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Abstract. In this paper, we focus on the conformal (σ, τ)-derivation theory of Lie conformal algebras.
Firstly, we study the fundamental properties of conformal (σ, τ)-derivations. Secondly, we mainly research
the interiors of conformal G-derivations. Finally, we discuss the relationships between the conformal
(σ, τ)-derivations and some generalized conformal derivations of Lie conformal algebras.

1. Introduction

Lie conformal algebras, introduced by Kac in [4, 5], encode the singular part of the operator product
expansion of chiral fields in two-dimensional quantum field theory. Furthermore, the category of Lie
conformal algebras is equivalent to the category of formal distribution Lie algebras, which are essentially
infinite-dimensional Lie algebras. Namely, they are closely connected to the notion of a formal distribution
Lie algebra (1,F ), which is a Lie algebra 1 spanned by the coefficients of a familyF of mutually local formal
distributions. See [2] for details.

The derivation theory of Lie conformal algebras was introduced in [2]. The generalized derivation
theory of Lie conformal (super)algebras was developed in [3, 6, 7]. [1] studied a kind of new generalized
derivations of Lie algebras, that is the (σ, τ)-derivation theory of Lie algebras. In the present paper, we aim
to do the same as in [1] for Lie conformal algebras, extending the (σ, τ)-derivations of Lie algebras to that of
the Lie conformal algebras.

This paper is organized as follows. In Section 1, we recall several basic definitions of Lie conformal
algebras and introduce the concept of conformal (σ, τ)-derivations of Lie conformal algebras. In Section
2, we obtain some fundamental properties of conformal (σ, τ)-derivations. In Section 3, we describe the
interiors of conformal G-derivations and compute the corresponding Hilbert series to show its complexity.
In Section 4, we devote ourselves to studying the connections between the conformal (σ, τ)-derivations and
some generalized conformal derivations, such as centroids and conformal (α, β, γ)-derivations.

Throughout this paper, we denote by C the field of complex numbers. Denote by Z the ring of integers
and Z≥0 the set of nonnegative integers. The set of strictly positive integers will be denoted byN+.
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2. Preliminaries

In this section, for the reader’s convenience, we shall summarize some basic facts about Lie conformal
algebras used in this paper, see [2, 4]. At the end of this section, we introduce the notion of a conformal
(σ, τ)-derivation for arbitrary Lie conformal algebras.

Definition 2.1. [4] A Lie conformal algebraR is a leftC[∂]-module, and for any n ∈ Z≥0 there is a family ofC-linear
n-products from R ⊗ R to R satisfying

(C0) For any a, b ∈ R, a(n)b = 0 for n≫ 0,
(C1) For any a, b ∈ R and n ∈ Z≥0, (∂a)(n)b = −na(n−1)b,
(C2) For any a, b ∈ R and n ∈ Z≥0,

a(n)b = −
∞∑
j=0

(−1) j+n 1
j!
∂ j(b(n+ j)a),

(C3) For any a, b, c ∈ R and m,n ∈ Z≥0,

a(m)(b(n)c) =
m∑

j=0

(m
j )(a( j)b)(m+n− j)c + b(n)(a(m)c).

(Convention: a(n)b = 0 if n < 0).
Define the λ-bracket [−λ−] by

[aλb] =
∞∑

n=0

λn

n!
a(n)b, ∀a, b ∈ R. (1)

Then R is a Lie conformal algebra if and only if [−λ−] satisfies

(C1)λ Conformal sesquilinearity : [(∂a)λb] = −λ[aλb];
(C2)λ Skew − symmetry : [aλb] = −[b−∂−λa];
(C3)λ Jacobi identity : [aλ[bµc]] = [[aλb]λ+µc] + [bµ[aλc]].

A Lie conformal algebras is called finite if R is a finitely generated C[∂]-module. The rank of a conformal
algebra R is its rank as a C[∂]-module (recall that this is the dimension over C(∂), the field of fractions of
C[∂], of C(∂) ⊗C[∂] R).

Throughout this paper, we assume that R is finite.

Definition 2.2. [4] An associative conformal algebra R is a left C[∂]-module endowed with a λ-product from R ⊗R
to C[λ] ⊗ R, for any a, b, c ∈ R, satisfying

(1) (∂a)λb = −λaλb, aλ(∂b) = (∂ + λ)(aλb),
(2) aλ(bµc) = (aλb)λ+µc.

Definition 2.3. [2] Let M and N beC[∂]-modules. A conformal linear map from M to N is a sequence f = { f(n)}n∈Z≥0

of f(n) ∈ HomC(M,N) satisfying that

∂N f(n) − f(n)∂M = −n f(n−1), n ∈ Z≥0.

Set fλ =
∑
∞

n=0
λn

n! f(n). Then f = { f(n)}n∈Z≥0 is a conformal linear map if and only if

fλ∂M = (∂N + λ) fλ.
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Let Chom(M,N) denote the set of conformal linear maps from M to N. Then Chom(M,N) is a C[∂]-
module via:

∂ f(n) = −n f(n−1), equivalently, ∂ fλ = −λ fλ.

