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Available at: http://www.pmf.ni.ac.rs/filomat

Isomorphism between L-valued tree transition systems and upper
semilattice

Kh. Abolpoura, M.M. Zahedib, M. Shamsizadehc

aDepartment of Mathematics, Shiraz Branch, Islamic Azad University, Shiraz, Iran
bDepartment of Mathematics, Graduate University of Advanced Technology, Kerman, Iran

cDepartment of Mathematics, Behbahan Khatam Alanbia University of Technology, Khouzestan, Iran

Abstract. This study aims to investigate the characterization of algebraic concepts of subsystem, retriev-
ability and connectivity of an L-valued tree transition system based on its related layers. It also seeks to
associate upper semilattices with L-valued tree transition systems. Further, a decomposition of an L-valued
tree transition system is provided in terms of its layers. In addition, it proposes a construction of an L-
valued tree transition system which corresponds to a given finite poset. Then an isomorphism is established
between the poset of class of subsystem of an L-valued tree transition system and an upper semilattice.

1. Introduction

Tree automata, as it has been thoroughly recognized, play an important role in the field of computer
Science. A tree automaton is regarded as a type of state machine which deals with tree structures, rather
than the strings of more conventional state machines. The tree automata theory was first studied by Doner
[8, 9] and Thatcher and Wright [30]. The definitions proposed for tree automata and tree languages have
been on the basis of the algebraic techniques and it contains the heavy use of category theory and universal
algebra. One of the most significant applications of tree automata has been related to decidability results
in logic [7]. Lately, tree automata have been investigated and accordingly applied in abstract interpretation
by researchers utilizing it in set constraints, rewriting, automated theorem proving and also program
verification [12, 14]. Residuated lattice-valued logic has been proposed by Pavelka [21–23] using it as an
algebraic structure for fuzzy logic. In addition, residuated lattices have been considered as significant
algebras enclosing close connections with other main algebras [21, 24, 25, 27, 28].

Algebraic study of tree transition system plays a key role in human reasoning involving hierarchies.
Some of its application areas, covering situations or systems (i) with precise natures are; formal concept
analysis, category theory, logic, topology and logic, (ii) with imprecise or uncertain natures are; math-
ematical morphology, fuzzy transform, soft computing, and (iii) with vague natures are; data analysis,
reasoning having incomplete information. Introducing complete residuated lattice valued logic; Ying [38]
proposed L-fuzzifying topology. He further extended some of the reported results which were obtained
in Ying [36, 37, 39]. Subsequently, a fundamental framework of automata theory was established by Qiu
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[24, 25, 27]. This framework was based on complete residuated lattice valued logic which accordingly gen-
eralized some of the findings in fuzzy finite automata investigated by Malik and Mordeson [18], Mordeson
and Malik [20] and Qiu [26]. Furthermore, Qiu [25] examined homomorphisms relations which existed
between two L-valued automata and continuous mappings and open mappings. Recently, lattice valued
automata have been studied by several other researchers (see e.g. Abolpur and Zahedi [1–4], Lei and Li
[15], Li and Pedrycz [16], Mockor [19], Qiu [27], Wu and Qiu [32], Xing et al. [33, 34] and Xing and Qiu [35].
Lu et al. [17] and Shang and Lu [29] also examined automata theory based on lattice-ordered semirings.

The concept of fuzzy tree automata has been studied by many authors and researchers in the field.
In their investigation, Inagaki and Fukumura [11] examined fuzzy tree automaton as a particular case of
weighted tree automaton at which formal tree series have been accepted over a complete semiring. On
the other hand, Mordeson and Malik [20] introduced a fuzzy tree automaton as an acceptor of a fuzzy
dendro-language. Fuzzy tree automata were also scrutinized with membership in a distributive lattice by
Esik and Liu [10] Having defined fuzzy recognizable tree language, they derived a Kleene theorem for
fuzzy tree languages. Recently, tree automata were studied based on complete residuated lattice valued
logic by Ghorani and Zahedi [13] As their findings revealed, a pumping lemma was obtained for L-valued
tree automata. In another study, they also examined the behavior of L-valued tree automata [13]. Further,
they provided a minimization algorithm for lattice valued tree automata and subsequently analyzed its
time complexity.

The present study is an attempt to introduce the new concept of ”layer” for an L-valued tree transition
system in order to reinforce the algebraic study of L-valued tree transition systems. In section 3, in specific,
the characterization of some algebraic concepts such as subsystem, retrievability and connectivity of an
L-valued tree transition system are introduced in terms of its layers. Further, this study demonstrates that
the maximal layer of a cyclic L-valued tree transition system and minimal layer of a directable L-valued tree
transition system are distinct and unique. Finally, a decomposition of an L-valued tree transition system is
provided in terms of its layers. In section 4, the relationship between L-valued tree transition systems and
upper semilattices is introduced and studied. It also offers an isomorphism between the partially ordered
set (poset) of class of subsystem of an L-valued tree transition system and an upper semilattice.

