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Abstract. Let G = (V,E) be a simple connected hypergraph with V the vertex set and E the edge set,
respectively. The eccentricity of vertex v refers to the farthest distance of vertex v from other vertices

of G, denoted by εG(v). The eccentric adjacency index (EAI) of G is described as ξad(G) =
∑

u∈V(G)
SG(u)
εG(u)

,

where SG(u) =
∑

v∈NG(u) dG(v). In this work, we consider the gerneralation of the EAI for hypergraphs to
draw several conclusions related to extremal problems to EAI. We first propose several bounds on the EAI
of k-uniform hypertrees with fixed maximum degree, diameter and edges, respectively, and characterize
the corresponding extremal k-uniform hypertrees. Then we investigate the relationsip between EAI and
the adjacent eccentric distance sum. Finally, we present the upper bounds for the difference between the
eccentricity distance sum and eccentric connectivity index in the k-uniform hypergraph with diameter 2.
It generalizes the previous results of the current authors from the simple graphs to hypergraphs for graph
parameters based on eccentricity.

1. Introduction

The vertex set and edge set of the hypergraph G are writed as V(G) and E(G), separately, of which V(G)
is not empty as well as every edge in G is noempty subset of vertices. If every edge in the hypergraph
has exactly the same number of vertices k, where k ≥ 2, we call it a k-uniform hypergraph, A 2-uniform
hypergraph is usually known as an ordinary simple graph. The degree of a vertex v, refer to the number of
edges in G containing v, denoted by dG(v). We use∆ to represents the maximum degree. Hypergraph theory
had a application background in chemistry [8, 13, 14]. The authors of [13] confirmed that hypergraphs are
more accurate when describing molecular structure. A walk H = (V,E) is a sequence of vertices and edges
of hypergraph, denoted by Wp = (v0, e1, v1, . . . , vp−1, ep, vp), where vi ∈ V and ei ∈ E such that vi−1, vi ∈ ei for
all i = 1, . . . , p. We refer to all walks with distinct vertices and edges as paths. A hypergraph G is said to be
connected if any pair of vertices in G connected by path. The length of the shortest path connecting u and
v in G, called the distance between them, expressed by dG(u, v). The diameter d(G) refers to the maximum
eccentricity in the hypergraph. A connected acyclic hypergraph is called a hypertree. Let the number
of vertices and edges of the hypertree be n and m, respectively, where m,n ≥ 1. Then n and m meet the
condition n = 1 +m(k − 1). For conceptes and symbols not defined here, we refer to [2].
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Molecular topological index is a kind of invariant of graph, which is an important structural parameter
in the study of QSPR/QSAR. Among them, wiener index (WI) is the earliest topological index based on
distance, represents the distance sum of any pair of vertices in the graph G [23], namely

W(G) =
∑

{u,v}⊆V(G)

dG(u, v) =
1
2

∑
u∈V(G)

DG(u).

Where DG(u) =
∑

v∈V(G) dG(u, v).
Recent studies on WI of graphs can be founded in [7, 9]. Lately, index based on eccentricity has become

a research hotspot. Next, we introduce four such topological indices that are relevant to our conclusion. In
2002, Sardana et al.[20] put forward a new index related to eccentricity named adjacent eccentric distance
sum (AEDS), which is described as follows:

ξsv(G) =
∑

v∈V(G)

εG(v)DG(v)
dG(v)

.

Sardana and Madan [21] later explored the connection between wiener index and adjacent eccentric distance
sum. Recent findings on AEDS can be found in references [3, 15, 16, 19, 25] and the literatures they cited.

In 2001, another invariant of graph based on eccentric is proposed by Madan et al. [17], named the
eccentric-adjacency index (EAI), in a connected graph G, it is defined as

ξad(G) =
∑

u∈V(G)

SG(u)
εG(u)

.

Where SG(u) =
∑

v∈NG(u) dG(v).
The eccentric-adjacency index has important application in QSPR/QSAR theories. Lately, Malik [15]

discussed graph parameters EAI and AEDS in two classes of combinatorial graphs for join and corona
products of graphs and obtained the corresponding formulas. The exact upper bound of EAI is given and
the relationship between the above two types of graph parameters is explored by Hua et al. [12].

Sharma et al.[22] put forward eccentric connectivity index (ECI) of graph G, labeled as ξc(G), which is
defined as

ξc(G) =
∑

v∈V(G)

εG(v)dG(v) =
∑

uv∈E(G)

W(uv). (1)

Where W(uv) = εG(v) + εG(u) can be viewed as a edge weight of the edge uv.
The eccentric connectivity index showed strong predictive power in drug properties; see [4, 20]. In

addition, the above index has many use in neuroscience and entropy; see [24, 26].
In 2002, Gupta et al. [10] proposed a new graph parameter based on eccentric distance named the

eccentricity distance sum (EDS) of graph G, denoted by ξd(G), which is expressed as

ξd(G) =
∑

{u,v}⊆V(G)

(εG(v) + εG(u))dG(u, v) =
∑

v∈V(G)

εG(v)DG(v). (2)

The eccentricity distance sum is closely related to biological activity and physical properties. As for
their mathematical properties, the eccentricity distance sum and eccentric connectivity index were studied
extensively, for example, the extremal problems of EDS and ECI are discussed in graphs with given
parameters by zhang et al. [27]. In particular, they studied the difference between EDS and ECI, and
obtain the strict upper and lower bound for their difference. More results on ECI and EDS are available in
[1, 5, 6, 11, 18, 25, 28].

Given all the issues stated above, researchers have been exploring the extremal problems and realations
between various graph invariants. We address the problems above and extend these to hypergraphs. The
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rest of the paper is arranged as follows. In Section 2, Some graph transformations are presented. In Section 3,
with the application of transformatios. we prove that in all k-uniform hypertrees given edges, the k-uniform
loose path is the only graph with minimum EAI and k-uniform hyperstar is the unique one with maximum
EAI. In Section 4, Several bounds on the EAI of k-uniform hypertrees given diameter and maximum degree
are proposed, furthermore, the corresponding extremal graph are characterized. In the last part, the tight
upper bound on the difference between eccentriccity distance sum and eccentric connectvity index among
linear k-uniform hypergraphs of diameter 2 is determined. Furthermore, the relationship between EAI and
AEDS is investigated.

