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Abstract. In this article, a special mapping, the so-called enriched nonexpansive mapping with center
zero and its asymptotic version are introduced and corresponding fixed point properties are investigated in
the setting of complete normed spaces. Further, using approximate fixed point sequences, the fixed points
of such mappings are analysed where Banach spaces have Kadec-Klee Property. Finally, a convexically
enriched nonexpansive mapping is launched as a special case of the studied mappings.

1. Introduction

Consider nonempty subsets X,Y, that intersects each other by at least one point, a point p ∈ X is said to
be a fixed point of a mapping G : X→ Y if

p = Gp.

Fixed point theory (PPT for short) provides substantial approaches of solving many real-life problems from
science and engineering through fixed point of certain nonlinear mapping. Recently, PPT has been applied
directly to solve convex optimization problems including image restoration, signal processing, radiation
therapy, robotic motion control and many further physical phenomena. To the best of our knowledge,
the most celebrated fixed point result is the Banach Contraction Mapping Theorem which was initially
established in linear spaces (see [1]) and later extended to metric spaces. This result guaranteed the
existence and uniqueness of a fixed point for a contraction mapping defined from a complete metric space
into itself.

The immediate extension (or the limit case) of the contraction mapping is nonexpansive mapping which
may not have a fixed point or even have many fixed points. For examples on the set of real numbers,
consider the identity mapping and its positive and negative translation. Using geometric properties of
Banach spaces, several results were established and analysed in regards to fixed points of nonexpansive
mappings ranging from 1965 to date (see, for example, the standard text [2–7] and the references therein).
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It is worth mentioning from these results that a nonexpansive mapping defined on a bounded closed
convex subset of a uniformly convex Banach space possesses a fixed point. Applications of fixed point of
nonexpansive mappings can be found in many science phenomena. For instance, these mappings appear
as the transition operators for initial value inclusions of the form

0 ∈
du
dt
+ G(t)u,

(see, for example, Bruck [8]). For example where nonexpansive mappings are used in robotic motion
control, see [9].

In [10], the class of nonexpansive mappings having a fixed center is studied and analysed. The author,
deduced that this class of mappings properly contains the class of quasi-nonexpansive mappings by the
fact that the center of the mapping need not be a fixed point. Dehici and Atailia [11] studied the class of
asymptotically nonexpansive mappings with each having zero as a center. They established existence of
fixed points of the mapping provided it is defined on a bounded convex closed subset of reflexive strictly
convex Banach spaces.

On the other hands, Berinde introduced and studied enriched contraction mapping in [12] as an extension
of the Banach contraction mapping and introduced enriched nonexpansive in [13]. It is deduced from the
definitions that the class of enriched nonexpansive mappings contains nonexpansive mappings, enriched
contraction mappings, some strictly pseudocontractive mappings and many other mappings. Furthermore,
this class of mappings are widely studied recently up to set-valued mappings and significant applications
of such mappings are discussed (see, for example, [14–17]).

The purpose of this paper is to study enriched asymptotically nonexpansive mapping (EANM for
short) that has zero as a center. This class of mappings contains several other special classes of mappings
with center zero such as nonexpansive mapping, enriched nonexpansive mapping and asymptotically
nonexpansive mapping. We establish theorems on the existence of fixed point of the mappings in the
setting where Kadec-kalee property holds and discuss substantial special classes of the mappings.

2. Preliminaries and Basic Facts

Throughout this paper, we denote a nonempty subset of a normed linear space (Y, ∥ · ∥) by E and the
β-relaxation of a mapping G is define by

Gβu =
β

β + 1
u +

1
β + 1

Gu, (1)

for every u in the domain of G.
We now recall the following definitions

Definition 2.1. A mapping G : E → E is said to be

(i) a nonexpansive if

∥Gu − Gw∥ ≤ ∥u − w∥ for all u,w ∈ E. (2)

(ii) an asymptotically nonexpansive (ANM for short) if

lim sup
n→∞

∥Gnu − Gnw∥ ≤ ∥u − w∥ for all u,w ∈ E. (3)

It is important to note that, according to Goebel and Kirk [18], a mapping G : E → E is asymptotically
nonexpansive if there exists a sequence {κn} that converges to 1 and the following inequality holds:

∥Gnu − Gnw∥ ≤ κn∥u − w∥ for all u,w ∈ E. (4)
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Remark 2.2. It is known that the notion of ANM in (3) is more general than that of (4). In fact, (2) implies (4) and
(4) implies (3). However, the converses are not true. For counterexamples, see [18, pp. 174] and [19, pp. 1208].

Nonexpansive mappings and their generalizations such as asymptotically nonexpansive mappings are
widely studied by many researchers. Most of the researchers investigate the fixed point properties of the
mappings. A natural geometrically motivated extensions of the mappings are subsequently define using
zero as a center.