2. Preliminaries

In this section, the concepts of L-valued tree transition systems and lattices are introduced. The under-
standing of related notions is therefore required in the subsequent sections.

Definition 2.1. ([6]) A ranked alphabet is a couple (F,Arity) where F is a finite set and Arity is a mapping
from F into N (the set of positive integers). Whenever Arity is clear from the context, we simply drop it.
The arity of a symbol f ∈ F is Arity( f ). The set of symbols of arity n is denoted by Fn. Elements of arity
0, 1, . . . ,n are respectively called constants, unary, . . . , n-ary symbols. Here, we assume that F contains at
least one constant. In the here, we use parenthesis and commas for a short declaration of symbols with
arity. For instance, f (, ) is a short declaration for a binary symbol f .

Definition 2.2. ([6]) A tree transition system (TA) is a tupleA = (Q,F, δ), where Q is a set of (unary) states,
F is a ranked alphabet and δ is a set of transition rules of the following type:

f (q1(x1), . . . , qn(xn))→ q( f (x1, . . . , xn)),

where n ≥ 0, f ∈ Fn, q, q1, . . . , qn ∈ Q, x1, . . . , xn ∈ X, and X is a set of constants, called variables, which is
separate from F0.

Definition 2.3. ([13]) A tripleA = (Q,F, δ) is called an L-valued tree transition system, where
(i) Q is a set of states,
(ii) F is a ranked alphabet,
(iii) for each n ≥ 0, δn is an L-valued set on Q ×Qn

× Fn i.e. a mapping from Q ×Qn
× Fn to L.
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Remark 2.4. ([13]) The family of L-valued subsets δ = (δn)n≥0 is called the transition. We will usually write
δ for δn.

Definition 2.5. ([31]) Let (P,⪯) be a poset, a, b ∈ P and a , b. Then a is called predecessor of b and b is called
successor of a if a ⪯ c ⪯ b and c ∈ P imply c = a or c = b. Also, a ∈ P is called minimal if b ⪯ a and b ∈ P
imply b = a. Similarly, b ∈ P is called maximal if b ⪯ a and a ∈ P imply a = b.

Definition 2.6. ([31]) A poset (P,⪯) is called an upper semilattice if for all a, b ∈ P there exists the least upper
bound of a and b. An upper semilattice (P,⪯) is called a tree if for any two incomparable elements b, c ∈ P,
there is no element a ∈ P such that a ⪯ b and a ⪯ c.

Definition 2.7. ([31]) An isomorphism from a poset (P1,⪯1) to a poset (P2,⪯2) is a bijective map f : P1 → P2
such that for all a, b ∈ P, a ⪯1 b implies f (a) ⪯2 f (b). Throughout, (P1,⪯1) � (P2,⪯2) denotes that the poset
(P1,⪯1) and (P2,⪯2) are isomorphic, i.e., there exists an isomorphism from poset (P1,⪯1) to poset (P2,⪯2).

Definition 2.8. ([31]) Let n be a positive integer. Then a finite upper semilatticeL(n) is an upper semilattice
such that L(n) � (P({1, 2, . . . ,n}),⊆), where P({1, 2, . . . ,n}) is the set of all subsets of {1, 2, . . . ,n} and ⊆ is the
inclusion relation on P({1, 2, . . . ,n}).

Definition 2.9. ([31]) Let P1 = (P1,⪯1) and P2 = (P2,⪯2) be two finite posets with P1 ∩ P2 = ∅. Also, let B be
the set of all maximal elements of P1 and C be the set of all minimal elements of P2 such that for any b ∈ B
there exists a nonempty subset Cb of C with ∪b∈BCb = C. Then ⊕-composition of posets P1 and P2 is a poset
P1 ⊕ P2 = (P1 ∪ P2,⪯) such that

(i) for any i = 1, 2 and a, b ∈ Pi, a ⪯ b if a ⪯i b, and

(ii) for any b ∈ B and c ∈ Cb, b ⪯ c.

3. Layers of L-valued tree transition systems

In this section, the concept of a layer of an L-valued tree transition system is introduced. Accordingly, it
is shown that the layers play a very important role in the algebraic study of L-valued tree transition systems
by characterizing the concepts of subsystems and separated subsystems of an L-valued tree transition
system in terms of its layers. In addition, it is shown that for each cyclic L-valued tree transition system
there is a unique maximal layer and for each directable L-valued tree transition system there is a distinctive
and unique minimal layer. Finally, a decomposition of an L-valued tree transition system is provided.

In the present study, we let L = [0, 1].

