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Abstract. In this study, motivated by the Meta-Golden-Chi ratio, we develop essentially Meta-Metallic
manifolds by using Meta-Metallic-Chi ratio and Metallic manifolds, provide an example and explore certain
features of its Meta-Metallic structure. We give the conditions for integrability of the almost Meta-Metallic
structure and examine its relation to the curvature tensor field. We further demonstrate that the Meta-
Metallic Riemannian manifold is flat if and only if its curvature is constant. As a result, we show that a
different notion of sectional curvature is needed in Meta-Metallic Riemannian manifolds.

1. Introduction

A close connection has been demonstrated between the Metallic ratio and the transition from Newtonian
physics to relativistic mechanics. For example the Golden ratio, which is a special case of the Metallic ratio,
has been used to get special theory of relativity, the Golden rectangle, the Lorentz contraction of lengths and
the expansion of time intervals. At the same time, the Metallic (resp., Golden) ratio produces interesting
and important results in Kantor spacetime, conformal field theory, topology of 4-manifolds, mathematical
probability theory, Kantor fractal theory and El Naschie’s field theory [1], [2]. This case shows that
researchers have been looking for many things that meet the needs of the Golden ratio all over the world.
The one was the idea that the Golden ratio can be found in a logarithmic spiral. But Barlett [3], has recently
shown that this is not true by showing that the Meta-Golden-Chi ratio works well with an important class
of logarithmic spirals. With the same sense he built the Meta-Golden-Chi ratio

χ =
1 +

√
4ϕ + 5

2ϕ
,

where

ϕ =
1 +
√

5
2
.

Şahin [4], introduced a new manifold and named this manifold as Meta-Golden Riemannian manifold. This
manifold was composed by means of the Meta-Golden-Chi ratio and Golden manifolds.
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Different polynomial and geometric structures give rise to important consequences while investigating
differential and geometric properties of submanifolds in Riemannian (as well as, semi-Riemannian) man-
ifolds. Manifolds with such differential-geometric structures have been studied by several authors and
for some we may refer to [5–10]. Riemannian manifolds alone have important applications. One of these
applications in recent years is related to the modeling of the COVID pandemic (see, [11]) by developing an
approach, namely SBDIEM, which models COVID and similar epidemics. In addition Riemann manifolds,
on which polynomial structures are defined, allow very different applications and interdisciplinary aspects.

Golden Riemannian manifolds [6] and Metallic structures on Riemannian manifolds [5] were presented
by Crasmareanu and Hretcanu. After these pioneering articles, many new studies were added to the
literature for such manifolds, structures defined on them and their submanifolds.

A Metallic manifold is essentially a differentiable manifold and has an extra (1,1) type tensor field
which is called a Metallic structure (see [5]) that satisfies certain conditions. A differentiable manifold
with a Riemannian metric compatible with Metallic structure is known as a Metallic Riemannian manifold.
Metallic Riemannian manifolds are a broad class that considers Golden Riemannian manifolds a special
class and includes many other different types of manifolds such as Silver, Nickel etc. Riemannian manifolds.
In light of what has been stated, one can see that Metallic manifolds provide a robust geometric theory.

In this study, we introduce a new type manifold, called by us Meta-Metallic manifolds, inspired by
the concept of Meta-Metallic-Chi ratio and Metallic manifolds. This type manifolds form a wide class that
includes the Meta-Golden manifolds defined in [4].

This article is divided into three sections. In the second section, the fundamental terms and ideas
that will be used throughout the text are presented. In section 3, the Meta-Metallic structure is defined,
its presence on Metallic manifolds is examined and an example is provided. Moreover, the relationships
between the almost Meta-Metallic structure and the product structure is investigated. Finally, integrability
conditions of almost Meta-Metallic structure, certain curvature identities of a Meta-Metallic manifold and
a different notion of sectional curvature are found.

2. Preliminaries

The Meta-Metallic-Chi ratio which will be used throughout the article is structured as follows:
With a similar approach as in Figure 1 in [4], we write χ̇ = q

/c +
p

χ̇ , which suggests that χ̇2
−
q

/c χ̇ − p = 0,
where /c is the well-known Metallic ratio. Thus, the roots are found as

q

/c ∓
√

4p + q
2

/c2

2
.

The correlation between continued fractions and the Meta-Golden-Chi ratio was found in [7]. We define
the positive root by

χ̇ =

q

/c +
√

4p + q
2

/c2

2
,

which is said to be the Silver ratio of inverse of Metallic ratio. We also obtain the negative roots as

χ̈ =

q

/c −
√

4p + q
2

/c2

2
.

