.
On the other hand, from (3) and (4) we have

M
∇XY = H

M
∇XY +AXY (5)

for X,Y ∈ Γ((kerF∗)⊥) and V,W ∈ Γ(kerF∗), where
∧

∇VW =V∇VW.

We denote by
N
∇ both the Levi-Civita connection of (Nn, 1N) and its pull-back along F. We denote by

(ran1eF∗)⊥ the subbundle of F−1(TN) with fiber (F∗(Tp1M))⊥-orthogonal complement of F∗(Tp1M) for 1N over
p1. For any vector field X on M and any section V of (ran1eF∗)⊥, we define ∇F⊥

X V, which is the orthogonal

projection of
N
∇XV on (ran1eF∗)⊥. Then we have

N
∇XV = −SVF∗X + ∇F⊥

X V, (6)

where SVF∗X is the tangential component of
N
∇XV. It is easy to see that, SVF∗X is bilinear in V and F∗X and

SVF∗X at p depends only on Vp and F∗pXp.Then, we obtain

1N(SVF∗X,F∗Y) = 1N(V, (∇F∗)(X,Y)) (7)

for X,Y ∈ Γ((kerF∗)⊥) and V ∈ Γ((ran1eF∗)⊥). Since (∇F∗) is symmetric, it follows that SV is a symmetric linear
transformation of ran1eF∗.
Let F be a Riemannian map between Riemannian manifolds (M, 1M) and (N, 1N). Then, F is an umbilical
Riemannian map if and only if

(∇F∗)(X,Y) = 1M(X,Y)H2,

for X,Y ∈ Γ((kerF∗))⊥ and H2 is vector field on (ran1eF∗)⊥.
By using (2) and (6), we have

RN(F∗X,F∗Y)F∗Z = F∗(RM(X,Y)Z) − S(∇F∗)(Y,Z)F∗X + S(∇F∗)(X,Z)F∗Y
+(∇X(∇F∗))(Y,Z) − (∇Y(∇F∗))(X,Z) (8)

for X,Y,Z ∈ Γ((kerF∗)⊥), where RM and RN denote the curvature tensors of
M
∇ and

N
∇ which are metric

connections on M and N, respectively. Moreover (∇X(∇F∗))(Y,Z) is defined by

(∇X(∇F∗))(Y,Z) = ∇F⊥
X (∇F∗)(Y,Z) − (∇F∗)(

M
∇XY,Z) − (∇F∗)(Y,

M
∇XZ). (9)

It is known that, F is a harmonic map if and only if the tension field τ(F) = trace(∇F∗) = 0, which is called
the harmonic equation or the Euler-Lagrange equation.
A map F : (M, 1M)→ (N, 1N) between Riemannian manifolds is a biharmonic map if the bitension field of F

τ2(F) = −∆Fτ(F) + traceR(τ(F),F∗)F∗ (10)

vanishes. The operator ∆F is the rough Laplacian acting on Γ(F∗TM) defined by

∆F := −
n∑

i=1

(∇F
ei
∇

F
ei
− ∇

F
∇

M
ei

ei
),

where {ei}
n
i=1 is a local orthonormal frame field of N.
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3. Biharmonic Curves along Riemannian Maps from Riemannian Manifolds

In this section, we study biharmonic curves along Riemannian maps from Riemannian manifolds.
Then, we will investigate necessary and sufficient conditions for the curves along Riemannian maps from
Riemannian manifolds to be biharmonic. We first note the following remarks. Let α : I→M be a curve
parametrized by arc length in an n-dimensional Riemannian manifold (M, 1M). If there exists orthonormal
vector fields E1,E2, · · · ,Er along α such that

E1 = α
′

= T,
∇TE1 = κ1E2,

∇TE2 = −κ1E1 + κ2E3,

· · ·

∇TEr = −κr−1Er−1. (11)

then α is called a Frenet curve of osculating order r, where κ1, · · · , κr−1 are positive functions on I and
1 ≤ r ≤ n.
A Frenet curve of osculating order 1 is a geodesic; a Frenet curve of osculating order 2 is called a circle
if κ1 is a nonzero positive constant; a Frenet curve of osculating order r ≥ 3 is called a helix of order r if
κ1, · · · · · ·κr−1 are nonzero positive constants; a helix of order 3 is shortly called a helix [11], [23].

We recall the biharmonic equation for curves. Let α : I → M be a curve defined on an open interval I
and parametrized by arc-length. Then the bitension field is given by [11]

τ2(α) = ∇3
TT − R(T,∇TT)T (12)

where T = α′ .
Let (M, 1M) be a Riemannian manifold and α : I → M be a curve defined on an open interval I and
parametrized by arc-length. Then, using Frenet equations, the bitension field of α becomes [4]

τ2(α) = −3κ1κ
′

1E1 + (κ
′′

1 − κ
3
1 − κ1κ

2
2 + cκ1)E2 + (2κ

′

1κ2 + κ1κ
′

2)E3

+κ1κ2κ3E4. (13)

We first have the following result.

