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Korovkin-type theorems via some modes of convergence
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aMersin University, Mathematics Department, Mersin / Turkey

Abstract. In this study, we investigate the Korovkin-type theorems depending upon some type of con-
vergence such as alpha convergence, semi-alpha convergence and the notion of exhaustiveness. Since it
is known that the convergence types mentioned above are between point-wise convergence and uniform
convergence, it will be observed that the conditions can be alleviated in the Korovkin theorem.

1. Background and Brief History

Unarguably, as well as the convergence of a sequence of functions in ordinary means has an important
role, it has various versions of convergence of the sequence of functions that have important applications.
The concept of continuous convergence is one of them. The concept of ”continuous convergence” (known
as alpha convergence in recent years) was first used in the paper of R. Caurant [11] in 1914. Although it
was defined and its properties were examined in the paper of H. Hahn [19] in 1921, he stated in his paper
that different versions of this concept appeared in studies by Weierstrass and P. Du Bois-Reymond in 19th
century. C. Carathéodory mentioned the concept of continuous convergence in his study [9] published
in 1929. In 1955, H. Schaefer [26] proved a relationship between the concepts of continuous convergence
and local uniform convergence. In 1957, K. Iseki [20] showed that continuous convergence is equivalent to
uniform convergence for continuous function sequences on sets with some topological properties. Later,
while studies in this area became more rare, different types of convergence of function sequences were
defined and their properties were examined in the last quarter century. In 2003, Das and Papanastassiou
[13] defined and examined new kind of convergence of real-valued function sequences called ( alpha
uniform equal, alpha strong uniform equal and alpha equal). Via using this definition they obtained a
characterization of the compact metric space.

In addition to alpha convergence, the concepts of exhaustiveness and semi-alpha convergence and the
relationships between these concepts are among the problems studied in recent years. In [13], Das and
Papanastassiou studied the connections between alpha convergence and some other types of convergences
for the sequence of functions. Moreover, Gregoriades and Papanastassiou [18] introduced the notion
of exhaustiveness, and established some relations between alpha convergence and exhaustiveness for
the sequences of functions. In 2020, Papanastassiou [25] came up with a new perspective in the name
of alpha convergence, exhaustiveness and uniform convergence namely semi alpha convergence, semi
exhaustiveness and semi uniform convergence for the sequence of functions, respectively.
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One aspect of the studies on convergence concepts is the adaptation of different kinds of concepts
(such as statistical convergence and ideal convergence) to existing convergence concepts. In 2010, Pa-
pachristodoulos, Papanastassiou and Wilczynski [24] introduced the notions of I-alpha convergence and
I-exhaustiveness. Later in [17], Ghosh establish some relationship between these concepts with some well-
established concepts such as I*-alpha convergence and I*-exhaustiveness of sequences of metric functions.
Later in 2012, Caserta and Kocinac [10] extended the notions of alpha convergence and exhaustiveness to
statistical alpha convergence and statistical exhaustiveness respectively. Later in 2021 Das and Ghosh [12]
studied the statistical versions of convergence of sequence of functions which introduced by Papanastasiou
in 2020.

One of the most important theorems of constructive approximation theory is the Korovkin theorem [22].
While the original theorem was given according to the concept of uniform convergence, in recent years it
has been given according to many different concepts of convergence and summability methods. A classical
paper can be found in [16] for Korovkin type theorems in the sense statistical convergence. Then in [6] Braha
et al. introduced a new weighted statistical convergence and based upon this definition, they prove some
Korovkin type theorems. In [8], it has been proposed a new weighted statistical convergence by applying
the Nörlund–Cesáro summability method. Based upon this definition, it has been proved a kind of the
Korovkin type theorem. Introducing the notion of weighted Nörlund-Euler A-statistical convergence and its
application to Korovkin-type theorems are investigated in [28]. In [29] and [30], Srivastava et al. established
some statistical versions of new approximation of Korovin-type theorems for martingale sequences of
positive linear operators. In [27] Srivastava et al. introduced the ideas of deferred weighted statistical
Riemann integrability and statistical deferred weighted Riemann summability for sequences of functions.
Then they stated and proved two Korovkin-type approximation theorems involving algebraic test functions
by using their proposed concepts and methodologies. There have been also several studies on Korovkin-
type theorems related to convergence associated with summability methods, statistical convergence and
filter convergence (see [2], [4], [5], [7], [14], [15], [16], [21], [23], [32], and references therein).

