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A nonlocal problem with multipoint conditions for partial differential
equations of higher order
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Abstract. A nonlocal problem with multipoint conditions for the partial differential equations of higher
order is considered. Algorithms for finding a solution to the nonlocal problem with multipoint conditions
are constructed and their convergence is proved. Conditions for the unique solvability of the nonlocal
problem with multipoint conditions for the partial differential equations of higher order are established in
terms of the initial data.

1. Introduction

In recent decades, many authors have intensively studied nonlocal problems with multipoint conditions
for partial differential equations of higher order (see the bibliography in [1-11]). The development of
computing and information technologies requires the apply of constructive methods for the numerical
analysis and approximate solution of nonlocal problems with multipoint conditions for partial differential
equations of higher order. Earlier in the works of the authors, a number of problems with multipoint
conditions were investigated and solved for systems of hyperbolic equations of the second order [12-14],
for partial differential equations of third and fourth orders [15-18], as well as for impulsive partial differential
equations of higher order [19] by Dzhumabaev’s parametrization method [20].

In the present paper we propose the constructive approach for solve the nonlocal problem with mul-
tipoint conditions for partial differential equations of higher order based on method of introduction new
functions.

Consider the nonlocal problem with multipoint conditions for the partial differential equations of higher
order in Ω = [0,T] × [0, ω]

∂m+1u
∂t∂xm =

m∑
i=0

Ai(t, x)
∂iu
∂xi +

m−1∑
j=0

B j(t, x)
∂ j+1u
∂t∂x j + f (t, x), (1.1)
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p∑
l=0

m∑
i=0

Ki,l(x)
∂iu(tl, x)
∂xi = φ(x), x ∈ [0, ω], (1.2)

u(t, 0) = ψ0(t),
∂u(t, x)
∂x

∣∣∣∣
x=0
= ψ1(t), ...,

∂m−1u(t, x)
∂xm−1

∣∣∣∣
x=0
= ψm−1(t), t ∈ [0,T], (1.3)

where u(t, x) is unknown function, the functions Ai(t, x), i = 0,m, B j(t, x), j = 0,m − 1, and f (t, x) are
continuous on Ω, the functions Ki,l(x) and φ(x) are continuous on [0, ω], 0 = t0 < t1 < ... < tp−1 < tp = T,
i = 0,m, l = 0, p, the functions ψ j(t), j = 0,m − 1, are continuously differentiable on [0,T].

A function u(t, x) continuous on Ω, having continuous on Ω partial derivatives ∂s+iu
∂ts∂xi , s = 0, 1, i = 0,m,

satisfying Equation (1.1) for all (t, x) ∈ Ω, multipoint and initial conditions (1.2), (1.3), is called the solution
to the nonlocal problem with multipoint conditions (1.1)-(1.3).

Algorithms for finding a solution to the nonlocal problem with multipoint conditions (1.1)-(1.3) are
constructed and their convergence is proved. Conditions for the unique solvability of the nonlocal problem
with multipoint conditions (1.1)-(1.3) are established in terms of the initial data.

2. Reduction to an equivalent problem

Assume

vk(t, x) =
∂m−ku(t, x)
∂xm−k

, k = 1,m.

Then pass from problem (1.1)-(1.3) to the next equivalent problem:

∂2v1

∂t∂x
= Am(t, x)

∂v1

∂x
+ Bm−1(t, x)

∂v1

∂t
+Am−1(t, x)v1 +

m−2∑
i=0

Ai(t, x)vm−i(t, x)+
m−2∑
j=0

B j(t, x)
∂vm− j(t, x)

∂t
+ f (t, x), (2.1)

p∑
l=0

Km,l(x)
∂v1(tl, x)
∂x

+

p∑
l=0

Km−1,l(x)v1(tl, x) +
p∑

l=0

m−2∑
s=0

Ks,l(x)vm−s(tl, x) = φ(x), x ∈ [0, ω], (2.2)

v1(t, 0) = ψm−1(t), t ∈ [0,T], (2.3)

vr(t, x) = ψm−r(t) +

x∫
0

vr−1(t, ξ)dξ,
∂vr(t, x)
∂t

= ψ̇m−r(t) +

x∫
0

∂vr−1(t, ξ)
∂t

dξ, r = 2,m, (t, x) ∈ Ω. (2.4)