Before going any further, we introduce other terms and symbols. Given a hypergraph G and X ⊆ V(G),
we use G\X to denote the subgraph obtained by removing the set of vertices in X from G, and G[X] the
subgraph derived by X. For v ∈ V(G), we simply use G\v instead of G\{v}. A vertex-edge sequence
(v0, e1, v1, · · · , vs−1, es, vs) in a hypergraph G is known as a pendant path on v0, if dG(v0) ≥ 2, dG(vi) = 2 for
1 ≤ i ≤ s − 1, dG(v) = 1 for v ∈ ei\{vi−1, vi} with 1 ≤ i ≤ s and dG(vs) = 1. If an edge Ei is a pendant edge in G,
satisfy the condition |Ei| ≥ 2, and Ei share only one vertex with other edges. A pendent vertex refers to the
vertex of degree one. A vertex of hypergraph G is a cut vertex if it is a coalescence vertex of two nontrivial
connected sub-hypergraphs. A loose path of length m is a hypergraph with m edges e1, · · · , em such that
|ei ∩ ei+1| = 1 for 1 ≤ i ≤ m− 1 and |ei ∩ e j| = 0 otherwise, which is denoted by Pk

m. For a k-uniform hypertree
T given m hyperedges. If there exists a vertex v ∈ V(T), satisfy for every edge e ∈ E(T), there is v ∈ e, then T
is called hyperstar with v as the center, write it as Sk

m. Specially, Sk
1 is a hypergraph with only one edge.

2. Hypergraph transformation changing eccentric-adjacency index

In this section, in order to characterize the extremal structure of hypertree on EAI, we study some transfor-
mations which can change the value of EAI.

We introduce some key lemmas as follows.

Lemma 2.1. Let G be a k-uniform connect hypergraph with |E(G)| ≥ 1 and w ∈ V(G). P is a k-uniform loose path
with p + q hyperedges, denoted by P = (u0, e1,u1, · · · ,up+q−1, ep+q,up+q), Let H (H′ ,respectively) be the hypergraph
constructed by identifying w of G and up of P (up+1 of P ,respectively), where p ≥ q ≥ 1, then

ξad(H) > ξad(H
′

).

Proof. Note that vertex w in G is coincides with up of H and up+1 of H′

, respectively. If z ∈ V(G)\w,
apparently, SH(z) = SH′ (z) and εH(z) ≤ εH′ (z). As p ≥ q, then

∑
z∈V(G)\w

(
SH(z)
εH(z)

−
SH′ (z)
εH′ (z)

) ≥ 0.

Let εG(w) = a, We discuss this in two cases.
Case 1. a ≤ p.

If q = 1, for z ∈ V(P)\{up−1,up,up+1}, we have SH(z) ≥ SH′ (z) and εH(z) ≤ εH′ (z), then

∑
z∈V(P)\{up−1,up,up+1}

(
SH(z)
εH(z)

−
SH′ (z)
εH′ (z)

) ≥ 0.
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Note that

SH(w) =
∑

u∈NG(w)

dG(u) + 2(k − 2) + 3 =
∑

u∈NG(w)

dG(u) + 2k − 1, εH(w) = p

SH(uP+1) = (k − 2) + dG(w) + 2 = dG(w) + k, εH(uP+1) = p + 1
SH(uP−1) = 2(k − 2) + dG(w) + 4 = dG(w) + 2k, εH(uP−1) = max{p − 1, a + 1}

SH′ (w) =
∑

u∈NG(w)

dG(u) + (k − 2) + 2 =
∑

u∈NG(w)

dG(u) + k, εH′ (w) = p + 1

SH′ (uP) = 2(k − 2) + dG(w) + 1 + 2 = dG(w) + 2k − 1, εH′ (uP) = max{p, a + 1}
SH′ (uP−1) = 2(k − 2) + 4 = 2k, εH(uP−1) = max{p − 1, a + 2}.

We have

ξad(H) − ξad(H
′

) ≥ (
SH(w)
εH(w)

+
SH(uP+1)
εH(uP+1)

+
SH(uP−1)
εH(uP−1)

)

− (
SH′ (w)
εH′ (w)

+
SH′ (uP)
εH′ (uP)

+
SH′ (uP−1)
εH′ (uP−1)

)

= (

∑
u∈NG(w) dG(u) + 2k − 1

p
+

dG(w) + k
p + 1

+
dG(w) + 2k

max{p − 1, a + 1}
)

− (

∑
u∈NG(w) dG(u) + k

p + 1
+

dG(w) + 2k − 1
max{p, a + 1}

+
2k

max{p − 1, a + 2}
)

> (
2k − 1

p
−

k
p + 1

) + (dG(w) + k)(
1

p + 1
−

1
max{p, a + 1}

)

+
dG(w)

max{p − 1, a + 2}
−

k − 1
max{p, a + 1}

= (
2k − 1

p
−

2k − 1
max{p, a + 1}

) + (
dG(w)

max{p − 1, a + 2}
−

dG(w)
max{p, a + 1}

)

+
dG(w)
p + 1

> 0.

Thus

ξad(H) > ξad(H
′

).

If q ≥ 2, for z ∈ V(P)\{up−1,up,up+1,up+2}, we have SH(z) ≥ SH′ (z) and εH(z) ≤ εH′ (z), then

∑
z∈V(P)\{up−1,up,up+1,up+2}

(
SH(z)
εH(z)

−
SH′ (z)
εH′ (z)

) ≥ 0.

note that

SH(uP−1) = SH(uP+1) = dG(w) + 2k = SH′ (uP+2) = SH′ (uP)

SH(w) = SH′ (w) =
∑

u∈NG(w)

dG(u) + 2k εH(w) ≤ εH′ (w)

SH(uP+2) = 2k = SH′ (uP−1)
εH(uP+i) ≤ εH′ (uP+i) i = −1, 0, 2.
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Then

ξad(H) − ξad(H
′

) ≥ (
SH(w)
εH(w)

+
SH(uP+1)
εH(uP+1)

+
SH(uP−1)
εH(uP−1)

+
SH(uP+2)
εH(uP+2)

)

− (
SH′ (w)
εH′ (w)

+
SH′ (uP−1)
εH′ (uP−1)

+
SH′ (uP)
εH′ (uP)

+
SH′ (uP+2)
εH′ (uP+2)

)

≥
SH(up−1) − SH′ (up−1)

εH′ (uP−1)
+ SH(w)(

1
εH(w)

−
1
εH′ (w)

)

+ SH(up+1)(
1

εH(uP+1)
−

1
εH′ (uP)

)

+
SH(up+2) − SH′ (up+2)

εH′ (up+2)

≥
dG(w)
εH′ (uP−1)

−
dG(w)
εH′ (uP+2)

> 0.

Where εH′ (up−1) < εH′ (up+2). Then
ξad(H) > ξad(H

′

).