Remark 3.1. Let (Qn)∗ be the free monoid generated by Qn with identity element Qo = ∅ ∈ (Qn)∗. Then the L-
valued transition δ is extended to a map δ : Q×(Qn)∗×Fn → L such that∀(q1, . . . , qn), (p1, . . . , pn) ∈ Qn,∀β ∈ Fn,
and ∀γ ∈ F0,

δ(q, ϕ, γ) = δ(q, γ) = 1,
δ(q, (q1, . . . , qn).(p1, . . . , pn), β) = ∨{δ(q, (q1, . . . , qn), β) ∧ δ(p, (p1, . . . , pn), β)|p ∈ Q}.

Definition 3.2. LetA = (Q,F, δ) be an L-valued tree transition system and R be an equivalence relation on
Q. We say that R ∈ L, where L is an L-valued set of compatible relation, if:

∀(p, q) ∈ R, ∀(q1, . . . , qn) ∈ Qn,∀σ ∈ Fn

δ(p, (q1, . . . , qn), σ) > 0⇒ ∃(p1, . . . , pn) ∈ Qn s.t.
δ(q, (p1, . . . , pn), σ) > 0 and (qi, pi) ∈ R ∀i.

Remark 3.3. From R ∈ L in the preceding definition, we can conclude∃(t1, . . . , tn) ∈ Qn such that δ(p, (q1, . . . ,
qn), σ) ≤ δ(q, (t1, . . . , tn), σ), and (qi, ti) ∈ R ∀i.
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Definition 3.4. LetA = (Q,F, δ) be an L-valued tree transition system and B ⊆ Q. The predecessor and the
successor of B are respectively the sets

PQ(B) = {p ∈ Q|∃R ∈ L, q ∈ B, (p, q) ∈ R}, and

SQ(B) = {q ∈ Q|∃R ∈ L, p ∈ B, (p, q) ∈ R}.

We shall frequently write PQ(B) and SQ(B) as just P(B) and S(B) and P({q}) and S({q}) as just P(q) and S(q).

Proposition 3.5. LetA = (Q,F, δ) be an L-valued tree transition system and B ⊆ Q. Then S(Q−B) = Q−B if and
only if P(B) = B.

Proof. It is clear by Definition 3.4.

Definition 3.6. An L-valued tree transition system B = (Q′,E, λ) is called a subsystem of an L-valued tree
transition systemA = (Q,F, δ) if (Q′ ⊆ Q), S(Q′) = Q′ and δ|Q′×Q′n×En

= λ. Further, this subsystem is called
separated if S(Q −Q′) ∩Q′ = ∅.

Definition 3.7. An L-valued tree transition systemA = (Q,F, δ) is called:
(i) strongly connected if ∀p, q ∈ Q, p ∈ S(q), and
(ii) retrievable if δ(q, (q1, . . . , qn), σ) > 0 for some (q, (q1, . . . , qn), σ) ∈ Q × Qn

× Fn ⇒ ∃R ∈ L, p ∈ Q s.t.
(q, p) ∈ R, δ(p, (p1, . . . , pn), σ) > 0 and (qi, pi) ∈ R∀i.

Definition 3.8. An L-valued tree transition systemA = (Q,F, δ) is called cyclic if for all p ∈ Q, there exists
R ∈ L, q ∈ Q such that (q, p) ∈ R.

Definition 3.9. A homomorphism from an L-valued tree transition systemA = (Q,F, δ) to an L-valued tree
transition system B = (Q′,E, λ) is a pair ( f , 1) of maps, where f : Q→ Q′ and 1 : F→ E are functions such
that ∀(q, (q1, . . . , qn), σ) ∈ Q ×Qn

× Fn, δ(q, (q1, . . . , qn), σ) ≤ λ( f (q), ( f (q1), . . . , f (qn)), 1(σ)).

Remark 3.10. In the above mentioned definition, if F = E and 1 is the identity map on F, then we say that
f is a homomorphism fromA to B.

Definition 3.11. Let A = (Q,F, δ) be an L-valued tree transition system and R ∈ L. For p ∈ Q, we call the
set Lp = {q ∈ Q|q ∈ S(p)} a layer ofA.

For two layers Lp and Lq of Q, define Lp ≤ Lq if δ(q, (q1, . . . , qn), σ) ≤ δ(p, (t1, . . . , tn), σ) for some
(q1, . . . , qn), (t1, . . . , tn) ∈ Qn and σ ∈ Fn. It is easy to see that≤ is a partial order. By E, we mean ({Lp : p ∈ Q},≤),
which is obviously a poset.

Proposition 3.12. LetA = (Q,F, δ) be an L-valued tree transition system. Then:
(i) ifA is retrievable, then for all q ∈ Q, S(q) is a layer ofA, and
(ii) ifA is strongly connected, then Q itself is a layer ofA.