Theorem 3.1. Let F : (M(c1), 1M)→ (N(c2), 1N) be a Riemannian map from a real space form (M(c1), 1M) to a real
space form (N(c2), 1N). Let α : I → (M(c1), 1M) be a biharmonic horizontal curve. Then F ◦ α : γ : I → (N(c2), 1N)
is a biharmonic curve if and only if

−(∇F∗)(E1h,
∗ F∗S(∇F∗)(E1h,E1h)F∗E1h)) − S∇F⊥

E1h
(∇F∗)(E1h,E1h)F∗E1h

+2κ
′

1(∇F∗)(E1h,E2h) + (c2 − κ
2
1)(∇F∗)(E1h,E1h) + κ1κ2(∇F∗)(E1h,E3h)

−κ1(∇F∗)(E1h,AE1h E2v) − κ1S(∇F∗)(E1h,E1h)F∗E2h = 0, (14)

−F∗
M
∇

∗

E1h
F∗S(∇F∗)(E1h,E1h)F∗E1h + ∇

F⊥
E1h
∇

F⊥
E1h

(∇F∗)(E1h,E1h)

−2κ
′

1F∗AE1h E2v − κ1κ2F∗AE1h E3v − κ1F∗H
M
∇E1hAE1h E2v

+κ1∇
F⊥
E1h

(∇F∗)(E1h,E2h) − κ1(∇E1h (∇F∗))(E2h,E1h)
+κ1(∇E2h (∇F∗))(E1h,E1h) = 0. (15)

Proof. Let F : (M(c1), 1M) → (N(c2), 1N) be a Riemannian map from a real space form (M(c1), 1M) to a real
space form (N(c2), 1N). Let α : I → (M(c1), 1M) be a biharmonic horizontal curve. Then, we have the
following equation,

α
′

= T = E1h, γ
′

= F∗T = T̃, (16)
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where E1h is horizontal part of T = E1. Note that γ
′

= T̃ is the unit tangent vector field along the curve.
Using (2) and (11) we get,

N
∇T̃T̃ = (∇F∗)(E1h,E1h) + κ1F∗E2h. (17)

and

N
∇

2

T̃T̃ = −S(∇F∗)(E1h,E1h)F∗E1h + ∇
F⊥
E1h

(∇F∗)(E1h,E1h) + κ
′

1F∗E2h

+κ1((∇F∗)(E1h,E2h) + F∗
M
∇E1h E2h). (18)

From (5) and Frenet formulas, we have,

H
M
∇E1h E2h = −κ1E1h + κ2E3h −AE1h E2v. (19)

Using (19) in (18), we derive,

N
∇

2

T̃T̃ = −S(∇F∗)(E1h,E1h)F∗E1h + ∇
F⊥
E1h

(∇F∗)(E1h,E1h) + κ
′

1F∗E2h

+κ1(∇F∗)(E1h,E2h) − κ2
1F∗E1h + κ1κ2F∗E3h − κ1F∗AE1h E2v. (20)

Taking the covariant dervivative of (20) , we get,

N
∇

3

T̃T̃ = −
N
∇F∗E1h S(∇F∗)(E1h,E1h)F∗E1h +

N
∇F∗E1h∇

F⊥
E1h

(∇F∗)(E1h,E1h)

+
N
∇F∗E1hκ

′

1F∗E2h +
N
∇F∗E1hκ1(∇F∗)(E1h,E2h) −

N
∇F∗E1hκ

2
1F∗E1h

+
N
∇F∗E1hκ1κ2F∗E3h −

N
∇F∗E1hκ1F∗AE1h E2v. (21)

Since S(∇F∗)(E1h,E1h)F∗E1h ∈ Γ(F∗(kerF∗)⊥) , we can write F∗X = S(∇F∗)(E1h,E1h)F∗E1h for X ∈ Γ((kerF∗)⊥) where
X =∗ F∗S(∇F∗)(E1h,E1h)F∗E1h.
Then using (2), we have,

N
∇F∗E1h S(∇F∗)(E1h,E1h)F∗E1h = (∇F∗)(E1h,

∗ F∗S(∇F∗)(E1h,E1h)F∗E1h))

+F∗
M
∇

∗

E1h
F∗S(∇F∗)(E1h,E1h)F∗E1h. (22)

Then we have equation (23),

H
M
∇E1h E3h = −κ2E2h + κ3E4h −AE1h E3v. (23)

Due (17), (19) and Frenet formulas, using (23), we arrive at

N
∇

3

T̃T̃ = −3κ1κ
′

1F∗E1h + (κ
′′

1 − κ
3
1 − κ1κ

2
2)F∗E2h + (2κ

′

1κ2 + κ1κ
′

2)F∗E3h

+κ1κ2κ3F∗E4h − (∇F∗)(E1h,
∗ F∗S(∇F∗)(E1h,E1h)F∗E1h)

−F∗
M
∇

∗

E1h
F∗S(∇F∗)(E1h,E1h)F∗E1h − S∇F⊥

E1h
(∇F∗)(E1h,E1h)F∗E1h

+∇F⊥
E1h
∇

F⊥
E1h

(∇F∗)(E1h,E1h) + 2κ
′

1(∇F∗)(E1h,E2h) − 2κ
′

1F∗AE1h E2v

−κ1κ2F∗AE1h E3v − κ1F∗H
M
∇E1hAE1h E2v − κ1S(∇F∗)(E1h,E2h)F∗E1h

+κ1∇
F⊥
E1h

(∇F∗)(E1h,E2h) − κ2
1(∇F∗)(E1h,E1h) + κ1κ2(∇F∗)(E1h,E3h)

