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Abstract. Framelets generalize orthogonal wavelets by adding the desired properties of redundancy in
their systems and flexibility in their construction. These extra features greatly improve their performance
over orthogonal wavelets in applications such as image denoising and data processing. The main objective
of this paper is to study fractional framelets associted with the fractional refinable functions that are obtained
via unitary extension principles. Furthermore all the possible solutions of the matrix equations that arise
in the study are obtained. Towards the end it is shown that the problem of extension has always a solution
with two fractional framelets.

1. Introduction.

Fourier transform is one of the most valuable and frequently used tools in signal processing and analysis.
For Fourier transform, a signal can be represented either in the time or in the frequency domain, and it
can be viewed as the time-frequency representation of a signal. In 1980, Victor Namias [23] introduced the
concept of fractional Fourier transform (FrFT) as a generalization of the conventional Fourier transform to
solve certain problems arising in quantum mechanics. It is also referred as rotational Fourier transform or
angular Fourier transform since it depends on a parameter α which is interpreted as a rotation by an angle
α in the time-frequency plane. Like the ordinary Fourier transform corresponds to a rotation in the time
frequency plane over an angle α = 1 × π/2, the FrFT corresponds to a rotation over an arbitrary angle
α = ρ × π/2 with ρ ∈ R.It has applications in different fields like quantum mechanics [23], optics [25, 26],
signal processing [17, 22, 30, 34, 37], and image processing [18, 35, 36]. Although the FrFT has a number of
attractive properties, the fractional Fourier representation of a signal only provides overall FrFD- frequency
content with no indication about the occurrence of the FrFD spectral component at a particular time. Since
the FrFT uses a global kernel like Fourier transform, it fails in locating the FrFD spectral contents which is
required in some applications. The concept of FrWT was initially proposed in [21], where FrFT is firstly
used to derive the fractional spectrum of a signal and wavelet transform is then performed on the obtained
fractional spectrum. Since the fractional spectrum derived by the FrFT only represents the FrFD-frequency
over the entire duration of the signal, the FrWT defined in [21] actually fails in obtaining the information
of the local property of the signal. In [16], a fractional wave packet transform was developed and the basic
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idea is to introduce the wavelet basis function to FrFT. More recently, a new FrWT was proposed in [32]
based on the concept of fractional convolution. In [31], the notion of fractional wavepacket systems in L2(R)
is introduced and the correponding frames are characterized.

Multiresolution analysis is an important mathematical tool since it provides a natural framework
for understanding and constructing discrete wavelet systems. The concept of MRA has been extended
in various ways in recent years. These concepts are generalized to L2

(
Rd
)
, to lattices different from Zd,

allowing the subspaces of MRA to be generated by Riesz basis instead of orthonormal basis, admitting a
finite number of scaling functions, replacing the dilation factor 2 by an integer M ≥ 2 or by an expansive
matrix A ∈ GLd(R) as long as A ⊂ AZd. All these concepts are developed on regular lattices, that is the
translation set is always a group. In the heart of any MRA, there lies the concept of scaling functions.
Cifuentes et al.[11] characterized the scaling function of MRA in a general settings .The multiresoltion
analysis whose scaling functions are characteristic functions some elementary properties of MRA of L2(Rn)
are established by Madych [19]. Zhang [38] studied scaling functions of standard MRA and wavelets.
Zhang [38] characterized support of the Fourier transform of scaling functions. The multiresolution analysis
(MRA) associated with corresponding to FrWT [32] was then given in [33]. Since this kind of FrWT analyze
the signal in time-frequency-FrFD domain, its physical meaning requires deeper interpretation. Another
kind of FrWT which was developed in [28] solves the issue in [32] since the analysis only involves time-
FrFD domain. For more about frames and framelets , we refer to [1–7, 12, 13, 15, 29]. Recently Ahmad
et al [8] established the theory of fractional biorthogonal wavelets in L2(R) and in [12] established the
characterization of scaling functions associated with fractional MRA. Motivated ans inspired by the work
of Petukhov[27], we in this paper study fractional framelets associted with the fractional refinable functions
that are obtained via unitary extension principles. Furthermore all the possible solutions of the matrix
equations that arise in the study are obtained. Towards the end it is shown that the problem of extension
has always a solutuon with two fractional framelets.

