Ricci tensor of slant submanifolds in locally metallic product space forms

MD Aquib*, Meraj Ali Khan*, Ibrahim Al-Dayel*

*Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box-65892, Riyadh 11566, Saudi Arabia

Abstract. In this paper, we investigate the Ricci tensor of slant submanifolds in locally metallic product space forms. We derive the Chen-Ricci inequality and discuss its equality case. We also provide several applications of our results. The main result of the article is supported by non-trivial examples.

1. Introduction

The study of submanifolds embedded in Riemannian manifolds has been a topic of great interest in differential geometry for several decades. One of the fundamental problems in this area is to understand the geometric properties of submanifolds in terms of the curvature of the ambient manifold.

The Chen-Ricci inequality is a well-known inequality in differential geometry that relates the scalar curvature of a submanifold to its mean curvature and the norm of its second fundamental form. In 1996, a mathematician named Chen came up with a formula that relates two geometric properties of a submanifold (a certain type of mathematical object) M, which is embedded in a space called $\overline{M}(c)$ that has a constant curvature c. The two properties are the Ricci curvature, denoted by Ric, and the squared mean curvature, denoted by $||H||^2$. Chen’s formula says that for any unit vector X that lies on the submanifold M,

$$\text{Ric}(X) \leq (n - 1)c + \frac{n^2}{2}||H||^2, \quad n = \text{dim}M$$

Chen also obtained the above inequality for lagrangian submanifolds[10]. Since then, this inequality drew attention of many geometers around the world. Consequently, many inequalities of similar type were proved by a number of geometers for various submanifold types in various ambient manifolds [1–7, 13, 15–26].

At the same time, a θ-slant submanifold is a type of submanifold in differential geometry that generalizes the notion of a slant submanifold. Like a slant submanifold, a θ-slant submanifold is a submanifold of a Riemannian manifold that has a certain slanted or tilted geometry with respect to the ambient manifold. However, unlike a slant submanifold, which is defined by the angle between the submanifold and a distribution of vectors in the ambient manifold, a θ-slant submanifold is defined by a more general angle.
where \(\tau \) is denoted by \(K \), respectively. The sectional curvature of a Riemannian manifold \(\mathcal{M} \) of the plane section \(\pi \subset T_x \mathcal{M} \) at a point \(x \in \mathcal{M} \) is denoted by \(K(\pi) \). For any \(x \in \mathcal{M} \), if \(\{x_1, \ldots, x_n\} \) and \(\{x_{n+1}, \ldots, x_m\} \) are the orthonormal bases of \(T_x \mathcal{M} \) and \(T_x^\perp \mathcal{M} \), respectively, then the scalar curvature \(\tau \) is given by

\[
\tau(x) = \sum_{1 \leq i < j \leq n} K(x_i \wedge x_j).
\]

The Gauss equation is given by

\[
\overline{\mathcal{R}}(E, F, G, U) = \mathcal{R}(E, F, G, U) + g(\overline{\zeta}(E, G), \zeta(F, U)) - g(\overline{\zeta}(E, U), \zeta(F, G)),
\]

where \(\nabla^E \), \(\nabla^F \), and \(\nabla^G \), denote the normal connection, the second fundamental form, and the shape operator, respectively.

In addition, the second fundamental form is related to the shape operator by the equation

\[
g(\zeta(E, F), N) = g(\Lambda_N E, F), \quad E, F \in T\mathcal{M}, \quad N \in T^\perp \mathcal{M}.
\]

The Gauss equation is given by

\[
\overline{\mathcal{R}}(E, F, G, U) = \mathcal{R}(E, F, G, U) + g(\overline{\zeta}(E, G), \zeta(F, U)) - g(\overline{\zeta}(E, U), \zeta(F, G)),
\]

for \(E, F, G, U \in T\mathcal{M} \). Here, \(\mathcal{R} \) and \(\overline{\mathcal{R}} \) denote the curvature tensors of \(\mathcal{M} \) and \(\overline{\mathcal{M}}(\mathcal{C}) \), respectively.

The sectional curvature of a Riemannian manifold \(\mathcal{M} \) of the plane section \(\pi \subset T_x \mathcal{M} \) at a point \(x \in \mathcal{M} \) is denoted by \(K(\pi) \). For any \(x \in \mathcal{M} \), if \(\{x_1, \ldots, x_n\} \) and \(\{x_{n+1}, \ldots, x_m\} \) are the orthonormal bases of \(T_x \mathcal{M} \) and \(T_x^\perp \mathcal{M} \), respectively, then the scalar curvature \(\tau \) is given by

\[
\tau(x) = \sum_{1 \leq i < j \leq n} K(x_i \wedge x_j).
\]