−κ1(∇F∗)(E1h,AE1h E2v). (24)
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It is easy to see that,

RN(T̃,
N
∇T̃T̃)T̃ = RN(F∗E1h, (∇F∗)(E1h,E1h) + κ1F∗E2h)F∗E1h, (25)

Taking the vertical and horizontal parts of E2, we find,

RM(T,
M
∇TT)T = RM(E1h, κ1E2v)E1h + RM(E1h, κ1E2h)E1h. (26)

Hence, we obtain

F∗(RM(T,
M
∇TT)T) = F∗(RM(E1h, κ1E2v)E1h) + F∗(RM(E1h, κ1E2h)E1h). (27)

Since F is Riemannian map, we have

RN(F∗E1h,F∗E2h)F∗E1h = F∗(RM(E1h,E2)E1h) − F∗(RM(E1h,E2v)E1h)
−S(∇F∗)(E2h,E1h)F∗E1h + S(∇F∗)(E1h,E1h)F∗E2h + (∇E1h (∇F∗))(E2h,E1h)
−(∇E2h (∇F∗))(E1h,E1h) (28)

On the other hand, since M is a space form, we obtain,

RN(T̃,
N
∇T̃T̃)T̃

= RN(F∗E1h, (∇F∗)(E1h,E1h))F∗E1h + RN(F∗E1h, κ1F∗E2h)F∗E1h (29)
= −c2(∇F∗)(E1h,E1h) − c1κ1F∗E2h − κ1S(∇F∗)(E2h,E1h)F∗E1h

+κ1S(∇F∗)(E1h,E1h)F∗E2h + κ1(∇E1h (∇F∗))(E2h,E1h)
−κ1(∇E2h (∇F∗))(E1h,E1h) (30)

Putting (24) and (30) in (12), we have,

τ2(γ) = −3κ1κ
′

1F∗E1h + (κ
′′

1 − κ
3
1 − κ1κ

2
2 + c1κ1)F∗E2h + (2κ

′

1κ2

+κ1κ
′

2)F∗E3h + κ1κ2κ3F∗E4h − (∇F∗)(E1h,
∗ F∗S(∇F∗)(E1h,E1h)F∗E1h)

−F∗
M
∇

∗

E1h
F∗S(∇F∗)(E1h,E1h)F∗E1h − S∇F⊥

E1h
(∇F∗)(E1h,E1h)F∗E1h

+∇F⊥
E1h
∇

F⊥
E1h

(∇F∗)(E1h,E1h) + 2κ
′

1(∇F∗)(E1h,E2h) − 2κ
′

1F∗AE1h E2v

−κ1κ2F∗AE1h E3v − κ1F∗H
M
∇E1hAE1h E2v + κ1∇

F⊥
E1h

(∇F∗)(E1h,E2h)

+(c2 − κ
2
1)(∇F∗)(E1h,E1h) + κ1κ2(∇F∗)(E1h,E3h)

−κ1(∇F∗)(E1h,AE1h E2v) + κ1S(∇F∗)(E1h,E1h)F∗E2h

+κ1(∇E1h (∇F∗))(E2h,E1h) − κ1(∇E2h (∇F∗))(E1h,E1h). (31)

Since τ2(α) = 0, we can write F∗τ2(α) = 0 . Then, using this equation in τ2(γ), we get,

τ2(γ) = −(∇F∗)(E1h,
∗ F∗S(∇F∗)(E1h,E1h)F∗E1h) − F∗

M
∇

∗

E1h
F∗S(∇F∗)(E1h,E1h)F∗E1h

−S∇F⊥
E1h

(∇F∗)(E1h,E1h)F∗E1h + ∇
F⊥
E1h
∇

F⊥
E1h

(∇F∗)(E1h,E1h) + 2κ
′

1(∇F∗)(E1h,E2h)

−2κ
′

1F∗AE1h E2v − κ1κ2F∗AE1h E3v − κ1F∗H
M
∇E1hAE1h E2v + κ1∇

F⊥
E1h

(∇F∗)(E1h,E2h)

+(c2 − κ
2
1)(∇F∗)(E1h,E1h) + κ1κ2(∇F∗)(E1h,E3h) − κ1(∇F∗)(E1h,AE1h E2v)

+κ1S(∇F∗)(E1h,E1h)F∗E2h + κ1(∇E1h (∇F∗))(E2h,E1h)
−κ1(∇E2h (∇F∗))(E1h,E1h). (32)

Then taking the F∗((kerF∗)⊥) = ran1eF∗ and (ran1eF∗)⊥ parts, we have (14) and (15). Thus F◦α : γ : I→ (N, 1N)
is a biharmonic curve if and only if (14) and (15) are satisfied.
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Theorem 3.2. Let F : (M(c1), 1M)→ (N(c2), 1N) be an umbilical Riemannian map from a real space form (M(c1), 1M)
to a real space form (N(c2), 1N). Let α : I→ (M(c1), 1M) be a biharmonic horizontal curve and horizontal vector field
A be a parallel. Then F ◦ α : γ : I→ (N(c2), 1N) is a biharmonic curve if and only if

−∥H2∥
2
− S∇F⊥

E1h
H2

F∗E1h + (c2 − κ1)H2 − κ1SH2 F∗E2h = 0,

−F∗
M
∇

∗

E1h
F∗SH2 F∗E1h + ∇

F⊥
E1h
∇

F⊥
E1h

H2 = 0.