The paper is structured as follows. In section 2, we discuss the preliminaries about the fractional
Fourier transform, fractional refinable functions and the corresponding fractional MRA and discuss the
main problem of the extension. Section 3 is devoted to showthat the problem of extension has always a
solutuon with two fractional framelets.

2. Preliminaries

This section gives the basic background to the theory of fractional Fourier and wavelet transforms which is
as follows.

The fractional Fourier transform with parameter α of function f (t) is defined by

Fα

{
f (t)
}
(ξ) = f̂ α(ξ) =

∫
∞

−∞

Kα(t, ξ) f (t) dt, (2.1)

whereKα(t, ξ) is called kernel of the FrFT given by

Kα(t, ξ) =


Cα exp

{
i(t2 + ξ2)

cotα
2
− itξ csc α

}
, α , nπ,

δ(t − ξ), α = 2nπ,
δ(t + ξ), α = (2n ± 1)π,

(2.2)

α = ρπ/2 denotes the rotation angle of the transformed signal for FrFT, the FrFT operator is designated by
Fα and

Cα = (2πi sinα)−1/2 eiα/2 =

√
1 − i cotα

2π
. (2.3)
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The corresponding inversion formula is given by

f (t) =
∫
∞

−∞

Kα(t, ξ) f̂ α(ξ) dξ, (2.4)

where

Kα(t, ξ) =
(2πi sinα)1/2 e−iα/2

sinα
· exp

{
−i(t2 + ξ2) cotα

2
+ itξ csc α

}
= Cα exp

{
−i(t2 + ξ2) cotα

2
+ itξ csc α

}
= K−α(t, ξ) (2.5)

and

Cα =
(2πi sinα)1/2e−iα/2

2π sinα
=

√
1 + i cotα

2π
= C−α. (2.6)

Definition 2.1 Let φ ∈ L2(R) be a real valued function satisfying

(i) Θα(2u) = Λα(u)Θα(u), where Λα is essentially 2π sinα- periodic function and Θα is the FrFT of φ.

(ii) limu→0Θα(u) =
1

√
2π sinα

,

then the function φ is called fractional refinable or fractional scaling, Λα is called symbol of φ and the relation
(i) is called fractional refinement equation.

Every fractional refinable function generates a fractional multiresolution analysis of the space L2(R)
i.e, a sequence of closed subspaces {Vα

j } ∈ L2(R) such that

(a) Vα
j ⊆ Vα

j+1, j ∈ Z;

(b)
⋃

j∈Z Vα
j is dense in L2(R);

(c)
⋂

j∈Z Vα
j = {0};

(d) f (t) ∈ Vα
j if and only if f (2t) exp

{ i
2

[
(2t)2

− t2
]

cotα
}
∈ Vα

j+1, j ∈ Z.

The most popular method for the design of orthogonal and biorthogonal wavelets is based on the
construction of fractional MRA of the space L2(R), generated with a given fractional refinable function. It
is well known fact that if the system

{
φ(t − n) exp

{
− j(tn + n2) cotα

}
: n ∈ Z

}
constitute a Reisz basis of the

space Vα
0 , then there exists a fractional refinable function ϕ ∈ Vα

0 with the symbol Λα,ϕ such that the system{
ϕ(t − n) exp

{
− j(tn + n2) cotα

}
: n ∈ Z

}
forms an orthonormal basis of the space Vα

0 .