Also, by a direct computation, it is seen that

χ̈ =
q

/c
− χ̇, (1)
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χ̇2 = p +
q

/c
χ̇, (2)

and

χ̈2 = p +
q

/c
χ̈. (3)

Hretcanu and Crasmareanu [5] stated that an endomorphism ℑ̃ is a Metallic structure on a differentiable
manifoldM∗, if

ℑ̃
2X1 = pℑ̃X1 + qX1, (4)

is satisfied forX1 ∈ X(M∗), where p, q are positive integers. Additionally, if there exists a Riemannian metric
onM∗ satisfying

g̃(ℑ̃X1,Y1) = g̃(X1, ℑ̃Y1), (5)

for any X1, Y1 ∈ X(M∗), then (g̃, ℑ̃) is called a Metallic Riemannian structure onM∗ and the triple (M∗, g̃, ℑ̃)
is said to be a Metallic Riemannian manifold. From (5), we see that

g̃(ℑ̃X1, ℑ̃Y1) = pg̃(X1, ℑ̃Y1) + qg̃(X1,Y1). (6)

3. Meta-Metallic Manifolds

Here, we introduce a new type of manifold, as a generalization of Meta-Golden manifolds, which we
define as follow by using the Meta-Metallic-Chi ratio.

Definition 3.1. An endomorphism Y on an almost Metallic manifold (M∗, ℑ̃) satisfying

ℑ̃Y2X1 = pℑ̃X1 + qYX1, (7)

for every X1,Y1 ∈ X(M∗), is named an almost Meta-Metallic structure and (M∗, ℑ̃,Y) is said to be an almost
Meta-Metallic manifold.

Theorem 3.2. Let Y be an endomorphism on (M∗, ℑ̃). At that case, Y is an almost Meta-Metallic structure iff

Y2 = ℑ̃Y − pY + pI (8)

where I is the identity map .

Proof. Let Y be an almost Meta-Metallic structure. Then for anyX1 ∈ X(M∗), by applying ℑ̃ to both sides of
equation (7) and considering equation (4), we get

pℑ̃Y2X1 + qY
2X1 = p

2
ℑ̃X1 + pqX1 + pℑ̃YX1.

In this equation, if we consider equation (7) again, we obtain

Y2X1 = ℑ̃YX1 − pYX1 + pX1.

Conversely, we assume that the equation (8) is satisfied for anyX1 ∈ X(M∗). If ℑ̃ is applied to both sides
of equation (8), we find

ℑ̃Y2X1 = ℑ̃
2YX1 − pℑ̃YX1 + pℑ̃X1,

which implies

ℑ̃Y2X1 = pℑ̃X1 + qYX1, (9)

via (4). Thus we ends the proof.
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Definition 3.3. Let (M∗, ℑ̃,Y) be an almost Meta-Metallic manifold and g̃ be a Riemannian metric onM∗. If g̃ is
compatible with Y onM∗, namely

g̃(YX1,Y1) = g̃(X1,YY1), (10)

or equivalently

g̃(YX1,YY1) = g̃(ℑ̃X1,YY1) − pg̃(X1,YY1) + pg̃(X1,Y1), (11)

for any X1,Y1 ∈ X(M∗), then (M∗, ℑ̃,Y, g̃) is called an almost Meta-Metallic Riemannian manifold.

Proposition 3.4. An almost Meta-Metallic structure Y is an isomorphism on TpM
∗, for each point p inM∗.

Proof. Let KerY denotes the kernel space of almost Meta-Metallic structure Y. Therefore, from

KerY =
{
X1 ∈ Γ(TpM

∗) | Y(X1) = 0,∀ p ∈ M∗
}

and since Y is non-singular, we find Y(X1) = 0, namely X1 = 0. Then KerY = 0.

Proposition 3.5. Let (M∗, ℑ̃,Y, g̃) be an almost Meta-Metallic Riemannian manifold. In that case

1. If /c is the eigenvalue of the almost Metallic structure ℑ̃, then χ̇ and χ̈ are the eigenvalues of the almost
Meta-Metallic structure.

2. If p − /c is the eigenvalue of the almost Metallic structure ℑ̃, then

Gm =

q

p−/c +
√

4p + q2

(p−/c)2

2
, Ḡm =

q

p−/c −
√

4p + q2

(p−/c)2

2
are the eigenvalues of the almost Meta-Metallic structure.

Proof. Let λ be the eigenvalue of the almost Meta-Metallic structure Y on TpM
∗. In this case, for any

X1 ∈ TpM
∗, we have

YX1 = λX1. (12)

If Y and ℑ̃ is applied to both sides of the equation (12) respectively, we find

ℑ̃Y2X1 = λ
2
ℑ̃X1.