Proof. The assertion follows from Theorem 3.1.

In particular cases, we have the following results.

Theorem 3.3. Let F : (M(c1), 1M) → (N(c2), 1N) be a Riemannian map from a real space form (M(c1), 1M) to a
real space form (N(c2), 1N). Let α : I → (M(c1), 1M) be a biharmonic horizontal curve and κ1 = constant , 0 and
horizontal vector fieldA be a parallel. Then F ◦ α : γ : I→ (N(c2), 1N) is a biharmonic curve if and only if

−(∇F∗)(E1h,
∗ F∗(S(∇F∗(E1h,E1h)F∗E1h)) − S∇F⊥

E1h
(∇F∗)(E1h,E1h)F∗E1h

−κ1S(∇F∗)(E1h,E1h)F∗E2h + (c2 − κ
2
1)(∇F∗)(E1h,E1h)

+κ1κ2(∇F∗)(E1h,E3h) = 0, (33)

−F∗H
M
∇

∗

E1h
F∗(S(∇F∗)(E1h,E1h)F∗E1h) + ∇F⊥

E1h
∇

F⊥
E1h

(∇F∗)(E1h,E1h)

+κ1∇
F⊥
E1h

(∇F∗)(E1h,E2h) − κ1(∇E1h (∇F∗))(E2h,E1h)
+κ1(∇E2h (∇F∗))(E1h,E1h) = 0. (34)

Proof. The assertion follows from Theorem 3.1.

Theorem 3.4. Let F : (M(c1), 1M) → (N, 1N) be a Riemannian map from a real space form (M(c1), 1M) to a
Riemannian manifold (N, 1N). Let α : I → (M(c1), 1M) be a horizontal Frenet curve. Then Frenet curve F ◦ α : γ :
I→ (N, 1N) is a biharmonic curve if and only if

−3κ̃1κ̃1
′

F∗E1h + (κ̃
′′

1 − κ̃1
3
− κ̃1κ̃2

2 + c1κ̃1)F∗E2h

+κ̃1κ̃2κ̃3F∗E4h − κ̃1S(∇F∗)(E2h,E1h)F∗E1h + κ̃1S(∇F∗)(E1h,E1h)F∗E2h = 0, (35)

κ̃1(∇E1h (∇F∗))(E2h,E1h) − κ̃1(∇E2h (∇F∗))(E1h,E1h) = 0. (36)

where κ̃1, · · · , ˜κr−1 are positive functions of γ on I.

Proof. Let F : (M(c1), 1M)→ (N, 1N) be a Riemannian map from a real space form (M(c1), 1M) to a Riemannian
manifold (N, 1N). Since α : I→ (M(c1), 1M) is a horizontal Frenet curve, we have,

α
′

= T = E1h, γ
′

= F∗T = T̃,

where E1h is horizontal part of T = E1. Note that γ
′

= T̃ is the unit tangent vector field along the curve.
Then we have Frenet formulas of γ as follows

N
∇T̃T̃ = κ̃1F∗E2h

N
∇T̃F∗E2h = −κ̃1F∗E1h + κ̃2F∗E3h

· · ·

N
∇T̃F∗Erh = −κ̃r−1F∗E(r−1)h. (37)
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We calculate
N
∇T̃T̃ as follows.

N
∇T̃T̃ =

N
∇F∗E1h F∗E1h = κ̃1F∗E2h. (38)

Then, using Frenet formulas of γ, we get

N
∇

2

T̃T̃ = κ̃1
′

F∗E2h + κ̃1
N
∇F∗E1h F∗E2h

N
∇

2

T̃T̃ = −κ̃1
2F∗E1h + κ̃1

′

F∗E2h + κ̃1κ̃2F∗E3h. (39)

We calculate,
N
∇

3

T̃T̃ as follows.

N
∇

3

T̃T̃ = −3κ̃1κ̃1
′

F∗E1h + (κ̃
′′

1 − κ̃1
3
− κ̃1κ̃2

2)F∗E2h + (2κ̃1
′

κ̃2

+κ̃1κ̃2
′

)F∗E3h + κ̃1κ̃2κ̃3F∗E4h. (40)

Then, using the Frenet formulas, we obtain

RN(T̃,
N
∇T̃T̃)T̃ = RN(F∗E1h, κ̃1F∗E2h)F∗E1h = κ̃1RN(F∗E1h,F∗E2h)F∗E1h. (41)

Now, taking the vertical and horizontal parts of E2, we find,

RM(T,
M
∇TT)T = RM(E1h, κ1E2)E1h

= RM(E1h, κ1E2v)E1h + RM(E1h, κ1E2h)E1h. (42)

Then, we applied to F∗ both sides in (42), we obtain,

F∗(RM(T,
M
∇TT)T)

= F∗(RM(E1h, κ1E2v)E1h) + F∗(RM(E1h, κ1E2h)E1h). (43)

Since F is a Riemannian map, we have

κ1RN(F∗E1h,F∗E2h)F∗E1h = κ1F∗(RM(E1h,E2)E1h)
−κ1F∗(RM(E1h,E2v)E1h) − κ1S(∇F∗)(E2h,E1h)F∗E1h + κ1S(∇F∗)(E1h,E1h)F∗E2h