If we use the notation Wα
j to denote the orthogonal complement of the space Vα

j in the space Vα
j+1 then

the wavelet function ψ, defined by the relation

Fα{ψ}(2u) = Λα,ψ(u)Fα{ϕ}(u),

where Λα,ψ(u) = exp {−iu cscα}Λα,ϕ (u + π sinα), generates orthonormal basis{
ψ(t − n) exp

{
− j(tn + n2) cotα

}
: n ∈ Z

}
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of the space Wα
0 . Thus the system{

2
k
2ϕ(2kt − n) exp

{
−i
2

[
t2
− (2−kn)2

− (2kt − n)2
]

cotα
} }

(1)

constitutes an orthonormal basis of the space L2(R).

We see that if we have a fractional refinable function, generating a Reisz basis then we have an explicit
formula for the wavelets associated with the given fractional refinable function. This assures a simple
method for constructing wavelets. Generally, any orthonormal basis of L2(R) of the form (1) is called a
fractional wavelet system. However, the construction of wavelets based on fractional MRA has an advantage
from the point of view effectiveness of computational algorithm and reconstruction.

The problem of finding orthonormal wavelet basis, generated by the fractional scaling function is
equivalent to solving the matrix equation

Mα(u)M∗

α(u) = I (2)

where

Mα(u) =

 Λα(u) Γα(u)

Λα(u + π sinα) Γα(u + 2π sinα)


and Λα(u),Γα(u) are essentially bounded functions Λα(−u) = Λα(u). It is clear that for any fractional scaling
function φ(t) and the associated fractional wavelet ψ(t), generating an orthogonal wavelet basis with the
corresponding symbols Λα(u),Γα(u) satisfying the matrix equation (2). Any fractional refinable function
φ, whose symbol Λα is a solution of (2), generates a tight frame. we cannot look independently for the
functions Λα and Γα. In fact, we find a solution of the equation

|Λα(u)|2 + |Λα(u + π sinα)|2 = 1, (3)

and then all possible functions Γα can be represented in the form

Γα(u) = Jα(u) exp {−inu cscα}Λα(u + ı sinα) (4)

where Jα(u) is an arbitrary π sinα - periodic function satisfying |Jα(u)| = 1, Jα(−u) = Jα(u).

Now suppose we have an arbitrary fractional refinable function φwith the symbolΛα which does not
satisfy (3). Then the set

{
φ(t − n) exp

{
− j(tn + n2) cotα

}
: n ∈ Z

}
does not constitute an orthonormal basis

of Vα
0 . If this set forms a Reisz basis, then we can use orthogonalization. However, in this case when the

function φ has a compact support, this property fails for the orthogonalized basis. This argument argues
for construction other systems under support compactness.

It is easy to design a fractional refinable function such that the MRA associated with it does not allow

othogonalization. If we introduce a fractional refinable functionφ(t) =
sinπa(t − n)
π(t − n)

exp
{
−i

(t2
− n2)
2

cotα
}
,

where 0 < a < 1. It generates the space Vα
0 which is the space of functions in L2(R) with Fourier transform

supported on [−2aπ sinα, 2aπ sinα]. Therefore, for any function f ∈ Vα
0 the function

∑
k∈Z

∣∣∣Fα{ f }(u + 2kπ sinα)
∣∣∣2

vanishes on the set [−2π sinα, 2π sinα] \ [−2aπ sinα, 2aπ sinα].Hence, its integral translates do not form an
orthonormal bases . Thus in this case the classical procedure for orthonormal basis construction cannot be
used. By the same argument we can say that with this MRA a biorthogonal pair cannot be constructed.

In the context when the symbol Λα of a fractional refinable function φ does not satisfy (3) we cannot
construct an orthonormal bases of Vα

1 of the form{
φ(t − n) exp

{
− j(tn + n2) cotα

}
, ψ(t − n) exp

{
− j(tn + n2) cotα

}}
.
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However, we can expect that there exists a collection of fractional frameletsψ1, ψ2, ψ3, ..., ψn
∈ Vα

1 , satisfying
the following conditions :

(i) the functions
{
{ψℓ

α, j,k} j,k∈Z

}n

ℓ=1
, where

ψℓα, j,k(t) = 2
j
2ψℓ(2 jt − n) exp

{
−i
2

[
t2
− (2− jn)2

− (2 jt − n)2
]

cotα
}
,

form a tight frame of the space L2(R).