The Gauss equation is given by

\[
\overline{\mathcal{R}}(E, F, G, U) = \mathcal{R}(E, F, G, U) + g(\overline{\zeta}(E, G), \zeta(F, U)) - g(\overline{\zeta}(E, U), \zeta(F, G)),
\]

for \(E, F, G, U \in T\mathcal{M} \). Here, \(\mathcal{R} \) and \(\overline{\mathcal{R}} \) denote the curvature tensors of \(\mathcal{M} \) and \(\overline{\mathcal{M}}(\mathcal{C}) \), respectively.
Here, \(\{x_1, \ldots, x_n\} \) and \(\{x_{n+1}, \ldots, x_m\} \) are the tangent and normal orthonormal frames on \(M \), respectively and \(H \) is the mean curvature vector.

The relative null space of a Riemannian manifold at a point \(x \) in \(M \) is defined as

\[
\mathcal{N}_x = \{ E \in T_x M | (E, F) = 0 \ \forall \ F \in T_x M \}. \tag{3}
\]

This is the subspace of the tangent space at \(x \) where the second fundamental form vanishes identically. It is also known as the normal space of \(M \) at \(x \).

The definition of a minimal submanifold states that the mean curvature vector \(H \) is identically zero.

A polynomial structure is a tensor field \(\bar{\sigma} \) of type (1, 1) that fulfils the following equation on an \(m \)-dimensional Riemannian manifold \((\bar{M}, g)\) with real numbers \(a_1, \ldots, a_n \):

\[
\mathcal{B}(X) = X^a + a_{n-1}X^{n-1} + \ldots + a_2X + a_1I,
\]

where \(I \) denotes the identity transformation. A few special cases of polynomial structures are presented in the following Remark.

Remark 2.1.

1. \(\bar{\sigma} \) is an almost complex structure if it is verified that \(\mathcal{B}(X) = X^2 + I \).
2. \(\bar{\sigma} \) is an almost product structure if it is verified that \(\mathcal{B}(X) = X^2 - I \).
3. \(\bar{\sigma} \) is a metallic structure if \(\mathcal{B}(X) = \bar{\sigma}^2 - p\bar{\sigma} + qI \),

where \(p \) and \(q \) are two integers.

If for all \(E, F \in \Gamma(T\bar{M}) \)

\[
g(\bar{\sigma}E, F) = g(E, \bar{\sigma}F), \tag{4}
\]

then the Riemannian metric \(g \) is called \(\bar{\sigma} \)-compatible.

A metallic Riemannian manifold is a Riemannian manifold \((\bar{M}, g)\) where the metric \(g \) is \(\bar{\sigma} \)-compatible and \(\bar{\sigma} \) is a metallic structure.

Using equation (4), we obtain

\[
g(\bar{\sigma}E, \bar{\sigma}F) = g(\bar{\sigma}^2E, F) = p.g(E, \bar{\sigma}F) + q.g(E, F).
\]

An almost product structure \(\mathcal{F} \) on an \(m \)-dimensional (Riemannian) manifold \((\bar{M}, g)\) is a \((1,1)\)-tensor field satisfying \(\mathcal{F}^2 = I, \mathcal{F} \neq \pm I \). If \(\mathcal{F} \) satisfies \(g(\mathcal{F}E, F) = g(X, \mathcal{F}Y) \) for all \(E, F \in \Gamma(T\bar{M}) \), then \((\bar{M}, g)\) is referred to as an almost product Riemannian manifold [8].

A metallic structure \(\phi \) on \(\bar{M} \) is known to induce two almost product structures on \(\bar{M} \) [14]. These structures are denoted by \(\mathcal{F}_1 \) and \(\mathcal{F}_2 \) and are given by equation

\[
\begin{cases}
\mathcal{F}_1 = \frac{2}{\sigma_{p,q}^2-p} \phi - \frac{p}{\sigma_{p,q}^2-p} I, \\
\mathcal{F}_2 = \frac{2}{\sigma_{p,q}^2-p} \phi + \frac{p}{\sigma_{p,q}^2-p} I
\end{cases}, \tag{5}
\]

where \(\sigma_{p,q} = \frac{\sqrt{p^2+4q}}{2} \) are the members of the metallic means family or the metallic proportions.

Similarly, any almost product structure \(\mathcal{F} \) on \(\bar{N} \) induces two metallic structures \(\phi_1 \) and \(\phi_2 \) given by

\[
\begin{cases}
\phi_1 = \frac{p}{2} I + \frac{2}{\sigma_{p,q}^2-p} \mathcal{F}, \\
\phi_2 = \frac{p}{2} I - \frac{2}{\sigma_{p,q}^2-p} \mathcal{F}
\end{cases}.
\]
Definition 2.2. [9] Let ∇ be a linear connection and ϕ be a metallic structure on \overline{M} such that $\nabla \phi = 0$. Then ∇ is called a ϕ-connection. A locally metallic Riemannian manifold is a metallic Riemannian manifold (\overline{M}, g, ϕ) if the Levi-Civita connection ∇ of g is a ϕ-connection.