Definition 2.3. A mapping G : E → E is called

(i) a nonexpansive mapping with center zero if

∥Gu∥ ≤ ∥u∥ for all u ∈ E. (5)

(ii) an asymptotically nonexpansive mapping with center zero if

lim sup
n→∞

∥Gnu∥ ≤ ∥u∥ for all u ∈ E. (6)

Remark 2.4. Clearly every nonexpansive mapping with zero as a fixed point is nonexpansive mapping with center
zero. However, the converse is not always true. For a counterexample, take E = [0, 1] ⊂ R and G defined by Gu = u2.
Similar ideas can be taken to the case of asymptotically nonexpansive mappings.

Following Berinde [13], a mapping G : E → E is said to be β-enriched nonexpansive if there exists β ≥ 0
such that

∥β(u − w) + Gu − Gw∥ ≤ (β + 1)∥u − w∥, ∀u,w ∈ E. (7)

Remark 2.5. It is easy to see that every nonexpansive mapping is β-enriched nonexpansive mapping with β = 0.
However, the converse is not true as in the subsequent example.

Example 2.6. Let G : R → R be defined by Gu = −3u for all u ∈ R. It is obvious that G is not a nonexpansive
mapping. However G is 1-enriched nonexpansive mapping since for all u,w ∈ R,

|1(u − w) + Gu − Gw| = |2w − 2u| ≤ (1 + 1)|u − w|.

Remark 2.7. Observe that an enriched nonexpansive mapping must be Lipchitzs continuous. Indeed if G is a
β-enriched nonexpansive mapping, then for all u,w ∈ Dom(G), we have

∥Gu − Gw∥ = ∥β(u − w) + Gu − Gw − β(u − w)∥
≤ ∥β(u − w) + Gu − Gw∥ + β∥u − w∥
≤ (2β + 1)∥u − w∥.

3. Enriched Asymptotically Nonexpansive

In this paper we shall focus on mappings that need not be continuous starting with the following
definitions to be used for the main results.

Definition 3.1. A mapping G : E → E is called an enriched nonexpansive mapping with center zero if there exists
β ≥ 0 such that

∥βu + Gu∥ ≤ (β + 1)∥u∥ for all u ∈ E. (8)

Remark 3.2. Clearly, every β-enriched nonexpansive mapping with zero as a fixed point is an enriched nonexpansive
mapping with center zero. The converse may not be true as shown in the following example.
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Example 3.3. Let σ < −1 and consider a mapping G : R→ R such that

u 7→

0 if u = σ;
σu if u , σ.

Observe that 0 is a fixed point of G. Also by Remark 2.7, we have that G is not a β-enriched nonexpansive mapping

since G is not continuous. However, for any β ≥
−σ − 1

2
, we have |β + σ| ≤ |β + 1| which leads to

∥βu + Gu∥ = |βu + σu| = |β + σ||u| ≤ (β + 1)|u|

whenever u , σ. When u = σ, we have

∥βu + Gu∥ = |βu| = β|u| ≤ (β + 1)|u|

for any β ≥ 0. Hence G is a β-enriched nonexpansive mapping with center zero for β ≥
−σ − 1

2
.

Definition 3.4. Let G : E → E be a mapping. Then we call G an enriched asymptotically nonexpansive mapping if
one of the following conditions is satisfied:

(C1) there exists β1 ≥ 0 such that

lim sup
n→∞

∥β1(u − w) + Gnu − Gnw∥ ≤ (β1 + 1)∥u − w∥ for all u,w ∈ E, (9)

(C2) there exists β2 ≥ 0 such that the n-th composition of Gβ2 (n ∈N) is well-defined and

lim sup
n→∞

∥Gn
β2

u − Gn
β2

w∥ ≤ ∥u − w∥ for all u,w ∈ E. (10)

Remark 3.5. An enriched asymptotically nonexpansive mapping differs from an enriched nonexpansive mapping
with center zero. This can be seen from the following example.

Example 3.6. For µ > 1, consider a mapping G : R→ R such that

w 7→

µ if w = 0;
µ|w|1/2 + w − µw otherwise.

It is worth noting that

1. 1 is a fixed point of G.

2. G is not a β-enriched nonexpansive mapping since G is not continuous.

3. G is not an enriched nonexpansive mapping with center zero since for w = 0,

|βw + Gw| =
∣∣∣µ∣∣∣ > 0 = (β + 1)|w| for all β ≥ 0.

4. G is an enriched asymptotically nonexpansive mapping. To see this, take β = µ− 1 and recall that Gβ : R→ R

is such that w 7→
β

β + 1
w +

1
β + 1

Gw. So, Gβ reduces to the following

Gβw =

1 if w = 0;
|w|1/2 otherwise.
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Consequently, we have

G2
βw =

1 if w = 0;
|w|

1
22 otherwise,

· · · Gn
βw =

1 if w = 0;
|w|

1
2n otherwise.