(ii) for any f ∈ L2(R), decomposition and reconstruction algorithm recurrent formulae are :〈
φα, j,k, f

〉
= cα, j,ℓ =

∑
k∈Z

cα, j+1,khk−2ℓ,

〈
φ1
α, j,k, f

〉
= dq

α, j,ℓ =
∑
k∈Z

cα, j+1,k1
q
k−2ℓ, 1 ≤ q ≤ n, (5)

and

cα, j+1,ℓ =
∑
k∈Z

cα, j,khℓ−k +

n∑
q=1

∑
k∈Z

dq
α, j,k1

q
ℓ−k, (6)

where hk, 1
q
k are coefficients of the expansions

Λα(u) = 2−1/2
∑
k∈Z

hke−ik cscα

and
Λ

q
α(u) = 2−1/2

∑
k∈Z

1
q
ke−ik cscα, 1 ≤ q ≤ n

take place.

The main purpose of the next section is to ascertain that this problem can be solved with at most two
fractional framelets and to propose explicit formulae for the symbols of fractional framelets.

3. Explicit Formula for Fractional Framelets

Let φ be a fractional refinable function with the symbol Λα,Fα{ψk
}(u) = Λk

α(u/2)Fα{ϕ}(u/2) ∈ Vα
1 , where

each symbol Λk
α is a 2π sinα - periodic and essentially bounded function for 1 ≤ k ≤ n.It is clear that, the

following matrix plays an important role for constructing tight frames

Mα(u) =

 Λ0
α(u) Λ1

α(u) ... Λn
α(u)

Λ0
α(u + π sinα) Λ1

α(u + π sinα) ... Λn
α(u + π sinα)


It can be easily seen that the matrix equality

Mα(u)M∗

α(u) = I (7)

is equivalent to (5) and (6) and it also implies the tightness of the corresponding frame.

Lemma 3.1. Let the symbols
{
Λk
α

}n
k=0

satisfy equation (7). Then we have∣∣∣Λℓα(u)
∣∣∣2 + ∣∣∣Λℓα(u + π sinα)

∣∣∣2 ≤ 1, 0 ≤ ℓ ≤ n. (8)
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Proof. Without loss of generality, it is sufficient to prove inequality (8) only for ℓ = 0. Here we rewrite the
equation (7) in the following form

Mα(u) :=Mα,ψ(u)M∗

α,ψ(u) =

 1 − |Λα(u)|2 −Λα(u)Λα(u + π sinα)

−Λα(u)Λα(u + π sinα) 1 − |Λα(u + π sinα)|2

 (9)

where

Mα,ψ(u) =

 Λ1
α(u) Λ2

α(u) ... Λn
α(u)

Λ1
α(u + π sinα) Λ2

α(u + π sinα) ... Λn
α(u + π sinα)

 .
The above Hermitian matrix Mα(u) has eigenvalues λ1(u) = 1 and λ2(u) = 1 − |Λα(u)|2 − |Λα(u + π sinα)|2.
By using (9),Mα(u) is positive definite matrix. Hence λ2(u) ≥ 0, which is the equation (8) for ℓ = 0. □

Lemma 3.2. If Φ ∈ L2(R) is a fractional refinable function with a symbol Λα(u) that satisfies the condition

|Λα(u)|2 + |Λα(u + π sinα)|2 ≤ 1, a. e., (10)

then Sαj :=
∑
k∈Z

∣∣∣∣〈 f ,Φα, j,k
〉∣∣∣∣2 < ∞ for any function f ∈ L2(R) and

(i) lim
j→∞
Sαj = ∥ f ∥2; (ii) lim

j→−∞
Sαj = 0,

where Φα, j,k = 2
j
2Φ(2 jt − n) exp

{
−i
2

[
t2
− (2− jn)2

− (2 jt − n)2
]

cotα
}
.

