Module derivations into iterated duals of triangular Banach algebras

Mahdieh Alikahi ${ }^{\text {a }}$, Mohammad Ramezanpour ${ }^{\text {a,* }}$
${ }^{a}$ School of Mathematics and Computer Science, Damghan University, P. O. Box 36716, Damghan 41167, Iran

Abstract

Let \mathfrak{A} be a Banach algebra, A and B be Banach \mathfrak{A}-module with compatible actions and X be a Banach left A - 2 -module and Banach right B - \mathfrak{N}-module. Then the corresponding triangular Banach algebra $\operatorname{Tri}(A, X, B)$ is a Banach \mathfrak{A}-module with compatible actions. In this paper, we study n-weak module amenability of module extension Banach algebras to provide necessary and sufficient conditions for n-weak module amenability (as an \mathfrak{A}-module) of $\operatorname{Tri}(A, X, B)$, when A and B are not necessarily unital and not have bounded approximate identity. This not only fixes the gaps in some known results in the literature but also extends that results and gives a direct proof for them. Furthermore, we characterize n-weak module amenability of triangular matrix algebras related to inverse semigroups and some triangular Banach algebra related to locally compact groups.

1. Introduction and some Preliminaries

A Banach algebra A is amenable if $H^{1}\left(A, X^{*}\right)=\{0\}$, for every Banach A-bimodule X, where $H^{1}\left(A, X^{*}\right)$ is the first Hochschild cohomology group of A with coefficients in X^{*}. It is n-weakly amenable ($n \geq 0$) if $H^{1}\left(A, A^{(n)}\right)=\{0\}$, where $A^{(n)}$ is the $n^{\text {th }}$-dual space of A and $A^{(0)}=A$. When A is 1 -weakly amenable, it is called weakly amenable. A Banach algebra is called permanently weakly amenable if it is n-weakly amenable for each $n \in \mathbb{N}$. These concepts were introduced and studied by Johnson [14], and Dales et al. [10], respectively. See the monograph [9], for more background.

For a locally compact group G, the famous Johnson's theorem assert that the convolution algebra $L^{1}(G)$ is amenable if and only if G is amenable [14]. Moreover, it is well known that $L^{1}(G)$ is always n-weakly amenable for every $n \in \mathbb{N}$ (for a proof see [8], [10] and [20]). Both of these facts are not true for inverse semigroups in general, [7]. Amini in [1] and Amini et al. in [2] and [4], introduced and studied the concepts of module amenability and n-weak module amenability for Banach algebras which are Banach module over another Banach algebra with compatible actions. These notions could be considered as a generalization of the notions amenability and n-weak amenability of Banach algebras. They extended the classical results on (n-weak) amenability of $L^{1}(G)$ and showed that the inverse semigroup algebra $l^{1}(S)$ is module amenable, as an $l^{1}(E)$-module, if and only if S is amenable [1, Theorem 3.1], and that it is always n-weakly module amenable, when n is odd and $l^{1}(E)$ acts trivially on $l^{1}(S)$ from left and by multiplication from the right [4, Theorem 3.15]. This result for even number $n \in \mathbb{N}$ was proved in [11, Theorem 2.2]. Moreover, it is

[^0]shown in [5, Theorem 2.7, Corollary 2.8] that $l^{1}(S)$ is n-weakly module amenable for all $n \geq 0$, when S is a commutative and $l^{1}(E)$ acts on $l^{1}(S)$ by usual multiplication from both sides.

Forrest and Marcoux [13], studied the n-weak amenability of triangular Banach algebra $\operatorname{Tri}(A, X, B)$ for the case where A and B are unital Banach algebras and X is a unital Banach (A, B)-module. They showed that $\operatorname{Tri}(A, X, B)$ is weakly amenable if and only if both A and B are weakly amenable. The module version of this result was proved in [18]. The n-weak amenability of $\operatorname{Tri}(A, X, B)$, for the case that A and B are not necessarily unital, was investigated by Medghalchi et al. in [16]. Bodaghi and Jabbari [6], extended the results of [16] and studied n-weak module amenability of $\operatorname{Tri}(A, X, B)$. As a main result, they showed in [6, Theorem 4.3] that, if A and B have bounded approximate identity and X is a non-degenerate (A, B)-module, then for $n \geq 0,(2 n+1)$-weak module amenability of $\operatorname{Tri}(A, X, B)$ and that of corner Banach algebras A and B are equivalent. They use [6, Proposition 4.2] in their proof, but the assumptions of this proposition do not appear in [6, Theorem 4.3]. Thus, the result will be valid, if $A^{(2 n-1)}, B^{(2 n-1)}$ and $X^{(2 n-1)}$ are also non-degenerate modules.

This paper is designed to improve and fix gaps in the main results of [6] on n-weak module amenability of $\operatorname{Tr}(A, X, B)$ and extend the results of [16]. For this purpose, we first study n-weak module amenability (as an \mathfrak{H}-module) of the module extension Banach algebra $A \oplus X$, which can be seen as a generalization of triangular Banach algebras. We then, employ our results for $\operatorname{Tri}(A, X, B)$ to not only improve and extend the main results of [6] and [16], but also give necessary and sufficient conditions for $\operatorname{Tri}(A, X, B)$ to be n-weakly module amenable (as an \mathfrak{A}-module).

2. n-Weak module amenability of module extensions

Throughout this paper, A and \mathfrak{A} are Banach algebras such that A is a Banach \mathfrak{A}-module with compatible actions, that is $\alpha \cdot(a b)=(\alpha \cdot a) b$ and $(a b) \cdot \alpha=a(b \cdot \alpha)$ for $a, b \in A, \alpha \in \mathfrak{M}$. Let X be a Banach A-module and a Banach \mathfrak{A}-module with compatible actions, that is

$$
\alpha \cdot(a \cdot x)=(\alpha \cdot a) \cdot x, \quad a \cdot(\alpha \cdot x)=(a \cdot \alpha) \cdot x, \quad(\alpha \cdot x) \cdot a=\alpha \cdot(x \cdot a) \quad(a \in A, \alpha \in \mathfrak{H}, x \in X)
$$

and the same for the right or two-sided actions. Then, we say that X is a Banach $\mathfrak{A}-A$-module. If moreover $\alpha \cdot x=x \cdot \alpha$ for $\alpha \in \mathfrak{A}, x \in X$, then X is called a commutative $\mathfrak{A}-A$-module. If X is a (commutative) Banach \mathfrak{Y} - A-module, then so is X^{*}, where the actions of A and \mathfrak{H} on X^{*} are defined by