Suppose we have an m-dimensional metallic Riemannian manifold (\overline{M}, g, ϕ) and an n-dimensional submanifold (M, g) that is isometrically immersed into \overline{M} with the induced metric g. For any $x \in M$, the tangent space T_xM of \overline{M} at x can be expressed as the direct sum of T_xM and T^\perp_xM, where T_xM is the tangent space of M at x, and T^\perp_xM is the orthogonal complement of T_xM in $T_x\overline{M}$.

In an almost Hermitian manifold \overline{M}, a submanifold M is considered to be a slant submanifold if the angle between $\text{Im}(M)$ and T_xM remains constant for any $x \in M$ and a non-zero vector $X \in T_xM$. The slant angle of M in \overline{M} is denoted by θ and takes values in the interval $[0, \frac{\pi}{2}]$.

Further, if M is a slant submanifold of a metallic Riemannian manifold (\overline{M}, g, ϕ) with the slant angle θ, then [9]

$$g(TX, TY) = \cos^2 \theta [pq(X, TY) + qg(X, Y)]$$

and

$$g(NX, NY) = \sin^2 \theta [pq(X, TY) + qg(X, Y)],$$

$\forall X, Y \in \Gamma(TM)$.

Additionally,

$$T^2 = \cos^2 \theta (pT + qI),$$

where I is the identity on $\Gamma(TM)$ and

$$VT^2 = p\cos^2 \theta VT.$$

Let M_1 be a Riemannian manifold with constant sectional curvature c_1 and M_2 be a Riemannian manifold with constant sectional curvature c_2.

Then, for the locally Riemannian product manifold $\overline{M} = M_1 \times M_2$, the Riemannian curvature tensor $\overline{\nabla}$ is given by [27]

$$\overline{\nabla}(E, F)G = \frac{1}{4} (c_1 + c_2) \left[g(E, G)E - g(E, G)F + g(\delta F, G)\delta E - g(\delta E, G)\delta F \right]$$

$$+ \frac{1}{4} (c_1 - c_2) \left[g(\delta F, G)E - g(\delta E, G)F + g(F, G)\delta E - g(F, G)\delta F \right].$$

(6)

In view of (5) and (6)

$$\overline{\nabla}(E, F)G = \frac{1}{4} (c_1 + c_2) \left[g(E, G)E - g(E, G)F \right]$$

$$+ \frac{1}{4} (c_1 + c_2) \left[\frac{4}{(2\sigma p - p)^2} \left[g(\phi E, G)\phi E - g(\phi G, E)\phi F \right] \right.$$

$$+ \frac{p^2}{(2\sigma p - p)^2} \left[g(E, G)E - g(E, G)F \right]$$

$$+ \frac{2p}{(2\sigma p - p)^2} \left[g(\phi E, G)F + g(E, G)\phi F - g(\phi F, G)E - g(F, G)\phi E \right] \right)$$

$$\pm \frac{1}{2} (c_1 - c_2) \left[\frac{1}{(2\sigma p - p)} \left[g(F, G)\phi E - g(E, G)\phi F \right] \right.$$

$$+ \frac{1}{(2\sigma p - p)} \left[g(\phi F, G)E - g(\phi E, G)F \right]$$

$$+ \frac{p}{(2\sigma p - p)} \left[g(E, G)F - g(F, G)E \right] \right).$$

(7)
3. Ricci curvature for θ-slant submanifolds

This section is devoted to demonstrating the major outcome.

Theorem 3.1. Suppose we have a submanifold \mathcal{M} of dimension n that is slanted at an angle of θ in a locally metallic product space form $\mathcal{M} = \mathcal{M}_1(c_1) \times \mathcal{M}_2(c_2)$.

Then, for any unit vector X in the tangent space $T_x \mathcal{M}$ at a point x on \mathcal{M}, we have the following inequality:

$$
\text{Ric}(X) \leq \frac{n^2}{4} ||H||^2 + \frac{1}{2} \left\{ \begin{array}{l}
\frac{1}{2} - \frac{c_1 - c_2}{\sqrt{p^2 + 4q}} \left[2 \text{tr} \phi - p(n-1) \right]
+ \frac{1}{2} \frac{c_1 + c_2}{p^2 + 4q} (n-1) \left[p^2 + 2q - \frac{1}{n-1} (p \text{tr} \phi + q \cos^2 \theta) \right],
\end{array} \right.
$$

(8)

Moreover, if $H(x) = 0$, then the equality case of this inequality is achieved by a unit tangent vector X at x if and only if X belongs to the normal space N_x. Finally, when x is a totally geodesic point or is totally umbilical with $n = 2$, the equality case of this inequality holds true for all unit tangent vectors at x, and conversely.