The composition fλ1 : L→ N ⊗ C[λ] of conformal linear maps f : M→ N and 1 : L→M is given by

( fλ1)λ+µ = fλ1µ, ∀ f , 1 ∈ Chom(M,N).

If M is a finitely generated C[∂]-module, then Cend(M) := Chom(M,M) is an associative conformal
algebra with respect to the above composition. Thus, Cend(M) becomes a Lie conformal algebra, called the
general linear Lie conformal algebra, denoted as 1c(M), with respect to the λ-bracket(see [2, Example3.5]):

[ fλ1]µ = fλ1µ−λ − 1µ−λ fλ. (2)

Throughout this paper, we mainly deal with C[∂]-modules which are finitely generated.

Definition 2.4. [2] Let R be a Lie conformal algebra. d ∈ Cend(R) is a conformal derivation if for any a, b ∈ R it
holds that

d(m)(a(n)b) =
m∑

j=0

(m
j )(d( j)a)(m+n− j)b + a(n)(d(m)(b));

equivalently,

dλ([aµb]) = [(dλ(a))λ+µb] + [aµ(dλ(b))].

For any r ∈ R, dr
λ is called an inner conformal derivation of R if dr

λ(r′) = [rλr′], ∀r′ ∈ R.
Define CDer(R) as the set of conformal derivations of R, then it is obvious that CDer(R) is a subalgebra

of Cend(R).

Definition 2.5. [2] Let R and R′ be two Lie conformal algebras. A homomorphism ϕ from R to R′ of Lie conformal
algebras is a C[∂]-linear homomorphism if for any a, b ∈ R it holds that

ϕ(a(n)b) = (ϕ(a)(n)ϕ(b));

equivalently,

ϕ([aλb]) = [ϕ(a)λϕ(b)].

We call ϕ an isomorphism if it is bijective. We call ϕ an endomorphism if R = R
′

. We call ϕ an
automorphism if it is bijective and if R = R

′

.
In the following, we denote Aut(R) the automorphism group of R.

Definition 2.6. [2] Let R be a Lie conformal algebra and G a subgroup of Aut(R). Then d ∈ Cend(R) is a conformal
G-derivation of R if there exist two elements σ, τ in G such that

dλ([aµb]) = [(dλ(a))λ+µ(σ(b))] + [(τ(a))µ(dλ(b))], ∀a, b ∈ R.

In this case, σ and τ are called the associated automorphisms of d.

Denote by CDerG(R) the set of all conformal G-derivations of R. It is clear that CDerG(R) = CDer(R) if
G is a trivial group, that is G = {idR}. Thus, conformal G-derivations can be viewed as a generalization of
conformal derivations. What’s more, if G ≤ H are two subgroups of Aut(R), then CDerG(R) ⊆ CDerH(R)
and CDer(R) is contained in CDerG(R) for any subgroup G of Aut(R).

Fix two automorphisms σ, τ ∈ G, we denote by CDerσ,τ(R) the set of all conformal G-derivations
associated to σ and τ, called the conformal (σ, τ)-derivation. It is clear that CDerσ,τ(R) ⊆ CDerG(R) is a
C[∂]-module and CDeridR ,idR (R) = CDer(R). For convenience, we denote CDerσ,idR (R) by CDerσ(R).

Hereafter, G always denotes a subgroup of Aut(R).
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3. Fundamental properties

In this section, we aim to show several fundamental properties of conformal (σ, τ)-derivations.

Proposition 3.1. Let R be a Lie conformal algebra. If σ, τ ∈ G, then rank(CDerσ,τ(R)) = rank(CDerτ−1σ(R)).

Proof. Define a map φτ : CDerσ,τ(R)→ CDerτ−1σ(R) by

φτ(d) = τ−1d, ∀d ∈ CDerσ,τ(R).

Note that

τ−1(dλ([aµb])) = τ−1([(dλ(a))λ+µ(σ(b))] + [(τ(a))µ(dλ(b))])

= [(τ−1(dλ(a)))λ+µ(τ−1(σ(b)))] + [aµ(τ−1(dλ(b)))],

for any a, b ∈ R. Hence τ−1d ∈ CDerτ−1σ(R), and thus the map φτ is well-defined. What’s more

φτ(d1 + d2) = τ−1(d1 + d2) = τ−1d1 + τ
−1d2 = φτd1 + φτd2,

φτ(∂d) = φτ(−λdλ) = −λφτ(dλ) = −λτ−1(dλ) = ∂φτ(dλ).

That is to say, φτ is a C[∂]-module homomorphism.
In addition, it still needs to show that φτ is an isomorphism. So we try to see its inverse. We can define

a map ψτ : CDerτ−1σ(R) → CDerσ,τ(R) by ψτ(d) = τd for any d in CDerτ−1σ(R). Similarly, we can verify that
ψτ is a well-defined C[∂]-module homomorphism. What’s more, ψτφτ = idCDerσ,τ(R) and φτψτ = idCDerτ−1σ(R),
which meansψτ is the inverse ofφτ. Therefore, CDerσ,τ(R) and CDerτ−1σ(R) are isomorphic asC[∂]-modules,
and thus rank(CDerσ,τ(R)) = rank(CDerτ−1σ(R)).