$$
\langle\alpha \cdot f, x\rangle=f(x \cdot \alpha), \quad\langle a \cdot f, x\rangle=f(x \cdot a) \quad\left(a \in A, \alpha \in \mathfrak{H}, f \in X^{*}, x \in X\right)
$$

and the same for the other side actions. So, $X^{(n)}$ is a (commutative) Banach \mathfrak{N} - A-module.
Let A and \mathfrak{A} be as above and X and Y be Banach \mathfrak{N} - A-modules. A map $T: X \rightarrow Y$ is called an \mathfrak{A}-module map if

$$
T(x \pm z)=T(x) \pm T(z), \quad T(\alpha \cdot x)=\alpha \cdot T(x), \quad T(x \cdot \alpha)=T(x) \cdot \alpha
$$

for $x, z \in X$ and $\alpha \in \mathfrak{H}$. If moreover, $T(a \cdot x)=a \cdot T(x)$ and $T(x \cdot a)=T(x) \cdot a$ for $x \in X$ and $a \in A$, then T is called an \mathfrak{U} - A-module map. Although T is not necessary linear, but still its boundedness implies its norm continuity.

Let X be a Banach \mathfrak{M} - A-module. A bounded \mathfrak{A}-module map $D: A \rightarrow X$ is called a module derivation if $D(a b)=D(a) \cdot b+a \cdot D(b)$ for $a, b \in A$. When X is commutative, each $x \in X$ defines a module derivation $\operatorname{ad}_{x}(a)=a \cdot x-x \cdot a$ for $a \in A$, which is called an inner \mathfrak{A}-module derivation.

Note that when A acts on itself by algebra multiplication, it is not in general a Banach $\mathfrak{A}-A$-module, as we have not assumed the compatibility condition $a(\alpha \cdot b)=(a \cdot \alpha) b$ for $\alpha \in \mathfrak{A}, a, b \in A$. Let J be the closed ideal of A generated by $\{(a \cdot \alpha) b-a(\alpha \cdot b) ; a, b \in A, \alpha \in \mathfrak{H}\}$. Then, J is an \mathfrak{N}-submodule of A. So, the quotient Banach algebra A / J is a Banach \mathfrak{M}-module with compatible action. We say that A is n-weakly module amenable, as an \mathfrak{N}-module, if A / J is a commutative Banach \mathfrak{M} - A-module, and each \mathfrak{N}-module derivation $D: A \rightarrow(A / J)^{(n)}$ is inner; that is $H_{21}^{1}\left(A,(A / J)^{(n)}\right)=\{0\}$. Also A is called permanently weakly module amenable if A is n-weakly module amenable for each $n \in \mathbb{N}$; see [4] and [5] for more details.

Let A be a Banach algebra and let X be an A-module. Then, the module extension Banach algebra corresponding to A and X is $A \oplus X$, the ℓ^{1}-direct sum $A \times X$ with the algebra multiplication defined by

$$
(a, x) \cdot(b, y)=(a b, a \cdot y+x \cdot b) \quad(a, b \in A, x, y \in X)
$$

Following [19], we take $A^{(n)} \times X^{(n)}$ as the underlying space of $(A \oplus X)^{(n)}$. One can directly check that the $A \oplus X$-module actions on $(A \oplus X)^{(n)}$ for $(a, x) \in A \oplus X$ and $\left(a^{(n)}, x^{(n)}\right) \in A^{(n)} \times X^{(n)}$ are formulated as follows:

$$
\begin{aligned}
& (a, x) \cdot\left(a^{(2 n)}, x^{(2 n)}\right)=\left(a \cdot a^{(2 n)}, a \cdot x^{(2 n)}+x \cdot a^{(2 n)}\right) \\
& (a, x) \cdot\left(a^{(2 n+1)}, x^{(2 n+1)}\right)=\left(a \cdot a^{(2 n+1)}+x \cdot x^{(2 n+1)}, a \cdot x^{(2 n+1)}\right)
\end{aligned}
$$

where $x \cdot a^{(2 n)} \in X^{(2 n)}$ and $x \cdot x^{(2 n+1)} \in A^{(2 n+1)}$ are defined by

$$
\left\langle x \cdot a^{(2 n)}, x^{(2 n-1)}\right\rangle=\left\langle a^{(2 n)}, x^{(2 n-1)} \cdot x\right\rangle, \quad\left\langle x \cdot x^{(2 n+1)}, a^{(2 n)}\right\rangle=\left\langle x^{(2 n+1)}, a^{(2 n)} \cdot x\right\rangle
$$

And similarly for the right module actions.
Zhang in [19], investigated the n-weak amenability of module extension Banach algebras and used them to construct an example of a weakly amenable Banach algebra which is not 3-weakly amenable. In this section, we extend the main results of [19], and characterize n-weak module amenability of module extension Banach algebra $A \oplus X$ in terms of A and X. From now on, we shall assume that $A \oplus X$ is a commutative \mathfrak{A}-module with compatible actions. A simple computation shows that this assumption holds if and only if A is a commutative \mathfrak{A}-module, and X is a commutative $\mathfrak{A}-A$-module.

We start with the following result which is a module version of [19, Theorem 2.1] and can be proved by a similar argument. However, we bring its proof.

Theorem 2.1. Let $n \geq 0$. Then $A \oplus X$ is $(2 n+1)$-weakly module amenable if and only if
(i) A is $(2 n+1)$-weakly module amenable.
(ii) $H_{\mathfrak{2}}^{1}\left(A, X^{(2 n+1)}\right)=\{0\}$.
(iii) For every bounded \mathfrak{A} - A-module map $T: X \rightarrow A^{(2 n+1)}$, there is $g \in X^{(2 n+1)}$ such that $a \cdot g=g \cdot a$ and $T(x)=x \cdot g-g \cdot x$ for all $a \in A$ and $x \in X$.
(iv) The only bounded \mathfrak{A}-A-module map $S: X \rightarrow X^{(2 n+1)}$ for which $S(x) \cdot y+x \cdot S(y)=0$ in $A^{(2 n+1)}$, for all $x, y \in X$, is zero.