In this paper we deal with Korovkin theorems depending upon the kind of convergences such as
alpha convergence, semi-alpha convergence and notation of exhaustiveness. Since it is known that the
convergence types mentioned above are between point-wise convergence and uniform convergence, it will
be observed that the conditions can be alleviated in the Korovkin theorem.

2. Definitions and Auxiliary Results

Let (X, d) and (Y, ρ) be metric spaces, ( fn) be a sequence of functions from X to Y and f be a function from
X to Y. Let us recall the definitions of alpha convergence, semi-alpha convergence and exhaustiveness.

Definition 2.1. [13] The sequence ( fn) alpha converges to f , if for every x ∈ X and for every sequence (xn) of points
of X converging to x, the sequence

(
fn(xn)

)
converges to f (x).

The notation fn
α
−→ f will be used for alpha convergence of the sequence ( fn) to f . It is proved in [3] that

the alpha convergence of the sequence ( fn) at x0 ∈ X to f is equivalent with the following condition:

∀ε > 0,∃δ > 0,∃n0 ∈N : x ∈ Bd(x0, δ), ∀n ≥ n0 =⇒ ρ( fn(x), f (x0)) < ε

where Bd(x0, δ) is the ball with radius δ centered at x0 according to the metric d.

Proposition 2.2. [18] If ( fn) α−→ f then ( fnk )
α
−→ f for any strictly increasing sequence of positive integers (nk).

Definition 2.3. [18] The sequence ( fn) is called exhausitive at x0 ∈ X, if for every ε > 0 there exists δ > 0 and
n0 ∈N such that for all x ∈ Bd(x0, δ) and all n ≥ n0 we have that ρ( fn(x), fn(x0)) < ε.

Definition 2.4. The sequence ( fn) is called uniformly exhausitive on X if for every ε > 0 there exists δ(ε) > 0 and
n0 ∈N such that for all n ≥ n0 and for all x, y ∈ X that satisfy d(x, y) < δ implies ρ

(
fn(x), fn(y)

)
< ε.
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Definition 2.5. The sequence ( fn) is called almost uniformly bounded on X if there exists n0 ∈ N and M > 0 such
that ρ

(
fn(x), 0

)
≤M for all n ≥ n0 and all x ∈ X.

Remark 2.6. It is clear that the uniform boundedness of a sequence implies nearly uniformly boundedness. The
inverse of this assertion is not true. For example, for fn : (1,∞) → R, fn(x) = x2n−n2 , the sequence ( fn) is not
uniformly bounded, but almost uniformly bounded.

Definition 2.7. The sequence ( fn) is called locally almost uniformly bounded on X, if for all x ∈ X, there exists δ > 0
such that the sequence ( fn) is almost uniformly bounded on Bd(x, δ).

Proposition 2.8. If the sequence ( fn) is exhaustive at x0 and ( fn(x0)) is bounded then ( fn) is almost uniformly
bounded in a neigborhood at x0.

Proof. By boundedness of the sequence ( fn(x0)), there exists a number M > 0 such that ρ
(

fn(x0), 0
)
≤ M for

all n ∈ N. From exhaustiveness of the sequence ( fn) at x0, there exists δ > 0 and n0 ∈ N such that for all
n ≥ n0 and x ∈ Bd(x0, δ) we have ρ

(
fn(x), fn(x0)

)
< 1. Since ρ

(
fn(x), 0

)
≤ 1+ ρ

(
fn(x0), 0

)
≤ 1+M for all n ≥ n0

and all x ∈ Bd(x0, δ), we get the desired result.