Proof. Let $\{x_1, ..., x_n\}$ be an orthonormal tangent frame and $\{x_{n+1}, ..., x_m\}$ be an orthonormal frame of $T_x \mathcal{M}$ and $T^*_x \mathcal{M}$, respectively at any point $x \in \mathcal{M}$. Substituting $E = U = x_i, F = G = x_j$ in (7) with the equation (1) and take $i \neq j$, we get

$$
\mathcal{R}(x_i, x_j, x_j, x_i) = \frac{1}{4} (c_1 + c_2) \left[g(x_j, x_i)g(x_j, x_i) - g(x_i, x_j)g(x_j, x_i) \right]
+ \frac{1}{4} (c_1 + c_2) \left\{ \begin{array}{l}
\frac{4}{(2\sigma_{p,q} - p)^2} \left[g(\phi x_j, x_i)g(\phi x_j, x_i) - g(\phi x_i, x_j)g(\phi x_j, x_i) \right]
+ \frac{p^2}{(2\sigma_{p,q} - p)^2} \left[g(x_i, x_j)g(x_i, x_j) - g(x_i, x_j)g(x_j, x_i) \right]
+ \frac{2p}{(2\sigma_{p,q} - p)^2} \left[g(\phi x_i, x_j)g(x_i, x_j) + g(x_i, x_j)g(\phi x_i, x_j) \right]
- \frac{1}{2} \frac{c_1 - c_2}{(2\sigma_{p,q} - p)^2} \left[g(x_i, x_j)g(x_i, x_j) - g(x_j, x_i)g(\phi x_i, x_j) \right]
+ \frac{1}{2} \frac{c_1 - c_2}{(2\sigma_{p,q} - p)^2} \left[g(\phi x_i, x_j)g(x_i, x_j) - g(\phi x_j, x_i)g(x_i, x_j) \right]
+ \frac{p}{(2\sigma_{p,q} - p)^2} \left[g(x_i, x_j)g(x_i, x_j) - g(x_j, x_i)g(x_i, x_j) \right]
+ g(\zeta(x_i, x_j), \zeta(x_i, x_j)) - g(\zeta(x_i, x_j), \zeta(x_i, x_j)).
\end{array} \right.
$$

(9)

Applying $1 \leq i, j \leq n$ in (9), we find

$$
n^2 ||H||^2 = 2\tau + ||\zeta||^2 = \frac{1}{4} \frac{(n-1)}{\sqrt{p^2 + 4q}} (c_1 - c_2)(4\tau \phi - 2np)
- \frac{1}{4} (c_1 + c_2) \frac{n(n-1)}{p^2 + 4q} \left[2p^2 + 4q + \frac{4}{n(n-1)} \left(\frac{1}{n-1} \right) \left[\tau^2 \phi - \cos^2 \theta (p \text{tr} T + nq) \right] - \frac{4p}{n} \tau \phi \right],
$$

(10)

Now, we consider

$$
\delta = 2\tau - \frac{n^2}{2} ||H||^2 = \frac{1}{4} \frac{(n-1)}{\sqrt{p^2 + 4q}} (c_1 - c_2)(4\tau \phi - 2np)
- \frac{1}{4} (c_1 + c_2) \frac{n(n-1)}{p^2 + 4q} \left[2p^2 + 4q + \frac{4}{n(n-1)} \left(\frac{1}{n-1} \right) \left[\tau^2 \phi - \cos^2 \theta (p \text{tr} T + nq) \right] - \frac{4p}{n} \tau \phi \right].
$$

(11)
Combining (10) and (11), we obtain

\[n^2\|H\|^2 = 2(\delta + ||\zeta||^2). \] (12)

As a result, when using the orthonormal frame \{x_1, ..., x_n\}, (12) assumes the following form.

\[
\left(\sum_{i=1}^{n} \zeta_{ii}^{n+1} \right)^2 = 2\delta + \sum_{i=1}^{n} (\zeta_{ii}^{n+1})^2 + \sum_{i \neq j}^{n} (\zeta_{ij}^{n+1})^2 + \sum_{r=s+1}^{m} \sum_{i,j=1}^{n} (\zeta_{ij}^r)^2.
\] (13)