Proof. Suppose that conditions (i)-(iv) hold. Let $D: A \oplus X \rightarrow(A \oplus X)^{(2 n+1)}$ be a \mathfrak{A}-module derivation. Then, a direct verification reveals that $D(a, x)=\left(D_{A}(a)+T(x), D_{X}(a)+S(x)\right)$, where the component mappings $D_{A}: A \rightarrow A^{(2 n+1)}$ and $D_{X}: A \rightarrow X^{(2 n+1)}$ are \mathfrak{Q}-module derivations, $T: X \rightarrow A^{(2 n+1)}$ is a bounded \mathfrak{N}-module map such that $T(x \cdot a)=T(x) \cdot a+x \cdot D_{X}(a)$ and $T(a \cdot x)=a \cdot T(x)+D_{X}(a) \cdot x$ and $S: X \rightarrow X^{(2 n+1)}$ is a bounded \mathfrak{Y} - A-module map satisfying $S(x) \cdot y+x \cdot S(y)=0$ in $A^{(2 n+1)}$. By conditions (i) and (ii), D_{A} and D_{X} are inner derivations and by condition (iv), $S=0$. Thus, there are $f \in A^{(2 n+1)}$ and $g_{0} \in X^{(2 n+1)}$ such that $D_{A}=\operatorname{ad}_{f}$ and $D_{X}=\operatorname{ad}_{g_{0}}$. Define $T_{1}: X \rightarrow A^{(2 n+1)}$ by

$$
T_{1}(x)=T(x)-x \cdot g_{0}+g_{0} \cdot x
$$

It simply follows from commutativity \mathfrak{M}-module X that, T_{1} is a $\mathfrak{A}-A$-module map. Thus, from (iii), there exists $g_{1} \in X^{(2 n+1)}$ such that $a \cdot g_{1}=g_{1} \cdot a$ and $T_{1}(x)=x \cdot g_{1}-g_{1} \cdot x$. It follows that $T(x)=x \cdot g-g \cdot x$ and $D_{\mathrm{X}}=\operatorname{ad}_{g}$, where $g=g_{0}+g_{1}$. Consequently,

$$
\begin{align*}
D(a, x) & =\left(D_{A}(a)+T(x), D_{X}(a)+S(x)\right) \\
& =\left(\operatorname{ad}_{f}(a)+x \cdot g-g \cdot x, \operatorname{ad}_{g}(a)\right) \tag{1}\\
& =\operatorname{ad}_{(f, g)}(a, x)
\end{align*}
$$

for all $(a, x) \in A \oplus X$. This complete the proof of sufficiency.
For necessity, suppose that $A \oplus X$ is $(2 n+1)$-weakly module amenable, as an \mathfrak{N}-module. Let $d: A \rightarrow A^{(2 n+1)}$ be a \mathfrak{A}-module derivation. Then, $D: A \oplus X \rightarrow(A \oplus X)^{(2 n+1)}$ defined by $D(a, x)=(d(a), 0)$ is a \mathfrak{U}-module map. We follow from [19, Lemma 3.5] that D is a \mathfrak{A}-module derivation and so it is inner. Now relation (1) implies that d is also inner, so A is $(2 n+1)$-weakly module amenable.
To prove (ii), let $d: A \rightarrow X^{(2 n+1)}$ be a \mathfrak{A}-module derivation. Then, [19, Lemma 3.4] implies that $D: A \oplus X \rightarrow$ $(A \oplus X)^{(2 n+1)}$ given by $D(a, x)=\left(-d^{(2 n+1)}(x), d(a)\right)$ is a \mathfrak{H}-module derivation, so it is inner. Hence, d is also inner, again by [19, Lemma 3.4]. This shows that $H_{21}^{1}\left(A, X^{(2 n+1)}\right)=\{0\}$, as required.
Let $T: X \rightarrow A^{(2 n+1)}$ and $S: X \rightarrow X^{(2 n+1)}$ be $\mathfrak{N}-A$-module maps such that $S(x) \cdot y+x \cdot S(y)=0$ in $A^{(2 n+1)}$ for all $x, y \in X$. Define $D: A \oplus X \rightarrow(A \oplus X)^{(2 n+1)}$ by $D(a, x)=(T(x), S(x))$. Then, Lemma 3.1 and 3.5 of [19] jointly show that D is a \mathfrak{A}-module derivation, so it is inner. Let $f \in A^{(2 n+1)}$ and $g \in X^{(2 n+1)}$ be such that $D=\operatorname{ad}_{(f, g)}$. By (1), we have

$$
(T(x), S(x))=\left(\operatorname{ad}_{f}(a)+x \cdot g-g \cdot x, \operatorname{ad}_{g}(a)\right) \quad(a \in A, x \in X)
$$

Taking $a=0$ we obtain $S=0$ and $T(x)=x \cdot g-g \cdot x$ for all $x \in X$. And if we take $x=0$ we get $a \cdot g=g \cdot a$ for all $a \in A$. This proves (iii) and (iv) and completes the proof.

Before to characterize n-weak module amenability of $A \oplus A^{(m)}$, we need the following module version of [10, Proposition 1.2]. Since the natural embedding $\iota: A^{(n)} \rightarrow A^{(n+2)}$ and the projection $P: A^{(n+2)} \rightarrow A^{(n)}$ used in the proof of [10, Proposition 1.2] are \mathfrak{A}-module maps, the argument of [10, Proposition 1.2] suffices to show n-weak module amenability.

Proposition 2.2. Suppose that $n \in \mathbb{N}$ and A is $(n+2)$-weakly module amenable. Then, A is n-weakly module amenable.

Recall that an A-module X is called symmetric if $a \cdot x=x \cdot a$ for $a \in A$ and $x \in X$. As a consequence of Theorem 2.1, we have the next result concerning $(2 n+1)$-weak module amenability of $A \oplus A^{(2 m+1)}$.

Corollary 2.3. Suppose that A is commutative and $m \geq 0$. Then, $A \oplus A^{(2 m+1)}$ is not $(2 n+1)$-weakly module amenable.
Proof. Using Proposition 2.2, we show that $A \oplus A^{(2 m+1)}$ is not weakly module amenable. Set $X=A^{(2 m+1)}$ in Theorem 2.1 and let $T: X=A^{(2 m+1)} \rightarrow A^{*}$ be the adjoint map of the canonical embedding $\iota: A \rightarrow A^{(2 m)}$. Then, T is a non-zero bounded $\mathfrak{Y}-A$-module map. Since A is commutative, $X=A^{(2 m+1)}$ is a symmetric A-module and so $x \cdot g=g \cdot x$ in $A^{(2 n+1)}$ for all $x \in X$ and $g \in X^{(2 n+1)}$. This follows that condition (iii) of Theorem 2.1 does not hold. Hence, $A \oplus A^{(2 m+1)}$ is not weakly module amenable.