Proof. First we prove the inequality∑
k∈Z

|Fα{Φ}(u + 2πk sinα)|2 ≤
1

2π sinα
. (11)

By virtue of (10) and the continuity of Fα{Φ}(u) at u = 0 we have |Fα{Φ}(u)| ≤ (2π sinα)−1/2 a.e. Thus, for
any positive ℓ ∈ Zwe obtain

2ℓ−1∑
k=−2ℓ

|Fα{Φ}(u + 2πk sinα)|2 =
2ℓ−1∑

k=−2ℓ

ℓ+1∏
n=1

∣∣∣Λα (2−n(u + 2πk sinα))
∣∣∣2 ∣∣∣∣Fα{Φ} (2−ℓ−1(u + 2πk sinα)

)∣∣∣∣2

≤
1

2π sinα

2ℓ−1∑
k=−2ℓ

ℓ+1∏
n=1

∣∣∣Λα (2−n(u + 2πk sinα))
∣∣∣2

≤
1

2π sinα

2ℓ−1∑
k=0

ℓ+1∏
n=1

∣∣∣Λα (2−n(u + 2πk sinα))
∣∣∣2

+
1

2π sinα

2ℓ−1∑
k=0

ℓ+1∏
n=1

∣∣∣∣Λα (2−n(u + 2π(k − 2ℓ) sinα)
)∣∣∣∣2

≤
1

2π sinα

2ℓ−1∑
k=0

ℓ+1∏
n=1

∣∣∣Λα (2−n(u + 2πk sinα))
∣∣∣2
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≤
1

2π sinα

2ℓ−1
−1∑

k=0

ℓ+1∏
n=1

∣∣∣Λα (2−n(u + 2πk sinα))
∣∣∣2

+
1

2π sinα

2ℓ−1
−1∑

k=0

ℓ+1∏
n=1

∣∣∣∣Λα (2−n(u + 2π(k − 2ℓ−1) sinα)
)∣∣∣∣2

≤
1

2π sinα

2ℓ−1
−1∑

k=0

ℓ+1∏
n=1

∣∣∣Λα (2−n(u + 2πk sinα))
∣∣∣2

≤ · · · ≤
1

2π sinα
.

On applying the Parseval and Plancherel formulae, we have∑
k∈Z

∣∣∣∣〈 f ,Φα, j,k
〉∣∣∣∣2 = 2π sinα2− j

∑
k∈Z

∣∣∣∣∣∫ ∞

−∞

Fα{ f }(u)Fα{Φ}(2− ju)ei2− jku cscα du
∣∣∣∣∣2

= 2π sinα2− j
∑
k∈Z

∣∣∣∣∣∣∣
∫ 2 jπ sinα

−2 jπ sinα

∑
n∈Z

Fα{ f }(u + 2π sinα2 jn)Fα{Φ}(2− j(u + 2π sinα2 jn)

 ei2− jku cscα du

∣∣∣∣∣∣∣
2

= (2π sinα)2
∫ 2 jπ sinα

−2 jπ sinα

∣∣∣∣∣∣∣∑n∈Z Fα{ f }(u + 2π sinα2 jn)Fα{Φ}(2− j(u + 2π sinα2 jn)

∣∣∣∣∣∣∣
2

du

=
(
2π sinαFα, j

)2
, (12)

where Fα, j =
∑
n∈Z

Fα{ f }(u + 2π sinα2 jn)Fα{Φ}(2− j(u + 2π sinα2 jn). We introduce the following sequences of functions

Fα{1 j}(u) =

 Fα{ f }(u) |u| < 2 jπ sinα
0 |u| ≥ 2 jπ sinα

h j = f − 1 j, j = 0, 1, 2, . . .

Gα, j(u) =
∑
n∈Z

Fα{1 j}(u + 2π sinα2 jn)Fα{Φ}(2− j(u + 2π sinα2 jn)

Hα, j(u) =
∑
n∈Z

Fα{h j}(u + 2π sinα2 jn)Fα{Φ}(2− j(u + 2π sinα2 jn).