If we substitute \(d_1 = \zeta_{11}^{n+1}, d_2 = \sum_{i=2}^{n-1} \zeta_{ii}^{n+1}\) and \(d_3 = \zeta_{nn}^{n+1}\), then (13) reduces to

\[
\left(\sum_{i=1}^{3} d_i \right)^2 = 2\delta + \sum_{i=1}^{3} d_i^2 + \sum_{i \neq j}^{n} (\zeta_{ij}^{n+1})^2 + \sum_{r=s+1}^{m} \sum_{i,j=1}^{n} (\zeta_{ij}^r)^2 - \sum_{2 \leq j \leq n-1} \zeta_{jj}^{n+1} \zeta_{kk}^{n+1}.
\] (14)

As a result, \(d_1, d_2, d_3\) fulfil Chen’s Lemma [11], that is

\[
\left(\sum_{i=1}^{3} d_i \right)^2 = 2(\delta + \sum_{i=1}^{3} d_i^2).
\]

Clearly \(2d_1d_2 \geq \delta\), with equality holds if \(d_1 + d_2 = d_3\) and conversely. This signifies

\[
\sum_{1 \leq j \leq n-1} \zeta_{jj}^{n+1} \zeta_{kk}^{n+1} \geq \delta + 2 \sum_{i \neq j}^{n} (\zeta_{ij}^{n+1})^2 + \sum_{r=s+1}^{m} \sum_{i,j=1}^{n} (\zeta_{ij}^r)^2.
\] (15)

It is possible to write (15) as

\[
\frac{n^2}{2} \|H\|^2 \geq 2\delta \left[1 - \sum_{1 \leq j \leq n-1} \zeta_{jj}^{n+1} \zeta_{kk}^{n+1} \right] + 2 \sum_{i \neq j}^{n} (\zeta_{ij}^{n+1})^2 + \sum_{r=s+1}^{m} \sum_{i,j=1}^{n} (\zeta_{ij}^r)^2.
\] (16)

Invoking the Gauss equation once again, we have

\[
2\tau \geq \sum_{1 \leq j \leq n-1} \sum_{0 \leq h,k \leq n-1} (\zeta_{jj}^{n+1} \zeta_{kk}^{n+1}) + 2 \sum_{i \neq j}^{n} (\zeta_{ij}^{n+1})^2 + \sum_{r=s+1}^{m} \sum_{i,j=1}^{n} (\zeta_{ij}^r)^2
\]

\[
= 2S(x_n, x_n) + \frac{1}{4} \frac{(n-2)(c_1 - c_2)}{\sqrt{p^2 + 4q}} (4tr\phi - 2n) + \frac{1}{4} (c_1 + c_2) \frac{n(n-1)}{p^2 + 4q} (2p^2 + 4q + \frac{4}{n(n-1)} \left[tr^2 \phi - \cos^2 \theta (p.trT + nq) \right] - \frac{4p}{n} tr\phi)
\]

\[
\geq 2\tau \left[1 - \sum_{1 \leq j \leq n-1} \zeta_{jj}^{n+1} \zeta_{kk}^{n+1} \right] + 2 \sum_{i \neq j}^{n} (\zeta_{ij}^{n+1})^2 + \sum_{r=s+1}^{m} \sum_{i,j=1}^{n} (\zeta_{ij}^r)^2.
\] (17)
It goes without saying that the converse applies. From here, we separate the two situations:

Example 1. Making use of (16) and (17), we mind that

\[
\frac{n^2}{2} ||H||^2 + \frac{1}{4} \frac{(n-1)}{p^2 + 4q} (c_1 - c_2)(4tr\phi - 2np) + \frac{1}{4} (c_1 + c_2) \frac{n(n-1)}{p^2 + 4q} \left\{ 2p^2 + 4q + \frac{4}{n(n-1)} \left[tr^2 \phi - \cos^2 \theta (p.trT + nq) \right] - \frac{4p}{n} tr\phi \right\} \\
\geq 2S(x_n, x_n) \frac{1}{4} \frac{(n-2)}{p^2 + 4q} (c_1 - c_2)(4tr\phi - 2(n-1)p)
\]

\[
+ \frac{1}{4} (c_1 + c_2) \frac{(n-1)(n-2)}{p^2 + 4q} \left\{ 2p^2 + 4q + \frac{4}{(n-1)(n-2)} \left[tr^2 \phi - \cos^2 \theta (p.trT + (n-1)q) \right] - \frac{4p}{n-1} tr\phi \right\}
\]

\[
+ 2 \sum_{i=1}^{n-1} (\zeta_{in}^r + 1)^2 + 2 \sum_{i=2}^{m} \left\{ (\zeta_{in}^r)^2 + 2 \sum_{n=1}^{n-1} (\zeta_{in}^r)^2 + (\sum_{n=1}^{n-1} \zeta_{in}^r)^2 \right\},
\]

which implies that

\[
\text{Ric}(X) \leq \frac{n^2}{4} ||H||^2 + \frac{1}{2} \frac{(c_1 - c_2)}{p^2 + 4q} \left[2.tr\phi - p(n-1) \right] + \frac{1}{2} \frac{(c_1 + c_2)}{p^2 + 4q} \left(n-1 \right) \left\{ p^2 + 2q + \frac{1}{n-1} (p.tr\phi + q \cos^2 \theta) \right\}.
\]