A system of functions (v1(t, x), v2(t, x), ..., vm(t, x)), where function v1(t, x) ∈ C(Ω,R),has partial derivatives
∂v1(t,x)
∂x ∈ C(Ω,R), ∂v1(t,x)

∂t ∈ C(Ω,R), ∂
2v1(t,x)
∂t∂x ∈ C(Ω,R), and functions vr(t, x) and ∂vr(t,x)

∂t are related to v1(t, x) by
integral relations (2.4), r = 2,m, which satisfies the equation (2.1) for all (t, x) ∈ Ω and conditions (2.2), (2.3),
is a solution to problem (2.1)-(2.4).

For fixed vr(t, x) and ∂vr(t,x)
∂t , r = 2,m, problem (2.1)-(2.4) is a nonlocal problem with multipoint conditions

for the second-order hyperbolic equation. Questions of the unique, well-posed solvability of a nonlocal
problem with multipoint conditions were studied in [13], [14]. We use results of [15]-[16] to solve problem
(2.1)-(2.4).

We introduce a new functions v(t, x) = ∂v1(t,x)
∂x , w(t, x) = ∂v1(t,x)

∂t , and transfer problem (2.1)-(2.4) to the
following family of multipoint problems for a differential equation with functional parameters and integral
constraints

∂v
∂t
= Am(t, x)v+Bm−1(t, x)w(t, x)+Am−1(t, x)v1(t, x)+

m−2∑
i=0

Ai(t, x)vm−i(t, x)+
m−2∑
j=0

B j(t, x)
∂vm− j(t, x)

∂t
+ f (t, x), (2.5)
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p∑
l=0

Km,l(x)v(tl, x) = φ(x) −
p∑

l=0

Km−1,l(x)v1(tl, x) −
p∑

l=0

m−2∑
s=0

Ks,l(x)vm−s(tl, x), x ∈ [0, ω], (2.6)

v1(t, x) = ψm−1(t) +

x∫
0

v(t, ξ)dξ, w(t, x) = ψ̇m−1(t) +

x∫
0

∂v(t, ξ)
∂t

dξ, (t, x) ∈ Ω, (2.7)

vr(t, x) = ψm−r(t) +

x∫
0

vr−1(t, ξ)dξ,
∂vr(t, x)
∂t

= ψ̇m−r(t) +

x∫
0

∂vr−1(t, ξ)
∂t

dξ, r = 2,m, (t, x) ∈ Ω. (2.8)

For fixed w(t, x), v1(t, x), vr(t, x) and ∂vr(t,x)
∂t , r = 2,m, problem (2.5), (2.6) is a family of multipoint problems

for the differential equations with respect to v(t, x). The unknown functions w(t, x), v1(t, x), vr(t, x) and ∂vr(t,x)
∂t ,

r = 2,m, are determined from integral constraints (2.7), (2.8).
A system of functions (v(t, x),w(t, x), v1(t, x), v2(t, x), ..., vm(t, x)), where function v(t, x) ∈ C(Ω,R) has par-

tial derivative ∂v(t,x)
∂t ∈ C(Ω,R), functions w(t, x), v1(t, x), vr(t, x) and ∂vr(t,x)

∂t are related to v(t, x) and ∂v(t,x)
∂t ,

v1(t, x) and ∂v1(t,x)
∂t by integral constraints (2.7), (2.8), respectively, r = 2,m, which satisfies the differential

equation (2.5) for all (t, x) ∈ Ω and condition (2.6), integral constraints (2.7), (2.8) is a solution to problem
(2.5)-(2.8).