Corollary 2.9. Let the sequence ( fn) is exhaustive and pointwise bounded on X then ( fn) is locally almost uniformly
bounded on X.

Definition 2.10. [25] Let x0 ∈ X. The sequence ( fn) semi-alpha converges to f at x0, it is denoted by fn
semi−α
−−−−−→ f , if

1. fn(x0)→ f (x0).
2. For every ε > 0 there exists δ > 0 such that for every n ∈ N there exists m ∈ N such that m ≥ n and
ρ( fm(x), f (x0)) < ε for all x ∈ Bd(x0, δ).

A sequence ( fn) has the semi-alpha property with respect to f iff ( fn) satisfies the second condition of Definition
2.10. The semi-alpha property can be written as in the proposition given below.

Proposition 2.11. Let x0 ∈ X. The sequence ( fn) semi-alpha converges to f at x0 iff
1. fn(x0)→ f (x0)
2. There exists a strictly increasing sequence of positive integers (nk) such that ( fnk ) is alpha convergent to f at x0.

Proof. Let ε > 0 and x0 ∈ R are given. Assume that ( fn) converges to f and there exists a strictly increasing
sequence of positive integers (nk) such that ( fnk ) is alpha-convergent to f at x0. From alpha-convergency
there exsists δ > 0 and k∗ ∈ N such that for all k ≥ k∗ and for all x ∈ B(x0, δ) we have ρ( fnk (x), f (x0)) < ε.
Since nk ≥ nk∗ ≥ k∗ so that nk∗+n ≥ k∗ + n > n for all k ≥ k∗, then if we choose m = nk∗+n for all n ∈ N then for
all x ∈ B(x0, δ) we have

ρ
(

fm(x), f (x0)
)
= ρ
(

fnk∗+n (x), f (x0)
)
< ε.

Now, assume that the sequence ( fn) semi-alpha converges to f at x0. From here we construct the desired
subsequence (nk) as follows: From the second condition of Definition 2.10, there exists n1 ≥ 1 such that
ρ( fn1 (x), f (x0)) < ε for all x ∈ Bd(x0, δ). Similarly, there exists n2 ≥ n1 + 1 such that ρ( fn2 (x), f (x0)) < ε for
all x ∈ Bd(x0, δ). If it continues in this way, there exists nk ≥ nk−1 + 1 such that ρ( fnk (x), f (x0)) < ε for
all x ∈ Bd(x0, δ). Consequently, we get a strictly increasing sequence of positive integers (nk) such that
fnk

α
−→ f .

With the motivation given by the second feature in the proposition, a subtype of semi-alpha convergence
can be defined with the help of natural density. Let’s first remind the definition of natural density: For
A ⊆N, we denote the natural density of A by

d(A) = lim
n→∞

|{k ∈ A : k ≤ n}|
n

if the limit exists, where |A| denotes of the cardinality of the finite set A. It is well known that if d(A1) =
d(A2) = 1 for A1,A2 ⊂N then d(A1 ∩ A2) = 1.
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Definition 2.12. It is called that the sequence ( fn) has densely semi-alpha property with respect to f at x0 ∈ X if there
exists a strictly increasing sequence of positive integers (nk), with d({nk}) = 1, such that ( fnk ) is alpha convergent to
f at x0. If the sequence ( fn) has densely semi-alpha property with respect to f at x0 ∈ X and fn(x0)→ f (x0), then it
is called the sequence ( fn) densely semi-alpha conerverges to f at x0 ∈ X.