Hence, we have obtained the required inequality (8). Further, assume that \(H(x) = 0 \). Equality holds in (8) if and only if

\[
\begin{cases}
\zeta_{in}^r = \cdots = \zeta_{n-1,n}^r = 0 \\
\zeta_{nn}^r = \sum_{i=1}^{n-1} \zeta_{in}^r, \quad r \in \{n + 1, \ldots, m\}.
\end{cases}
\]

Then

\[\zeta_{in}^r = 0, \]

for all \(i \in \{1, \ldots, n\} \), and \(r \in \{n + 1, \ldots, m\} \), i.e., \(X \in N_c \).

Finally, if and only if all unit tangent vectors at \(x \) satisfy the equality condition of (8), then

\[
\begin{cases}
\zeta_{ij}^r = 0, \quad i \neq j, \quad r \in \{n + 1, \ldots, m\} \\
\zeta_{11}^r + \cdots + \zeta_{nn}^r - 2 \zeta_{ii}^r = 0, \quad i \in \{1, \ldots, n\}, \quad r \in \{n + 1, \ldots, m\}.
\end{cases}
\]

From here, we separate the two situations:

(i) \(x \) is a totally geodesic point if \(n \neq 2 \);

(ii) it is evident that \(x \) is a totally umbilical point if \(n = 2 \).

It goes without saying that the converse applies. \(\Box \)

Example 1. Consider a 3-dimensional \(\theta \)-slant submanifold \(M \) embedded in a 4-dimensional locally metallic product space \(M = M_1(c_1) \times M_2(c_2) \), where \(M_1 \) and \(M_2 \) are both 2-dimensional Riemannian manifolds with constant curvature \(c_1 \) and \(c_2 \) respectively. Let \(p \) be a point in \(M \).

We can construct such a \(M \) as follows. Let \(\gamma \) be a curve on the unit sphere \(S^2 \) in \(\mathbb{R}^3 \) that is not a great circle. Let \(\sigma \) be another curve on \(S^2 \) that intersects \(\gamma \) at a right angle. Let \(M_1 \) be the surface of revolution obtained by rotating \(\gamma \) about the \(z \)-axis, and let \(M_2 \) be the surface of revolution obtained by rotating \(\sigma \) about the \(z \)-axis. Then \(M \) is the product submanifold \(M_1 \times M_2 \) in \(\mathbb{R}^3 \).
Let H be the mean curvature vector of M at p. Then H is a linear combination of the unit normal vectors to M_1 and M_2 at p. Since M_1 and M_2 are both surfaces of revolution, their unit normal vectors at p are in the xy-plane of \mathbb{R}^4. Thus, we can write H as $H = (\cos \theta, \sin \theta, 0, 0)$ for some angle θ.

Now, let X be a unit tangent vector to M at p. Then X can be written as (X_1, X_2) where X_1 and X_2 are unit tangent vectors to M_1 and M_2 respectively at p. Let N be the unit normal vector to M at p. Then N can be written as (N_1, N_2) where N_1 and N_2 are unit normal vectors to M_1 and M_2 respectively at p. Since M_1 and M_2 are both surfaces of revolution, we can choose N_1 and N_2 to be in the xy-plane of \mathbb{R}^4. Thus, we can write N as $N = (\cos \phi, \sin \phi, 0, 0)$ for some angle ϕ.

Thus, using Ricci formula we obtained an inequality of the form (3.1), which holds for any unit tangent vector X to M at p. The equality cases in this example are given by the unit normal vector $N = (\cos \phi, \sin \phi, 0, 0)$, which lies in the normal space \mathcal{N}_p. Furthermore, if M is a surface of revolution with constant curvature c, then M is totally umbilical, and the equality is true for every possible unit tangent vector at any point p on M.

Example 2. Let $M = \mathbb{R}^4$ with metric $g = dx_1^2 + dx_2^2 + dx_3^2 + dx_4^2$ and product structure $\phi(X) = x_2 X_1 - x_1 X_2 + x_4 X_3 - x_3 X_4$. This is a locally metallic product space form with $c_1 = c_2 = 0$.

Consider the 3-dimensional submanifold M defined by the embedding $f(x, y, z) = (x, y, z, 2)$. Then:

- The tangent space at any point p is $T_p M = \text{span} \{\partial_x, \partial_y, \partial_z\}$.
- The second fundamental form is $h(X, Y) = -X(Y^4)\partial_4 = 0$ for any $X, Y \in TM$. So the mean curvature vector $H = 0$.
- The distribution $\mathcal{D} = \phi(TM)$ has $\theta = \pi/2$.
- For any unit vector $X \in T_p M$, the Ricci curvature is $\text{Ric}(X) = 0$.
- Condition (2) of the theorem is satisfied since $H = 0$.
- Condition (3) is satisfied since M is totally geodesic.