Proof. It follows from the definition of retrievable and strongly connected L-valued tree transition sys-
tems.

Proposition 3.13. Let E = {Lp : p ∈ Q} be the set of all layers of an L-valued tree transition system A = (Q,F, δ).
Then B = (Q′,E, λ) is a subsystem ofA if and only if

(i) ∃Lp1 , . . . ,Lpr ∈ E such that Q′ = {q ∈ Q|Lq ≤ Lpi , for some i ∈ {1, 2, . . . , r}}, and
(ii) λ(q, (q1, . . . , qn), σ) = δ(q, (q1, . . . , qn), σ),∀q ∈ Q′, (q1, . . . , qn) ∈ Q′n and σ ∈ Fn.

Proof. Let B = (Q′,E, λ) be a subsystem ofA. Then Q′ ⊆ Q, S(Q′) = Q′ and λ = δ|Q′×Q′n×En
. Now, S(Q′) =

Q′ ⇒ Q′ = {q ∈ Q|∃R ∈ L, p ∈ Q′, (p, q) ∈ R}, or that ∃Lpi ∈ E = {Lp|p ∈ Q} such that Q′ = {q ∈ Q|Lp ≤ Lpi },
i.e., ∃Lp1 ,Lp2 , . . . ,Lpr ∈ E such that Q′ = {q ∈ Q|Lq ≤ Lpi , for some i ∈ {1, 2, . . . , r}}. Also, as λ = δ|Q′×Q′n×En

, (ii)
follows obviously.
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Conversely, let condition (i) and (ii) be held. To show that B is a subsystem ofA, it is sufficient to show
that S(Q′) ⊆ Q′. For this, let q ∈ S(Q′). Then there exist p ∈ Q′ and R ∈ L such that (p, q) ∈ R. Now,
p ∈ Q′ implies that Lp ≤ Lpi , for some i ∈ {1, 2, . . . , r}, i.e., δ(pi, (q1, . . . , qn), σ) ≤ δ(p, (t1, . . . , tn), σ) for some
(q1, . . . , qn), (t1, . . . , tn) ∈ Qn and σ ∈ Fn. Also, (p, q) ∈ R implies that δ(p, (p1, . . . , pn), γ) ≤ δ(q, (r1, . . . , rn), γ),
i.e., Lq ≤ Lp, then Lq ≤ Lpi , or that q ∈ Q′. Thus, S(Q′) ⊆ Q′.

Proposition 3.14. Let E = {Lp : p ∈ Q} be the set of all layers of an L-valued tree transition system A = (Q,F, δ).
Then B = (Q′,E, λ) is a separated subsystem ofA if and only if

(i) ∃Lp1 , . . . ,Lpr ∈ E such that Q′ = {q ∈ Q|Lq ≤ Lpi , and Lp j ≤ Lq for some i, j ∈ {1, 2, . . . , r}}, and
(ii) λ(q, (q1, . . . , qn), σ) = δ(q, (q1, . . . , qn), σ),∀q ∈ Q′, (q1, . . . , qn) ∈ Q′n and σ ∈ En.

Proof. In view of Definition 3.6 and Proposition 3.5 and 3.13, we only need to show that P(Q′) = Q′ if only
if q ∈ Q′ such that Lp j ≤ Lq, for some j ∈ {1, 2, . . . , r}. For this, let P(Q′) = Q′. Then Q′ = {p ∈ Q|∃R ∈ L, q ∈
Q′, (p, q) ∈ R}, or that ∃Lp j ∈ E = {Lp : p ∈ Q′} such that q ∈ Q′ and Lp j ≤ Lq, i.e., q ∈ Q′ such that LP j ≤ Lq, for
some j ∈ {1, 2, . . . , r}.

Conversely, let q ∈ Q′ such that Lp j ≤ Lq, for some j ∈ {1, 2, . . . , r}. Also, let p ∈ P(Q′). Then there
exist t ∈ Q′ and R ∈ L such that (p, t) ∈ R. Now, t ∈ Q′ implies that Lp j ≤ Lt, for some j ∈ {1, 2, . . . , r}.
Also, (p, t) ∈ R implies that Lt ≤ Lp, then Lp j ≤ Lp, or that p ∈ Q′. Thus, P(Q′) ⊆ Q′ which, together with
Q′ ⊆ P(Q′), shows that P(Q′) = Q′.

Proposition 3.15. Every L-valued tree transition system has at least one strongly connected subsystem.