In the next result which is a module version of [19, Theorem 2.2], we characterize $2 n$-weak module amenability of $A \oplus X$. The proof is based on the argument used in Theorem 2.1 and [19, Theorem 2.2], so the details omitted.

Theorem 2.4. Let $n \geq 0$. Then $A \oplus X$ is $2 n$-weakly module amenable if and only if
(i) If $D_{A}: A \rightarrow A^{(2 n)}$ is a \mathfrak{A}-module derivation such that there is a bounded \mathfrak{N}-module map $S: X \rightarrow X^{(2 n)}$ with $S(x \cdot a)=S(x) \cdot a+x \cdot D_{A}(a)$ and $S(a \cdot x)=a \cdot S(x)+D_{A}(a) \cdot x(a \in A, x \in X)$, then D is inner.
(ii) $H_{\mathfrak{2}}^{1}\left(A, X^{(2 n)}\right)=\{0\}$.
(iii) The only bounded \mathfrak{A}-A-module map $T: X \rightarrow A^{(2 n)}$ for which $T(x) \cdot y+x \cdot T(y)=0(x, y \in X)$ in $X^{(2 n)}$ is zero.
(iv) For every bounded \mathfrak{N} - A-module map $S: X \rightarrow X^{(2 n)}$, there is $f \in A^{(2 n)}$ such that $a \cdot f=f \cdot a$ and $S(x)=x \cdot f-f \cdot x$ for $a \in A$ and $x \in X$.

Proof. To prove the necessity, suppose that $A \oplus X$ is $2 n$-weakly module amenable. Let $d: A \rightarrow A^{(2 n)}$ be a \mathfrak{A}-module derivation with the property given in condition (i). Define $D: A \oplus X \rightarrow(A \oplus X)^{(2 n)}$ by $D(a, x)=(d(a), S(x))$. Then, D is a \mathfrak{A}-module derivation, so is inner. A simple computation shows that d is also inner. This proves (i). Conditions (ii)-(iv) can be proved by analogous argument given in Theorem 2.1.

For sufficiency, let $D: A \oplus X \rightarrow(A \oplus X)^{(2 n)}$ be a \mathfrak{H}-module derivation. Then, $D(a, x)=\left(D_{A}(a)+T(x), D_{X}(a)+S(x)\right)$, where the component mappings $D_{A}: A \rightarrow A^{(2 n)}$ and $D_{X}: A \rightarrow X^{(2 n)}$ are \mathfrak{A}-module derivations, $T: X \rightarrow A^{(2 n)}$ is a bounded \mathfrak{A} - A-module map satisfying $T(x) \cdot y+x \cdot T(y)=0$ in $X^{(2 n)}$ and $S: X \rightarrow X^{(2 n)}$ is a bounded \mathfrak{M}-module map such that $S(x \cdot a)=S(x) \cdot a+x \cdot D_{A}(a)$ and $S(a \cdot x)=a \cdot S(x)+D_{A}(a) \cdot x$. By conditions (i) and (ii), $D_{A}=\operatorname{ad}_{f_{0}}$ and $D_{X}=\operatorname{ad}_{g}$ for some $f_{0} \in A^{(2 n)}$ and $g \in X^{(2 n)}$ and from condition (iii), $T=0$. Define $S_{1}: X \rightarrow X^{(2 n)}$ by $S_{1}(x)=S(x)-x \cdot f_{0}+f_{0} \cdot x$. It simply follows from commutativity of \mathfrak{M}-module A that, S_{1} is a $\mathfrak{A}-A$-module map. Thus, from (iv), there exists $f_{1} \in A^{(2 n)}$ such that $a \cdot f_{1}=f_{1} \cdot a$ and $S_{1}(x)=x \cdot f_{1}-f_{1} \cdot x$. It follows that, $S(x)=x \cdot f-f \cdot x$ and $D_{A}=\operatorname{ad}_{f}$, where $f=f_{0}+f_{1}$. Consequently, $D=\operatorname{ad}_{(f, g)}$. This complete the proof.

As a consequence of Theorems 2.4, we have the next result.
Corollary 2.5. If X is non-zero and symmetric, then $A \oplus X$ is not $2 n$-weakly module amenable, for every $n \geq 0$. In particular, $A \oplus A^{(m)}$ is not $2 n$-weakly module amenable, if $m \geq 0$ and A is commutative.

Proof. Let $S: X \rightarrow X^{(2 n)}$ be the canonical embedding. Then, it is a non-zero $\mathfrak{A}-A$-module map. Since X is symmetric, $x \cdot f=f \cdot x$ in $X^{(2 n)}$, for all $x \in X$ and $f \in A^{(2 n)}$. It follows that, condition (iv) of Theorem 2.4 does not hold for such X. Hence $A \oplus X$ is not $2 n$-weakly module amenable, as an \mathfrak{A}-module.

If we combine Corollaries 2.3 and 2.5, we get the following result.
Proposition 2.6. Suppose that A is commutative and $m, n \geq 0$. Then, $A \oplus A^{(2 m+1)}$ is not n-weakly module amenable, as an \mathfrak{U}-module.

We conclude this section with the following results on direct product of two Banach algebras, that will be needed in the next section.

Theorem 2.7. For $n \geq 0$, the direct product $A \times B$ is n-weakly module amenable, as an \mathfrak{A}-module, if and only if
(i) both A and B are n-weakly module amenable.
(ii) The only bounded \mathfrak{M}-module map $S: A \rightarrow B^{(n)}$ for which $S(a c)=0$ and $S(a) \cdot b=b \cdot S(a)=0$ for all $a, c \in A$ and $b \in B$ is $S=0$.
(iii) If $T: B \rightarrow A^{(n)}$ is a bounded \mathfrak{Y}-module map such that $T(b d)=0$ and $a \cdot T(b)=T(b) \cdot a=0$ for all $a \in A$ and $b, d \in B$, then $T=0$.