Then from equation (7), we have

pℑ̃X1 + qYX1 = λ
2
ℑ̃X1.

If ϖ is the eigenvalue of the almost Metallic structure, we obtain

(ϖλ2
− qλ − pϖ)X1 = 0.

The eigenvalues of the almost Metallic structure ℑ̃ are /c and p − /c, and if we consider the eigenvalue /c, we
find

χ̇ =

q

/c +
√

4p + q
2

/c2

2
, χ̈ =

q

/c −
√

4p + q
2

/c2

2
,

and if we consider the eigenvalue p − /c, we obtain

Gm =

q

p−/c +
√

4p + q2

(p−/c)2

2
, Ḡm =

q

p−/c −
√

4p + q2

(p−/c)2

2
.
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Proposition 3.6. Let (M∗, g̃) be an m-dimensional Riemannian manifold and F be an almost product structure on
M
∗. Then F reduces two almost Meta-Metallic structures on (M∗, g̃) given as

Y = pA∗F + pB∗I, (13)

where /c(pA∗ + qB∗)2 = p/c + q(A∗ +B∗).

Proof. We know that an almost product structure F induces an almost Metallic structure onM∗ given by
ℑ̃ = 1

2 (pI+ (2/c− p)F ), where I is the identity map. Then, (M∗, ℑ̃, g̃) becomes an almost Metallic Riemannian
manifold. The remainder is derived via direct computation.

Example 3.7. Let E5 be the 5-dimensional Euclidean space. Then, E5 is an almost Metallic manifold with an almost
Metallic structure ℑ̃ defined as

ℑ̃ : E5
→E5

(X1,X2,X3,Y1,Y2)→ (/cX1, /cX2, /cX3, (p − /c)Y1, (p − /c)Y2).

Now, we define an endomorphism Y on (E5, ℑ̃) by

Y(X1,X2,X3,Y1,Y2) = (χ̇X1, χ̇X2, χ̇X3,−χ̃Y1,−χ̃Y2) (14)

where χ̃ =
/c+

√
/c2
+4p

2 , which is called ”the Silver mean of Metallic mean”, satisfies

χ̃2 =
2/c2 + 2/c

√
/c2 + 4p

4
+ p

= /cχ̃ + pI

and

(p − /c)χ̃2Y j = (p − /c)/cχ̃Y j + p(p − /c)Y j

= −qχ̃Y j + p(p − /c)Y j

= qYY j + pℑ̃Y j

where I is the identity map and j = 1, 2. Also χ̇ is the Meta-Metallic-Chi ratio and we have

/cχ̇2 = qχ̇ + p/c,

/cχ̇2Xi = qχ̇Xi + p/cXi

= pℑ̃Xi + qYXi,

for i = 1, 2, 3. If we apply Y to both sides of equation (14) and consider equation (2), we find

ℑ̃Y2(X1,X2,X3,Y1,Y2) = (/cχ̇2X1, /cχ̇2X2, /cχ̇2X3, (p − /c)χ̃2Y1, (p − /c)χ̃2Y2)

= pℑ̃(X1,X2,X3,Y1,Y2) + qY(X1,X2,X3,Y1,Y2).

Therefore Y is an almost Meta-Metallic structure. Thus (E5, ℑ̃,Y) is an almost Meta-Metallic manifold.

3.1. Integrability of almost Meta-Metallic structures
The Nijenhuis tensor field of Y is defined by

NY(X1,Y1) = Y2 [X1,Y1] + [YX1,YY1] −Y [X1,YY1] −Y [YX1,Y1] , X1,Y1 ∈ X(M∗).

Initially, we state
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Lemma 3.8. Let (M∗, ℑ̃,Y, g̃) be an almost Meta-Metallic Riemannian manifold. Then we have

NY(X1,Y1) = (∇YX1Y)Y1 − (∇YY1Y)X1 −Y(∇X1Y)Y1 +Y(∇Y1Y)X1, (15)

where for any X1,Y1 ∈ X(M∗) and ∇ is the Levi-Civita conection onM∗ .

Proof. If we use (8) in the Nijenhuis tensor field of Y, for any X1,Y1 ∈ X(M∗), we obtain

NY(X1,Y1) = ℑ̃Y [X1,Y1] − pY [X1,Y1] + p [X1,Y1]
+ [YX1,YY1] −Y [X1,YY1] −Y [YX1,Y1] .