+κ1(∇E1h (∇F∗))(E2h,E1h) − κ1(∇E2h (∇F∗))(E1h,E1h). (44)

Using, Riemannian curvature tensor of M, we get

κ1RN(F∗E1h,F∗E2h)F∗E1h = −c1κ1F∗E2h − κ1S(∇F∗)(E2h,E1h)F∗E1h

+κ1S(∇F∗)(E1h,E1h)F∗E2h + κ1(∇E1h (∇F∗))(E2h,E1h)
−κ1(∇E2h (∇F∗))(E1h,E1h) (45)

Then, using (35) into (41), we have,

RN(T̃,
N
∇T̃T̃)T̃ = −c1κ̃1F∗E2h − κ̃1S(∇F∗)(E2h,E1h)F∗E1h

+κ̃1S(∇F∗)(E1h,E1h)F∗E2h + κ̃1(∇E1h (∇F∗))(E2h,E1h)
−κ̃1(∇E2h (∇F∗))(E1h,E1h). (46)

Thus putting (40) and (46) in (12), we have,

τ2(γ) = −3κ̃1κ̃1
′

F∗E1h + (κ̃
′′

1 − κ̃1
3
− κ̃1κ̃2

2 + c1κ̃1)F∗E2h

+(2κ̃1
′

κ̃2 + κ̃1κ̃2
′

)F∗E3h + κ̃1κ̃2κ̃3F∗E4h − κ̃1S(∇F∗)(E2h,E1h)F∗E1h

+κ̃1S(∇F∗)(E1h,E1h)F∗E2h + κ̃1(∇E1h (∇F∗))(E2h,E1h)
−κ̃1(∇E2h (∇F∗))(E1h,E1h). (47)
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Then taking the F∗((kerF∗)⊥) = ran1eF∗ and (ran1eF∗)⊥ parts, we have (33) and (34). Thus F◦α : γ : I→ (N, 1N)
is a biharmonic curve if and only if (33) and (34) are satisfied.

Corollary 3.5. Let F : (M(c1), 1M) → (N, 1N) be an umbilical Riemannian map from a real space form (M(c1), 1M)
to a Riemannian manifold (N, 1N). Let α : I → (M(c1), 1M) be a horizontal Frenet curve. Then Frenet curve
F ◦ α : γ : I→ (N, 1N) is a biharmonic curve such that κ̃1 = constant , 0 if and only if

κ̃1
2 + κ̃2

2 =∥ H2 ∥
2 +c1,

κ̃2 = constant,
κ̃2κ̃3 = 0.

Proof. The assertion follows from Theorem 3.4.

4. Biharmonic Curves along Riemannian Maps from Complex Space Forms

In this section, we study biharmonic curves along Riemannian maps from complex space forms. Then,
we will investigate necessary and sufficient conditions for the curves along Riemannian maps from complex
space forms to be biharmonic. We first recall the complex space form and related notions. An almost
complex manifold (M, J) endowed with a Riemannian metric 1M satisfying

1M(JX, JY) = 1M(X,Y) (48)

Let Mm(4c) be a complex space form of holomorphic sectional curvature 4c [22]. Let us denote by J the
complex structure and by 1M the Riemannian metric on Mm(4c). Then its curvature operator is given by

RMm(4c)(X,Y)Z = c{1M(Y,Z)X − 1M(X,Z)Y + 1M(JY,Z)JX
−1M(JX,Z)JY + 21M(X, JY)JZ} (49)

for X,Y,Z ∈ χ(M) [11] . Following S. Maeda and Y. Ohnita [7], we define the complex torsions of the curve
α by τi j = 1(Ei, JE j), 1 ≤ i < j ≤ r. A helix of order r is called a holomorphic helix of order r if all the complex
torsions are constant.

Let (M, 1M) be a complex space form and α : I → M be a curve defined on an open interval I and
parametrized by arc-length. Then, using Frenet equations, the bitension field of α becomes [1], [12]

τ2(α) = −3κ1κ
′

1E1 + (κ
′′

1 − κ
3
1 − κ1κ

2
2 + cκ1)E2 + (2κ

′

1κ2 + κ1κ
′

2)E3

+κ1κ2κ3E4 − 3cκ1τ12 JE1. (50)

For a Riemannian map from a complex space form to a real space form, we have the following result.

Theorem 4.1. Let F : (M(4c1), 1M) → (N(c2), 1N) be a Riemannian map from a complex space form (M(4c1), 1M)
to a real space form (N(c2), 1N) . Let α : I → (M(4c1), 1M) be a biharmonic horizontal curve. Then F ◦ α : γ : I →
(N(c2), 1N) is a biharmonic curve if and only if

−(∇F∗)(E1h,
∗ F∗S(∇F∗)(E1h,E1h)F∗E1h) − S∇F⊥

E1h
(∇F∗)(E1h,E1h)F∗E1h

+2κ
′

1(∇F∗)(E1h,E2h) − κ1S(∇F∗)(E1h,E1h)F∗E2h

+(c2 − κ
2
1)(∇F∗)(E1h,E1h) + κ1κ2(∇F∗)(E1h,E3h)

−κ1(∇F∗)(E1h,AE1h E2v) = 0, (51)