Proof. Let A = (Q,F, δ) be an L-valued tree transition system, p ∈ Q and Lp ∈ E be a minimal layer (with
respect to the partial order≤). Then for q ∈ S(Lp), there exist R ∈ L and t ∈ Lp such that (t, q) ∈ R. Now, t ∈ Lp
implies that (p, t) ∈ R. According to (p, t) and (t, q) ∈ R, we have (p, q) ∈ R, which shows that q ∈ Lp. Thus,
for all q ∈ S(Lp), q ∈ Lp, or that (Lp,F, δ|Lp×(Lp)n×Fn ) is a subsystem ofA. Further, let q, r ∈ Lp. Then there exist
R ∈ L such (p, q) ∈ R and (p, r) ∈ R. Then (r, q) ∈ R, i.e., q ∈ S(r) , whereby the subsystem (Lp,F, δ|Lp×(Lp)n×Fn )
is strongly connected. Hence, every L-valued tree transition system has at least one strongly connected
subsystem.

Proposition 3.16. LetA = (Q,F, δ) be a cyclic L-valued tree transition system. ThenA has a unique maximal layer
which is maximum in E.

Proof. Let A = (Q,F, δ) be a cyclic L-valued tree transition system and Lp be a maximal layer in E. Then
there exists R ∈ L and q ∈ Q such that (q, p) ∈ R; and therefore, Lp ≤ Lq. Also Lp = Lq, because Lp , Lq
implies that Lp < Lq, which contradicts the maximality of Lp. Hence, Lq ∈ E is a unique maximal layer.

Definition 3.17. An L-valued tree transition systemA = (Q,F, δ) is called directable if for all p, q ∈ Q there
exist R ∈ L and r ∈ Q such that (p, r) ∈ R and (q, r) ∈ R.

Proposition 3.18. Every directable L-valued tree transition system has a unique minimal layer.

Proof. LetA = (Q,F, δ) be a directable L-valued tree transition system. Also, let Lp,Lq be two distinct layers
of A, where p, q ∈ Q. Then there does not exist any r ∈ Q and R ∈ L such that (p, r) ∈ R and (q, r) ∈ R (as
Lp ∩ Lq = ∅), and therefore a contradiction. Hence, every directable L-valued tree transition system has a
unique minimal layer.

The following part is towards the construction of an L-valued tree transition system, having singleton
as a unique minimal layer from a given L-valued tree transition system with a unique minimal layer.
Interestingly, the obtained L-valued tree transition system is a homomorphic image of the original L-valued
tree transition system.

Let A = (Q,F, δ) be an L-valued tree transition system having unique minimal layer Lp. Construct an
L-valued tree transition system A′ = (((Q\LP) ∪ {r}),E, λ), where r is a new state and λ : ((Q\Lp) ∪ {r}) ×
((Q\Lp) ∪ {r})n

× En → L

λ(q, (q1, . . . , qn), α) =

δ(q, (q1, . . . , qn), α), i f p, q ∈ Q\Lp

1, otherwise.
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Proposition 3.19. The L-valued tree transition systemA′ is a homomorphic image ofA.

Proof. Let f : A→A′ be a map such that ∀q ∈ Q,

f (q) =

q, i f q ∈ (Q\Lp)
r, otherwise.

Then four cases will arise:
Case 1. If (q, (q1, . . . , qn)) ∈ (Q\Lp) × (Q\Lp)n, then

λ( f (q), ( f (q1), . . . , f (qn)), σ) = δ(q, (q1, . . . , qn), σ).

Case 2. If (q, (q1, . . . , qn)) ∈ Lp × (Lp)n, then

λ( f (q), ( f (q1), . . . , f (qn)), σ) = λ(r, (r, . . . , r), σ) = 1 ≥ δ(q, (q1, . . . , qn), σ).

Case 3. If q ∈ Q\LP, (q1, . . . , qn) ∈ Lp, then

λ( f (q), ( f (q1), . . . , f (qn)), σ) = λ(q, (r, . . . , r), σ) = 1 ≥ δ(q, (q1, . . . , qn), σ).

Case 4. If q ∈ Lp, (q1, . . . , qn) ∈ (Q\Lp)n, then

λ( f (q), ( f (q1), . . . , f (qn)), σ) = λ(r, (q1, . . . , qn), σ) = 1 ≥ δ(q, (q1, . . . , qn), σ).

Thus, ∀(q, (q1, . . . , qn), σ) ∈ Q ×Qn
× Fn,

δ(q, (q1, . . . , qn), σ) ≤ λ( f (q), ( f (q1), . . . , f (qn)), σ).

Also, it is clear from the definition of f , demonstrating that f is onto. Hence,A′ is a homomorphic image
ofA.