It’s clear that if a function sequence has densely semi-alpha property then it has semi-alpha property.
Reverse implication could not be true. For example the sequence ( fn) defined by

fn : [0, 1]→ R fn(x) =

 1
n , n is even
1, n is odd

has semi-alpha property with respect to zero function but does not have densely semi-alpha property.
Let C(X) denote the space of real valued continuous functions and B(X) denote the space of real valued

bounded functions on the metric space (X, ρ). We will deal with the positive and linear operators defined
on these spaces. The positivity of an L operator defined on these spaces will be understood as the fact
that the L( f ) function is also positive for every positive function f . Let be ek(x) = xk for k ∈ N0 := N ∪ {0}
and x ∈ R. For X = [a, b], let us give Korovkin’s theorem to deal with an approximation property of the
sequences of positive and linear operators on C(X):

Theorem 2.13. [22] Let (Ln) be a sequence of positive linear operators on C[a, b]. If the sequence Ln(ek) converges
uniformly to ek on [a, b], for k = 0, 1, 2 then the sequence Ln( f ) converges uniformly to f on [a, b] for all f ∈ C[a, b].

In the next section, we deal with Korovkin-type theorems depending upon the kind of convergences such
as alpha convergence, semi-alpha convergence and exhaustiveness.

3. Korovkin-Type Theorems

Let (X, ρ) be a metric space for a bounded set X ⊂ R and Cb(X) be the space of real valued, bounded and
continuous functions on the metric space (X, ρ). For every x ∈ X denote by B(x; δ), the set {y ∈ X : ρ(y, x) < δ}
and by ρx the function ρx(y) = ρ(x, y), (y ∈ X). It is clear that ρx ∈ Cb(X). In [1], Altomare extend the more
general form of Korovkin’s theorem to the settings of metric spaces. Using similar method, we give the
Korovkin-type theorem based on the concept of alpha convergence.

Theorem 3.1. Let (Ln) be a sequence of positive linear operators on Cb(X). If Ln(e0) α−→ e0 and Ln(ρr
x) alpha converges

to 0 at x for all x ∈ X and for some r > 0, then Ln( f ) α−→ f for all f ∈ Cb(X).

Proof. Let f ∈ Cb(X), x0 ∈ X and (xn) be a sequence such that xn → x0. Let ε > 0. By the continuity of f at
x0, there exists δ > 0 such that∣∣∣ f (t) − f (x0)

∣∣∣ < ε
holds for all t ∈ X that satisfies ρ(x0, t) < δ. On the other hand, in the case ρ(x0, t) ≥ δ, we have∣∣∣ f (t) − f (x0)

∣∣∣ ≤ 2 sup
x∈X
| f (x)| ≤

2M
δ
ρ(x0, t),

where M := supx∈X | f (x)|. Let r > 0. From the discussion above, we can write the following inequality on X:∣∣∣ f − f (x0)
∣∣∣ ≤ εe0 +

2M
δr ρ

r
x0
,

From the well known property of positive and linear operators, we have∣∣∣Ln( f ; xn) − f (x0)
∣∣∣ ≤ Ln(

∣∣∣ f − f (x0)
∣∣∣ ; xn) ≤ εLn(e0; xn) +

2M
δr Ln(ρr

x0
; xn)
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for all n ∈N. Considering the alpha convergence of the sequences Ln(e0) and Ln(ρr
x0

), the right-hand side of
the above inequality goes to ε as n→∞. Since, we get∣∣∣∣ lim

n→∞
Ln( f ; xn) − f (x0)

∣∣∣∣ ≤ ε
for arbitrary ε > 0, then we have lim

n→∞
Ln( f ; xn) = f (x0). Consequently, we obtain the alpha convergence of

the sequence (Ln( f )) to f at x0. Since x0 is arbitrary, the desired result is obtained.

Remark 3.2. If X compact, then the alpha convergence implies the uniform convergence (see prop. 1.3.(4) in [18]).
So that, if we take r = 2 and a compact interval for the set X equipped with Euclidean metric in Theorem 3.1, we get
the classical Korovkin theorem.

Example 3.3. For X = (0, 1), consider the operators Ln on Cb(X)

Ln( f ; x) =

 f (1/2) + n f (x), x ≤ 1/n
f (x), x > 1/n.

It is clear that the operators Ln are linear and positive. Although the sequence (Ln) does not satisfy the conditions of
the classical Korovkin theorem, it satisfies the conditions of Theorem 3.1 for r = 2.