Case 2. a ≥ p + 1.
If q = 1

ξad(H) − ξad(H
′

) ≥

∑
v∈V(P)

(
SH(v)
εH(v)

−
SH′ (v)
εH′ (v)

)

≥ (
SH(w)
εH(w)

+ (k − 2)
p−1∑
i=1

k + 1
i + a

+ (k − 2)
dG(w) + k + 1

a + 1

+
k(k − 1)

p + a
+

(k − 1)(dG(w) + k)
1 + a

+

p−1∑
i=2

2k
i + a

+
dG(w) + 2k

a + 1
)

− (
SH′ (w)
εH′ (w)

+ (k − 2)
p∑

i=1

k + 1
i + a

+ (k − 2)
dG(w) + k

a + 1

+
k(k − 1)
p + a + 1

+
dG(w) + 2k − 1

1 + a
+

p∑
i=2

2k
i + a

)

=
1
a

(SH(w) − SH′ (w)) −
k2
− k − 2
p + a

−
2k

p + a
+

k2
− k

p + a

−
k2
− k

p + a + 1
+

k − 1
a + 1

+
(k − 1)dG(w)

a + 1
+

k2
− k

a + 1

=
k − 1

a
−

2(k − 1)
p + a

+
k − 1
a + 1

+
k2
− k

a + 1
−

k2
− k

p + a + 1
+

dG(w)(k − 1)
a + 1

>
k − 1

a
−

k − 1
p + a

+
k − 1
a + 1

−
k − 1
p + a

+
dG(w)(k − 1)

a + 1
> 0,

where
SH(w) =

∑
u∈NG(w)

dG(u) + 2k − 1,

SH′ (w) =
∑

u∈NG(w)

dG(u) + k.
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Then
ξad(H) > ξad(H

′

).

If q ≥ 2, by direct calculation, we have

ξad(H) − ξad(H
′

) ≥

∑
v∈V(P)

(
SH(v)
εH(v)

−
SH′ (v)
εH′ (v)

)

= (
SH(w)
εH(w)

+ (k − 2)
p−1∑
i=1

k + 1
i + a

+ 2(k − 2)
dG(w) + k + 1

a + 1

+ (k2
− k)(

1
p + a

+
1

q + a
) +

p−1∑
i=2

2k
i + a

+

q−1∑
i=2

2k
i + a

+ (k − 2)
q−1∑
i=1

k + 1
i + a

)

− (
SH′ (w)
εH′ (w)

+ (k − 2)
p∑

i=1

k + 1
i + a

+ 2(k − 2)
dG(w) + k + 1

a + 1

+ (k2
− k)(

1
p + 1 + a

+
1

q − 1 + a
) +

p∑
i=2

2k
i + a

+

q−2∑
i=2

2k
i + a

+ (k − 2)
q−2∑
i=1

k + 1
i + a

)

= (k2
− k − 2)(

1
q − 1 + a

−
1

p + a
) − (k2

− k)(
1

q − 1 + a
−

1
p + a

)

+ 2k(
1

q − 1 + a
−

1
p + a

) + (k2
− k)(

1
p + a

−
1

p + 1 + a
)

= (2k − 2)(
1

q − 1 + a
−

1
p + a

) + (k2
− k)(

1
p + a

−
1

p + 1 + a
)

> 0.

Where q − 1 < p, k ≥ 2 and p < p + 1. Then

ξad(H) > ξad(H
′

).

To sum up the evidence of cases 1 and 2, we have

ξad(H) > ξad(H
′

).

This completes the proof. □

Lemma 2.2. Let G be a k-uniform hypergraph with |E(G)| ≥ 2 and k ≥ 3. Let u, v be the two vertices of an edge e in
G, where dG(u) = dG(v) = 1. Let P = (u0, e1,u1, · · · ,up−1, ep,up) and Q = (v0, e

′

1, v1, · · · , vq−1, e
′

q, vq) be the pendent
path with lengths p on u0 and q on v0 respectively, where p ≥ q ≥ 1. Let H be the k-uniform hypergraph constructed
by identifying u0 and u and by identifying v0 of Q and v respectively, Let H′ be the hypergraph constructed from H
by moving edge e′q from uq−1 to up. Then

ξad(H) > ξad(H
′

).

Proof. If z ∈ V(G)\e, apparently, SH(z) = SH′ (z) and εH(z) ≤ εH′ (z), as p ≥ q. Let εG(u) = a, then εG(v) = a.
Clearly, a ≥ 2, since G is a k-uniform hypergraph with |E(G)| ≥ 2 and dG(u) = dG(v) = 1, we discuss it in the
following two cases.
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Case 1. p + 1 ≤ a.

For x ∈ G\{u, v}, we have SH(x) = SH′ (x) and εH(x) ≤ εH′ (x). If q = 1, note that

SH(u) = 2(k − 2) + 4 = 2k εH(u) = a
SH(v) = 2(k − 2) + 3 = 2k − 1 εH(v) = a
SH′ (u) = 2(k − 2) + 1 + 2 = 2k − 1, εH′ (u) = a
SH′ (v) = k − 3 + 2 = k − 1, εH′ (v) = a.

We have

ξad(H) − ξad(H
′

) ≥

∑
x∈V(P)∪V(Q)

(
SH(x)
εH(x)

−
SH′ (x)
εH′ (x)

)

= (
2k
a
+ (k − 2)

p−1∑
i=1

k + 1
i + a

+
k(k − 1)

a + p
+

p−2∑
i=1

2k
i + a

+
2k − 1

p − 1 + a

+
2k − 1

a
+

k(k − 1)
a + 1

+
(k − 2)(k + 1)

a
)

− (
2k − 1

a
+ (k − 2)

p∑
i=1

k + 1
i + a

+
k(k − 1)
a + p + 1

+

p−1∑
i=1

2k
i + a

+
2k − 1
p + a

+
k − 1

a
+

(k − 2)k
a

)

=
k + 1

a
−

(k − 2)(k + 1)
a + p

+ (k2
− k)(

1
p + a

−
k2
− k

p + a + 1
) −

2k
p + a − 1

+ (2k − 1)(
1

p − 1 + a
−

1
p + a

) +
k2
− k

1 + a
+

k − 2
a

=
k + 1

a
+

2
p + a

−
k2
− k

p + 1 + a
−

1
p − 1 + a

−
2k − 1
p + a

+
k2
− k

1 + a
+

k − 2
a

= (
k + 1

a
−

k − 1
p + a

) −
k − 2
p + a

+ (
k2
− k

1 + a
−

k2
− k

p + 1 + a
) +

k − 2
a
−

1
p + a − 1

= (
k
a
−

k − 1
p + a

) + (
k − 2

a
−

k − 2
p + a

) + (
k2
− k

1 + a
−

k2
− k

p + 1 + a
) + (

1
a
−

1
p − 1 + a

)