Here by using the covariant derivative of Ywith definition of Lie bracket, we obtain

NY(X1,Y1) = ℑ̃Y [X1,Y1] + (∇YX1Y)Y1 − (∇YY1Y)X1 −Y∇X1YY1

+Y∇Y1YX1 + pY∇Y1X1 − pY∇X1Y1 + p∇X1Y1 − p∇Y1X1.

Hence we complete the proof.

Namely, if the Nijenhuis tensor field ofYvanishes, the almost Meta-Metallic structure is called integrable
and (M∗, ℑ̃,Y, g̃) is said to be a Meta-Metallic Riemannian manifold. In the continuation of this lemma, we
can state the following conclusion.

Corollary 3.9. Let (M∗, ℑ̃,Y, g̃) be an almost Meta-Metallic Riemannian manifold . If ∇Y = 0, then the almost
Meta-Metallic structure is integrable, and so (M∗, ℑ̃,Y, g̃) is a Meta-Metallic Riemannian manifold .

We can also derive the integrability requirement for the Codazzi-like equation from equation (15), which
states that this equation must satisfy certain conditions.

Theorem 3.10. Let (M∗, ℑ̃,Y, g̃) be an almost Meta-Metallic Riemannian manifold. ThenY is integrable if Codazzi-
like equation

(∇YX1Y)Y1 −Y(∇X1Y)Y1 = 0

is ensured for any X1,Y1 ∈ X(M∗).

Theorem 3.11. Let (M∗, ℑ̃,Y, g̃) be an almost Meta-Metallic Riemannian manifold. If ∇Y = 0, then ∇ℑ̃ = 0 .

Proof. For any X1,Y1 ∈ X(M∗),we have

(∇X1Y)Y1 = ∇X1YY1 −Y∇X1Y1,

then if we use equation (8), we find

(∇X1Y)Y1 = −
1
p

(∇X1Y)YY1 −
1
p
Y(∇X1Y)Y1

−
1
p
Y2
∇X1Y1 +

1
p

(∇X1ℑ̃)YY1

+
1
p
ℑ̃(∇X1Y)Y1 +

1
p
ℑ̃Y∇X1Y1

+ ∇X1Y1 −Y∇X1Y1.

If equation (8) is used again in this equation, we get

(∇X1Y)Y1 = −
1
p

(∇X1Y)YY1 −
1
p
Y(∇X1Y)Y1 +

1
p

(∇X1ℑ̃)YY1 +
1
p
ℑ̃(∇X1Y)Y1. (16)
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Therefore if ∇Y = 0, then (∇X1ℑ̃)YY1 = 0, for any Y1 ∈ X(M∗). Since (∇X1ℑ̃)YY1 = 0, for YY1 ∈ X(M∗), this
equation is provided. Hence, we have

∇X1ℑ̃Y
2Y1 − ℑ̃∇X1Y

2Y1 = 0.

Here if we use equations (7) and (8), we obtain(
p(∇X1ℑ̃)Y1 + pℑ̃∇X1Y1 + qY∇X1Y1 − ℑ̃(∇X1ℑ̃)YY1

−ℑ̃
2
∇X1YY1 + pℑ̃∇X1YY1 − pℑ̃∇X1Y1

)
= 0. (17)

Using ∇Y = 0 and equation (9), we write

p(∇X1ℑ̃)Y1 − ℑ̃(∇X1ℑ̃)YY1 = 0.

From the equation (16), we obtain ∇ℑ̃ = 0.

Let us now give another criterion for the integrability condition of the almost Meta-Metallic structure.
Let ℧ be a pure tensor of (0, s). An operator L according to Y is given by

(LY℧)(X,Y1,Y2, ...,Ys) = (YX℧(Y1,Y2, ...,Ys))
−X℧(YY1,Y2, ...,Ys)

+

s∑
µ=1

℧(Y1, ..., (LYµY)X, ...,Ys),

for X,Y1,Y2, ...,Ys ∈ X(M∗), where ℧ is a pure (0, s)-type tensor and LYµY is Lie derivative according to
Yµ. Therefore the integrability condition of the almost Meta-Metallic structure can be given as follow by
considering Theorem 2.1 in [8].

Theorem 3.12. Let (M∗, ℑ̃,Y, g̃) be an almost Meta-Metallic Riemannian manifold. The almost Meta-Metallic
structure is integrable if LYg̃ = 0.

3.2. Curvatures of Meta-Metallic manifolds

Let (M∗, ℑ̃,Y, g̃) be a Meta-Metallic Riemannian manifold with ∇Y = 0. Let’s define the curvature tensor
field with

ℜ(X1,Y1)Z1 = ∇X1∇Y1Z1 − ∇Y1∇X1Z1 − ∇[X1,Y1]Z1,

for any X1,Y1,Z1 ∈ X(M∗).