3c1κ1τ12mixF∗ JE1h − F∗
M
∇

∗

E1h
F∗S(∇F∗)(E1h,E1h)F∗E1h

+∇F⊥
E1h
∇

F⊥
E1h

(∇F∗)(E1h,E1h) − 2κ
′

1F∗AE1h E2v − κ1κ2F∗AE1h E3v

−κ1F∗H
M
∇E1hAE1h E2v + κ1∇

F⊥
E1h

(∇F∗)(E1h,E2h)
−κ1(∇E1h (∇F∗))(E2h,E1h) + κ1(∇E2h (∇F∗))(E1h,E1h) = 0. (52)

where τ12mix = 1M(E1h, JE2v).
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Proof. Let F : (M(4c), 1M) → (N, 1N) be a Riemannian map from a complex space form (M(4c), 1M) to a real
space form (N(c2), 1N) . Let α : I → (M(4c), 1M) be a biharmonic horizontal curve. Then, we have the
following equation.

τ2(α) = −3κ1κ
′

1E1 + (κ
′′

1 − κ
3
1 − κ1κ

2
2 + cκ1)E2 + (2κ

′

1κ2 + κ1κ
′

2)E3

+κ1κ2κ3E4 − 3cκ1τ12 JE1. (53)

Since α is horizontal curve, we have

α
′

= T = E1h, γ
′

= F∗T = T̃, (54)

where E1h is horizontal part of T = E1. Note that γ
′

= T̃ is the unit tangent vector field along the curve.
Then we have the equation (24). On the other hand, using (12), we obtain,

RN(T̃,
N
∇T̃T̃)T̃ = RN(F∗E1h, (∇F∗)(E1h,E1h))F∗E1h + RN(F∗E1h, κ1F∗E2h)F∗E1h. (55)

and

RM(T,
M
∇TT)T = RM(T, κ1E2)T, (56)

respectively. Now, taking the vertical and horizontal parts of E2 in (56), we find,

RM(T,
M
∇TT)T = RM(E1h, κ1E2v)E1h + RM(E1h, κ1E2h)E1h. (57)

Since F is a Riemannian map, we derive,

RN(F∗E1h,F∗E2h)F∗E1h = F∗(RM(E1h,E2)E1h) − F∗(RM(E1h,E2v)E1h)
−S(∇F∗)(E2h,E1h)F∗E1h + S(∇F∗)(E1h,E1h)F∗E2h + (∇E1h (∇F∗))(E2h,E1h)
−(∇E2h (∇F∗))(E1h,E1h) (58)

Using (49), we get

RN(F∗E1h, κ1F∗E2h)F∗E1h = −c1κ1F∗E2h − 3c1κ1τ12HF∗ JE1h

−κ1S(∇F∗)(E2h,E1h)F∗E1h + κ1S(∇F∗)(E1h,E1h)F∗E2h

+κ1(∇E1h (∇F∗))(E2h,E1h) − κ1(∇E2h (∇F∗))(E1h,E1h). (59)

Thus putting (60) in (56), we have,

RN(T̃,
N
∇T̃T̃)T̃ = −c2F∗(∇F∗)(E1h,E1h) − c1κ1F∗E2h − 3c1κ1τ12HF∗ JE1h

−κ1S(∇F∗)(E2h,E1h)F∗E1h + κ1S(∇F∗)(E1h,E1h)F∗E2h

+κ1(∇E1h (∇F∗))(E2h,E1h) − κ1(∇E2h (∇F∗))(E1h,E1h)

Then, putting this equation and (24) in (12), we have,

τ2(γ) = −3κ1κ
′

1F∗E1h + (κ
′′

1 − κ
3
1 − κ1κ

2
2 + c1κ1)F∗E2h + (2κ

′

1κ2 + κ1κ
′

2)F∗E3h

+κ1κ2κ3F∗E4h − 3c1τ12HF∗ JE1h − (∇F∗)(E1h,
∗ F∗S(∇F∗)(E1h,E1h)F∗E1h)

−F∗
M
∇

∗

E1h
F∗S(∇F∗)(E1h,E1h)F∗E1h − S∇F⊥

E1h
(∇F∗)(E1h,E1h)F∗E1h

+∇F⊥
E1h
∇

F⊥
E1h

(∇F∗)(E1h,E1h) + 2κ
′

1(∇F∗)(E1h,E2h) − 2κ
′

1F∗AE1h E2v

−κ1κ2F∗AE1h E3v − κ1F∗H
M
∇E1hAE1h E2v − κ1S(∇F∗)(E1h,E1h)F∗E2h

+κ1∇
F⊥
E1h

(∇F∗)(E1h,E2h) + (c2 − κ
2
1)(∇F∗)(E1h,E1h)

+κ1κ2(∇F∗)(E1h,E3h) − κ1(∇F∗)(E1h,AE1h E2v) − κ1(∇E1h (∇F∗))(E2h,E1h)
+κ1(∇E2h (∇F∗))(E1h,E1h). (60)
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Since τ2(α) = 0, we can write F∗τ2(α) = 0 . Then, using this equation in τ2(γ), we have,

τ2(γ) = 3c1κ1τ12mixF∗ JE1h − (∇F∗)(E1h,
∗ F∗S(∇F∗)(E1h,E1h)F∗E1h)