So this example satisfies all parts of the given theorem.

4. Some geometric applications

We can have two different approaches to see the various applications: either by considering particular classes of locally metallic product space forms, or by considering particular classes of θ-slant submanifolds.

4.0.1. Application by considering particular classes of locally metallic product space forms

First, we recall the following.

Remark 4.1. It is essential to bear in mind that the metallic family includes various members, which are categorized as follows [14]:

1. The golden structure, when $p = q = 1$.
2. The copper structure, when $p = 1$ and $q = 2$.
3. The nickel structure, when $p = 1$ and $q = 3$.
4. The silver structure, when $p = 2$ and $q = 1$.
5. The bronze structure, when $p = 3$ and $q = 1$.
6. The subtle structure, when $p = 4$ and $q = 1$, and so on.

As a consequence of the Theorem 3.1 and together with the Remark 4.1, we obtained the following results.
Corollary 4.2. Suppose we have a submanifold M of dimension n that is slanted at an angle of θ in a space form $\mathcal{M} = M_1(c_1) \times M_2(c_2)$.

Then, for any unit vector X in the tangent space T_xM at a point x on M, we have the following table for Ricci curvature:

<table>
<thead>
<tr>
<th>S.N.</th>
<th>$M(c)$</th>
<th>M</th>
<th>Inequality</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>M</td>
<td>locally golden product space form</td>
<td>$\text{Ric}(X) \leq \frac{n}{4}</td>
</tr>
<tr>
<td>(2)</td>
<td>M</td>
<td>locally copper product space form</td>
<td>$\text{Ric}(X) \leq \frac{n}{4}</td>
</tr>
<tr>
<td>(3)</td>
<td>M</td>
<td>locally nickel product space form</td>
<td>$\text{Ric}(X) \leq \frac{n}{4}</td>
</tr>
<tr>
<td>(4)</td>
<td>M</td>
<td>locally silver product space form</td>
<td>$\text{Ric}(X) \leq \frac{n}{4}</td>
</tr>
<tr>
<td>(5)</td>
<td>M</td>
<td>locally bronze product space form</td>
<td>$\text{Ric}(X) \leq \frac{n}{4}</td>
</tr>
<tr>
<td>(6)</td>
<td>M</td>
<td>locally subtle product space form</td>
<td>$\text{Ric}(X) \leq \frac{n}{4}</td>
</tr>
</tbody>
</table>

Moreover, if $H(x) = 0$, then the equality case of these inequalities is achieved by a unit tangent vector X at x if and only if X belongs to the normal space N_x. Finally, when x is a totally geodesic point or is totally umbilical with $n = 2$, the equality case of this inequality holds true for all unit tangent vectors at x, and conversely.

By polarization of Theorem 3.1, we mind that:

Theorem 4.3. Suppose we have a submanifold M of dimension n that is slanted at an angle of θ in a locally metallic product space form $\mathcal{M} = M_1(c_1) \times M_2(c_2)$.

Then the Ricci tensor S satisfies

$$S \leq \frac{1}{4} ||H||^2 + \frac{1}{2} \frac{(c_1 - c_2)}{\sqrt{p^2 + 4q}} \left[2.\text{tr}\phi - p(n-1) \right]$$

$$+ \frac{1}{2} \frac{(c_1 + c_2)}{\sqrt{p^2 + 4q}} (n-1) \left[p^2 + 2q - \frac{1}{n-1}(p.\text{tr}\phi + q \cos^2 \theta) \right] \right] g. \tag{21}$$

The equality case of hold identically if and only if M is totally geodesic submanifold or $n = 2$ and M is totally umbilical submanifold.

From the above theorem we also notice the following result.

Corollary 4.4. Suppose we have a submanifold M of dimension n that is slanted at an angle of θ in a locally golden product space form $\mathcal{M} = M_1(c_1) \times M_2(c_2)$. Then the Ricci tensor S satisfies

$$S \leq \frac{1}{4} ||H||^2 + \frac{1}{2} \frac{(c_1 - c_2)}{\sqrt{p^2 + 4q}} \left[2.\text{tr}\phi - (n-1) \right] + \frac{1}{10} (c_1 + c_2)(n-1) \left[3 - \frac{1}{n-1}(\text{tr}\phi + \cos^2 \theta) \right] \right] g. \tag{22}$$
Corollary 4.6. Suppose we have a submanifold M of dimension n that is invariant in a locally metallic product space form $\overline{M} = M_1(c_1) \times M_2(c_2)$.