Proposition 3.1 means that the study of CDerσ,τ(R) with two parameters σ, τ can be reduced to the study
of CDerσ′ (R) with one parameter σ

′

= τ−1σ. Particularly, if we take τ = σ, then CDerσ,σ(R) and CDer(R)
are isomorphic as C[∂]-modules. Moreover, we may extend this isomorphic relation to the level of Lie
conformal algebras.

Proposition 3.2. Let R be a Lie conformal algebra. If σ ∈ G, then there exists a Lie conformal algebra structure
[−λ−]σ on Derσ,σ(R) such that Derσ,σ(R) � CDer(R) as Lie conformal algebras.

Proof. Define a λ-bracket [−λ−]σ on CDerσ,σ(R) × CDerσ,σ(R) as follow:

[ fλ1]σ = φ−1
σ ([(φσ( f ))λ(φσ(1))]), ∀ f , 1 ∈ CDerσ,σ(R),

where φσ is defined as Proposition 3.1. It’s obvious that [−λ−]σ is well-defined since φσ is a bijective map.
And it is bilinear because both φσ and φ−1

σ are C[∂]-module homomorphisms.
A direct computation shows that

[∂ fλ1]σ = φ−1
σ ([(φσ(∂ f ))λ(φσ(1))])

= φ−1
σ ([(φσ(−λ f ))λ(φσ(1))]) = −λφ−1

σ ([(φσ( f ))λ(φσ(1))]) = −λ[ fλ1]σ,

and

[ fλ1]σ = φ−1
σ ([(φσ( f ))λ(φσ(1))]) = −φ−1

σ ([(φσ(1))−∂−λ(φσ( f ))]) = −[1−∂−λ f ]σ,

for any f , 1 in CDerσ,σ(R).
To check the Jacobi identity, we compute

[[ fλ1]σλ+µh]σ = [φ−1
σ ([(φσ( f ))λ(φσ(1))])λ+µh]σ

= φ−1
σ ([φσ(φ−1

σ ([(φσ( f ))λ(φσ(1))]))λ+µ(φσ(h))])

= φ−1
σ ([[(φσ( f ))λ(φσ(1))]λ+µ(φσ(h))]),
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for any f , 1 in CDerσ,σ(R). Similarly,

[ fλ[1µh]σ]σ = φ−1
σ ([(φσ( f ))λ[(φσ(1))µ(φσ(h))]]),

[1µ[ fλh]σ]σ = φ−1
σ ([(φσ(1))µ[(φσ( f ))λ(φσ(h))]]).

So

[[ fλ1]σλ+µh]σ − [ fλ[1µh]σ]σ + [1µ[ fλh]σ]σ

= φ−1
σ ([[(φσ( f ))λ(φσ(1))]λ+µ(φσ(h))]) − φ−1

σ ([(φσ( f ))λ[(φσ(1))µ(φσ(h))]])

+ φ−1
σ ([(φσ(1))µ[(φσ( f ))λ(φσ(h))]])

= φ−1
σ ([[(φσ( f ))λ(φσ(1))]λ+µ(φσ(h))] − [φσ( f )λ[(φσ(1))µ(φσ(h))]]
+ [(φσ(1))µ[(φσ( f ))λ(φσ(h))]])

= φ−1
σ (0) = 0,

which means that [ fλ[1µh]σ]σ = [[ fλ1]σλ+µh]σ + [1µ[ fλh]σ]σ. Hence, (CDerσ,σ(R), [−λ−]σ) is a Lie conformal
algebra.

To complete the proof, it still needs to show that φσ is a Lie conformal algebras homomorphism.
Actually, φσ([ fλ1]σ) = φσ(φ−1

σ ([(φσ( f ))λ(φσ(1))])) = [(φσ( f ))λ(φσ(1))] and φσ is a Lie conformal algebras
homomorphism between CDerσ,σ(R) and CDer(R), as desired.

Recall that the center of a Lie conformal algebra R is the set Z(R) = {a ∈ R | [aλb] = 0, ∀b ∈ R}, and the
centralizer of a in R is the set Za(R) = {b ∈ R | [aλb] = 0}.

Proposition 3.3. Let σ and τ be two elements in G such that (σ − τ)(R) ⊆ Z(R). Then CDerσ(R) = CDerτ(R). In
addition, if (σ − idR)(R) ⊆ Z(R), then CDerσ(R) = CDer(R) is a Lie conformal subalgebra of Cend(R).

Proof. For any d in CDerσ(R) and since (σ − τ)(R) ⊆ Z(R), we have

[(dλ(a))λ+µ((σ − τ)(b))] = 0, ∀a, b ∈ R,

that is [(dλ(a))λ+µ(σ(b))] = [(dλ(a))λ+µ(τ(b))]. So we can get

dλ([aµb]) = [(dλ(a))λ+µ(σ(b))] + [aµ(dλ(b))] = [(dλ(a))λ+µ(τ(b))] + [aµ(dλ(b))],

which implies that d ∈ CDerτ(R) and CDerσ(R) ⊆ CDerτ(R). By switching the roles of σ and τ, we can get
CDerτ(R) ⊆ CDerσ(R). Consequently, we obtain CDerσ(R) = CDerτ(R).