Definition 3.20. LetA = (Q,F, δ) be an L-valued tree transition system having unique minimal layer Lp. A
decomposition of A is a pair of L-valued tree transition systems {A1,A2}, where A1 = (Lp,F, δ|Lp×(Lp)n×Fn )
andA2 = (((Q\Lp) ∪ {r}),F, λ), here r is a new state and λ : ((Q\Lp) ∪ {r}) × ((Q\Lp) ∪ {r})n

× Fn → L is a map
such that ∀(q, (q1, . . . , qn), σ) ∈ ((Q\Lp) ∪ {r}) × ((Q\Lp) ∪ {r})n

× Fn

λ(q, (q1, . . . , qn), σ) =

δ(q, (q1, . . . , qn), σ), i f q ∈ Q\Lp, (q1, . . . , qn) ∈ (Q\Lp)n

1, otherwise.

Proposition 3.21. LetA = (Q,F, δ) be an L-valued tree transition system having a unique minimal layer Lp and let
{A1,A2} be its decomposition. ThenA is directable if and only ifA2 is directable.

Proof. LetA be a directable L-valued tree transition system and q, t ∈ Lp. Then there exist R ∈ L and r ∈ Q
such that (t, r) ∈ R and (q, r) ∈ R. According to q, t ∈ Lp, we have (p, q) ∈ R and (p, t) ∈ R. Then (p, r) ∈ R and
hence r ∈ Lp. Thus,A2 is directable.

Conversely, let A2 be a directable L-valued tree transition system and Lp be a unique minimal layer of
L-valued tree transition system. Also, let q, t ∈ Q. Then there exist q′, t′ ∈ Q such that q ∈ Lq′ and t ∈ Lt′ ,
i.e., there exists R ∈ L such that (q′, q) ∈ R and (t′, t) ∈ R. Also, since Lp is a unique minimal layer of A,
there exists q′′, t′′ ∈ Lp such that (q′′, q′) ∈ R and (t′′, t′) ∈ R. Now, (q′′, q) ∈ R and (t′′, t) ∈ R. Also, as A2 is
directable and q′′, t′′ ∈ Lp, there exists p′ ∈ Lp such that (q′′, p′) ∈ R and (t′′, p′) ∈ R. Thus, (q, p′) ∈ R and
(t, p′) ∈ R, i.e., for all q, t ∈ Q there exist R ∈ L and p′ ∈ Q such that (q, p′) ∈ R and (t, p′) ∈ R. Hence, A is
directable.
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4. Semilattices and L-valued tree transition systems

In this section, the relationship between L-valued tree transition systems and upper semilattices is
introduced and studied. In this regard, the discussion is submitted by providing a construction of an
L-valued tree transition system for a given finite poset demonstrating that there is an isomorphism between
the post of class of subsystem of an L-valued tree transition system and upper semilattice.

Proposition 4.1. Let (P,⪯) be a finite poset. Then there exists an L-valued tree transition system A such that
E � (P,⪯).

Proof. Let (P,⪯) be a finite poset. Also, for p ∈ P, let q1, q2, . . . , qk be the predecessor of P. Now, define an
L-valued tree transition systemA = (Q,F, δ), where Q = P, F = Fn (here n = |P|) and δ : Q×Qn

×Fn → [0, 1]
is a map such that ∀p ∈ Q, (p1, . . . , pn) ∈ Qn and ∀σ ∈ Fn

δ(p, (p1, . . . , pn), σ) =


t ∈ (0, 1], i f pi = q j, 1 ≤ i ≤ k
0, i f pi = q j, k + 1 ≤ i ≤ n
1, i f pi = p, k + 1 ≤ i ≤ n
0, i f pi = p, 1 ≤ i ≤ n.

Obviously, Lp = {p},∀p ∈ Q. Also, let f : (P,⪯) → E such that f (p) = Lp, ∀p ∈ P. Then f is a bijective map
and for all i = 1, 2, . . . , k, qi ≤ p if and only if Lqi ≤ Lp, i.e., f (qi) ≤ f (p). Hence, E � (P,⪯).

Now, Let T (A) be the class of all subsystems of an L-valued tree transition system. For B,B′ ∈ T (A),
by B ⊑ B′, we mean that B is a subsystem of B′. It is easy to see that ⊑ is a partial order on T (A), and
therefore (T (A),⊑) is a poset. Even, (T (A),⊑) is a finite upper semilattice, which is shown below.

Proposition 4.2. LetA be an L-valued tree transition system. Then (T (A),⊑) is a finite upper semilattice.

Proof. Let A = (Q,F, δ) be an L-valued tree transition system and A1 = (Q′,F, δ|Q′×(Q′)n ×Fn ), A2 = (Q′′,F,
δ|Q′′×(Q′′)n×Fn ) ∈ T (A). Then (Q′ ∪ Q′′,F, δ|Q′∪Q′′×(Q′∪Q′′)n×Fn ) ∈ T (A) and also, it is a unique least upper
bound ofA1 andA2 with respect to ⊑. Hence (T (A),⊑) is a finite upper semilattice.