Therefore, we get

lim sup
n→∞

|Gn
βu − Gn

βw| = 0 ≤ |u − w| for all u,w ∈ R. (11)

Definition 3.7. Let G : E → E be a mapping. Then we call G an enriched asymptotically nonexpansive mapping
with center zero if one of the following conditions is satisfied:

(C1) there exists β1 ≥ 0 such that

lim sup
n→∞

∥β1u + Gnu∥ ≤ (β1 + 1)∥u∥ for all u ∈ E, (12)

(C2) there exists β2 ≥ 0 such that the n-th composition of Gβ2 (n ∈N) is well-defined and

lim sup
n→∞

∥Gn
β2

u∥ ≤ ∥u∥ for all u ∈ E. (13)

Remark 3.8. It is worth noting that every enriched asymptotically nonexpansive mapping with zero as a fixed
point is an enriched asymptotically nonexpansive mapping with center zero. The immediate example furnishes a
counterexample for the converse.

Example 3.9. Let G : [0, 1]→ [0, 1] be defined by Gw = w2 for all w ∈ [0, 1]. Then it is clear that

1. 0 and 1 are fixed points of G.

2. G is not an enriched asymptotically nonexpansive mapping. To show this, observe that

Gnu = u2n
→

0 if u , 1;
1 if u = 1.

Thus for u = 1 and w =
1
2

we can see that

lim sup
n→∞

|β1(u − w) + Gnu − Gnw| =
1
2
β1 + 1 >

1
2

(β1 + 1) = (β1 + 1)|u − w|.

Hence (9) is not possible. Moreover, for any β2 ≥ 0, we have Gn
β2

(1) = 1 → 1 and Gn
β2

(1/2) → 0 as n → ∞.
Thus

lim sup
n→∞

∣∣∣∣Gn
β2

(1) − Gn
β2

(1/2)
∣∣∣∣ = 1 >

1
2
=

∣∣∣∣∣1 − 1
2

∣∣∣∣∣ .
Hence (10) is impossible. Therefore G cannot be an enriched asymptotically nonexpansive mapping.

3. G is an asymptotically enriched nonexpansive mapping with center zero. Indeed for any β ≥ 0,

lim sup
n→∞

|βu + Gnu| = βu ≤ (β + 1)|u| for all u , 1

and

lim sup
n→∞

|β · 1 + Gn(1)| = (β + 1) = (β + 1) · |1|.
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For r > 0, let B̄(0, r) denote the closed ball center at 0 with radius r. We recall some beautiful normed
spaces.

Definition 3.10. A Banach space (Y, ∥ · ∥) is called uniform convex if for ϵ ∈ (0, 2] there exists δ > 0 such that for
all u,w ∈ B̄(0, 1),

∥u − w∥ > ϵ =⇒
∥∥∥∥u + w

2

∥∥∥∥ ≤ δ.
Definition 3.11. A Banach space (Y, ∥ · ∥) is called strictly convex if for ϵ ∈ (0, 2] there exists δ > 0 such that for all
u,w ∈ Y, u , w, we have

∥u∥ = 1 = ∥w∥ =⇒
∥∥∥∥u + w

2

∥∥∥∥ ≤ 1.

Remark 3.12. Every uniformly convex Banach space is strictly convex. However, the converse is not true in general.
To furnish a counterexample, we state the following example (see [20] for details).

Example 3.13. Let Y = C([a, b]) be the space of scalar continuous functions defined on [a, b] ⊂ R. Consider ∥ · ∥
defined by

∥1∥ = sup
t∈[a,b]

|1(t)| + ∥1∥L2([a,b]).

Then (Y, ∥ · ∥) is not uniformly convex but a strictly convex Banach space.

4. Enriched Asymptotically Nonexpansive and Fixed Point

In the what follows, un ⇀ u means {un} converges weakly to u and un → u means {un} converges strongly
to u and β-EANM stands for β-enriched asymptotically nonexpansive mapping.

Theorem 4.1. Let E be a nonempty subset of a complete normed space and G : E → E be a β-EANM with center
zero. If 0 ∈ E and G is continuous then 0 ∈ Fix(G).

Proof. Since G is β-EANM with center zero, we consider two cases.
Case 1: (C1) holds. Then β1 is such that

lim sup
n→∞

∥β1u + Gnu∥ ≤ (β1 + 1)∥u∥ for all u ∈ E. (14)

This and the hypothesis that 0 ∈ E imply that

lim sup
n→∞

∥Gn0∥ ≤ 0.

This implies

lim
n→∞
∥Gn0∥ ≤ 0

and consequently, we have

lim
n→∞

Gn0 = 0.

Since G is continuous, we have

lim
n→∞

Gn+10 = G0.

Uniqueness of limit guaranteed that G0 = 0.
Case 2: (C2) holds. Then β2 is such that

lim sup
n→∞

∥Gn
β2

u∥ ≤ ∥u∥ for all u ∈ E. (15)

Following similar lines as in Case 1 with Gβ2 in place of G and β1 = 0, we have that 0 is a fixed point of Gβ2 .
Consequently, we have from (1) that 0 is a fixed point of G.
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The following corollary follows from the fact that every asyptotically nonexpansive mapping is 0-EANM.

Corollary 4.2. Let E be a nonempty subset of a complete normed space and G : E → E be an asymptotically
nonexpansive mapping with center zero. If 0 ∈ E and G is continuous then 0 ∈ Fix(G).