> 0

Then

ξad(H) > ξad(H
′

).
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If q ≥ 2, then

ξad(H) − ξad(H
′

) ≥

∑
x∈V(P)∪V(Q)

(
SH(x)
εH(x)

−
SH′ (x)
εH′ (x)

)

= (
2k
a
+ (k − 2)

p−1∑
i=1

k + 1
i + a

+
k(k − 1)

a + p
+

p−2∑
i=1

2k
i + a

+
2k − 1

p − 1 + a
)

+
2k
a
+ (k − 2)

q−1∑
i=1

k + 1
i + a

+
k2
− k

q + a
+

q−2∑
i=1

2k
i + a

+
2k − 1

q − 1 + a
)

− (
2k
a
+ (k − 2)

p∑
i=1

k + 1
i + a

+
k(k − 1)
a + p + 1

+

p−1∑
i=1

2k
i + a

+
2k − 1
p + a

+
2k
a
+ (k − 2)

q−2∑
i=1

k + 1
i + a

+
k(k − 1)
q − 1 + a

+

q−3∑
i=1

2k
i + a

+
2k − 1

q − 2 + a
)

= −(k − 2)
k + 1
p + a

+ (k2
− k)(

1
p + a

−
1

p + a + 1
) −

2k
p − 1 + a

+ (2k − 1)(
1

p − 1 + a
−

1
p + a

) + (k − 2)
k + 1

q − 1 + a
+

2k
q − 2 + a

+ (k2
− k)(

1
q + a

−
1

q + a − 1
) + (2k − 1)(

1
q − 1 + a

−
1

q − 2 + a
)

=
2

p + a
−

k2
− k

a + p + 1
−

1
p − 1 + a

− (2k − 1)
1

p + a
−

2
q − 1 + a

+ (k2
− k)

1
q + a

+
1

q − 2 + a
+

2k − 1
q − 1 + a

= (
2

p + a
−

2
q − 1 + a

) + (k2
− k)(

1
q + a

−
1

p + a + 1
)

+ (
1

q − 2 + a
−

1
p − 1 + a

) + (2k − 1)(
1

q − 1 + a
−

1
p + a

)

= (k2
− k)(

1
q + a

−
1

p + a + 1
) + (

1
q − 2 + a

−
1

p − 1 + a
) + (2k − 3)(

1
q − 1 + a

−
1

p + a
)

> 0.

Then
ξad(H) > ξad(H

′

).

Case 2. p ≥ a.
Let u = u0, v = v0. Let ei = {ui,1, · · · ,ui,k}. Where ui,1 = ui−1 and ui,k = ui. Note that ui,k = ui+1,1 for

i = 1, · · · , p. Let ep+1 = {up+1,1, · · · ,up+1,k} be the pendent edge at up in H′

, where up+1,1 = up and up+1,k = up+1.
For z ∈ e\{u, v}, εH(z) = p + 1 ≤ εH′ (z) = p + 2. To prove our conclusion, we discuss the following two
subcases.
Subcase 2.1. q = 1.

For i = 1, 2, · · · , p and t = 2, · · · , k − 1, we have SH(ui,t) = SH′ (ui+1,t).

εH(ui,t) − εH′ (ui+1,t) = max{i + a, p + 1 − i} −max{i + 1 + a, p + 1 − i} ≤ 0.

If t = k , p, then SH(ui,t) ≥ SH′ (ui+1,t)

εH(ui,t) − εH′ (ui+1,t) = max{i + a, p − i} −max{i + 1 + a, p − i} ≤ 0.
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Hence the contribution of vertices in ∪p−1
i=1 ei\{u0} to ξad(H) is not as less as the contribution of vertices in

∪
p
i=1ei\{u1} to ξad(H′

). Therefore, we have

ξad(H) − ξad(H
′

) ≥

∑
x∈V(e∪e′1∪ep)

(
SH(x)
εH(x)

−
SH′ (x)
εH′ (x)

)

= (
∑

z∈e\{u,v}

SH(z)
p + 1

+
2k
p
+

2k − 1
p + 1

+
k2
− k

p + 2
+

2k − 1
p + a − 1

+
k2
− k

p + a
)

− (
∑

z∈e\{u,v}

SH(z)
p + 2

+
2k − 1
p + 1

+
k

p + 2
+

2k
p + a − 1

+
k2
− 3k + 2
p + a

+
2k − 1
p + a

+
k2
− k

p + a + 1
)

ξad(H) − ξad(H
′

) ≥ (
k2
− k − 2
p + 1

+
2k
p
+

k2
− k

p + 2
+

2k − 1
p + a − 1

+
k2
− k

p + a
)

− (
k2
− k

p + 2
+

2k
p + a − 1

+
k2
− k + 1
p + a

+
k2
− k

p + a + 1
)

>
k2
− k − 2
p + 1

+
2k
p
−

k2
− k + 1

p + a − 1
−

1
p + a

= (k2
− k + 1)(

1
p + 1

−
1

p + a − 1
) + (

k
p
−

3
p + 1

) + (
k
p
−

1
p + a

)

> 0.

Then

ξad(H) > ξad(H
′

).

Subcase 2.2. q ≥ 2.

For i = 1, 2, · · · , q. Let e′i = {vi,1, · · · , vi,k}, where vi,1 = vi−1 and vi,k = vi. Note that vi,k = vi+1,1 for
i = 1, 2, · · · , q − 1. For i = 1, 2, · · · , p − 1 and t = 2, · · · , k − 1. we have SH(ui,t) = SH′ (ui+1,t). If t ≥ k and a ≤ q,
we have

εH(ui,t) − εH′ (ui+1,t) = max{i + q + 1, p + 1 − i} −max{i + 1 + q, p + 1 − i} ≤ 0.

If t ≥ k and a ≥ q + 1, we have

εH(ui,t) − εH′ (ui+1,t) = max{i + a, p − i + 1} −max{i + 1 + a, p − i + 1} ≤ 0.