The following shows that the existence of an L-valued tree transition system A such that (T (A),⊑) is
isomorphic to a given tree depends on the number of minimal elements in tree.

Proposition 4.3. Let ℓ be a tree. If the number of minimal elements of ℓ is greater than two, then there does not exist
any L-valued tree transition systemA such that (T (A),⊑) � ℓ.

Proof. Let the number of minimal elements of the tree ℓ = (P,⪯) be greater than two. Also, if possible, let
there exists an L-valued tree transition system A such that (T (A),⊑) � ℓ. Then the number of minimal
layers of A is greater that two. Now, Let Lq1 ,Lq2 and Lq3 be three distinct minimal layers of A, i.e.,
Lq1 ∩ Lq2 = ∅, Lq1 ∩ Lq3 = ∅ and Lq2 ∩ Lq3 = ∅. Then A1 = (Lq1 ,F, δ|Lq1×(Lq1 )n×Fn ), A2 = (Lq2 ,F, δ|Lq2×(Lq2 )n×Fn ) and
A3 = (Lq3 ,F, δ|Lq3×(Lq3 )n×Fn ) are distinct subsystems of A. Also, A12 = ((Lq1 ∪ Lq2 ),F, δ|(Lq1∪Lq2 )×(Lq1∪Lq2 )n×Fn ) and
A13 = ((Lq1 ∪ Lq3 ),F, δ|(Lq1∪Lq3 )×(Lq1∪Lq3 )n×Fn ) are distinct subsystems of A as Lq1 ,Lq2 and Lq3 are disjoint. Thus,
A1 ⊑ A12 andA1 ⊑ A13, which contradict the fact that ℓ is a tree.

A number of compositions of L-valued tree transition systems such as product, cascade product, wreath
product of L-valued tree transition systems have been proposed and investigated in [19]. Now in this study,
another composition, namely ⊕-composition of L-valued tree transition systems, is introduced.

Definition 4.4. Let A1 = (Q1,F, δ1) and A2 = (Q2,F, δ2) be two L-valued tree transition systems such that
Q1 ∩ Q2 = ∅. Also, Let S be the set of all minimal layers of A1 and let T be the set of all minimal
layers of A2 such that for all R ∈ S there exists a maximal layer SR in T with {SR|R ∈ S} = T . Then
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a ⊕-composition of A1 and A2 is an L-valued tree transition system A1 ⊕ A2 = (Q1 ∪ Q2,F, δ), where
δ : (Q1 ∪Q2)× (Q1 ∪Q2)n

× Fn → [0, 1] is a map such that ∀p ∈ Q1 ∪Q2, (q1, . . . , qn) ∈ (Q1 ∪Q2)n and ∀σ ∈ Fn

δ(p, (q1, . . . , qn), σ) =



δ1(p, (q1, . . . , qn), σ), i f p ∈ Q1, (q1 . . . , qn) ∈ Qn
1

such that p and qi are not
in a minimal layer ofA1

δ2(p, (q1, . . . , qn), σ), i f p ∈ Q2, (q1 . . . , qn) ∈ Qn
2

1, if p is a minimal layer R ofA1 and
qi = qx for unique qx ∈ SR

0, otherwise.

Proposition 4.5. LetA = A1 ⊕A2. Then (T (A),⊑) � (T (A1),⊑) ⊕ (T (A2),⊑).

Proof. Let A = (Q,F, δ), A1 = (Q1,F, δ1) and A2 = (Q2,F, δ2) be L-valued tree transition systems such that
A = A1 ⊕ A2. Also, from Proposition 4.1, it can be assumed that the layers of A1 and A2 consist of a
singleton. Now, for q ∈ Q1, let {q} be a minimal layer of A1 and let Sq = ∪{p ∈ Q|∃R ∈ L, (q, p) ∈ R}. Then
Aq = (Sq,F, δ|Sq×(Sq)n×Fn ) ∈ T (A) butAq < T (A2) as q < Q2. Again, let B = (T ,F, δ|T×(T )n×Fn ) ∈ T (A2). Then
T ⊂ Sq for some q, where {q} is a minimal layer of A1. Further, define a map f : T (A) → T (A1) ⊕ T (A2)
such that for all B ∈ T (A),

f (B) =

B, i f B ∈ T (Aq), where q is a minimal layer ofA1

B
′, i f B ∈ T (A)\T (A2), where B′ = (T ∩Q2,F, δ|(T∩Q2)×(T∩Q2)n×Fn ).

Obviously, f is an isomorphism and hence (T (A),⊑) � (T (A1),⊑) ⊕ (T (A2),⊑).

Proposition 4.6. LetA be an L-valued tree transition system. Then there exist positive integers n1,n2, . . . ,nk such
that (T (A),⊑) � ℓ(n1) ⊕ . . . ⊕ ℓ(nk).