In the sequel, we say that a subset E of a normed space satisfies Property (ℓ) if there exists a unique w ∈ E
such that

∥w∥ = inf
{
∥z∥ : z ∈ E

}
.

Remark 4.3. It is a known fact (see, for example, [11, Theorem 3.1]) that every nonempty closed convex subset of a
reflexive strictly convex Banach space satisfies Property (ℓ).

Theorem 4.4. Let E be a closed convex subset of a complete normed space that satisfies satisfies Property (ℓ) and
G : E → E be a β-EANM with center zero. If 0 < E and G is weakly continuous then Fix(G) , ∅.

Proof. Following Property (ℓ), we have the existence of a unique point uo ∈ Ewith

∥uo∥ = inf
{
∥u∥ : u ∈ E

}
. (16)

Since G is β-EANM, then, we consider two cases.
Case 1: (C1) holds. Then β1 is such that

lim sup
n→∞

∥β1uo + Gnuo∥ ≤ (β1 + 1)∥uo∥. (17)

Now, let z be in the weak closure of the sequence
{
Gnuo

}
. Then there exists a subsequence

{
Gnk uo

}
that

converges weakly to z. By lower semi-continuity of the norm, we have

∥β1uo + z∥ ≤ lim inf
k→∞

∥β1uo + Gnk uo∥

≤ lim inf
n→∞

∥β1uo + Gnuo∥

≤ lim sup
n→∞

∥β1uo + Gnuo∥

≤ (β1 + 1)∥uo∥.

This implies that∥∥∥∥∥ β1

β1 + 1
uo +

1
β1 + 1

z
∥∥∥∥∥ ≤ ∥∥∥uo

∥∥∥.
Since E is closed, z ∈ E. The last inequality and the convexity of E imply that

z ∈
{
u ∈ E : ∥u∥ = ∥uo∥

}
.

Thus, Property (ℓ) yields that
β1

β1 + 1
uo +

1
β1 + 1

z = uo. Therefore, z = uo. Hence, every weakly convergence

subsequence of
{
Gnuo

}
converges to uo. Therefore, the sequence

{
Gnuo

}
converges weakly to uo. So is the{

Gn+1uo

}
. Consequently, since Gn+1uo = G(Gnuo) for all n ≥ 1, we can pass the weak limit to obtain the

desired result.
Case 2: (C2) holds. Then β2 is such that

lim sup
n→∞

∥Gn
β2

u∥ ≤ ∥u∥ for all u ∈ E. (18)

Following similar lines as in Case 1 with Gβ2 in place of G and β1 = 0, we have that uo is a fixed point of Gβ2 .
Consequently, we have from (1) that uo is a fixed point of G.
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Following Theorem 4.1, Remark 4.3 and Theorem 4.4, we have the following corollaries.

Corollary 4.5. Let E be a nonempty closed convex subset of a Banach space (Y, ∥ · ∥) and G : E → E be a β-EANM
with center zero.

1. If 0 ∈ E and G is continuous then 0 ∈ Fix(G).

2. If Y is reflexive and strictly convex, 0 < E and G is weakly continuous, then G has a fixed point.

Proof. 1. Theorem 4.1 yields the result by the fact that every Banach space is a complete normed space.

2. Following Remark 4.3, we have that Y satisfies Property (ℓ). Consequently Theorem 4.4 completes
the proof.

The following theorem is the main result of Dehici and Atailia [11]. See Theorem 3.2 and Remark 3.2 of
their article.

Corollary 4.6. Let E be a nonempty closed convex subset of a Banach space (Y, ∥ · ∥) and G : E → E be an
asymptotically nonexpansive mapping with center zero.

1. If 0 ∈ E and G is continuous then 0 ∈ Fix(G).

2. If Y is reflexive and strictly convex, 0 < E and G is weakly continuous, then G has a fixed point.

Proof. The proof follows from Corollary 4.5 and the fact that every asymptotically nonexpansive mapping
with center zero is 0-enriched asymptotically nonexpansive mapping with center zero.

We now state another important results that can be deduced from our main results.

Corollary 4.7. Let E be a nonempty closed convex subset of a complete normed space (Y, ∥ · ∥) that satisfies Property
(ℓ) and G : E → E be a nonexpansive mapping with center zero.

1. If 0 ∈ E then 0 ∈ Fix(G).

2. If 0 < E and Y is reflexive strictly convex Banach space, then G has a fixed point.

Proof. Using the fact that every nonexpansive mapping with center zero is continuous and is 0-enriched
asymptotically nonexpansive mapping with center zero, the proof follows from Theorem 4.1 and Theorem
4.4.

We state below another result.

Corollary 4.8. Let E be a nonempty closed convex subset of a reflexive strictly convex Banach space (Y, ∥ · ∥) and
G : E → E be a β-enriched nonexpansive mapping with center zero. Then G has a fixed point.