Proof. To prove the necessity, let $d_{A}: A \rightarrow A^{(n)}$ and $d_{B}: B \rightarrow B^{(n)}$ be \mathfrak{M}-module derivations. Then, $D: A \times B \rightarrow(A \times B)^{(n)}$ defined by $D(a, b)=\left(d_{A}(a), d_{B}(b)\right)$ is a \mathfrak{A}-module derivation and so it is inner. Thus, $D=\operatorname{ad}_{(f, g)}$, for some $(f, g) \in A^{(n)} \times B^{(n)} \simeq(A \times B)^{(n)}$. From the equality $\operatorname{ad}_{(f, g)}(a, b)=\left(\operatorname{ad}_{f}(a), \operatorname{ad}_{g}(b)\right)$, it follows that d_{A} and d_{B} are inner, so (i) holds.

Let $S: A \rightarrow B^{(n)}$ be a bounded \mathfrak{U}-module map satisfying the hypotheses in (ii). Then, $D: A \times B \rightarrow(A \times B)^{(n)}$ given by $D(a, b)=(0, S(a))$, is a bounded \mathfrak{H}-module derivation, and so $D=\operatorname{ad}_{(f, g)}$, for some $(f, g) \in(A \times B)^{(n)}$. Applying the equality, $(0, S(a))=\left(\operatorname{ad}_{f}(a), \operatorname{ad}_{g}(b)\right)$, for $b=0$, we get $S=0$. This proves (ii). Similarly we can prove (iii).

For sufficiency, suppose that $D: A \times B \rightarrow(A \times B)^{(n)}$ is a \mathfrak{N}-module derivation. A direct verification shows that D enjoys the presentation

$$
D(a, b)=\left(D_{A}(a)+T(b), S(a)+D_{B}(b)\right) \quad((a, b) \in A \times B)
$$

where $D_{A}: A \rightarrow A^{(n)}$ and $D_{B}: B \rightarrow B^{(n)}$ are \mathfrak{A}-module derivations and $T: B \rightarrow A^{(n)}$ and $S: A \rightarrow B^{(n)}$ are bounded \mathfrak{Y}-module map satisfying $T(b d)=0, a \cdot T(b)=T(b) \cdot a=0, S(a c)=0$ and $b \cdot S(a)=S(a) \cdot b=0$, for every $a, c \in A$ and $b, d \in B$. By condition (ii) and (iii), $S=0$ and $T=0$. From conditions (i), it follows that $D_{A}=\operatorname{ad}_{f}$ and $D_{B}=\operatorname{ad}_{g}$, for some $f \in A^{(n)}$ and $g \in B^{(n)}$. Consequently, $D(a, b)=\left(\operatorname{ad}_{f}(a), \operatorname{ad}_{g}(b)\right)=\operatorname{ad}_{(f, g)}(a, b)$, for all $(a, b) \in A \times B$. Thus, D is inner, as claimed.

Let A be a Banach algebra and X be a Banach left A-module. By $\langle A X\rangle$, we denote the linear span of $A X=\{a \cdot x \mid a \in A, x \in X\}$, in X. We also recall that, X is non-degenerate if

$$
\operatorname{Ann}_{A}(X)=\{x \in X ; a \cdot x=0 \quad \forall a \in A\}=\{0\} .
$$

Non-degenerate right A-module are defined similarly.
Corollary 2.8. Let $n \geq 0$. If the direct product $A \times B$ is n-weakly module amenable then both A and B are also n-weakly module amenable. The converse holds if any of the following statements holds.
(1) $\left\langle A^{2}\right\rangle$ is dense in A and $\left\langle B^{2}\right\rangle$ is dense in B.
(2) $\left\langle B^{2}\right\rangle$ is dense in B and $B^{(n)}$ is a non-degenerate left or right B-module.
(3) $\left\langle A^{2}\right\rangle$ is dense in A and $A^{(n)}$ is a non-degenerate left or right A-module.

Proof. For n-weak module amenability of $A \times B$, we need to prove conditions (ii) and (iii) of Theorem 2.7. The other side is clear. Suppose that S and T are \mathfrak{U}-module maps satisfying conditions (ii) and (iii) of Theorem 2.7, respectively. Then, $S(a) \in \operatorname{Ann}_{B}\left(B^{(n)}\right)$ and $T(b) \in \operatorname{Ann}_{A}\left(A^{(n)}\right)$, for $a \in A$ and $b \in B$. Since S is a \mathfrak{Y}-module map and $S=0$ on A^{2}, we have $S=0$ on $\left\langle A^{2}\right\rangle$. Indeed, if $z \in\left\langle A^{2}\right\rangle$ then $z=\sum_{i=1}^{m} \lambda_{i} a_{i} c_{i}$, for some $\lambda_{i} \in \mathbb{C}$ and $a_{i}, c_{i} \in A$. Thus, $S(z)=\sum_{i=1}^{m} S\left(\left(\lambda_{i} a_{i}\right) c_{i}\right)=0$. As the same way, $T=0$ on $\left\langle B^{2}\right\rangle$. Now conditions (ii) and (iii) of Theorem 2.7, will be simply concluded from each of the assumptions (1) to (3).

3. Application to triangular Banach algebras

In this section we apply the results of the previous section, to give necessary and sufficient conditions for n-weak module amenability of triangular Banach algebras. Our approach not only provides a direct proof for some known results in the literature, but also it improves and extends the main results of $[6,18]$ and [16].

Let A and B be Banach algebras and let X be a Banach (A, B)-module. Then,

$$
\operatorname{Tri}(A, X, B)=\left\{\left(\begin{array}{ll}
a & x \\
0 & b
\end{array}\right) ; a \in A, x \in X, b \in B\right\}
$$

under matrix-like operations and equipped with the ℓ^{1}-norm $\left\|\left(\begin{array}{ll}a & x \\ 0 & b\end{array}\right)\right\|=\|a\|+\|b\|+\|x\|$, becomes a Banach algebra, which is called a triangular Banach algebra. This Banach algebra was first introduced and studied in [12]. Some aspects of triangular Banach algebras have been discussed in [6,13] and [18].