Consider the following family of multipoint problems for the differential equation

∂v
∂t
= Am(t, x)v + F(t, x), (t, x) ∈ Ω, (2.9)

p∑
l=0

Km,l(x)v(tl, x) = Φ(x), x ∈ [0, ω], (2.10)

where v(t, x) is an unknown function, the function F(t, x) ∈ C(Ω,R), the function Φ(x) is continuous on
[0, ω].

A continuous function v : Ω → R that has a continuous derivative with respect to t on Ω is called a
solution to the family of multipoint problems (2.9), (2.10), if it satisfies equation (2.9) for all (t, x) ∈ Ω and
multipoint condition (2.10) for all x ∈ [0, ω]. For fixed x ∈ [0, ω] problem (2.9), (2.10) is a linear multipoint
problem for the ordinary differential equation. Suppose a variable x takes values on the interval [0, ω]; then
we obtain a family of multipoint problems for differential equation.

Various problems with multipoint condition for the differential equations (2.9), (2.10) have been studied
by numerous authors (see [4, 21-23] and their bibliography).

The following theorem provides conditions for the unique solvability of the family of multipoint prob-
lems for differential equations (2.9), (2.10) in terms of the solution Cauchy problems.

Theorem 2.1. Family of multipoint problems for the differential equations (2.9), (2.10) is uniquely solvable and for
its solution v∗(t, x) we have the estimate

max
t∈[0,T]

||v∗(t, x)|| ≤ C0 max
{
max
t∈[0,T]

||F(t, x)||, ||Φ(x)||
}

for all x ∈ [0, ω], for some C0 > 0 independent of x, v∗, F and Φ, if the function M(x) =
p∑

l=0
Km,l(x)U(tl, x) , 0 for

every x ∈ [0, ω], where U is a solution to the family Cauchy problems

∂U
∂t
= Am(t, x)U, U(0, x) = 1.
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Proof. Let U be a solution to the family of Cauchy problems

∂U
∂t
= Am(t, x)U, U(0, x) = 1.

By the Cauchy formula [24, p. 48], the function

v(t, x) = U(t, x)c(x) +U(t, x)

t∫
0

U−1(τ, x)F(τ, x)dτ (2.11)

is a solution to equation (2.9) for each c(x) ∈ C([0, ω],R). Conversely, for each solution of this equation
there exists c(x) ∈ C([0, ω],R) such that representation (2.11) holds.

Substituting representation (2.11) into (2.10), we have:

p∑
l=0

Km,l(x)U(tl, x)c(x) +
p∑

l=0

Km,l(x)U(tl, x)

tl∫
0

U−1(τ, x)F(τ, x)dτ = Φ(x), x ∈ [0, ω].

This implies

M(x)c(x) = Φ(x) −
p∑

l=0

Km,l(x)U(tl, x)

tl∫
0

U−1(τ, x)F(τ, x)dτ, x ∈ [0, ω]. (2.12)

If the function M(x) , 0 for all x ∈ [0, ω], then the functional equation (2.12) has a unique solution

c∗(x) =M−1(x)
{
Φ(x) −

p∑
l=0

Km,l(x)U(tl, x)

tl∫
0

U−1(τ, x)F(τ, x)dτ
}
, x ∈ [0, ω]. (2.13)

Replacing c(x) by c∗(x) in (2.11), we obtain the following representation of the unique solution to the family
of problems (2.9), (2.10)

v∗(t, x) = U(t, x)M−1(x)
{
Φ(x) −

p∑
l=0

Km,l(x)U(tl, x)

tl∫
0

U−1(τ, x)F(τ, x)dτ
}
+U(t, x)

t∫
0

U−1(τ, x)F(τ, x)dτ. (2.14)

The solution v∗ satisfies the following estimate

max
t∈[0,T]

||v∗(t, x)|| ≤ C0 max
(
max
t∈[0,T]

||F(t, x)||, ||Φ(x)||
)
, (2.15)

where the constant C0 does not depend on F, Φ and x ∈ [0, ω].
The following estimate is also valid:

max
(
max
t∈[0,T]

∣∣∣∣∣∣∣∣∂v∗(t, x)
∂t

∣∣∣∣∣∣∣∣, max
t∈[0,T]

||v∗(t, x)||
)
≤ max(αmC0 + 1,C0) max

(
max
t∈[0,T]

||F(t, x)||, ||Φ(x)||
)
, (2.16)

where αm = max
(t,x)∈Ω

||Am(t, x)||. Theorem 2.1 is proved.