−F∗
M
∇

∗

E1h
F∗S(∇F∗)(E1h,E1h)F∗E1h − S∇F⊥

E1h
(∇F∗)(E1h,E1h)F∗E1h

+∇F⊥
E1h
∇

F⊥
E1h

(∇F∗)(E1h,E1h) + 2κ
′

1(∇F∗)(E1h,E2h) − 2κ
′

1F∗AE1h E2v

−κ1κ2F∗AE1h E3v − κ1F∗H
M
∇E1hAE1h E2v − κ1S(∇F∗)(E1h,E1h)F∗E2h

+κ1∇
F⊥
E1h

(∇F∗)(E1h,E2h) + (c2 − κ
2
1)(∇F∗)(E1h,E1h) + κ1κ2(∇F∗)(E1h,E3h)

−κ1(∇F∗)(E1h,AE1h E2v) − κ1(∇E1h (∇F∗))(E2h,E1h)
+κ1(∇E2h (∇F∗))(E1h,E1h). (61)

Then taking the F∗((kerF∗)⊥) = ran1eF∗ and (ran1eF∗)⊥ parts, we have (51) and (52). Thus F◦α : γ : I→ (N, 1N)
is a biharmonic curve if and only if (51) and (52) are satisfied.

Theorem 4.2. Let F : (M(4c1), 1M) → (N(c2), 1N) be an umbilical Riemannian map from a complex space form
(M(4c1), 1M) to a real space form (N(c2), 1N) . Let α : I → (M(4c1), 1M) be a biharmonic horizontal curve and
horizontal tensor fieldA is parallel. Then F ◦ α : γ : I→ (N(c2), 1N) is a biharmonic curve if and only if

−∥H2∥
2
− S∇F⊥

E1h
H2

F∗E1h − κ1SH2 F∗E2h + (c2 − κ
2
1)H2 = 0,

3c1κ1τ12mixF∗ JE1h − F∗
M
∇

∗

E1h
F∗SH2 F∗E1h + ∇

F⊥
E1h
∇

F⊥
E1h

H2 = 0.

where τ12mix = 1M(E1h, JE2v).

Proof. The assertions follows from Theorem 4.1.

In particular, if κ1 =constant, 0, then we have the following result.

Theorem 4.3. Let F : (M(4c1), 1M)→ (N(c2), 1N) be a Riemannian map from a complex space form (M(4c1), 1M) to
a real space form (N(c2), 1N). Let α : I → (M(4c1), 1M) be a biharmonic horizontal curve and κ1 =constant, 0 and
horizontal tensor fieldA is parallel. Then F ◦ α : γ : I→ (N(c2), 1N) is a biharmonic curve if and only if

−(∇F∗)(E1h,
∗ F∗S(∇F∗)(E1h,E1h)F∗E1h) − S∇F⊥

E1h
(∇F∗)(E1h,E1h)F∗E1h

−κ1S(∇F∗)(E1h,E1h)F∗E2h + (c2 − κ
2
1)(∇F∗)(E1h,E1h)

+κ1κ2(∇F∗)(E1h,E3h) = 0, (62)

3c1κ1τ12mixF∗ JE1h − F∗
M
∇

∗

E1h
F∗S(∇F∗)(E1h,E1h)F∗E1h

+∇F⊥
E1h
∇

F⊥
E1h

(∇F∗)(E1h,E1h) + κ1∇
F⊥
E1h

(∇F∗)(E1h,E2h)
−κ1(∇E1h (∇F∗))(E2h,E1h) + κ1(∇E2h (∇F∗))(E1h,E1h) = 0. (63)

Proof. Since κ1 =constant, 0, we have κ′1 = 0. The parallelity ofA implies thatA = 0. Then the assertion follows
from Theorem 4.1.

Theorem 4.4. Let F : (M(4c1), 1M) → (N, 1N) be a Riemannian map from a complex space form (M(4c1), 1M)
to a Riemannian manifold (N, 1N). Let α : I → (M(4c1), 1M) be a horizontal Frenet curve. Then Frenet curve
F ◦ α : γ : I→ (N, 1N) is a biharmonic curve if and only if

−3κ̃1κ̃1
′

F∗E1h + (κ̃
′′

1 − κ̃1
3
− κ̃1κ̃2

2 + c1κ̃1)F∗E2h

+(2κ̃1
′

κ̃2 + κ̃1κ̃2
′

)F∗E3h + κ̃1κ̃2κ̃3F∗E4h + 3c1κ̃1τ12HF∗ JE1h

−κ̃1(∇E1h (∇F∗))(E2h,E1h) + κ̃1(∇E2h (∇F∗))(E1h,E1h) = 0, (64)
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κ̃1S(∇F∗)(E2h,E1h)F∗E1h − κ̃1S(∇F∗)(E1h,E1h)F∗E2h = 0. (65)

where κ̃1, · · · , ˜κr−1 are positive functions of γ on I.

Proof. Let F : (M(4c1), 1M) → (N, 1N) be a Riemannian map from a complex space form (M(4c1), 1M) to a
Riemannian manifold (N, 1N). Since α : I→ (M(4c1), 1M) is a horizontal Frenet curve, we have

α
′

= T = E1h, γ
′

= F∗T = T̃,

where E1h is horizontal part of T = E1. Note that γ
′

= T̃ is the unit tangent vector field along the curve.
Then we have Frenet formulas of γ as follows

N
∇T̃T̃ = κ̃1F∗E2h

N
∇T̃F∗E2h = −κ̃1F∗E1h + κ̃2F∗E3h

· · ·

N
∇T̃F∗Erh = −κ̃r−1F∗E(r−1)h. (66)

We calculate
N
∇T̃T̃ as follows.