Proof. Let A = (Q,F, δ) be an L-valued tree transition system and let {Lq1 ,Lq2 , . . . ,Lqn1
} be the set of all

minimal layers of A. Also, let An1 = (Lq1 ∪ Lq2 ∪ . . . ∪ Lqn1
,F, δ |(Lq1∪Lq2∪...∪Lqn1

) ×(Lq1∪Lq2∪...∪Lqn1
)n×Fn ). Then

from Definition 2.6, T (An1 ) is a finite upper semilattice, i.e., (T (An1 ),⊑) � ℓ(n1). =Now, consider an L-
valued tree transition system A′ = (Q\Lq1 ∪ . . . ∪ Lqn1

,F, λ), where λ(p, (p1, . . . , pn), σ) = δ(p, (p1, . . . , pn), σ),
∀p ∈ Q\(Lq1 ∪ Lq2 ∪ . . .∪ Lqn1

), (p1, . . . , pn) ∈ (Q\(Lq1 ∪ Lq2 ∪ . . .∪ Lqn1
))n,∀σ ∈ Fn. ThenA = A′ ⊕An1 , whereby

from Proposition 4.5, (T (A),⊑) � (T (An1 ),⊑) ⊕ (T (A′),⊑) � ℓ(n1) ⊕ (T (A′),⊑). Similar procedure for A′

leads us to (T (A),⊑) � ℓ(n1) ⊕ ℓ(n2) ⊕ (T (A′′),⊑), for some L-valued tree transition systemA′′. Hence, by
continuing the same, we get (T (A),⊑) � ℓ(n1) ⊕ ℓ(n2) ⊕ . . . ⊕ ℓ(nk).

Proposition 4.7. Let ℓ be an upper semilattice such that ℓ � ℓ(n1) ⊕ ℓ(n2) ⊕ . . . ⊕ ℓ(nr), for some positive integers
n1,n2, . . . ,nr. Then there exists an L-valued tree transition systemA such that (T (A),⊑) � ℓ(n1)⊕ℓ(n2)⊕ . . .⊕ℓ(nr).

Proof. Let ℓ be an upper semilattice such that ℓ � ℓ(n1) ⊕ ℓ(n2) ⊕ . . . ⊕ ℓ(nr). Construct an L-valued tree
transition systemA = (Q,F, δ), where Q = {1, 2, . . . ,nr}, |F| = max{n1,n2, . . . ,nr}, and δ : Q ×Qn

× Fn → [0, 1]
is a map such that ∀p ∈ Q, (q1, . . . , qn) ∈ Qn and ∀σ ∈ Fn,

δ(p, (q1, . . . , qn), σ) =

t ∈ (0, 1], i f p = qi, 1 ≤ i ≤ n
0, otherwise.

Then (T (A),⊑) � ℓ(nr). Now, let A′ = (Q′,F, δ′) be an L-valued tree transition system such that (T (A′),⊑
) � ℓ(nk) ⊕ ℓ(nk+1) ⊕ . . . ⊕ ℓ(nr), where k is the minimal positive integer. For k = 1, there is nothing left
to prove. If k > 1, let A′′ be an L-valued tree transition system such that (T (A′′),⊑) � ℓ(nk−1). Then
(T (A′ ⊕ A′′),⊑) � (T (A′′),⊑) ⊕ (T (A′),⊑) � ℓ(nk−1) ⊕ ℓ(nk) ⊕ . . . ⊕ ℓ(nr). This contradicts the minimality
of k. Hence, k = 1, and therefore, there exists an L-valued tree transition systemA′ such that (T (A′),⊑) �
ℓ(n1) ⊕ ℓ(n2) ⊕ . . . ⊕ ℓ(nr).
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Finally, Proposition 4.6 and Proposition 4.7 lead us to the following.

Proposition 4.8. Let ℓ be a finite upper semilattice. Then there exists an L-valued tree transition system A such
that (T (A),⊑) � ℓ if and only if ℓ � ℓ(n1) ⊕ ℓ(n2) ⊕ . . . ⊕ ℓ(nr) for some positive integers n1,n2, . . . ,nr.

5. Conclusion

In this study, an attempt was made to enhance the algebraic study of L-valued tree transition systems
through using the concept of their layers. The most distinguished outcomes of this study were (1) the
detailed characterization of existing algebraic concepts of L-valued tree transition systems in terms of their
layers, and (2) the establishment of isomorphism between the poset of class of subsystem of an L-valued tree
transition system and an upper semilattice. It seems that the topological concepts and fuzzy topological
observations may also be applied in such investigations. We will definitely try to make an effort to do
such studies in near future. As suggestions for further studies, we can replace the crisp relation R with a
fuzzy relation related to fuzzy order (L-valued order), comparing the obtained results with those already
presented in the current study.
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