Therefore, provided that the function M(x) , 0 for all x ∈ [0, ω], the family of problems (2.9), (2.10) is
uniquely solvable and for its solution v∗ the estimate (2.14) holds, i.e. problem (2.9), (2.10) is well-posed.

Note that we can use a function exp
{ t∫

0
Am(τ, x)dτ

}
as a function U(t, x).
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3. Algorithm and unique solvability of problem (1.1)–(1.3)

In this section we propose an algorithm for finding solution to the original problem (1.1)-(1.3). The
algorithm for finding solutions to the nonlocal problem with multipoint conditions for the partial differential
equations of higher order (1.1)-(1.3) consists of seventh stages:

1st stage. Introduction of new unknown functions v1(t, x), v2(t, x), . . . , vm(t, x), and transition to the
equivalent problem (2.1)-(2.4).

2nd stage. Introduction of new unknown functions v(t, x), w(t, x), and reduction to the family of multi-
point problems for the differential equation with functional parameters and integral constraints (2.5)-(2.8).

3rd stage. Solving the auxiliary family of multipoint problems for the differential equation (2.9), (2.10).
4th stage. For fixed w(t, x), v1(t, x), vr(t, x) and ∂vr(t,x)

∂t , r = 2,m, solving the family of multipoint problems
for the differential equation (2.5), (2.6) by solution to the auxiliary family of multipoint problems for the
differential equation (2.9), (2.10).

5th stage. Determination of functions v1(t, x), w(t, x) from integral constraints (2.7) using v(t, x), the
solution to the family of problems (2.5), (2.6), and ∂v(t,x)

∂t .
6th stage. Determination of functions vr(t, x) and ∂vr(t,x)

∂t , r = 2,m, from integral constraints (2.8) using
v1(t, x) and ∂v1(t,x)

∂t .
7th stage. Definition of function u(t, x), the solution to the original problem (1.1)-(1.3) from equality

u(t, x) = vm(t, x) for all (t, x) ∈ Ω.
The following theorem provides the conditions of unique solvability to problem (1.1)–(1.3) in terms of

the solvability of family of multipoint problems (2.9), (2.10).

Theorem 3.1. Suppose
1) the functions Ai(t, x), i = 0,m, B j(t, x), j = 0,m − 1, and f (t, x) are continuous on Ω;
2) the functions the functions Ki,l(x) and φ(x) are continuous on [0, ω], i = 0,m, l = 0, p;
3) the functions ψ j(t), j = 0,m − 1, are continuously differentiable on [0,T];
4) The family of multipoint problems for the differential equations (2.9), (2.10) is uniquely solvable.
Then the nonlocal problem with multipoint conditions for the partial differential equations of higher order (1.1)-

(1.3) has a unique solution.

Proof. Let the assumptions 1)-3) of Theorem 2.1 be satisfied. From assumption 4) it follows that unique
solvability to the family of multipoint problems for the differential equations (2.9), (2.10). From the nonlocal
multipoint problem (1.1)-(1.3) we transfer to the equivalent family of multipoint problems for the differential
equation with functional parameters and integral constraints (2.5)-(2.8).