In particular, if we take τ = idR, then CDerσ(R) = CDer(R) is a Lie conformal subalgebra of Cend(R).

Proposition 3.4. Let G be an abelian group. If σ and σ
′ are two elements in G such that σ commutes with

every element of CDerσ′ (R) and σ′ commutes with every element of CDerσ(R), then [ fλ1]µ ∈ CDerσσ′ (R) for any
f ∈ CDerσ(R) and 1 ∈ CDerσ′ (R).

Proof. For any a, b ∈ R, we observe that

fλ(1µ−λ([aγb])) = fλ([(1µ−λ(a))µ−λ+γ(σ
′

(b))] + [aγ(1µ−λ(b))])

= [( fλ(1µ−λ(a)))µ+γ(σ(σ
′

(b)))] + [(1µ−λ(a))µ−λ+γ( fλ(σ
′

(b)))]
+ [( fλ(a))λ+γ(σ(1µ−λ(b)))] + [aγ( fλ(1µ−λ(b)))],

and

1µ−λ( fλ([aγb])) = 1µ−λ([( fλ(a))λ+γ(σ(b))] + [aγ( fλ(b))])

= [(1µ−λ( fλ(a)))µ+γ(σ
′

(σ(b)))] + [( fλ(a))λ+γ(1µ−λ(σ(b)))]

+ [(1µ−λ(a))µ−λ+γ(σ
′

( fλ(b)))] + [aγ(1µ−λ( fλ(b)))].
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According to the assumption, one can obtain that σ commutes with 1 and σ
′

commutes with f . By the fact
that σ σ

′

= σ
′

σ, we can easily get

[ fλ1]µ([aγb]) = ( fλ1µ−λ − 1µ−λ fλ)([aγb]) = fλ(1µ−λ([aγb])) − 1µ−λ( fλ([aγb]))

= [( fλ(1µ−λ(a)))µ+γ(σ(σ
′

(b)))] + [(1µ−λ(a))µ−λ+γ( fλ(σ
′

(b)))]
+ [( fλ(a))λ+γ(σ(1µ−λ(b)))] + [aγ( fλ(1µ−λ(b)))]

− [(1µ−λ( fλ(a)))µ+γ(σ
′

(σ(b)))] − [( fλ(a))λ+γ(1µ−λ(σ(b)))]

− [(1µ−λ(a))µ−λ+γ(σ
′

( fλ(b)))] − [aγ(1µ−λ( fλ(b)))]

= [([ fλ1]µ(a))µ+γ(σ(σ
′

(b)))] + [aγ([ fλ1]µ(b))].

Therefore, [ fλ1]µ ∈ CDerσσ′ (R).

Corollary 3.5. Let σ be an idempotent automorphism of G. If σ commutes with every element of CDerσ(R), then
CDerσ(R) is a Lie conformal algebra.

Proof. Note that CDerσ(R) is a C[∂]-module, thus it suffices to verify that CDerσ(R) is closed under the
λ-bracket, that is

[ fλ1]µ = fλ1µ−λ − 1µ−λ fλ ∈ CDerσ(R), ∀ f , 1 ∈ CDerσ(R).

With a similar discussion as that in the proof of Proposition 3.4,

[ fλ1]µ([aγb])) = [([ fλ1]µ(a))µ+γσ2(b)] + [aγ([ fλ1]µ(b))], ∀a, b ∈ R.

By the fact that σ2 = σ, we can deduce that [ fλ1]µ ∈ CDerσ(R)[λ]. Therefore, CDerσ(R) is a Lie conformal
algebra.

Proposition 3.6. Let σ, τ ∈ G and d ∈ CDerσ(R). Then τd ∈ CDerτσ,τ(R) and dτ ∈ CDerστ,τ(R).

Proof. A direct computation shows that

τdλ([aµb]) = τ([(dλ(a))λ+µ(σ(b))] + [aµ(dλ(b))])
= τ([(dλ(a))λ+µ(σ(b))]) + τ([aµ(dλ(b))])
= [(τ(dλ(a)))λ+µ(τ(σ(b)))] + [(τ(a))µ(τ(dλ(b)))],

for any a, b ∈ R. Thus, τd ∈ CDerτσ,τ(R).
Similarly, we can obtain that dτ ∈ CDerστ,τ(R).

Proposition 3.7. If σ, τ are two elements in G such that c − σ−1τ(c) < Zc(R) for any nonzero element c in R, then
CDerσ(R) ∩ CDerτ(R) = {0}.

Proof. Assume that there exists a nonzero element d ∈ CDerσ(R) ∩ CDerτ(R). Then there exists an element
a0 ∈ R such that dλ(a0) , 0. So

[(dλ(a))λ+µ(σ(b))] = [(dλ(a))λ+µ(τ(b))], ∀a, b ∈ R,

which implies that

[(σ−1(dλ(a)))λ+µ(b − σ−1τ(b))] = 0.