Proof. The proof follows from the fact that every β-enriched nonexpansive mapping with center zero is
β-enriched asymptotically nonexpansive mapping with center zero.

A substantial fixed point results for generalized nonexpansive mapping (see, for example, [21, Theorem
3] and [22, Theorem 2.1]) asserted that a nonexpansive self-mapping with center zero defined on a weakly
compact convex subset of a strictly convex Banach space always possesses a fixed point. The assumption
that the domain of the mapping need to be weakly compact is too strong since such a set has to be bounded.

Following the aforementioned theorems, we can have such a result with the domain not necessary
weakly compact.

Corollary 4.9. Let E be a nonempty closed convex subset of a reflexive strictly convex Banach space (Y, ∥ · ∥) and
G : E → E be a nonexpansive mapping with center zero. Then G has a fixed point.
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Proof. The proof follows directly from Corollary 4.7.

Several existing and further results can be deduced from our results even when dealing with composition
or sum of finite mappings. For instance, consider the following corollaries.

Corollary 4.10. Let E be a nonempty closed convex subset of a reflexive strictly convex Banach space (Y, ∥ · ∥).
Suppose that G : E → E is a mapping such that for some β ≥ 0,

∥β(u + w) + Gu + Gw∥ ≤ (β + 1)∥u + w∥, for all u ∈ E. (19)

Then G has a fixed point.

Proof. Setting w = u in (19), we get that G is β−enriched nonexpansive mapping with center zero. Thus
Corollary 4.8 yields the desired result.

Corollary 4.11. Let E be a nonempty closed convex subset of a reflexive strictly convex Banach space (Y, ∥ · ∥)
Suppose that G : E → E and F : E → E are two mappings, F is into and there exists β ≥ 0 such that∥∥∥βFu + GFu

∥∥∥ ≤ (β + 1) ∥Fu∥ ∀u ∈ E.

Then G has a fixed point.

Proof. The condition that
∥∥∥βFu + GFu

∥∥∥ ≤ (β + 1) ∥Fu∥ for all u ∈ E is equivalent to G is β−enriched nonex-
pansive mapping. Thus Corollary 4.8 completes the proof.

5. The Case of Banach spaces with Kadec-Klee Property

In the sequel, a Banach space (Y, ∥ · ∥) is said to have Kadec-Klee Property (KKP) if

un ⇀ u
∥un∥ → ∥u∥

}
=⇒ un → u.

Example of spaces with KKP include Hilbert spaces and the Lp(t) spaces for 1 < p < ∞.
The following definitions are crucial in our subsequent results.

Definition 5.1. Let E be a nonempty subset of a Banach space (Y, ∥ · ∥) and G : E → E be a mapping. Then
a sequence {un} is said to be an approximate fixed point sequence (AFPS) of G provided that

∥un − Gun∥ → 0 as n→∞.

Remark 5.2. It is worth noting that if E is convex, then a sequence {un} is an AFPS of G : E → E if and only if it is
an AFPS of Gβ for any β ≥ 0. Indeed, this is justify by the fact that∥∥∥u − Gβu

∥∥∥ = 1
β + 1

∥u − Gu∥ ∀u ∈ E.

Definition 5.3. Let E be a nonempty subset of a Banach space (Y, ∥ · ∥). A mapping G : E → E is said to
satisfy Condition (L) if the following two conditions hold:

(CL1) If a subsetD ⊆ E is nonempty closed convex and G-invariant, then there exists {un} ⊂ D an AFPS of
G.

(CL2) For any AFPS of G (say {un}) and all u ∈ E,

lim sup
n→∞

∥un − Gu∥ ≤ lim sup
n→∞

∥un − u∥ .
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Remark 5.4. It is known (see, for example [23]) that several substantial class of mappings satisfy Condition (L). This
mappings include but not limited to

(RM1) Suziki’s mapping which maps E into itself in such away that for any u,w ∈ E,

1
2
∥u − Tu∥ ≤ ∥u − y∥ =⇒ ∥Tu − Tw∥ ≤ ∥u − w∥.

(RM2) generalized nonexpansive mapping which maps E into itself in such away that for any u,w ∈ E,

∥Tu − Tw∥ ≤ α1∥u − w∥ + α2

(
∥u − Tu∥ + ∥w − Tw∥

)
+ α3

(
∥u − Tw∥ + ∥w − Tu∥

)
,

where α1, α2, α3 are nonnegative numbers satisfying α1 + 2α2 + 2α3 ≤ 1.

Following (RM1) of Remark 5.4, we get the following.

Remark 5.5. Every nonexpansive mapping satisfies Condition (L). However G :
[
0, 2

3

]
→

[
0, 2

3

]
defined by Gu = u2

furnishes a counterexample for the converse. Additionally, G is 0-enriched nonexpansive mapping since |Gu| = u2
≤

u = |u|, for all u ∈ [0, 1].

Theorem 5.6. Let E be a weakly compact convex subset of a Banach space (Y, ∥ · ∥) and let G : E → E be a β-enriched
nonexpansive mapping with center zero.