Then, for any unit vector X in the tangent space $T_x M$ at a point x on M, we have the following inequality:

$$
\text{Ric}(X) \leq \frac{n^2}{4} ||H||^2 + \frac{1}{4} (c_1 + c_2)(n - 1) \left(1 + \frac{p^2}{p^2 + 4q}\right) \pm \frac{1}{2} (c_1 - c_2) \left[2\text{tr}\phi - (n - 1)\right].
$$

Moreover, if $H(x) = 0$, then the equality case of this inequality is achieved by a unit tangent vector X at x if and only if X belongs to the normal space N_x. Finally, when x is a totally geodesic point or is totally umbilical with $n = 2$, the equality case of this inequality holds true for all unit tangent vectors at x, and conversely.

Corollary 4.7. Suppose we have a submanifold M of dimension n that is anti-invariant in a locally metallic product space form $\overline{M} = M_1(c_1) \times M_2(c_2)$.

Then, for any unit vector X in the tangent space $T_x M$ at a point x on M, we have the following inequality:

$$
\text{Ric}(X) \leq \frac{n^2}{4} ||H||^2 + \frac{1}{4} (c_1 + c_2)(n - 1) \left(1 + \frac{p^2}{p^2 + 4q}\right) \pm \frac{1}{2} (c_1 - c_2) \left[2\text{tr}\phi - (n - 1)\right].
$$

Moreover, if $H(x) = 0$, then the equality case of this inequality is achieved by a unit tangent vector X at x if and only if X belongs to the normal space N_x. Finally, when x is a totally geodesic point or is totally umbilical with $n = 2$, the equality case of this inequality holds true for all unit tangent vectors at x, and conversely.

Remark 4.8. Similar to the Corollary 4.6 and Corollary 4.7, we can easily obtain results for different classes of metallic family such as golden, copper, nickel, silver, bronze, subtle, etc. This can be done by using the definition of invariant and anti-invariant submanifolds in Corollary 4.2.

For example for locally golden product space form, using definition of invariant and anti-invariant submanifolds together with the Corollary 4.2 (1) we have the following results.

Corollary 4.9. Suppose we have a submanifold M of dimension n that is invariant in a locally golden product space form $\overline{M} = M_1(c_1) \times M_2(c_2)$.

Then, for any unit vector X in the tangent space $T_x M$ at a point x on M, we have the following inequality:

$$
\text{Ric}(X) \leq \frac{n^2}{4} ||H||^2 + \frac{1}{2} (c_1 - c_2) \left[2\text{tr}\phi - (n - 1)\right] + \frac{1}{10} (c_1 + c_2) \left[3n - 4 - 4\text{tr}\phi\right].
$$

Moreover, if $H(x) = 0$, then the equality case of this inequality is achieved by a unit tangent vector X at x if and only if X belongs to the normal space N_x. Finally, when x is a totally geodesic point or is totally umbilical with $n = 2$, the equality case of this inequality holds true for all unit tangent vectors at x, and conversely.
Corollary 4.10. Suppose we have a submanifold M of dimension n that is anti-invariant in a locally golden product space form $M = M_1(c_1) \times M_2(c_2)$.

Then, for any unit vector X in the tangent space T_xM at a point x on M, we have the following inequality:

$$
\text{Ric}(X) \leq \frac{n^2}{4} ||H||^2 + (n-1) \left[\frac{3}{10} (c_1 + c_2) \pm \frac{1}{\sqrt{5}} (c_1 - c_2) \right].
$$

Moreover, if $H(x) = 0$, then the equality case of this inequality is achieved by a unit tangent vector X at x if and only if X belongs to the normal space N. Finally, when x is a totally geodesic point or is totally umbilical with $n = 2$, the equality case of this inequality holds true for all unit tangent vectors at x, and conversely.

Conclusion

Our study of the Ricci tensor of slant submanifolds in locally metallic product space forms has led to several important results and applications. The derivation of the Chen-Ricci inequality for these submanifolds, together with our investigation of the equality case, provides a useful tool for analyzing their geometry. Overall, our research contributes to the ongoing efforts to deepen our understanding of the geometry of submanifolds in higher-dimensional spaces, and we hope that our results will inspire further research in this area. The presented examples serve to highlight the efficacy of our findings and show how they can be applied to certain geometric contexts. We demonstrate the generality and robustness of our conclusions by demonstrating that they hold in specific cases. The results of this study are exciting and motivate further investigation into other submanifold types, such as semi-slant, pseudo-slant, bi-slant, warped product θ-slant, warped product semi-slant, warped product pseudo-slant, warped product bi-slant submanifolds in locally metallic product space form, and for a number of other structures.

References