If we take a = a0 and b = b0 := σ−1dλ(a0), then we can get

[b0λ+µ (b0 − σ
−1τ(b0))] = 0,

which means that b0 − σ−1τ(b0) ∈ Zb0 (R). Since c − σ−1τ(c) < Zc(R) with c ∈ R and c , 0, we can deduce that
b0 = 0. According to the assumption, dλ(a0) , 0 and σ−1 is an isomorphism, we observe that b0 = σ−1dλ(a0) ,
0, which is a contradiction.
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Proposition 3.8. If d ∈ CDerσ(R) is an element such that (dλσ − σdλ)(R) ⊆ Z(R), then [RλR] is contained in the
kernel of dλσ − σdλ.

Proof. We compute, respectively,

dλ(σ([aµb])) = dλ([(σ(a))µ(σ(b))]) = [(dλ(σ(a)))λ+µ(σ2(b))] + [(σ(a))µ(dλ(σ(b)))],

and

σ(dλ([aµb])) = σ([(dλ(a))λ+µ(σ(b))]) + [aµ(dλ(b))]

= [(σ(dλ(a)))λ+µ(σ2(b))] + [(σ(a))µ(σ(dλ(b)))],

for any a, b ∈ R. Since (dλσ − σdλ)(R) ⊆ Z(R), we can get

(dλσ − σdλ)([aµb]) = dλσ([aµb]) − σdλ([aµb])

= [dλ(σ(a))λ+µ(σ2(b))] + [(σ(a))µ(dλ(σ(b)))]

− [(σ(dλ(a)))λ+µ(σ2(b))] − [(σ(a))µ(σ(dλ(b)))]

= [((dλσ − σdλ)(a))λ+µ(σ2(b))] + [(σ(a))µ((dλσ − σdλ)(b))]
= 0.

Consequently, [RλR] is contained in the kernel of dλσ − σdλ.

4. The interiors of conformal G-derivations

In this section, we will investigate the structures of CDerσ(R) and CDerG(R). To understand this, we
focus on a special class of CDerσ(R) called the interiors of G-derivations, CDer⋆G(R). In addition, we study
the rationality of the Hilbert series for the direct sum of these interiors of conformal G- derivations when G
is a cyclic subgroup.

Set

CDer+σ (R) = {d ∈ CDerσ(R) | dλσ = σdλ}, CDer−σ (R) = {d ∈ CDerσ(R) | dλτ = τdλ, ∀τ ∈ G}.

It is obvious that CDer−σ (R) ⊆ CDer+σ (R) ⊆ CDerσ(R) and they are all C[∂]-modules. We now consider some
kind of “sum” of them respectively and observe how close these sums are to CDerG(R).

Define

CDer+G(R) := ⊕σ∈GCDer+σ (R), CDer−G(R) := ⊕σ∈GCDer−σ (R),

called the big interior and the small interior of CDerG(R) respectively. Besides, we may define

CDer⋆G(R) := ⊕σ∈GCDerσ(R),

called the interior of CDerG(R). Obviously, CDer−G(R) ⊆ CDer+G(R) ⊆ CDer⋆G(R).

Example 4.1. Let G = {idR}, the trivial group. Since CDer−G(R) = CDer+G(R), we have CDer−G(R) = CDer+G(R) =
CDer⋆G(R) = CDerG(R) = CDer(R).

Example 4.2. Let G be a cyclic group generator by σ. If ∗ ∈ {−,+, ⋆}, then

CDer∗G(R) = CDer∗
⟨σ⟩(R) = ⊕k∈ZCDer∗σk (R),

where σ0 = idR, σ1 = σ and σk = σk−1σ. For convenience, we denote CDer⋆σk (R) by CDerσk (R). In this case,
CDer∗

⟨σ⟩(R) is a Z-graded C[∂]-module and recall that the Hilbert series of CDer∗
⟨σ⟩(R) is defined by

H(CDer∗
⟨σ⟩(R), t) :=

∑
k∈Z

rank(CDer∗σk (R))tk.

If σ is of finite order, then H(CDer∗
⟨σ⟩(R), t) is a polynomial function in Z[t].
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Proposition 4.3. If G is an abelian group, then CDer−G(R) is a Lie conformal algebra with the λ-bracket [−λ−].

Proof. Since CDer−G(R) is a C[∂]-module, it is sufficient to show that CDer−G(R) is closed under the λ-bracket.
For any f ∈ CDer−σ (R) and 1 ∈ CDer−τ (R) with σ, τ ∈ G and a, b ∈ R, we have

fλ(1µ−λ([aγb])) = fλ([(1µ−λ(a))µ−λ+γ(τ(b))] + [aγ(1µ−λ(b))])
= [( fλ(1µ−λ(a)))µ+γ(σ(τ(b)))] + [(1µ−λ(a))µ−λ+γ( fλ(τ(b)))]
+ [( fλ(a))λ+γ(σ(1µ−λ(b)))] + [aγ( fλ(1µ−λ(b)))],

and

1µ−λ( fλ([aγb])) = 1µ−λ([( fλ(a))λ+γ(σ(b))] + [aγ( fλ(b))])
= [(1µ−λ( fλ(a)))µ+γ(τ(σ(b)))] + [( fλ(a))λ+γ(1µ−λ(σ(b)))]
+ [(1µ−λ(a))µ−λ+γ(τ( fλ(b)))] + [aγ(1µ−λ( fλ(b)))].