N
∇T̃T̃ =

N
∇F∗E1h F∗E1h = κ̃1F∗E2h. (67)

Then, using Frenet formulas of γ, we get,

N
∇

2

T̃T̃ = κ̃1
′

F∗E2h + κ1
N
∇F∗E1h F∗E2h

= −κ̃1
2F∗E1h + κ̃1

′

F∗E2h + κ̃1κ̃2F∗E3h. (68)

We calculate,
N
∇

3

T̃T̃ as follows.

N
∇

3

T̃T̃ = −3κ̃1κ̃1
′

F∗E1h + (κ̃
′′

1 − κ̃1
3
− κ̃1κ̃2

2)F∗E2h + (2κ̃1
′

κ̃2 + κ̃1κ̃2
′

)F∗E3h

+κ̃1κ̃2κ̃3F∗E4h. (69)

Then, using the Frenet formulas, we obtain,

RN(T̃,
N
∇T̃T̃)T̃ = RN(F∗E1h, κ̃1F∗E2h)F∗E1h = κ̃1RN(F∗E1h,F∗E2h)F∗E1h. (70)

Now, taking the vertical and horizontal parts of E2, we find,

RM(T,
M
∇TT)T = RM(E1h, κ1E2)E1h

= RM(E1h, κ1E2v)E1h + RM(E1h, κ1E2h)E1h. (71)

Then, we applied to F∗ both sides in (71), we obtain,

F∗(RM(T,
M
∇TT)T)

= F∗(RM(E1h, κ1E2v)E1h) + F∗(RM(E1h, κ1E2h)E1h). (72)

Since F is a Riemannian map, we have

RN(F∗E1h,F∗E2h)F∗E1h = F∗(RM(E1h,E2)E1h) − F∗(RM(E1h,E2v)E1h)
−S(∇F∗)(E2h,E1h)F∗E1h + S(∇F∗)(E1h,E1h)F∗E2h + (∇E1h (∇F∗))(E2h,E1h)
−(∇E2h (∇F∗))(E1h,E1h) (73)
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Using, (49), we get

RN(F∗E1h, κ1F∗E2h)F∗E1h = −c1κ1F∗E2h − 3c1κ1τ12HF∗ JE1h

−κ1S(∇F∗)(E2h,E1h)F∗E1h + κ1S(∇F∗)(E1h,E1h)F∗E2h

+κ1(∇E1h (∇F∗))(E2h,E1h) − κ1(∇E2h (∇F∗))(E1h,E1h) (74)

Then, using (74) into (70), we have,

RN(T̃,
N
∇T̃T̃)T̃ = −c1κ̃1F∗E2h − 3c1κ̃1τ12HF∗ JE1h

−κ̃1S(∇F∗)(E2h,E1h)F∗E1h + κ̃1S(∇F∗)(E1h,E1h)F∗E2h

+κ̃1(∇E1h (∇F∗))(E2h,E1h) − κ̃1(∇E2h (∇F∗))(E1h,E1h) (75)

Thus putting (69) and (75) in (12), we have,

τ2(γ) = −3κ̃1κ̃1
′

F∗E1h + (κ̃
′′

1 − κ̃1
3
− κ̃1κ̃2

2 + c1κ̃1)F∗E2h

+(2κ̃1
′

κ̃2 + κ̃1κ̃2
′

)F∗E3h + κ̃1κ̃2κ̃3F∗E4h + 3c1κ̃1τ12HF∗ JE1h

+κ̃1S(∇F∗)(E2h,E1h)F∗E1h − κ̃1S(∇F∗)(E1h,E1h)F∗E2h

−κ̃1(∇E1h (∇F∗))(E2h,E1h) + κ̃1(∇E2h (∇F∗))(E1h,E1h). (76)

Then taking the F∗((kerF∗)⊥) = ran1eF∗ and (ran1eF∗)⊥ parts, we have (64) and (65). Thus F◦α : γ : I→ (N, 1N)
is a biharmonic curve if and only if (64) and (65) are satisfied.
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[7] S. Maeda and Y. Ohnita, Helical geodesic İmmersions into complex space forms, Geom. Dedicata, 30, (1983), 93-114.
[8] S. Maeta, k-harmonic curves into a Riemannian manifold with constant sectional curvature , Proc. Amer. Math. Soc., 140(5),

(2010), 1835-1847.
[9] S. Maeta, The second variational formula of the k-energy and k-harmonic curves, Osaka J. Math., 49, (2012), 1035-1063.

[10] B. O’Neill, The Fundamental equations of a submersion, Mich. Math. J., 13, (1966), 458-469.
[11] C. Oniciuc, Biharmonic submanifolds in space forms, Habilitation Thesis, Universitatea Alexandru Ioan Cuza, 149p., 2012
[12] T. Sasahara, Biharmonic Lagrangian surfaces of constant mean curvature in complex space forms, Glasg. Math. J., 49, (2007),

497-507.
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