Thus the contribution of vertices in ∪p−1
i=1 ei\{up−1} to ξad(H) is not as less as the contribution of vertices in

∪
p
i=2ei\{up}, and the contribution of vertices in ∪q−1

i=2 e′i\{vq−1} to ξad(H) is not as less as the contribution of
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vertices in ∪q−2
i=1 e′i\{vq−2} to ξad(H′

). Does not lose its generality, we suppose that a ≥ q + 1, we get

ξad(H) − ξad(H
′

) ≥

∑
x∈V(ep∪e′q∪e′q−1)

(
SH(x)
εH(x)

−
SH′ (x)
εH′ (x)

)

= (
2k − 1

a + p − 1
+

k2
− k

a + p
+

2k
p + q − 1

+
2k − 1

p + q − 1

+
(k − 2)(k + 1)

p + q − 1
+

k2
− k

q + p
)

− (
2k

a + p − 1
+

k + 1
a + p

+
2k − 1
a + p

+
k2
− k

p + q − 1

+
2k − 1

p + q − 1
+

k2
− k

a + p + 1
)

ξad(H) − ξad(H
′

) ≥
2k − 2

p + q − 1
−

1
a + p − 1

+
k2
− 4k

a + p
+ (k2

− k)(
1

p + q
−

1
a + p + 1

)

>
2k − 3

a + p − 1
+

k2
− 4k

a + p
+ (k2

− k)(
1

p + q
−

1
a + p + 1

)

>
k2
− 2k − 3
a + p

+ (k2
− k)(

1
p + q

−
1

a + p + 1
)

>
(k − 1)2

− 4
a + p

> 0.

Where a ≥ q + 1 and k ≥ 3. Thus

ξad(H) > ξad(H
′

).

Similarly, the same is true for a < q. Synthesizing the proof of Case 1 and Case 2, we get ξad(H) > ξad(H′

). It
yields the result. □

Lemma 2.3. Let G be k-uniform hypergraph with a cut edge e = {v1, v1,1, · · · , v1,k−2, v2} satisfy G− e consists of two
componets G1 and G2, where v1 ∈ V(G1) and v2 ∈ V(G2). Let G′ be the hypergraph constructed from G by moving
G2 from v2 to v1, then ξad(G) < ξad(G′

).

Proof. For convenience, let εG1 (v1) = a ≥ b = εG2 (v2). If v ∈ V(G1 ∪ G2)\{v1, v2}, apparently, SG(v) ≤ SG′ (v)
and εG(v) ≥ εG′ (v). We have ∑

v∈V(G1∪G2)\{v1,v2}

(
SG(v)
εG(v)

−
SG′ (v)
εG′ (v)

) ≤ 0.

If v ∈ e\{v1, v2}, it is easy to see that εG(v) = εG′ (v) and SG(v) ≤ SG′ (v), we have∑
v∈e\{v1,v2}

(
SG(v)
εG(v)

−
SG′ (v)
εG′ (v)

) ≤ 0.

Thus the contribition of vertices in V(G1 ∪ G2)\{v1, v2} and e\{v1, v2} to ξad(G) in G is no more than the
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contribition of these vertices to ξad(G′

) in G′

. Therefore, we have

ξad(G) − ξad(G
′

) =
∑

v∈V(G)

(
SH(v)
εH(v)

−
SH′ (v)
εH′ (v)

)

= (
∑

v∈V(G1∪G2)\{v1,v2}

+
∑

v∈e\{v1,v2}

+
∑

v∈{v1,v2}

)(
SG(v)
εG(v)

−
SG′ (v)
εG′ (v)

)

≤

∑
v∈{v1,v2}

(
SG(v)
εG(v)

−
SG′ (v)
εG′ (v)

).

ξad(G) − ξad(G
′

) ≤
SG(v1)
εG(v1)

−
SG′ (v1)
εG′ (v1)

+
SG(v2)
εG(v2)

−
SG′ (v2)
εG′ (v2)

=

∑
u∈NG1 (v1) dG1 (u) + (k − 2) + dG2 (v2)

max{a, b + 1}

+

∑
w∈NG2 (v2) dG2 (w) + (k − 2) + dG1 (v1)

a + 1

−

∑
u∈NG1 (v1) dG1 (u) + (k − 1) +

∑
w∈NG2 (v2) dG2 (w)

a

−
(k − 2) + dG1 (v1) + dG2 (v2)

a + 1

≤

−1 + dG2 (v2) −
∑

w∈NG2 (v2) dG2 (w)

a

+

∑
w∈NG2 (v2) dG2 (w) − dG2 (v2)

a + 1

≤ −
1
a

< 0.

Thus
ξad(G) < ξad(G

′

).

This completes the proof. □

Lemma 2.4. Let H be a k-uniform connected hypergraph and u be a vertex of H. For t ≥ 1 is a positive integer, Let G
be a k-uniform hypergraph that adds a pendent edge to the vertex u and then adds one pendent edge to each of some t
vertices of the pendent edge at u, where these t vertices different from u. Let G′ be the k-uniform hypergraph obtained
from H with new t + 1 pendent edges attaching to u. Then ξad(G) < ξad(G′

).

Proof. It is evident that SG′ (x) ≥ SG(x) and εG′ (x) ≤ εG(x) for x ∈ V(H). Let εH(u) = b, obviously,

εG(u) ≥ εG′ (u) = b > 1.

SG′ (u) =
∑

w∈NH(u)

dH(w) + (t + 1)(k − 1).

Let
P1 = {v | v is the vertex of t pendent edges in G}

and
P2 = {v | v is the vertex of the pendent edge e at u in G}

respectively. Note that if x ∈ P1∪P2, SG′ (x) = k−2+dH(u)+t and εG′ (x) = b+1, SG(u) =
∑

w∈NH(u) dH(w)+k+t−1.
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If x1 ∈ P1\P2, SG(x1) = k − 2 + 2t, εG(x1) = b + 2.
If x2 ∈ P2\P1, SG(x2) = k + t − 2 + dH(u), εG(x2) = b + 1.
If x ∈ P1

⋂
P2, SG(x) = 2k + t − 4 + dH(u), εG(x) = b + 1. Then, we have

ξad(G
′

) − ξad(G) ≥

∑
w∈NH(u) dH(w) + (t + 1)(k − 1)

b
+

(k + t − 2 + dH(u))(t + 1)(k − 1)
b + 1

−

∑
w∈NH(u) dH(w) + k + t − 1

εG(u)
−

(k − 1)t(k + 2t − 2)
b + 2

−
(k − 1 − t)(k + t − 2 + dH(u))

b + 1
−

t(2k + t − 4 + dH(u))
b + 1

>
t(k − 2)

b
+

(t(k − 1) + (k − 1))(k + t − 2 + dH(u))
b + 1

−
t(k − 1)(k + 2t − 2)

b + 1
−

(k − 1 − t)(k + t − 2 + dH(u))
b + 1

−
t(2k + t − 4 + dH(u))

b + 1

=
t(k − 2)

b
+

t(k(dH(u) − 2t) − (dH(u) − 3t))
b + 1

> 0.