(P1) If 0 ∈ E, then G has a fixed point.

(P2) If 0 < E and G is a mapping which satisfies Condition (L), then G has a fixed point.

Proof. (P1) follows trivially from the definition of β-enriched nonexpansive mapping with center zero. To
establish (P2), let D∗ :=

{
w ∈ E : ∥w∥ = γ

}
where γ = inf {∥w∥ : w ∈ E}. It is clear that γ > 0 and D∗ is a

nonempty weakly compact convex subset of Y. Since G is β-enriched nonexpansive mapping with center
zero, then

∥βu + Gu∥ ≤ (β + 1)∥u∥.

This implies that∥∥∥Gβu∥∥∥ ≤ ∥u∥.
Thus Gβ (D∗) ⊆ D∗. Since G satisfies Condition (L), there exists {un} ⊂ D

∗ an AFPS of G. By Remark 5.2, {un}

is an AFPS of Gβ. Since D∗ is weakly compact, we have
{
unk

}
a subsequence of {un} that converges weakly

to u∗ ∈ D∗. In addition, definition ofD∗ yields that
∥∥∥unk

∥∥∥ = ∥u∗∥ = γ. Furthermore, since Y have KKP,
{
unk

}
converges strongly to u∗. Using Condition (CL2) of Definition 5.3 and the fact that

{
unk

}
is an AFPS of G, we

get that

0 ≤ lim inf
k→∞

∥∥∥unk − Gβu∗
∥∥∥

≤ lim sup
k→∞

∥∥∥unk − Gβu∗
∥∥∥

= lim sup
k→∞

∥∥∥∥∥ ββ + 1
(
unk − u∗

)
+

1
β + 1

(
unk − Gu∗

)∥∥∥∥∥
≤
β

β + 1
lim sup

k→∞

∥∥∥unk − u∗
∥∥∥ + 1
β + 1

lim sup
k→∞

∥∥∥unk − Gu∗
∥∥∥

≤ lim sup
k→∞

∥∥∥unk − u∗
∥∥∥ = 0.
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Consequently, we have∥∥∥u∗ − Gβu∗
∥∥∥ = lim

k→∞

∥∥∥unk − Gβu∗
∥∥∥ = 0.

Thus, u∗ = Gβu∗ which implies that u∗ = Gu∗. Therefore, u∗ is a fixed point of G.

Theorem 5.7. Let E be a weakly compact convex subset of a Banach space (Y, ∥ · ∥) and let G : E → E be a mapping.

(P1) If 0 ∈ E and G is a β-EANM with center zero, then 0 is a fixed point of G.

(P2) Suppose thatY has KKP, 0 < E and

(A1) If G satisfies Condition (L), then G has a fixed point;

(A2) {Gnu1} is an AFPS of G;

(A3) For γ = inf {∥w∥ : w ∈ E}, the set Eγ := E
⋂{

w ∈ Y : ∥w∥ = γ
}

is G-invariant.

Then for any β ≥ 0, Gβ has a fixed point in E.

Proof. The assertion in (P1) follows trivially from Theorem 4.1. Following the assumption that E is weakly
compact convex subset ofY, we have that γ > 0 andEγ , ∅. By (A3), we have thatEγ is a G-invariant weakly
compact convex subset of Y. Now, let u1 ∈ Eγ and let {Gnk u1} be a subsequence of {Gnu1} that converges
weakly to u∗ ∈ Eγ. Since Y has KKP, we get that {Gnk u1} converges strongly to u∗. Since unk = Gnk u1 is an
AFPS and G satisfies Condition (L), it follows that

0 ≤ lim inf
k→∞

∥∥∥unk − Gβu∗
∥∥∥

≤ lim sup
k→∞

∥∥∥unk − Gβu∗
∥∥∥

= lim sup
k→∞

∥∥∥∥∥ ββ + 1
(
unk − u∗

)
+

1
β + 1

(
unk − Gu∗

)∥∥∥∥∥
≤
β

β + 1
lim sup

k→∞

∥∥∥unk − u∗
∥∥∥ + 1
β + 1

lim sup
k→∞

∥∥∥unk − Gu∗
∥∥∥

≤ lim sup
k→∞

∥∥∥unk − u∗
∥∥∥ = 0.

Consequently, we have∥∥∥u∗ − Gβu∗
∥∥∥ = lim

k→∞

∥∥∥unk − Gβu∗
∥∥∥ = 0.

Thus, u∗ = Gβu∗. Moreover, u∗ = Gu∗.

6. Alternate Convexically Enriched Nonexpansive

In [22], a substantial class of mappings was studied and later on analysed by many scholars. These
mappings are usually refers to as alternate convexically nonexpansive mappings. In the literature, fixed point
of such mappings are proved to be useful and can be obtained using AFPS and minimal set properties.