The triangular Banach algebra $\operatorname{Tri}(A, X, B)$, can be viewed as a module extension Banach algebra $(A \times$ $B) \oplus X$, where $A \times B$ is the direct product of A and B and X as an $(A \times B)$-module is equipped with the module operations

$$
(a, b) \cdot x=a \cdot x \quad \text { and } \quad x \cdot(a, b)=x \cdot b \quad(a \in A, b \in B, x \in X)
$$

In the whole of this section, we shall assume that $\operatorname{Tri}(A, X, B)$ is a commutative \mathfrak{N}-module with compatible actions. The first result, gives a necessary and sufficient conditions for $(2 n+1)$-weak module amenability of $\operatorname{Tri}(A, X, B)$, for the case where $\langle A X+X B\rangle$, the linear span of $A X+X B=\{a \cdot x+y \cdot b ; a \in A, b \in B, x, y \in X\}$, is dense in X.

Theorem 3.1. Suppose that $\langle A X+X B\rangle$ is dense in X and $n \geq 0$. Then, $\operatorname{Tri}(A, X, B)$ is $(2 n+1)$-weakly module amenable if and only if
(1) $A \times B$ is $(2 n+1)$-weakly module amenable.
(2) $H_{\mathfrak{2}}^{1}\left(A \times B, X^{(2 n+1)}\right)=\{0\}$.

Proof. Let conditions (1) and (2) hold, it is enough to prove conditions (iii) and (iv) of Theorem 2.1. Suppose that $T: X \rightarrow(A \times B)^{(2 n+1)}$ be a $\mathfrak{Y}-(A \times B)$-module map. Then, for all $(a, x) \in A \times X$ and $\left(a^{(2 n)}, b^{(2 n)}\right) \in A^{(2 n)} \times B^{(2 n)}$ we have

$$
\begin{aligned}
\left\langle T(a \cdot x),\left(a^{(2 n)}, b^{(2 n)}\right)\right\rangle & =\left\langle(a, 0) \cdot T(x),\left(a^{(2 n)}, b^{(2 n)}\right)\right\rangle \\
& =\left\langle T(x),\left(a^{(2 n)}, b^{(2 n)}\right) \cdot(a, 0)\right\rangle \\
& =\left\langle T(x) \cdot\left(a^{(2 n)}, 0\right),(a, 0)\right\rangle \\
& =\left\langle T^{(2 n)}\left(x \cdot\left(a^{(2 n)}, 0\right)\right),(a, 0)\right\rangle=0 .
\end{aligned}
$$

Similarly, $T(y \cdot b)=0$, for all $(y, b) \in X \times B$, and so $T(a \cdot x+y \cdot b)=0$. Let $z \in\langle A X+X B\rangle$. Then, $z=\sum_{i=1}^{k}\left(\lambda_{i}\left(a_{i} \cdot x_{i}\right)+\gamma_{i}\left(y_{i} \cdot b_{i}\right)\right)$ for some $\lambda_{i}, \gamma_{i} \in \mathbb{C}, a_{i} \in A, b_{i} \in B$ and $x_{i}, y_{i} \in X$. Since T is a \mathfrak{M}-module map, we have $T(z)=\sum_{i=1}^{k} T\left(\left(\lambda_{i} a_{i}\right) \cdot x_{i}+\left(\gamma_{i} y_{i}\right) \cdot b_{i}\right)=0$. From continuity of T and density of $\langle A X+X B\rangle$ in X, we get $T=0$, so condition (iii) of Theorem 2.1 holds.

For (iv), let $S: X \rightarrow X^{(2 n+1)}$ be a $\mathfrak{A}-(A \times B)$-module map with $S(x) \cdot y+x \cdot S(y)=0$, for all $x, y \in X$. Then, $S(a \cdot x+y \cdot b)=(a, 0) \cdot S(x)+S(y) \cdot(0, b)=0$. Continuity of S and density of $\langle A X+X B\rangle$ in X imply that $S=0$, as required.

It is proved in [6, Theorem 4.3] that $(2 n+1)$-weak module amenability of $\operatorname{Tri}(A, X, B)$ is equivalent to $(2 n+1)$-weak module amenability of A and B, if A and B both have bounded approximate identity and X is a non-degenerate (A, B)-module. They use [6, Proposition 4.2] in their proof, but the assumptions of this proposition do not appear in [6, Theorem 4.3]. Thus, the result will be valid, if $A^{(2 n-1)}, B^{(2 n-1)}$ and $X^{(2 n-1)}$ are also non-degenerate. In the next, we improve [6, Theorem 4.3] and extend the main result of [18] and give a simple proof for them. In fact we obtain the same result with different conditions.

Theorem 3.2. Let B (resp. A) has a bounded right (resp. left) approximate identity, and let $X^{(2 n+1)}$ be a nondegenerate left B-module (resp. right A-module). Then, $\operatorname{Tri}(A, X, B)$ is $(2 n+1)$-weakly module amenable if and only if A and B are $(2 n+1)$-weakly module amenable.

Proof. Using Corollary 2.8 and Theorem 3.1, it is enough to show that $H_{\mathfrak{2}}^{1}\left(A \times B, X^{(2 n+1)}\right)=\{0\}$. For this, let $D: A \times B \rightarrow X^{(2 n+1)}$ be a \mathfrak{A}-module derivation. Then, $D(a, b)=D_{A}(a)+D_{B}(b)$ for some right A-module $\operatorname{map} D_{A}: A \rightarrow X^{(2 n+1)}$ and left B-module map $D_{B}: B \rightarrow X^{(2 n+1)}$. Moreover, $b \cdot D_{A}(a)=-D_{B}(b) \cdot a$ for all $a \in A, b \in B$. Since B has a bounded right approximate identity, there is $g \in X^{(2 n+1)}$ such that $D_{B}(b)=b \cdot g$. Thus, $b \cdot D_{A}(a)=-D_{B}(b) \cdot a=-b \cdot g \cdot a$. Since $X^{(2 n+1)}$ is non-degenerate, we get $D_{A}(a)=-g \cdot a$. Therefore,

$$
D(a, b)=D_{A}(a)+D_{B}(b)=-g \cdot a+b \cdot g=\operatorname{ad}_{g}(a, b)
$$

If we apply Theorem 3.2 for $\operatorname{Tri}(A, X, A)$, we get the following result.
Corollary 3.3. Let A has a bounded right (resp. left) approximate identity, and $X^{(2 n+1)}$ be a non-degenerate left (resp. right) A-module. Then, $\operatorname{Tri}(A, X, A)$ is $(2 n+1)$-weakly module amenable if and only if A is $(2 n+1)$-weakly module amenable.