Where k ≥ 2, dH(u) − 2t ≥ dH(u) − 3t. Then ξad(G) < ξad(G′

). This completes the proof. □

3. Hypertrees with small eccentric-adjacency index

In this section, for eccentric-adjacency index, we characterize the extremal k-uniform hypertree given
maximum degree and edges. Denote Sk(m1, · · · ,m∆) by a k-uniform hypertree with m1+m2+ · · ·+m∆ edges
acquired from ∆ loose paths Pk

m1
,Pk

m2
, · · · ,Pk

m∆ by coinciding one terminal vertex of every loose path, where
∆ ≥ 2. In pariticular, Sk

m1,m2
= Pk

m1+m2
, obviously, Sk(m1,m2, · · · ,m∆) is a hypertree with maximum degree ∆.

Let Bk
m,∆ = S(1, 1, · · · , 1︸     ︷︷     ︸

∆−1

,m−∆+ 1), call it a starlike hypertree with maximum degree ∆ and number of edges

m. In particular, Bk
m,∆ � Pk

m if ∆ = 1, 2 and Bk
m,m � Sk

m.

Theorem 3.1. Let T be a k-uniform hypertree with maximum degree ∆ and m edges, where 1 ≤ ∆ ≤ m. Then
ξad(T) ≥ ξad(Bk

m,∆), the equality is true if and only if T � Bk
m,∆.

Proof. It is trival if ∆ = 1. Suppose that ∆ ≥ 2, Let T be a k-uniform hypertree with maximum degree ∆
and minimum eccentric-adjacency index. we intend to prove that T � Bk

m,∆ below. Let dT(u) = ∆. Next, we
discuss in two different conditions.
Case 1. ∆ ≥ 3.

First, We assert that there exist only one vertex u of T that has a degree of at least 3. By contradiction
assume that there are two vertices in T with degrees at least 3. Choose a vertex v that is as far away from
u as possible and has a degree of at least 3. Assume T − v have dT(v) branches T1, · · · ,TdT(v), Suppose that
u ∈ V(T1) without generality, among the remaining branches except T1, there exist branches that are not
pendent paths. Let Ti be such a branch and e = {w1, · · · ,wk} ∈ E(Ti) such that the distance between w1 and v
is as large as possible, Note that dH(ws) = dH(wt) = 1. According to Lemma 2.2, we get a hypertree T′ with
maximum degree ∆, obviously, we have ξad(T) ≥ ξad(T′ ), which is contradiction, therefore T[V(Ti) ∪ {v}] is
a pendent path adjacent to v with 2 ≤ i ≤ dT(v). Set the length of the pendent path T[V(Ti) ∪ {v}] on v to li,
where 2 ≤ i ≤ dT(v) and li ≥ 1. Suppose instead we only talked of l2 ≥ l3. Move a pedent edge from the
pedent path in T3 to the pendent edge in T2, we obtain a new hypertree T′′ whose maximum degree is ∆. By
Lemma 2.1, we have ξad(T′ ) ≥ ξad(T′′ ), which is contradiction, so u is the only vertex in T that has a degree
of at least 3. Similar to the discussion above and according to Lemma 2.2, T contains ∆ pendent paths on u.
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Second, We assert that at most one pendent path is not less than 2 in length. Assume to the contrary
that there exist at least two pendent paths on u with length at least two. Let P and Q be two such paths,
having length p and q, respectively, may as well suppose that p ≥ q. By the transformation in Lemma 2.1,
we obtain the graph T′′′ by removing the pendent edge on Q and adding them to the pengdent edge on
P, so that the length of P increases by one and the length of Q decreases by one. By Lemma 2.1, we have
ξad(T) ≥ ξad(T′′′ ), which is contradiction. Thus there is at most one pendent path of length at least 2. From
above arguments, it follows that T � Bk

m,∆.
Case 2. ∆ = 2.

It is trival if k = 2. May as well set k ≥ 3. Assume to the contrary that T � Bk
m,2, then there exists an

edge in T that contains at least three vertices of degree two, let e = {w1, · · · ,wk} be such an edge, and the
distance between u and the endpoint w1 of e is as large as possible. There are two pendent paths P and Q
at two distinct vertices of e, say w j and wl, respectively, where 2 ≤ j ≤ l ≤ k. Let the lengths of P and Q be
p and q, respectively, such that p ≥ q ≥ 1. From the transformation in Lemma 2.2, we get a graph T′ whose
maximum degree is still 2. By Lemma 2.2, we have ξad(T) ≥ ξad(T′ ), which is contradiction. Thus each edge
in T has at most two terminal vertices of degree two, it follows that T � Bk

m,2. In summary, this concludes
the proof of the theorem. □

Theorem 3.2. Let T be a k-uniform hypertree with m ≥ 1 edges. Then Let

ξad(T) ≥


2k2 + 2k

m
−

2
m − 1

+
∑ m

2 −1
i=1

2k2 + 2k − 4
m − i

if m is even,
2k2 + 2k − 6

m − 1
+

2k2
− 2k

m
+

10k + 4
m + 1

+
∑ m−3

2
i=2

2k2 + 2k − 4
m − i

if m is odd,

the equation is true if and only if T � Pk
m.

Proof. The conclusion is obvious for m = 1, 2. Let’s say that m ≥ 3. T is the graph with minimal EAI in the
k-uniform hypertree with m edges. Denote ∆ by the largest degree of T. Thus it follows from Theorem 3.1,
T � Bk

m,∆. If ∆ ≥ 3, then by Lemma 2.1, we can obtain that ξad(Bm,∆) > ξad(Bm,∆−1), which is contradiction.
Then ∆ = 2 and thus T � Bk

m,2 = Pk
m. If m is even, then by direct computation, we have

ξad(Pk
m) =

2k2 + 2k
m

−
2

m − 1
+

m
2 −1∑
i=1

2k2 + 2k − 4
m − i

.

And if m is odd, then

ξad(Pk
m) =

2k2 + 2k − 6
m − 1

+
2k2
− 2k

m
+

10k + 4
m + 1

+

m−3
2∑

i=2

2k2 + 2k − 4
m − i

.

This completes the proof. □

4. Hypertrees with large eccentric-adjacency index

In the coming section, we characterize the extremal hepertrees having the largest EAI among k-uniform
hypertrees given diameter and number of edges.

Theorem 4.1. Let T be a connected k-uniform hypertree with m ≥ 2 edges. Then

ξad(T) ≤
m(k − 1)(m + k)

2
,

the equation is true if and only if T � Sk
m.
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Proof. Let T be the extremal graph with maximum eccentric-adjacency index in k-uniform hypertree with
m edges. We start the proof with a claim.