Consider a normed space (Y, ∥ · ∥) with a nonempty subset E. A mapping G : E → E is called alternate
convexically nonexpansive provided∥∥∥∥∥∥∥∥ 1

m

m∑
j=1

(−1) j+1Tu j − Tw

∥∥∥∥∥∥∥∥ ≤
∥∥∥∥∥∥∥∥ 1

m

m∑
j=1

(−1) j+1u j − w

∥∥∥∥∥∥∥∥ (20)
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for all u j,w ∈ E and m ∈ N. It can be observed that alternate convexically nonexpansive mappings are
special cases of nonexpansive mappings with center zero. This can easily be established. In fact, it suffices
to take m = 2 and choose u1 = u2 = w ∈ E. Consequently, all the results about fixed points as prior obtained
herein directly hold for the class of convexically nonexpansive mappings.

An immediate superclass of the class of convexically nonexpansive mappings was analysed in different
articles as in the following sense. For a normed space (Y, ∥ · ∥) with a nonempty subset E, a mapping
G : E → E is called κ-alternate convexically nonexpansive provided∥∥∥∥∥∥∥∥ 1

m

m∑
j=1

(−1) j+1Tu j − Tw

∥∥∥∥∥∥∥∥ ≤
∥∥∥∥∥∥∥∥ 1

m

m∑
j=1

(−1) j+1u j − w

∥∥∥∥∥∥∥∥ (21)

for all u j,w ∈ E and 1 ≤ m ≤ κ.
Fallowing [12], we can enrich the alternate convexically mapping as in the following definition.

Definition 6.1. Let Y be a normed space with a nonempty subset E. A mapping G : E → E is called alternate
convexically β-enriched nonexpansive if there exists β ≥ 0 such that∥∥∥∥∥∥∥∥βu + Tu +

β

m

m∑
j=1

(−1) jw j −
1
m

m∑
j=1

(−1) j+1Tw j

∥∥∥∥∥∥∥∥ ≤ (β + 1)

∥∥∥∥∥∥∥∥u − 1
m

m∑
j=1

(−1) j+1w j

∥∥∥∥∥∥∥∥ (22)

for all u,w j ∈ E and m ∈N.

Example 6.2. Let

E =

(sn) ∈ ℓ1 :
∞∑

n=1

sn = 1


and consider G : E → E defined by

G(u) =
(
−3u1, 4u1

− 3u2, 4u2
− 3u3, 4u3

− 3u4, 4u4
− 3u5, . . .

)
for all u =

(
u1,u2,u3,u4, . . .

)
∈ E. Observe that for every y =

(
y1, y2, y3, . . .

)
∈ E,

3y + Gy = 4
(
0, y1, y2, y3, . . .

)
.

Now, let m ∈N and u,w j ∈ E. Then∥∥∥∥∥∥∥∥3u + Gu +
3
m

m∑
j=1

(−1) jw j −
1
m

m∑
j=1

(−1) j+1Gw j

∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥3u + Gu −
1
m

m∑
j=1

(−1) j+1
(
3w j + Gw j

)∥∥∥∥∥∥∥∥
= 4

∥∥∥∥∥∥∥∥
(
0,u1,u2,u3, . . .

)
−

1
m

m∑
j=1

(−1) j+1
(
0,w1

j ,w
2
j ,w

3
j , . . .
)∥∥∥∥∥∥∥∥

= (3 + 1)

∥∥∥∥∥∥∥∥u − 1
m

m∑
j=1

(−1) j+1w j

∥∥∥∥∥∥∥∥ .
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Therefore, G : E → E is alternate convexically β-enriched nonexpansive mapping with β = 3. Moreover, for
m = 2, take w1 = w2 ∈ E and u = (1, 0, 0, 0, · · · ). Then we have∥∥∥∥∥∥∥∥1

2

2∑
j=1

(−1) j+1Tw j − Tu

∥∥∥∥∥∥∥∥ = ∥Tu∥ = ∥(−3, 4, 0, 0, · · · )∥ > 1 =

∥∥∥∥∥∥∥∥1
2

2∑
j=1

(−1) j+1w j − u

∥∥∥∥∥∥∥∥
which implies that G is not alternate convexically nonexpansive.

Similarly, we can enrich κ-alternate convexically nonexpansive mapping as in below.

Definition 6.3. Let Y be a normed space with a nonempty subset E. A mapping G : E → E is called κ-alternate
convexically β-enriched nonexpansive if there exists β ≥ 0 such that∥∥∥∥∥∥∥∥βu + Tu +

β

m

m∑
j=1

(−1) jw j −
1
m

m∑
j=1

(−1) j+1Tw j

∥∥∥∥∥∥∥∥ ≤ (β + 1)

∥∥∥∥∥∥∥∥u − 1
m

m∑
j=1

(−1) j+1w j

∥∥∥∥∥∥∥∥ (23)

for all u j,w ∈ E and 1 ≤ m ≤ κ.

Remark 6.4. The class of alternate convexically β-enriched nonexpansive is properly contained in the class of κ-
alternate convexically β-enriched nonexpansive. Note that [22, Example 4] provides example of 0-enriched nonex-
pansive that is not 2-alternate convexically 0-enriched nonexpansive.