Since fλτ = τ fλ, 1µ−λσ = σ1µ−λ and G is abelian, we compute and get

[ fλ1]µ([aγb]) = ( fλ1µ−λ − 1µ−λ fλ)([aγb])
= [( fλ(1µ−λ(a)))µ+γ(σ(τ(b)))] + [(1µ−λ(a))µ−λ+γ( fλ(τ(b)))]
+ [( fλ(a))λ+γ(σ(1µ−λ(b)))] + [aγ( fλ(1µ−λ(b)))]
− [(1µ−λ( fλ(a)))µ+γ(τ(σ(b)))] − [( fλ(a))λ+γ(1µ−λ(σ(b)))]
− [(1µ−λ(a))µ−λ+γ(τ( fλ(b)))] − [aγ(1µ−λ( fλ(b)))].
= [( fλ1µ−λ − 1µ−λ fλ)(a)µ+γ(σ(τ(b)))] + [aγ(( fλ1µ−λ − 1µ−λ fλ)(b))]
= [([ fλ1]µ(a))µ+γ(σ(τ(b)))] + [aγ([ fλ1]µ(b))],

which implies that [ fλ1]µ ∈ CDerστ(R)[λ]. Obviously, [ fλ1]µ commutes with every element in G, and so
[ fλ1]µ ∈ CDer−στ(R)[λ] ⊆ CDer−G(R)[λ]. Consequently, CDer−G(R) is a Lie conformal algebra.

According to the above results, we can see that CDerG(R) may be very large and complicated. From
now on, we will focus on the interiors of CDerG(R) where G is an infinite cyclic group. Particularly, we
will investigate the important invariant, the Hilbert series, which encodes the ranks of submodules into an
infinite series.

Proposition 4.4. Let G = ⟨σ⟩ be an infinite cyclic group. If there exists l0 ∈N+ and d ∈ CDerσl0 (R) such that ϕd is
invertible restricted to CDerσi (R) for all i ∈ Z \ {l0}, then H(CDer−G(R), t) is a rational function.

Proof. Since G is an infinite cyclic group generated by σ, ϕd : CDer−σk (R) → CDer−
σk+l0

(R) is a C[∂]-module
isomorphism for all k ∈ Z \ {l0} by Proposition 4.3. Hence,

rank(CDer−σk (R)) = rank(CDer−
σk+l0

(R)) = rank(CDer−
σk−l0

(R))

for each k ∈N \ {l0}. Obviously,

H(CDer−G(R), t) =
∑
k∈Z

rank(CDer−σk (R))tk =

∞∑
k=l0+1

rank(CDer−σk (R))tk +

k=l0∑
−∞

rank(CDer−σk (R))tk.
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In addition,
∞∑

k=l0+1

rank(CDer−σk (R))tk

= (m0tl0+1 +m1tl0+2 + · · · +ml0−1t2l0 ) + (m0t2l0+1 +m1t2l0+2 + · · · +ml0−1t3l0 ) + · · ·

= (m0 +m1t + · · · +ml0−1tl0−1)tl0+1 + (m0 +m1t + · · · +ml0−1tl0−1)t2l0+1 + · · ·

= tl0+1(m0 +m1t + · · · +ml0−1tl0−1)(1 + tl0 + t2l0 + · · · )

= tl0+1(m0 +m1t + · · · +ml0−1tl0−1)
1

1 − tl0

=
tl0+1∑l0−1

i=0 miti

1 − tl0

where mi = rank(CDer−
σl0+1+i (R)) for 0 ≤ i ≤ l0 − 1. Similarly,

k=l0∑
−∞

rank(CDer−σk (R))tk

=

l0∑
k=1

rank(CDer−σk (R))tk +

k=0∑
−∞

rank(CDer−σk (R))tk

=

l0∑
k=1

rank(CDer−σk (R))tk +

∞∑
k=0

rank(CDer−σ−k (R))tk

= m0t + · · · +ml0−1tl0 + (m0t−l0+1 +m1t−l0+2 + · · · +ml0−1)

+ (m0t−2l0+1 +m1t−2l0+2 + · · · +ml0−1t−l0 ) + · · ·

= m0t + · · · +ml0−1tl0 + (m0t−l0+1 +m1t−l0+2 + · · · +ml0−1)(1 + t−l0 + · · · )

= (m0 + · · · +ml0−1tl0−1)t +

∑l0−1
i=0 mit−(l0−1−i)

1 − t−l0
.

Therefore,

H(CDer−G(R), t)

=
tl0+1∑l0−1

i=0 miti

1 − tl0
+ (m0 + · · · +ml0−1tl0−1)t +

∑l0−1
i=0 mit−(l0−1−i)

1 − t−l0

=
t

1 − tl0

l0−1∑
i=0

miti +
1

1 − t−l0

l0−1∑
i=0

mit−(l0−1−i).

Consequently, H(CDer−G(R), t) is a rational function.