To find a solution to the problem (2.5)-(2.8) we use an iterative method and the algorithm.
0 step. Suppose that v1(t, x) = ψm−1(t), w(t, x) = ψ̇m−1(t), vr(t, x) = ψm−r(t),

∂vr(t,x)
∂t = ψ̇m−r(t), r = 2,m, for all

(t, x) ∈ Ω in the right-hand side of equation (2.5) and condition (2.6). Then, we get the following problem:

∂v
∂t
= Am(t, x)v + F(0)(t, x), (t, x) ∈ Ω, (3.1)

p∑
l=0

Km,l(x)v(tl, x) = Φ(0)(x), x ∈ [0, ω], (3.2)

where F(0)(t, x) = Bm−1(t, x)ψ̇m−1(t) + Am−1(t, x)ψm−1(t) +
m−2∑
i=0

Ai(t, x)ψi(t) +
m−2∑
j=0

B j(t, x)ψ̇ j(t) + f (t, x),

Φ(0)(x) = φ(x) −
p∑

l=0
Km−1,l(x)ψm−1(tl) −

p∑
l=0

m−2∑
s=0

Ks,l(x)ψs(tl).

Using assumption 4) we obtain of the unique solvability to the problem (2.9), (2.10) with F(t, x) = F(0)(t, x),
Φ(x) = Φ(0)(x).
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From assertion of Theorem 2.1 we have the following representation of the unique solution to the family
of problems (3.1), (3.2):

v(0)(t, x) = U(t, x)M−1(x)
{
Φ(0)(x) −

p∑
l=0

Km,l(x)U(tl, x)

tl∫
0

U−1(τ, x)F(0)(τ, x)dτ
}

+U(t, x)

t∫
0

U−1(τ, x)F(0)(τ, x)dτ, (t, x) ∈ Ω. (3.3)

Here U(t, x) = exp
{ t∫

0
Am(τ, x)dτ

}
.

The solution v(0)(t, x) satisfies the following estimate

max
t∈[0,T]

||v(0)(t, x)|| ≤ C0 max
(
max
t∈[0,T]

||F(0)(t, x)||, ||Φ(0)(x)||
)
, (3.4)

where the constant C0 does not depend on F(0), Φ(0) and x ∈ [0, ω].
Moreover, we can find its expression:

C0 = eαmT max
x∈[0,ω]

[ p∑
l=0

|Km,l(x)|e

tl∫
0

Am(τ,x)dτ]−1(
1 +

p∑
l=0

max
x∈[0,ω]

|Km,l(x)|tleαmtl

)
+ TeαmT.

The following estimate is also valid:

max
(
max
t∈[0,T]

∣∣∣∣∣∣∣∣∂v(0)(t, x)
∂t

∣∣∣∣∣∣∣∣, max
t∈[0,T]

||v(0)(t, x)||
)
≤ max(αmC0 + 1,C0) max

(
max
t∈[0,T]

||F(0)(t, x)||, ||Φ(0)(x)||
)
. (3.5)

Further, we assume that v(t, ξ) = v(0)(t, ξ), ∂v(t,ξ)
∂t =

∂v(0)(t,ξ)
∂t , for all (t, ξ) ∈ Ω in integral relations (2.7) and

determine v(0)
1 (t, x) and w(0)(t, x):

v(0)
1 (t, x) = ψm−1(t) +

x∫
0

v(0)(t, ξ)dξ, w(0)(t, x) = ψ̇m−1(t) +

x∫
0

∂v(0)(t, ξ)
∂t

dξ, (t, x) ∈ Ω. (3.6)

At the next stage, using v(0)
1 (t, x) and

∂v(0)
1 (t,x)
∂t we sequentially find the functions v(0)

r (t, x) and ∂v(0)
r (t,x)
∂t ,

r = 2,m, from integral constraints (2.8):

v(0)
2 (t, x) = ψm−2(t) +

x∫
0

v(0)
1 (t, ξ)dξ,

∂v(0)
2 (t, x)
∂t

= ψ̇m−2(t) +

x∫
0

∂v(0)
1 (t, ξ)

∂t
dξ, (t, x) ∈ Ω, (3.7)

v(0)
3 (t, x) = ψm−3(t) +

x∫
0

v(0)
2 (t, ξ)dξ,

∂v(0)
3 (t, x)