To give our results on $2 n$-weak module amenability of $\operatorname{Tri}(A, X, B)$, we need the following lemma, which can be proved by a similar argument used in Theorem 3.2.

Lemma 3.4. Let $n \in \mathbb{N}$ and B (resp. A) has a bounded left (resp. right) approximate identity. If $X^{(2 n)}$ is a non-degenerate right B-module (resp. left A-module), then $H_{\mathfrak{2}}^{1}\left(A \times B, X^{(2 n)}\right)=\{0\}$.

If we use Theorem 2.4 for $\operatorname{Tri}(A, X, B)$, we arrive at the following result, which is a generalization of $[6$, Theorem 5.1(iii) and 5.3]. By $\langle A X B\rangle$, we denote the linear span of $A X B=\{a \cdot x \cdot b ; a \in A, b \in B, x \in X\}$ in X.

Theorem 3.5. Let $n \in \mathbb{N}$ and B (resp. A) has a bounded left (resp. right) approximate identity, and $X^{(2 n)}$ be a non-degenerate right B-module (resp. left A-module). If $\langle A X B\rangle$ is dense in X, then $\operatorname{Tri}(A, X, B)$ is $2 n$-weakly module amenable if and only if
(1) The only \mathfrak{M}-module derivations $D: A \times B \rightarrow(A \times B)^{(2 n)}$ for which there is a bounded \mathfrak{M}-module map $S: X \rightarrow X^{(2 n)}$ such that $S(x \cdot b)=S(x) \cdot b+x \cdot D(a, b)$ and $S(a \cdot x)=a \cdot S(x)+D(a, b) \cdot x(a \in A, x \in X)$ are inner \mathfrak{A}-module derivations.
(2) For every bounded $\mathfrak{A}-(A \times B)$-module map $S: X \rightarrow X^{(2 n)}$, there is $(f, g) \in(A \times B)^{(2 n)}$ such that $(a, b) \cdot(f, g)=$ $(f, g) \cdot(a, b)$ for $(a, b) \in A \times B$ and $S(x)=x \cdot(f, g)-(f, g) \cdot x$ for $x \in X$.

Proof. Using Lemma 3.4, it is enough to prove condition (iii) of Theorem 2.4. Let $T: X \rightarrow(A \times B)^{(2 n)}$ be $\mathfrak{A}-(A \times B)$-module map. Then, for every $f \in A^{(2 n-1)}$ and $g \in B^{(2 n-1)}$, we have

$$
\begin{aligned}
\langle T(a \cdot y \cdot b),(f, g)\rangle & =\langle(a, 0) \cdot T(y) \cdot(0, b),(f, g)\rangle \\
& =\langle T(y),(0, b) \cdot(f, g) \cdot(a, 0)\rangle=0 .
\end{aligned}
$$

Since $\langle A X B\rangle$ is dense in X, we obtain $T(x)=0$, for all $x \in X$. So $T=0$.
Remark 3.6. It is worthwhile mentioning that, the condition $\overline{\langle A X B\rangle}=X$, in Theorem 3.5, can be replaced by any of the following statements:
(a) $\overline{\langle A X\rangle}=X$ and $A^{(2 n)}$ is a non-degenerate right A-module.
(b) $\overline{\langle X B\rangle}=X$ and $B^{(2 n)}$ is a non-degenerate left B-module.

Indeed, if (a) holds and $T: X \rightarrow(A \times B)^{(2 n)}$ is a $\mathfrak{A}-(A \times B)$-module map. Then, for $f \in A^{(2 n-1)}$,

$$
\langle T(x),(a \cdot f, 0)\rangle=\langle T(x),(a, 0) \cdot(f, 0)\rangle=\langle T(x \cdot(a, 0)),(f, 0)\rangle=0 .
$$

And for all $g \in B^{(2 n-1)}$,

$$
\langle T(a \cdot y),(0, g)\rangle=\langle(a, 0) \cdot T(y),(0, g)\rangle=\langle T(y),(0, g) \cdot(a, 0)\rangle=0
$$

So, by assumption we get $\langle T(x),(f, g)\rangle=\langle T(x),(f, 0)\rangle+\langle T(x),(0, g)\rangle=0$, for $x \in X,(f, g) \in A^{(2 n-1)} \times B^{(2 n-1)}$. Therefore, $T=0$. A similar argument can be used for (b).

Using Theorem 3.5, we obtain the next result, which improves [6, Corollary 5.3.1].
Corollary 3.7. Let $n \in \mathbb{N}$ and A has a bounded left (resp. right) approximate identity, and $A^{(2 n)}$ be a non-degenerate right A-module (resp. left A-module). Then, $\operatorname{Tri}(A, A, A)$ is $2 n$-weakly module amenable if and only if A is $2 n$-weakly module amenable.

Proof. To prove the necessity, suppose that $d: A \rightarrow A^{(2 n)}$ is a \mathfrak{A}-module derivation. Define $D: A \times A \rightarrow$ $(A \times A)^{(2 n)}$ by $D(a, c)=(d(a), d(c))$. Then, D is a \mathfrak{A}-module derivation. Using Part (1) of Theorem 3.5 with D and $S=d$, we conclude that D is inner. A simple calculation shows that d is also inner.

For sufficiency, it is enough to prove conditions (1) and (2) of Theorem 3.5, by Cohen's factorization property. From Corollary 2.8, it follows that $A \times A$ is $2 n$-weakly module amenable. So, condition (1) of Theorem 3.5 holds.

For condition (2), let $S: A \rightarrow A^{(2 n)}$ be a bounded $\mathfrak{M}-(A \times A)$-module map. Then, S is an A-module map. Since A has a bounded left approximate identity, there is $f \in A^{(2 n)}$ such that $S(a)=f \cdot a$, for all $a \in A$. But,

$$
a \cdot f \cdot x=a \cdot S(x)=S(a \cdot x)=f \cdot a \cdot x \quad(x \in A) .
$$

This implies that $a \cdot f=f \cdot a$, since $A^{(2 n)}$ is a non-degenerate right A-module. Now $(-f, 0) \cdot(a, c)=(a, c) \cdot(-f, 0)$ for all $a, c \in A$ and $S(x)=x \cdot(-f, 0)-(-f, 0) \cdot x$ for all $x \in A$.