5. Applications

In this section, we study the relation between conformal (σ, τ)-derivation and some well-known (gen-
eralized) conformal derivations of a Lie conformal algebra R, such as centroids and conformal (α, β, γ)-
derivations.

5.1. Relation with centroids
Recall that an element d in Cend(R) is called a centroid of R, if it satisfies

[(dλ(a))λ+µb] = [aµ(dλ(b))] = dλ([aµb]), ∀ a, b ∈ R.
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Denote by C(R) the sets of all centroids of R.
We denote ad : R→Cend(R) the adjoint map sending a to ad(a) with ad(a)λ(b) = [aλb], where a, b ∈ R.

And we write ad(R) for the set {ad(a) | a ∈ R}.

Proposition 5.1. Let σ ∈ G and d ∈ C(R) ∩ CDerσ(R). Then ad(dλ(a))µ = 0 for any a ∈ R. In addition, if
Z(R) = {0}, then C(R) ∩ CDerσ(R) = {0}.

Proof. For any d ∈ C(R) ∩ CDerσ(R) and a, b ∈ R, we have

dλ([aγb]) = [(dλ(a))λ+γ(σ(b))] + [aγ(dλ(b))],

and

[aγ(dλ(b))] = dλ([aλb]),

which implies

[(dλ(a))λ+γ(σ(b))] = dλ([aγb]) − [aγ(dλ(b))] = 0.

Since σ is a bijective map, we can obtain dλ(a) ∈ Z(R)[λ] = Ker(ad)[λ]. Hence, ad(dλ(a))µ = 0 for any a ∈ R.
Particularly, if Z(R) = {0}, then d = 0. Thus, C(R) ∩ CDerσ(R) = {0}.

Lemma 5.2. If σ ∈ G and d ∈ CDerσ(R), then for any a ∈ R,

[dλ(ad(a))]µ = σad(σ−1dλ(a))µ.

Proof. A direct computation shows that

[dλ(ad(a))]µ(b) = (dλ(ad(a))µ−λ − (ad(a))µ−λdλ)(b)
= dλ((ad(a))µ−λ(b)) − (ad(a))µ−λ(dλ(b)) = dλ([aµ−λb]) − [aµ−λ(dλ(b))]

= [(dλ(a))µ(σ(b))] = σ([(σ−1(dλ(a)))µb]) = σ(ad(σ−1dλ(a))µ(b)),

for any b ∈ R. Therefore, [dλad(a)]µ = σad(σ−1dλ(a))µ.

Lemma 5.3. Let a ∈ R and σ ∈ G. Define a map ϕσa : CDerσ(R) → ad(R)γ, given by d 7→ ad(σ−1dλ(a)). Then ϕσa
is a C[∂]-module homomorphism.

Proof. For any f , 1 ∈ CDerσ(R) and b ∈ R, we observe that

(ϕσa ( fλ + 1µ))(b) = ad(σ−1((fλ + gµ)(a)))γ(b) = [(σ−1((fλ + gµ)(a)))γb]

= σ−1([(( fλ + 1µ)(a))γ(σ(b))]) = σ−1([( fλ(a))γ(σ(b))] + [(1µ(a))γ(σ(b))])

= σ−1([( fλ(a))γ(σ(b))]) + σ−1([(1µ(a))γ(σ(b))]) = [(σ−1( fλ(a)))γb] + [(σ−1(1µ(a)))γb]

= ad(σ−1(fλ(a)))γ(b) + ad(σ−1(gµ(a)))γ(b) = (ϕσa (fλ) + ϕσa (gµ))γ(b),

and

(ϕσa (∂ fλ))γ(b) = ad(σ−1(∂fλ)(a))γ(b) = ad(σ−1(−λfλ)(a))γ(b)

= ad(−λσ−1fλ(a))γ(b) = [−λσ−1fλ(a)γb] = −λ[σ−1fλ(a)γb]

= −λad(σ−1(fλ(a)))γ(b) = ∂ad(σ−1(fλ(a)))γ(b) = (∂(ϕσa (fλ)))γ(b).

Therefore, ϕσx is a C[∂]-module homomorphism.

Proposition 5.4. If a ∈ R and σ ∈ G, then

Ker(ϕσa ) = {d ∈ CDerσ(R) | dλ(a) ∈ Z(R)[λ]}.

What’s more, Ker(ϕσa ) is a subalgebra of Cend(R).
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Proof. According to Lemma 5.2, we can get

Ker(ϕσa ) = {d ∈ CDerσ(R) | ad(σ−1(dλ(a)))µ(b) = 0, ∀b ∈ R}

= {d ∈ CDerσ(R) | σ(ad(σ−1dλ(a))µ(b)) = 0, ∀b ∈ R}
= {d ∈ CDerσ(R) | [dλ(ad(a))]µ(b) = 0, ∀b ∈ R}
= {d ∈ CDerσ(R) | [(dλ(a))µ(σ(b))] = 0, ∀b ∈ R}
= {d ∈ CDerσ(R) | [(dλ(a))µb] = 0, ∀b ∈ R}
= {d ∈ CDerσ(R) | dλ(a) ∈ Z(R)[λ]}.