It is clear that ∥Gα, j∥ → (2π sinα)−1/2
∥ f ∥ as j→∞. Further, in view of the equation (11), we have

∥Hα, j∥
2 =

∫ 2 jπ sinα

−2 jπ sinα

∣∣∣∣∣∣∣∑n∈Z Fα{h j}(u + 2π sinα2 jn)Fα{Φ}(2− j(u + 2π sinα2 jn)

∣∣∣∣∣∣∣
2

du

=

∫ 2 jπ sinα

−2 jπ sinα

∣∣∣∣∣∣∣∑n∈Z Fα{h j}(u + 2π sinα2 jn)

∣∣∣∣∣∣∣
2∑

n∈Z

∣∣∣Fα{Φ}(2− j(u + 2π sinα2 jn)
∣∣∣2 du
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≤
1

2π sinα

∫ 2 jπ sinα

−2 jπ sinα

∣∣∣∣∣∣∣∑n∈Z Fα{h j}(u + 2π sinα2 jn)

∣∣∣∣∣∣∣
2

du

=
1

2π sinα
∥Fα{h j}∥

2
→ 0, as j→ +∞. (13)

Since ∥Gα, j∥ − ∥Hα, j∥ ≤ ∥Gα, j +Hα, j∥ ≤ ∥Gα, j∥ − ∥Hα, j∥, therefore it follows from (12) and (13) that∑
k∈Z

∣∣∣∣〈 f ,Φα, j,k
〉∣∣∣∣2 = (2π sinαFα, j

)2
→ 2π sinα∥Fα{ f }∥2 as j→∞

= ∥ f ∥2.

Thus, relation (i) is proved.

Now we shall proceed to establish (ii). We use the notation χT the characteristic function of a segment [−T,T] and
fT the function fχT. For a fixed ϵ > 0, we choose T > 0 such that ∥ f − fT∥ < ϵ. Since∑

k∈Z

∣∣∣∣〈 f ,Φα, j,k
〉∣∣∣∣2 ≤∑

k∈Z

∣∣∣∣〈 fT,Φα, j,k
〉∣∣∣∣2 + 2

∑
k∈Z

∣∣∣∣〈 f − fT,Φα, j,k
〉∣∣∣∣2

≤ 2
∑
k∈Z

∣∣∣∣〈 fT,Φα, j,k
〉∣∣∣∣2 + ∥ f − fT∥

π

≤

∑
k∈Z

∣∣∣∣〈 fT,Φα, j,k
〉∣∣∣∣2 + ϵ/π.

Here we need only to prove that lim j→−∞ 2
∑
k∈Z

∣∣∣∣〈 fT,Φα, j,k
〉∣∣∣∣2 = 0. If we assume that 2 jT ≤ 1/2, then the above relation

follows from the following chain of arguments

∑
k∈Z

∣∣∣∣〈 f ,Φα, j,k
〉∣∣∣∣2 =∑

k∈Z

{∫
|t|≤T

f (t)Φα, j,k(t) dt
}2

≤ ∥ f ∥2
∑
k∈Z

∫
|t|≤T
Φ2
α, j,k(t) dt

= ∥ f ∥2
∑
k∈Z

∫
|t+k|≤2 jT

Φ2(t) dt

= ∥ f ∥2
∑
k∈Z

∫
∪k∈Z[−2 jT+k,2 jT+k]

Φ2(t) dt

→ 0 as j→ −∞.□

Lemma 3.3. If the equation (7) holds, then for any f ∈ L2(R) and J ∈ Z

n∑
k=1

∑
j,ℓ∈Z

∣∣∣∣〈 f , ψk
α, j,ℓ

〉∣∣∣∣2 =∑
ℓ∈Z

∣∣∣∣〈 f , ϕα,J,ℓ
〉∣∣∣∣2 + n∑

k=1

∑
j≥J

∑
ℓ∈Z

∣∣∣∣〈 f , ψk
α, j,ℓ

〉∣∣∣∣2 < ∞.
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Proof. It follows from equation (7) that
k∑
ℓ=1

|Λℓα(u)|2 = 1,

n∑
ℓ=1

Λℓα(u)Λℓα(u + π sinα) = 0.