Proposition 3.13. Let (M∗, ℑ̃,Y, g̃) be a Meta-Metallic Riemannian manifold. Then, for all X1,Y1,Z1 ∈ X(M∗),
we have followings:

1. ℜ(X1,Y1)Y = Yℜ(X1,Y1),
2. ℜ(YX1,YY1) =ℜ(ℑ̃X1,YY1) − pℜ(X1,YY1) + pℜ(X1,Y1),
3. ℜ(ℑ̃X1,YY1)Z1 =ℜ(X1, ℑ̃YY1).

Proof. (1) Since Y is parallel, we have ∇X1YY1 = Y∇X1Y1, therefore we getℜ(X1,Y1)Y = Yℜ(X1,Y1).
(2) ℑ̃ is parallel because of the parallellity of Y. If we use features of curvature tensor, we have

g̃(ℜ(YX1,YY1)Z1,W1) = g̃(ℜ(Z1,W1)YX1,YY1).

By the first property and considering equation (15), we find

g̃(ℜ(YX1,YY1)Z1,W1) = g̃(Yℜ(Z1,W1)X1,YY1),
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and

g̃(ℜ(YX1,YY1)Z1,W1) = g̃(ℑ̃ℜ(Z1,W1)X1,YY1) − pg̃(ℜ(Z1,W1)X1,YY1)
+ pg̃(ℜ(Z1,W1)X1,Y1),

respectively. Here since ℑ̃ is parallel and also we use properties of curvature tensor, it follows that

g̃(ℜ(YX1,YY1)Z1,W1) = g̃(ℜ(ℑ̃X1,YY1)Z1,W1) − g̃(pℜ(X1,YY1)Z1,W1)
+ g̃(pℜ(X1,Y1)Z1,W1).

Thus, the second property is provided.
(3) First of all, we know that

g̃(ℜ(ℑ̃X1,YY1)Z1,W1) = g̃(ℜ(Z1,W1)ℑ̃X1,YY1).

Considering that ℑ̃ is parallel here, we find

g̃(ℜ(ℑ̃X1,YY1)Z1,W1) = g̃(ℜ(X1, ℑ̃YY1)Z1,W1).

Thus, we complete the proof.

Theorem 3.14. Let (M∗, ℑ̃,Y, g̃) be a Meta-Metallic Riemannian manifold with dimension m. IfM∗ has constant
curvature, at least one of the following is satisfied:

1. M∗ is flat,
2. While the vector fieldsX1 andZ1 onM∗ are perpendicular, the vector fields ℑ̃X1 andZ1 are also perpendicular,
3. While the vector fieldsX1 andZ1 onM∗ are perpendicular, the vector fieldsYX1 andYZ1 are also perpendicular.

Finally, we can prove that the concept of holomorphic-like cross-sectional curvature doesn’t exist on
Meta-Metallic Riemannian manifolds by using the following lemma.

Lemma 3.15. Let (M∗, ℑ̃,Y, g̃) be a Meta-Metallic Riemannian manifold. Then, for any vector field X1 onM∗, we
have

g̃(ℜ(X1,YX1)YX1,X1) = 0.

Proof. With the help of property of the curvature tensor given byℜ(X1,Y1)Y = Yℜ(X1,Y1), we have

g̃(ℜ(X1,YX1)YX1,X1) = g̃(Yℜ(X1,YX1)X1,X1),

and from equation (10), we get

g̃(ℜ(X1,YX1)YX1,X1) = g̃(Yℜ(X1,YX1)X1,X1) = g̃(ℜ(X1,YX1)X1,YX1).

Via property of curvature tensor, we find

g̃(ℜ(X1,YX1)YX1,X1) = g̃(ℜ(X1,YX1)X1,YX1) = −g̃(ℜ(X1,YX1)YX1,X1).

Therefore, we obtain

g̃(ℜ(X1,YX1)YX1,X1) = 0.
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4. Conclusion

Metallic Riemannian manifolds were presented by Crasmareanu and Hretcanu [5]. Metallic manifolds,
which is one of the most studied manifolds with polynomial structures, allowed us to define a new
manifold class, namely Meta-Metallic manifolds, by considering the concept of Meta-Metallic-Chi ratio that
we introduced. The geometric properties of this new manifold can be studied from many perspectives.
Considering our paper, there will be opportunity to lift many geometric structures to the bundle theory.
On the other hand, the submanifolds of this new type manifolds and properties of the induced structures
to submanifolds create important study areas. Considering the application areas of Riemannian manifolds
alone, it is clear that different application areas will emerge with this new class. In this respect, our paper
has potential for further research.
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