Claim 1. All cut edges in T are pendent edges.
Proof of Claim 1. In reverse we say that, there exists a non-pendent cut edge, by Lemma 2.3, one can

get a hypergraph T′ , meeting the condition ξad(T′ ) > ξad(T), a contradiction, and hence completes the proof
of claim 1.

There is no cycle in T since it is a hypertree, then all edges are cut edges in T, by Claim 1 and Lemma
2.4, all edges share a common vertex, says it u, i.e. dT(u) = m and εT(u) = 1. The other vertices different
from u with degree 1 and eccentricity 2. Thus

ξad(T) =
m(k − 1)

1
+

m(k − 1)(k − 2 +m)
2

=
m(k − 1)(m + k)

2
.

the equality is true when T � Sk
m. This completes the proof. □

For 2 ≤ d ≤ m. Let

G(m, d, k) =


ξad(Pk

m) +
2t(k − 1)

d
+

2t(k − 1)(m + d + k + t)
d + 2

if m is even,

ξad(Pk
m) +

2t(k − 1)
d + 1

+
2t(k − 1)(m + d + k + t)

d + 3
if m is odd,

Let F1(m, d) be the k-uniform hypertree obtained by adding m − d pendent edges on u d
2

from loose path
Pk

d = (u0, e1,u1, · · · ,ud−1, ed,ud), if d is even. Let F2(m, d) be the k-uniform hypertree obtained by adding m−d
pendent edges on e d+1

2
from Pk

d = (u0, e1,u1, · · · ,ud−1, ed,ud), when d is odd.

Theorem 4.2. Let T be a k-uniform connected hypertree with m ≥ 2 edges and diameter d, where 2 ≤ d ≤ m. Then
ξad(T) ≤ G(m, d, k), the equality holds when T � F1(m, d), if d is even; and the equality is true when T � F2(m, d), if
d is odd.

Proof. For d = 2 and d = m, it is obviously true. Assume that 3 ≤ d ≤ m − 1 and T is a k-uniform
hypertree with diameter d satisfying that ξad(T) is as large as possible. Let P = (u0, e1,u1, · · · ,ud−1, ed,ud) be a
diametrical path of T. Denoted by ei = {ui,1, · · · ,ui,k} for i = 1, · · · , d, where ui,1 = ui−1 and ui,k = ui, By using
Lemma 2.3 repeatly, we infer that all edges other than edges in P are pendent edges, which are adjacent to
vertices of P except these in e1 and ed. We discuss this in two cases.
Case 1. d is even.

Suppose P has at least a vertex u other than u d
2

adjacent to no less than one pendent edge. Let E(u) be
the branch that contains vertex u and does not contain edges in P. Moving the edges in E(u) from u to u d

2
,

We construct a new hypertree T′ . Let |E(u)| = t and H = T[V(T)\E(u)\{u}] with εH(u) = a. Then a >
d
2

and

εH(u d
2
) = d

2 , we have

ξad(T
′

) − ξad(T) =
t(k − 1)

d/2
+

t(k − 1)(k + t − 2 + dT(u d
2
))

d/2 + 1

− (
t(k − 1)

a
+

t(k − 1)(k + t − 2 + dT(u))
a + 1

)

> t(k − 1)(
1

d/2
−

1
a

) + t(k − 1)(k + t − 2 + dT(u))(
1

d/2 + 1
−

1
a + 1

)

> 0.

Where dT(u d
2
) ≥ dT(u), then ξad(T′ ) > ξad(T), arrive at a contradiction. Therefore, all edges not on P are

pendent edges attached to u d
2
. Hence, we have

ξad(T) = ξad(Pk
m) +

2t(k − 1)
d

+
2t(k − 1)(m + d + k + t)

d + 2
.
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Case 2. d is odd.
If P contains some vertex ui, j which are adjacent to at least one pendent edge out of P, and furthermore

ui, j < e d+1
2

. If d+1
2 < i ≤ d − 1, 2 ≤ j ≤ k, then εT(ui, j) = i. By moving each edge adjacent to ui, j outside of P to

u d
2
, we obtain k-uniform hypertree T′ , similarly, we can derive that ξad(T′ ) > ξad(T), draw a contradiction.

Then all edges other than P are pendent edges attached to the vertices of e d+1
2

, we have

ξad(T) = ξad(Pk
m) +

2t(k − 1)
d + 1

+
2t(k − 1)(m + d + k + t)

d + 3
.

End of the proof. □

5. Comparing various eccentricity-based graph invariants for k-uniform hypergraphs

In this part, We first explored the connection between AEDS and EAI for k-uniform hypertree, the upper
bound of the difference between EDS and ECI in the hypergraph with diameter 2 is also discussed.

Theorem 5.1. Let T be a k-uniform hypertree with m ≥ 2 edges. Then ξsv(T) > ξad(T).

Proof. According to theorem 4.1, we just need to testify ξsv(T) >
m(k − 1)(m + k)

2
. Let DSm1,m2 be the

dumbbell hypertree obtained from vertex-disjiont Sk
m1

with center u and Sk
m2

with center v by adding a
hyperedge e with k vertices, write it as e = {u, v,w1, · · · ,wk−2}. Let t(≥ 0) be the number of vertices vi ∈ V(T)
such that dT(vi) ≥ εT(vi) + 1, We will get the coming claim.

Claim 1. t ≤
⌈

m(k−1)
2

⌉
for m ≥ 2 and k ≥ 2.

Proof of Claim 1. Let’s say the diameter of T is d. If d = 2, we have T � Sk
m and hence t = 1 <

⌈
m(k−1)

2

⌉
.

If d = 3, we have T � DSm1,m2 , let’s say m1 ≥ m2, then m1 +m2 + 1 = m and hence 2 ≤ t ≤
⌈

m(k−1)
2

⌉
for m ≥ 5.

(For m = 4,there is t = 1 <
⌈

m(k−1)
2

⌉
.) If d = 4, let T be the hypertree with vertex v such that

T − {v} = Sk
m1+1 ∪ Sk

m3+1 ∪ tm2.

Where v is the unique vertex in T satisfing εT(v) = 2 and m1+m2+m3+4 = m. It was very clear m(k−1) ≥ 2t,
that is t ≤

⌈
m(k−1)

2

⌉
. Or else d ≥ 5 and εT(vi) ≥ 3 for any vertex vi ∈ V(T). On the contrary, we prove

this result for εT(vi) ≥ 3, vi ∈ V(T), we assume that t >
⌈

m(k−1)
2

⌉
, let t be the number of verticecs such that

dT(vi) ≥ εT(vi) + 1 ≥ 4 as εT(vi) ≥ 3. Thus, we have

km =
n∑

i=1

dT(vi) =
∑

vi:εT(vi)≥3

dT(vi) ≥ 4t > 2m(k − 1).