We introduce the notations

∆α1 =
∑
ℓ∈Z

Fα{ f }(u + 2π2L+1ℓ sinα)Fα{ϕ} (2−L−1u + 2πℓ sinα),

∆α2 =
∑
ℓ∈Z

Fα{ f }(u + 2π2L+1ℓ sinα + 2π2L sinα)Fα{ϕ} (2−L−1u + 2πℓ sinα + π sinα),

By analogy with (12), for any L ∈ Z, we have

∑
ℓ∈Z

∣∣∣〈 f , φα,L,ℓ
〉∣∣∣2 + n∑

k=1

∑
ℓ∈Z

∣∣∣∣〈 f .ψk
α,L,ℓ

〉∣∣∣∣2
= (2π sinα)2

∫ 2Lπ sinα

−2Lπ sinα

∣∣∣∣∣∣∣∑ℓ∈Z Fα{ f }(u + 2π2Lℓ sinα)Fα{ϕ} (2−L(u + 2π2Lℓ sinα)

∣∣∣∣∣∣∣
2

du

+ (2π sinα)2
n∑

k=1

∫ 2Lπ sinα

−2Lπ sinα

∣∣∣∣∣∣∣∑ℓ∈Z Fα{ f }(u + 2π2Lℓ sinα)Fα{ϕk} (2−L(u + 2π2Lℓ sinα)

∣∣∣∣∣∣∣
2

du

= (2π sinα)2
n∑

k=0

∫ 2Lπ sinα

−2Lπ sinα

∣∣∣∣∣∣∣∑ℓ∈Z Fα{ f }(u + 2π2Lℓ sinα)

× Λk
α (2−L−1(u + 2π2Lℓ sinα)Fα{ϕk} (2−L−1(u + 2π2Lℓ sinα)

∣∣∣∣2 du

= (2π sinα)2
∫ 2Lπ sinα

−2Lπ sinα

∣∣∣∣∆α1 (u)Λk
α(2−L−1u)

∣∣∣∣2 du

+ (2π sinα)2
∫ 2Lπ sinα

−2Lπ sinα

∣∣∣∣∆α2 (u)Λk
α(2−L−1u + π sinα)

∣∣∣∣2 du

+ (2π sinα)2
∫ 2Lπ sinα

−2Lπ sinα
∆α1 (u)Λk

α(2−L−1u)∆α2 (u)Λk
α(2−L−1u + π sinα) du

+ (2π sinα)2
∫ 2Lπ sinα

−2Lπ sinα
∆α1 (u)Λk

α(2−L−1u + π sinα)∆α2 (u)Λk
α(2−L−1u) du

= (2π sinα)2
∫ 2Lπ sinα

−2Lπ sinα

∣∣∣∣∣∣∣∑ℓ∈Z Fα{ f }(u + 2π2L+1ℓ sinα)Fα{ϕ} (2−L−1u + 2πℓ sinα)

∣∣∣∣∣∣∣
2

du

+ (2π sinα)2
∫ 2Lπ sinα

−2Lπ sinα

∣∣∣∣∣∣∣∑ℓ∈Z Fα{ f }(u + 2π2L+1ℓ sinα + 2π2L sinα)
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× Fα{ϕ} (2−L−1u + 2πℓ sinα + π sinα)
∣∣∣∣2 du

= (2π sinα)2
∫ 2Lπ sinα

−2Lπ sinα

∣∣∣∣∣∣∣∑ℓ∈Z Fα{ f }(u + 2π2L+1ℓ sinα)Fα{ϕ} (2−L−1u + 2πℓ sinα)

∣∣∣∣∣∣∣
2

du

=
∑
ℓ∈Z

∣∣∣〈 f , φα,L+1,ℓ
〉∣∣∣2 < ∞.