Moreover, it is obvious that Ker(ϕσa ) is a C[∂]-module. We only need to show Ker(ϕσa ) is a Lie conformal
algebra. For any f , 1 ∈ Ker(ϕσa ) and b ∈ R, we have

[([ fλ1]µ(a))γ(σ(b))] = [( fλ(1µ−λ(a)))γ(σ(b))] − [(1µ−λ( fλ(a)))γ(σ(b))]
= fλ([(1µ−λ(a))γ−λb]) − [(1µ−λ(a))γ−λ( fλ(b))]
− 1µ−λ([( fλ(a))γ−µ+λb]) + [( fλ(a))γ−µ+λ(1µ−λ(b))]
= 0.

Since σ is an isomorphism, we can deduce that [ fλ1]µ(a) ∈ Z(R)[λ], which implies that [ fλ1]µ(a) ∈ Ker(ϕσa )[λ].
Therefore, Ker(ϕσx) is a subalgebra of Cend(R).

As a corollary, we can obtain a much deeper result.

Corollary 5.5. Let R be a centerless Lie conformal algebra. If there exists an element a0 ∈ R such that dλ(a0) , 0 for
all d ∈ CDerσ(R), then rank(CDerσ(R)) ≤ rank(R).

Proof. Note that ad : R → ad(R) is an isomorphism. Since Z(R) = {0}, ϕσa0
is injective by Proposition 5.4.

Hence, as a C[∂]-module, CDerσ(R) can be embedded into R.

5.2. Relation with conformal (α, β, γ)-derivations
Recall that a conformal linear map d ∈ Cend(R) is a conformal (α, β, γ)-derivation of R if there exist

α, β, γ ∈ C satisfying that for any a, b ∈ R,

αdλ([aµb]) = [(βdλ(a))λ+µb] + [aµ(γdλ(b))]. (3)

For any given α, β, γ ∈ C, we denote the set of all conformal (α, β, γ)-derivations by CDer(α,β,γ)(R), i.e.,

CDer(α,β,γ)(R) = {d ∈ Cend(R) | αdλ([aµb]) = [(βdλ(a))λ+µb] + [aµ(γdλ(b))], ∀ a, b ∈ R}.

We turn now to the problem of relation between conformal (σ, τ)-derivation and conformal (α, β, γ)-
derivations.

Lemma 5.6. Let R be a Lie conformal algebra. Then

CDer(α,β,γ)(R) = CDer( α
β+λ ,1,0)(R),

for any α, β, γ ∈ C.

Proof. According to [3, Proposition 4.2], we observe that

CDer(α,β,γ)(R)
= CDer(0,β−γ,γ−β)(R) ∩ CDer(2α,β+γ,β+γ)(R)
= CDer(0,1,−1)(R) ∩ CDer( 2α

β+γ ,1,1)(R)

= CDer( α
β+λ ,1,0)(R).

This lemma is proved.
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Proposition 5.7. Suppose that σ is an element in G and there exists a scalar α ∈ C such that (σ− αidR)(R) ⊆ Z(R).
If α , 1, then CDerσ(R) = CDer( 1

α+1 ,1,0)(R); if α = 1, then CDerσ(R) = CDer(1,1,1)(R) = CDer(R).

Proof. Assume that d ∈ CDerσ(R). Since (σ − αidR)(R) ⊆ Z(R), we have

[(dλ(a))µ(σ(b))] = [(dλ(a))µ(αb)], ∀a, b ∈ R.

Notice that

d ∈ CDerσ(R)⇔ dλ([(aµb]) = [(dλ(a))µ(αb)] + [aµ(dλ(b))]⇔ d ∈ CDer(1,α,1)(R),

which implies that CDerσ(R) = CDer(1,α,1)(R). If α , 1, then CDer(1,α,1)(R) = CDer( 1
α+1 ,1,0)(R) by Lemma 5.6.

Therefore, CDerσ(R) = CDer( 1
α+1 ,1,0)(R). If α = 1, then CDerσ(R) = CDer(1,1,1)(R) = CDer(R).

Proposition 5.8. Let R be a Lie conformal algebra. If δ , 0, then CDer(δ,1,−1)(R) = CDeridR ,−idR (R) and
CDer(δ,1,1)(R) = CDer 1

δ idR , 1
δ idR (R).

Proof. According to [3, Proposition 4.2], we can get

CDer(δ,1,−1)(R)
= CDer(0,2,−2)(R) ∩ CDer(2δ,0,0)(R)
= CDer(0,2,−2)(R) ∩ CDer(2,0,0)(R)
= CDer(1,1,−1)(R).

Note that

dλ([aµb]) = [(dλ(a))λ+µb] − [aµ(dλ(b))],

for any d ∈ CDer(1,1,−1)(R). Because of this, d is a (σ, τ)-derivation with σ = idR and τ = −idR. Therefore,
CDer(δ,1,−1)(R) = CDeridR ,−idR (R).

Similarly, CDer(δ,1,1)(R) is a (σ, τ)-derivation with σ = 1
δ idR and τ = 1

δ idR.
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