We close this paper, with some examples.
Example 3.8. 1. Let G be an abelian locally compact Hausdorff group. Since $L^{1}(G)$ has a bounded approximate identity and $L^{p}(G), 1 \leq p \leq \infty$, is a commutative $L^{1}(G)$-module, it follows from Corollary 3.3 that, $\operatorname{Tri}\left(L^{1}(G), L^{p}(G), L^{1}(G)\right)$ is weakly module amenable, as an $L^{1}(G)$-module. Moreover, Proposition 2.6 shows that $L^{1}(G) \oplus L^{\infty}(G)$ is not n-weakly module amenable, as an $L^{1}(G)$-module, for each $n \in \mathbb{N}$.
2. Let S be an inverse semigroup with the set of idempotents E. Then, E is a commutative sub-semigroup of S and $l^{1}(E)$ could be regarded as a commutative sub-algebra of $l^{1}(S)$. It is well known that $l^{1}(S)$ has a bounded approximate identity if and only if E satisfies condition D_{k} for some $k \in \mathbb{N},[6]$.
Let $l^{1}(E)$ act trivially on $l^{1}(S)$ from left and by multiplication from right. Then, $l^{1}(S)$ is a Banach $l^{1}(E)$-module with compatible actions. Although $l^{1}(S)$ is n-weakly module amenable (as an $l^{1}(E)$-module) [4, 11], Proposition 2.6 shows that $l^{1}(S) \oplus l^{\infty}(S)$ is not n-weakly module amenable, as an $l^{1}(E)$-module, for each $n \in \mathbb{N}$. Furthermore, it follows from Corollaries 3.3 and 3.7 that $\mathcal{T}_{2} \otimes l^{1}(S)=\operatorname{Tri}\left(l^{1}(S), l^{1}(S), l^{1}(S)\right)$ is n-weakly module amenable (as an $l^{1}(E)$-module) if E satisfies condition D_{k} for some $k \in \mathbb{N}$. Theorem 2.7 in [5] shows that, the same conclusion is also true when S is commutative and $l^{1}(E)$ acts on $l^{1}(S)$ by usual multiplication from both sides.

4. Conclusions

We study and characterize the n-weak module amenability of module extension and triangular Banach algebras. We also address a gap in the proof of [6, Theorem 4.3] and extend and improve it by discussing general necessary and sufficient conditions for $\operatorname{Tri}(A, X, B)$ to be n-weakly module amenable, for an integer $n \geq 0$.
Acknowledgments. The author would like to thank the referees for their useful comments and suggestions.

References

[1] M. Amini, Module amenability for semigroup algebras, Semigroup Forum 69 (2004), 243-254.
[2] M. Amini, B. E. Bagha, Weak module amenability for semigroup algebras, Semigroup Forum 71 (2005), No. 1, 18-26.
[3] W.G. Bade, P. C. Curtis, H. G. Dales, Amenability and weak amenability for Beurling and Lipschits algebra, Proc. London Math. Soc. 55 (1987), No. 3, 359-377.
[4] A. Bodaghi, M. Amini, R. Babaee, Module derivations into iterated duals of Banach algebras, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 12 (2011), No. 4, 227-284.
[5] A. Bodaghi, M. Amini, A. Jabbari, Permanent weak module amenability of semigroup algebras, Annals. Alexandru. Ioan. Cuza. Uni.-Math. DOI:10.1515/aicu-2015-0018.
[6] A. Bodaghi, A. Jabbari, n-weak module amenability of triangular Banach algebras, Math. Slov. 65 (2015), No. 3, 645-666.
[7] S. Bowling, J. Duncan, First order cohomology of Banach semigroup algebras, Semigroup Forum 56 (1998), 130—145.
[8] Y. Choi, F. Ghahramani, Y. Zhang, Approximate and pseudo-amenability of various classes of Banach algebras, J. Funct. Anal. 256 (2009), 3158-3191.
[9] H. G. Dales, Banach algebras and automatic countinuity, Clarendon Press, Oxford, 2000.
[10] H. G. Dales, F. Ghahramani, N. Grønbæk, Derivations into iterated duals of Banach algebras, Studia Math. 128 (1998), No. 1, 19-54.
[11] K. Fallahia, H. Ghahramani, $2 n$-Weak module amenability of semigroup algebras, J. Linear and Top. Alg. 8 (2019), No. 3, 203-209.
[12] B. E. Forrest and L. W. Marcoux, Derivations of triangular Banach algebras, Ind. Univ. Math. J. 45 (1996), No. 2, 441-462.
[13] B. E. Forrest, L. W. Marcoux, Weak Amenability of triangular Banach algrbras, Trans. Amer. Math. Soc. 345 (2002), No. 4, $1435-1452$.
[14] B. E. Johnson, Cohomology in Banach algebras, Memoirs of the American Mathematical Society, No. 127 American Mathematical Society, Providence, R.I., 1972.
[15] B. E. Johnson, Weak amenability of group algebras, Bull. London Math. Soc. 23 (1991), 281-284.
[16] A. R. Medghalchi, M. H. Sattari, T. Yazdanpanah, Amenability and weak amenability of triangular Banach algebras, Bull. Iranian Math. Soc. 31 (2005), No. 2, 57-69.
[17] O. T. Mewomo, On n-weak amenability of Rees semigroup algebras, Proc. Indian Math. Sci. 118 (2008), No. 4, 547-555.
[18] A. Pourabbas and E. Nasrabadi, Weak module amenability of triangular Banach algebras, Math. Slov. 61 (2011), No. 6, 949-958.
[19] Y. Zhang, Weak amenability of module extensions of Banach algebras, Trans. Amer. Math. Soc. 354 (2002), No. 10, 4131-4151.
[20] Y. Zhang, 2m-Weak amenability of group algebras, J. Math. Anal. Appl. 396 (2012), 412-416.

[^0]: 2020 Mathematics Subject Classification. Primary 46H20; Secondary 46H25, 16E40.
 Keywords. n-weak module amenability, Module extension, Triangular Banach algebra.
 Received: 02 February 2023; Revised: 01 April 2023; Accepted: 11 July 2023
 Communicated by Dragan S. Djordjević

 * Corresponding author: Mohammad Ramezanpour

 Email addresses: mahdiehalikahi91@gmail.com (Mahdieh Alikahi), ramezanpour@du.ac.ir (Mohammad Ramezanpour)