By invoking Lemma 2.2. we obtain Lemma 2.3.□

As an easy consequence of Lemmas 2.1.-2.3., we have the following theorem.

Theorem 3.1. If the equation (7) holds, then the functions {ψk
}
n
k=1 generate a tight frame of L2(R).

Thus, the problem of constructing tight frames, generated by a fractional refinable function can be reduced to
finding Λk

α, that satisfy the equation (7). Here we shall describe all possible solutions to (7).

Let the symbol Λ0
α satisfy (10). The unit vectors of the matrixM(u) can be represented in the form

−→ν 1(u) =



eiu cscαΛ0
α(u + π sinα)
B(u)

−
eiu cscαΛ0

α(u)
B(u)


, −→ν 2(u) =



Λ0
α(u)
B(u)

Λ0
α(u + π sinα)
B(u)


,

where B(u) , 0 is an arbitrary π sinα− periodic measurable functions, satisfying

|B(u)|2 = |Λ0
α(u)|2 + |Λ0

α(u + π sinα)|2 a.e.

For definiteness, we can take here the positive root of the right-hand expression. For those u when Λ0
α(u) =

λ0
α(u + π sinα) = 0 the matrix M(u) becomes the identity matrix. Therefore, any non-zero vector is its eigenvector. In

this case we put −→ν 1(u) = (1, 0)T, −→ν 2(u) = (0, 1)T. Thus, we have

M(u) = P(u)R(u)P∗(u) (14)

where

P(u) =



eiu cscαΛ0
α(u + π sinα)
B(u)

Λ0
α(u)
B(u)

−
eiu cscαΛ0

α(u)
B(u)

Λ0
α(u + π sinα)
B(u)


and

R(u) =


1 0

0 1 − |Λ0
α(u)|2 − |Λ0

α(u + π sinα)|2

 .
We note that eigenvectors are determined up to multiplication by a scalar function of absolute value 1 a.e. we have
chosen the normalization convenient for further consideration.

Theorem 3.2. Let a 2π sinα-periodic functionΛ0
α(u) satisfy (10). Then there exists a pair of 2π sinα periodic measurable

functions Λ1
α,Λ

2
α satisfy (7) for n = 2. Any solution of (7) can be represented in the form of the first row of the matrix

M̃α(u) = P(u)
√
R(u)Q(u),
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where Q(u) is an unitary matrix with π sinα− periodic measurable components.

Proof. The matrixMα,ψ can be represented in the form of its singular decomposition

Mα,ψ(u) =U(u)V(u)W(u),

whereU,W are unitary matrices,V(u) is a non negative diagonal matrix. The representations may differ by multipli-
cation of columns of the matrix U by functions γ1(u), γ2(u), |γ1(u)| = |γ2(u)| = 1 and simultaneous multiplication of the
rows of the matrixW by γ−1

1 (u) and γ−1
2 (u). Therefore, in view of equations (9) and (14) without loss of generality we

can supposeU,V =
√
R. Here we show that we can take any unitary matrix with π sinα- periodic elements as above,

with Q(u) =W(u). In fact our choice is restricted to such matrices.

For any 2 × 2 matrix C, we denote by CR the matrix with the transposed rows. Further we have

Mα,ψ(u + π sinα) = P(u + π sinα)V(u + π sinα)W(u + π sinα)

= PR(u)V(u)W(u + π sinα)

and
Mα,ψ R = PR(u)V(u)W(u).

SinceMα,ψ R(u) =Mα,ψ(u+π sinα), it means thatW(u+π sinα) =W(u) for atleast for those u and u+π sinα for which
λ2(u) = λ2(u + π sinα) , 0. If λ2(u) = λ2(u + π sinα) = 0, thenMα,ψ(u) does not depend on the choice of the second
row of the matrixW, so that we can take an arbitrary value ofW(u + π sinα) andW(u). In particular, we can assume
W(u + π sinα) =W(u).□
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