Remark 6.5. It is clear from (22) and (23) that every alternate (resp. κ-alternate) convexically nonexpansive mapping
is alternate (resp. κ-alternate) convexically 0-enriched nonexpansive

Remark 6.6. Note that every κ-alternate convexically β-enriched nonexpansive for κ ≥ 2 is a β-enriched nonexpan-
sive mapping with center zero. Indeed, it suffices to take κ = 2 and set u = w1 = w2. Thus the established results also
hold for all κ-alternate convexically β-enriched nonexpansive mappings.

Corollary 6.7. Let E be a nonempty closed convex subset of a reflexive strictly convex Banach space (Y, ∥ · ∥) and
G : E → E be a κ-alternate convexically β-enriched nonexpansive mapping. Then G has a fixed point.

7. Conclusion Remarks

In this work we studied enriched asymptotically nonexpansive mapping with center zero in the setting of
complete norm spaces. We proved existence of fixed points of the studied mappings when certain classical
conditions are imposed into the spaces. Following the geometry of enriched nonexpansive mappings, we
defined κ-alternate convexically β-enriched nonexpansive mappings and show that its contained in the
class of the studied mappings. Our results complements and unified several recent results in the literature
including the results of [11], [21], [10] and [22].

For future works, it is natural to ask if such results can be achieved in the framework of geodesically
connected spaces such as CATp(0) spaces since the setting share many useful properties of strictly convex
spaces and search for possible applications as in [9, 24].

Acknowledgements
The authors acknowledge the financial support provided by the Center of Excellence in Theoretical and

Computational Science (TaCS-CoE), KMUTT. Moreover, this research project was supported by Thailand
Science Research and Innovation (TSRI) Basic Research Fund: Fiscal year 2023 under project number
FRB660073/0164. The first author was supported by the “Petchra Pra Jom Klao Ph.D. Research Scholarship”
from ”King Mongkut’s University of Technology Thonburi” with the contract number 67/2563. The idea
of this paper was initiated while the fourth author (Dhananjay Gopal) visited KMUTT during 14–22 June
2022, under a Visiting Professor grant from KMUTT.



S. Salisu et al. / Filomat 38:1 (2024), 343–356 356

Availability of data and material
Not applicable.

Conflict Interests
The authors declare that they have no conflict of interest.

Authors’ Contributions
The authors wrote, read and approved the final manuscript.

Funding
This research was funded by Thailand Science Research and Innovation (TSRI) Basic Research Fund:

Fiscal year 2023 under project number FRB660073/0164. The first author was supported by the “Petchra Pra
Jom Klao Ph.D. Research Scholarship” from ”King Mongkut’s University of Technology Thonburi” with
the contract number 67/2563. The idea of this paper was initiated while the last author (Dhananjay Gopal)
visited KMUTT during 14–22 June 2022, under a Visiting Professor grant from KMUTT. He thanks Professor
Poom Kumam and the University for their hospitality and support. He also thank to administration of
GGV Bilaspur.

References

[1] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133–81.
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[12] V. Berinde, M. Păcurar,Approximating fixed points of enriched contractions in Banach spaces, J. Fixed Point Theory Appl. 22 (2020).
[13] V. Berinde, Approximating fixed points of enriched nonexpansive mappings in Banach spaces by using a retraction-displacement condition,

Carpathian J. Math. 36 (2020), 27–34.
[14] S. Salisu, P. Kumam, S. Sriwongsa, On fixed points of enriched contractions and enriched nonexpansive mappings, Carpathian J. Math.

39 (2023), 237–254.
[15] M. Abbas, R. Anjum, V. Berinde, Enriched multivalued contractions with applications to differential inclusions and dynamic programming

Symmetry 13 (2021), 1350.
[16] R. Shukla, R. Pant, Some fixed point results for enriched nonexpansive type mappings in Banach spaces, Appl Gen. Topol. 23 (2022),

31-43.
[17] T. Kesahorm, W. Sintunavarat, On novel common fixed point results for enriched nonexpansive semigroups, Thai J. Math. 18 (2020),

1549–63.
[18] K. Goebel, W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972) 171–174.
[19] A. T. M. Lau, Y. Zhang, Fixed point properties for semigroups of nonlinear mappings on unbounded sets, J. Math. Anal. Appl. 433 (2016),

1204–1219.
[20] K. Goebel, R. Simeon, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Dekker, 1984.
[21] P.N. Dowling, On a fixed point result of Amini-Harandi in strictly convex Banach spaces, Acta Math Hungar. 112 (2006), 85–8.
[22] A. Amini-Harandi, A fixed point result in strictly convex Banach spaces Acta. Math. Hungar. 105 (2004), 139–43.
[23] E. Llorens-Fuster, E. Moreno Gálvez The fixed point theory for some generalized nonexpansive mappings, Abstract and Applied

Analysis, (2011), 1–15.
[24] S. Salisu, P. Kumam, S. Sriwongsa, Strong convergence theorems for fixed point of multi-valued mappings in Hadamard spaces, Journal

of Inequalities and Applications, 2022, 1–28.