∂t
= ψ̇m−3(t) +

x∫
0

∂v(0)
2 (t, ξ)
∂t

dξ, (t, x) ∈ Ω, (3.8)

...

v(0)
m (t, x) = ψ0(t) +

x∫
0

v(0)
m−1(t, ξ)dξ,

∂v(0)
m (t, x)
∂t

= ψ̇0(t) +

x∫
0

∂v(0)
m−1(t, ξ)

∂t
dξ, (t, x) ∈ Ω. (3.9)
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Finally, we define a function u(0)(t, x) by the following equality:

u(0)(t, x) = v(0)
m (t, x), (t, x) ∈ Ω, (3.10)

According to the algorithm above, the function u(0)(t, x) is an initial approximation of solution to the original
problem (1.1)-(1.3).

On the first step of the iterative method, we suppose that v1(t, x) = v(0)
1 (t, x), w(t, x) = w(0)(t, x), vr(t, x) =

v(0)
r (t, x), ∂vr(t,x)

∂t =
∂v(0)

r (t,x)
∂t , r = 2,m, for all (t, x) ∈ Ω in the right-hand side of equation (2.5) and condition (2.6).

Then, we get the following problem:

∂v
∂t
= Am(t, x)v + F(1)(t, x), (t, x) ∈ Ω, (3.11)

p∑
l=0

Km,l(x)v(tl, x) = Φ(1)(x), x ∈ [0, ω], (3.12)

where

F(1)(t, x) = Bm−1(t, x)w(0)(t, x) + Am−1(t, x)v(0)
1 (t, x) +

m−2∑
i=0

Ai(t, x)v(0)
m−i(t, x) +

m−2∑
j=0

B j(t, x)
∂v(0)

m− j(t, x)

∂t
+ f (t, x),

Φ(1)(x) = φ(x) −
p∑

l=0

Km−1,l(x)v(0)
1 (tl, x) −

p∑
l=0

m−2∑
s=0

Ks,l(x)v(0)
m−s(tl, x).

Using assumption 4) again, we obtain of the unique solvability to the problem (2.9), (2.10) with F(t, x) =
F(1)(t, x), Φ(x) = Φ(1)(x).

From assertion of Theorem 2.1 we have the following representation of the unique solution to the family
of problems (3.11), (3.12):

v(1)(t, x) = U(t, x)M−1(x)
{
Φ(1)(x) −

p∑
l=0

Km,l(x)U(tl, x)

tl∫
0

U−1(τ, x)F(1)(τ, x)dτ
}

+U(t, x)

t∫
0

U−1(τ, x)F(1)(τ, x)dτ, (t, x) ∈ Ω. (3.13)

The solution v1)(t, x) satisfies the following estimate

max
t∈[0,T]

||v(1)(t, x)|| ≤ C0 max
(
max
t∈[0,T]

||F(1)(t, x)||, ||Φ(1)(x)||
)
. (3.14)

The following estimate is also valid:

max
(
max
t∈[0,T]

∣∣∣∣∣∣∣∣∂v(1)(t, x)
∂t

∣∣∣∣∣∣∣∣, max
t∈[0,T]

||v(1)(t, x)||
)
≤ max(αmC0 + 1,C0) max

(
max
t∈[0,T]

||F(1)(t, x)||, ||Φ(1)(x)||
)
. (3.15)

Further, we assume that v(t, ξ) = v(1)(t, ξ), ∂v(t,ξ)
∂t =

∂v(1)(t,ξ)
∂t , for all (t, ξ) ∈ Ω in integral relations (2.7) and

determine v(1)
1 (t, x) and w(1)(t, x):

v(1)
1 (t, x) = ψm−1(t) +

x∫
0

v(1)(t, ξ)dξ, w(1)(t, x) = ψ̇m−1(t) +

x∫
0

∂v(1)(t, ξ)
∂t

dξ, (t, x) ∈ Ω. (3.16)
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At the next stage, using v(1)
1 (t, x) and