Draw a contradiction and complete the proof of the claim. □
If T � Sk

m, then one can easily see that

ξsv(T) = (k − 1) + 2m(k − 1)2(2m − 1) >
m(k − 1)(m + k)

2
.

Otherwise, if T � Sk
m, then DT(vi) ≥ m(k − 1) + 1 for any vi ∈ V(T). From claim 1, we conclude that

ξsv(T) =
∑

vi∈V(T)

εT(vi)DT(vi)
dT(vi)

≥

∑
vi:εT(vi)≥dT(vi)

εT(vi)DT(vi)
dT(vi)

≥

∑
vi:εT(vi)≥dT(vi)

DT(vi) ≥ (m(k − 1) + 1 − t)(m(k − 1) + 1)

>
(m(k − 1) + 1)2

2
>

m(k − 1)(k +m)
2

.
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This proof is completed. □
Next step, we discussed the upper bound of the difference between EDS and ECI in the k-uniform

hypergraph with diameter 2. First, we present one result useful for our main conclusion. A linear
hypergraph is one in which any two edges have at most one common vertex.

Lemma 5.2. Let G be a connected linear k-uniform hypergraph with n vertices, diameter 2 and maximum degree no

more than |E| − 1, where |E| denotes the number of edges of G. Then |E| ≥
n − 2 + k

k − 1
, with the equality holds if and

only if the maximum degree is |E| − 1.

Proof. Let u0 be a vertex of G with the maximum degree. Then exists at least one edge e satisfies u0 < e.
Since diam(G) = 2, we have dG(w,u) ≤ 2 for all u ∈ NG(u0) and w ∈ e. Clearly, the greater the degree of u0,
the fewer the number of edges. Let V1 = {x|x ∈ e ∩NG(u0)}. We have

k|E| =
∑

v∈V(G)

dG(v) = dG(u0) +
∑
v∈V1

dG(v) +
∑

v∈NG(u0)\V1

dG(v)

≥ |E| − 1 + 2k + n − 1 − k

(k − 1)|E| ≥ k + n − 2, |E| ≥
n − 2 + k

k − 1
.

With the equality holds if and only if the maximum degree is |E| − 1. This completes the proof. □
From the arguments above, it can be clearly seen k > |E| − 1, otherwise d > 2. Thus, in the case under

considerarion, k >
n − 2 + k

k − 1
− 1 =

n − 1
k − 1

. Therefore, k2 > n − 1 + k.

Let S(n, k) be a k-uniform hyperstar with n vertices. We now prove our main result.

Theorem 5.3. Let G be a connected linear k-uniform hypergraph with n vertices and diameter 2. Then

ξd(G) − ξc(G) ≤ 4n2
− 8n + 4 − 2k(n − 1),

equality is true when G � S(n, k).

Proof. Let G be a k-uniform hypergraph with diameter 2. For any v ∈ V(G), we have

DG(v) = (k − 1)dG(v) + 2(n − 1 − (k − 1)dG(v)) = 2n − (k − 1)dG(v) − 2. (3)

Let |E| be the number of edges of G, obviously, the degree of any vertex is at most |E|. Let ∆(G) be the
maximum degree of G. First, we consider ∆(G) = |E|. As G is linear and satisfied |E| ≥ 2, it is impossible
for two edges to have two common vertices. If there exists one common vertex say u of every edge, then
dG(u) = |E| and εG(u) = 1 and for any vertex v , u, εG(v) = 2. Let A = {x|εG(x) = 1}. In this case, clearly,
|A| = 1. Together with (3),(1) and (2), we have

ξd(G) − ξc(G) =
∑

v∈V(G)

εG(v)DG(v) −
∑

v∈V(G)

εG(v)dG(v)

= 2
∑

v∈V(G)\A

(2n − (k − 1)dG(v) − 2 − dG(v))

= 4(n − 1)2
− 2k

∑
v∈V(G)\A

dG(v)

= 4n2
− 8n + 4 − 2k2

|E| + 2k|E|.

(4)

From equation (4), we find that the difference of ξd(G) and ξc(G) is decreasing on |E|, so when the value of |E|
is the smallest, then the difference is the largest. Note that diam(G) = 2 and G is linear k-uniform connected
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hypergraph, one has |E| ≥
n − 1
k − 1

in (4). By direct computation, we easily see that

ξd(G) − ξc(G) = 4n2
− 8n + 4 − 2k2

|E| + 2k|E|

= 4n2
− 8n + 4 − 2k(k − 1)|E|

≤ 4n2
− 8n + 4 − 2k(k − 1)

n − 1
k − 1

= 4n2
− 8n + 4 − 2k(n − 1).

(5)

Now consider ∆(G) ≤ |E| − 1. In this case, εG(v) = 2 for every v ∈ V(G), Together with (3),(1) and (2), we
have

ξd(G) − ξc(G) =
∑

v∈V(G)

εG(v)DG(v) −
∑

v∈V(G)

εG(v)dG(v)

= 2
∑

v∈V(G)

(2n − kdG(v) − 2)

= 4n2
− 4n − 2k2

|E|.

(6)

By Lemma 5.2, we have |E| ≥
n − 2 + k

k − 1
in (6). By direct computation, we easily see that

ξd(G) − ξc(G) = 4n2
− 4n − 2k2

|E|

≤ 4n2
− 4n −

2k2(n − 2 + k)
k − 1

.
(7)

Let

f1(n, k) = 4n2
− 4n −

2k2(n − 2 + k)
k − 1

,

f2(n, k) = 4n2
− 8n + 4 − 2k(n − 1).

f2(n, k) − f1(n, k) = 4n + 4 +
2k2(n − 2 + k)

k − 1
− 2k(n − 1)

= 4n + 4 + 2k(
k(n − 2 + k)

k − 1
− (n − 1))

= 4n + 4 + 2k(
k2 + n − k − 1

k − 1
)

= 4n + 4 + 2k(
(k2
− k) + (n − 1)

k − 1
)

> 0.

(8)

Where k ≥ 2 and n ≥ 2. On the basis of equation (5), (7) and (8) , one can get

ξd(G) − ξc(G) ≤ 4n2
− 8n + 4 − 2k(n − 1),

with equality if and only if G � S(n, k). This completes the proof. □
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