∂v(1)
1 (t,x)
∂t we sequentially find the functions v(1)

r (t, x) and ∂v(1)
r (t,x)
∂t ,

r = 2,m, from integral constraints (2.8):

v(1)
2 (t, x) = ψm−2(t) +

x∫
0

v(1)
1 (t, ξ)dξ,

∂v(1)
2 (t, x)
∂t

= ψ̇m−2(t) +

x∫
0

∂v(1)
1 (t, ξ)

∂t
dξ, (t, x) ∈ Ω, (3.17)

v(1)
3 (t, x) = ψm−3(t) +

x∫
0

v(1)
2 (t, ξ)dξ,

∂v(1)
3 (t, x)

∂t
= ψ̇m−3(t) +

x∫
0

∂v(1)
2 (t, ξ)
∂t

dξ, (t, x) ∈ Ω, (3.18)

...

v(1)
m (t, x) = ψ0(t) +

x∫
0

v(1)
m−1(t, ξ)dξ,

∂v(1)
m (t, x)
∂t

= ψ̇0(t) +

x∫
0

∂v(1)
m−1(t, ξ)

∂t
dξ, (t, x) ∈ Ω. (3.19)

Finally, we define a function u(1)(t, x) by the following equality:

u(1)(t, x) = v(1)
m (t, x), (t, x) ∈ Ω, (3.20)

According to the algorithm above, the function u(1)(t, x) is a first approximation of solution to the original
problem (1.1)-(1.3).

And so on.
On the kth step of the iterative method, we suppose that v1(t, x) = v(k−1)

1 (t, x), w(t, x) = w(k−1)(t, x),

vr(t, x) = v(k−1)
r (t, x), ∂vr(t,x)

∂t =
∂v(k−1)

r (t,x)
∂t , r = 2,m, for all (t, x) ∈ Ω in the right-hand side of equation (2.5) and

condition (2.6). Then, we get the following problem:

∂v
∂t
= Am(t, x)v + F(k)(t, x), (t, x) ∈ Ω, (3.21)

p∑
l=0

Km,l(x)v(tl, x) = Φ(k)(x), x ∈ [0, ω], (3.22)

where

F(k)(t, x) = Bm−1(t, x)w(k−1)(t, x) + Am−1(t, x)v(k−1)
1 (t, x) +

m−2∑
i=0

Ai(t, x)v(k−1)
m−i (t, x) +

m−2∑
j=0

B j(t, x)
∂v(k−1)

m− j (t, x)

∂t
+ f (t, x),

Φ(k)(x) = φ(x) −
p∑

l=0

Km−1,l(x)v(k−1)
1 (tl, x) −

p∑
l=0

m−2∑
s=0

Ks,l(x)v(k−1)
m−s (tl, x).

Using assumption 4) again, we obtain of the unique solvability to the problem (2.9), (2.10) with F(t, x) =
F(k)(t, x), Φ(x) = Φ(k)(x).

We have the representation of the unique solution to the family of problems (3.21), (3.22) in the following
form:

v(k)(t, x) = U(t, x)M−1(x)
{
Φ(k)(x) −

p∑
l=0

Km,l(x)U(tl, x)

tl∫
0

U−1(τ, x)F(k)(τ, x)dτ
}

+U(t, x)

t∫
0

U−1(τ, x)F(k)(τ, x)dτ, (t, x) ∈ Ω. (3.23)
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The solution vk)(t, x) satisfies the following estimate

max
t∈[0,T]

||v(k)(t, x)|| ≤ C0 max
(
max
t∈[0,T]

||F(k)(t, x)||, ||Φ(k)(x)||
)
. (3.24)

The next estimate is also valid:

max
(
max
t∈[0,T]

∣∣∣∣∣∣∣∣∂v(k)(t, x)
∂t

∣∣∣∣∣∣∣∣, max
t∈[0,T]

||v(k)(t, x)||
)
≤ max(αmC0 + 1,C0) max

(
max
t∈[0,T]

||F(k)(t, x)||, ||Φ(k)(x)||
)
. (3.25)

Further, we assume that v(t, ξ) = v(k)(t, ξ), ∂v(t,ξ)
∂t =

∂v(k)(t,ξ)
∂t , for all (t, ξ) ∈ Ω in integral relations (2.7) and

determine v(k)
1 (t, x) and w(k)(t, x):

v(k)
1 (t, x) = ψm−1(t) +

x∫
0

v(k)(t, ξ)dξ, w(k)(t, x) = ψ̇m−1(t) +

x∫
0

∂v(k)(t, ξ)
∂t

dξ, (t, x) ∈ Ω. (3.26)

Now, using v(k)
1 (t, x) and

∂v(1)
k (t,x)
∂t we sequentially find the functions v(k)

r (t, x) and ∂v(k)
r (t,x)
∂t , r = 2,m, from

integral constraints (2.8):

v(k)
2 (t, x) = ψm−2(t) +

x∫
0

v(k)
1 (t, ξ)dξ,

∂v(k)
2 (t, x)
∂t

= ψ̇m−2(t) +

x∫
0

∂v(k)
1 (t, ξ)

∂t
dξ, (t, x) ∈ Ω, (3.27)

v(k)
3 (t, x) = ψm−3(t) +

x∫
0

v(k)
2 (t, ξ)dξ,

∂v(k)
3 (t, x)

∂t
= ψ̇m−3(t) +

x∫
0

∂v(k)
2 (t, ξ)
∂t

dξ, (t, x) ∈ Ω, (3.28)

...

v(k)
m (t, x) = ψ0(t) +

x∫
0

v(k)
m−1(t, ξ)dξ,

∂v(k)
m (t, x)
∂t

= ψ̇0(t) +

x∫
0

∂v(k)
m−1(t, ξ)

∂t
dξ, (t, x) ∈ Ω. (3.29)

Finally, we define a function u(k)(t, x) by the following equality:

u(k)(t, x) = v(k)
m (t, x), (t, x) ∈ Ω, (3.30)

According to the algorithm above, the function u(k)(t, x) is a kth approximation of solution to the original
problem (1.1)-(1.3), k = 1, 2, ....

Convergence of the functional sequences {v(k)(t, x)}, { ∂v(k)(t,ξ)
∂t }, {v(k)

1 (t, x)}, {w(k)(t, x)}, {v(k)
r (t, x)}, { ∂v(k)

r (t,x)
∂t },

r = 2,m, are established similarly in [AssTok].
Therefore, the sequence {u(k)(t, x)} converges to u∗(t, x) as k → ∞ for all (t, x) ∈ Ω. In this case, the limit

function u∗(t, x) are continuous on Ω. Moreover, there exist partial derivatives ∂s+iu∗(t,x)
∂ts∂xi , s = 0, 1, i = 0,m, are

continuous on Ω. So, we found a solution to the problem (1.1)-(1.3).
The uniqueness of the solution to problem (1.1)-(1.3) is established by the method of contradiction. The

theorem is proved.

We can see the sufficient conditions for the unique solvability of nonlocal multipoint problem (1.1)–(1.3)
are established in terms of the initial data.

Conclusion. In the paper is investigated the nonlocal problem with multipoint conditions for the
partial differential equations of higher order (1.1)-(1.3). Algorithms for finding a solution to the nonlocal
problem with multipoint conditions are constructed and their convergence is proved. Conditions for the



A.T. Assanova, A.E. Imanchiyev / Filomat 38:1 (2024), 295–304 304

unique solvability of the nonlocal problem with multipoint conditions for the partial differential equations
of higher order are established in the terms of unique solvability to the family of multipoint problems for
the differential equations (2.9), (2.10). In the future, using fundamental matrix of family problems for the
system of differential equations, the results of the paper will be developed to the nonlocal problem with
multipoint conditions for the system of partial differential equations of higher order. The questions of the
existence of new general solutions [25, 26] of the above classes of problems will be investigated.
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