In the next theorem, let X ⊂ R be any set, bounded or unbounded.

Theorem 3.4. Let (Ln) be a sequence of positive linear operators on C(X). If (Ln(e0)) is exhaustive and bounded at
x0 ∈ X, then

(
Ln( f )

)
is exhaustive at x0 for all f ∈ C(X).

Proof. Let f ∈ C(X), x0 ∈ X and ε > 0 be given. By exhaustiveness of (Ln(e0)) at x0, there exists δ0 > 0 and
N0 ∈N such that for all x ∈ X and for all n ≥ N0 that satisfying ρ(x, x0) < δ, we have

|Ln(e0; x) − Ln(e0; x0)| <
ε

3
(
| f (x0)| + 1

) := A1(ε).

By boundedness of the sequence (Ln(e0; x0)), there exists M > 0 such that Ln(e0; x0) ≤M. By the continuty of
f at x0, there exists δ1 > 0 such that for all x ∈ X that satisfies ρ(x, x0) < δ1, we get∣∣∣ f (x) − f (x0)

∣∣∣ < ε
3 (A1(ε) +M)

:= A2(ε).

From properties of positive linear operators, we have

Ln(| f − f (x0)|; x) < A2(ε) |Ln(e0; x) − Ln(e0; x0)| + A2(ε)|Ln(e0; x0)|.

Now, if we choose δ = min {δ0, δ1} and N = N0 then for all n > N and x ∈ B(x0; δ), we have∣∣∣Ln( f ; x) − Ln( f ; x0)
∣∣∣ ≤ ∣∣∣Ln( f ; x) − Ln( f (x0); x)

∣∣∣ + ∣∣∣Ln( f (x0); x) − Ln( f (x0); x0)
∣∣∣

+
∣∣∣Ln( f (x0); x0) − Ln( f ; x0)

∣∣∣
≤ Ln(| f − f (x0)|; x) + | f (x0)| |Ln(e0; x) − Ln(e0; x0)|

+Ln(| f − f (x0)|; x0)

≤ 2A2(ε)(A1(ε) +M) + | f (x0)|A1(ε) < ε.

Hence
(
Ln( f )

)
is exhaustive at x0.
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Theorem 3.5. Let (Ln) be positive linear operators on C(X). If (Ln(e0)) is exhaustive and pointwise bounded on X
then

(
Ln( f )

)
is exhaustive on X for all f ∈ C(X).

Proof. Let f ∈ C(X), x0 ∈ X and ε > 0 be given. By exhaustiveness of (Ln(e0)) at x0, there exists δ0 > 0 and
N0 ∈N such that for all x ∈ X and for all n ≥ N0 that satisfy ρ(x, x0) < δ0, we have

ρ (Ln(e0; x),Ln(e0; x0)) <
ε

3
(
| f (x0)| + 1

) = A1(ε)

Exhaustiveness and pointwise boundedness of (Ln(e0)) on X implies locally almost uniformly boundedness
from Corollary 2.9. Therefore, there exists a real number M > 0, δ1 > 0 and N1 ∈ N such that for all x ∈ X
that satisfy ρ(x, x0) < δ1 and for all n ≥ N1, we have |Ln(e0; x)| ≤ M. By the continuty of f at x0, there exists
δ2 > 0 such that for all x ∈ X that satisfies ρ(x, x0) < δ2, we have

| f (x) − f (x0)| <
ε

3M

From properties of positive linear operators, we have

Ln
(
| f − f (x0)|; x

)
<
ε

3M
|Ln(e0; x)|.

Now, if we choose δ = min {δ0, δ1, δ2} and N = max{N0,N1} then for all n > N and x ∈ B(x0, δ), we have∣∣∣Ln( f ; x) − Ln( f ; x0)
∣∣∣ ≤ ∣∣∣Ln( f ; x) − Ln( f (x0); x)

∣∣∣ + ∣∣∣Ln( f (x0); x) − Ln( f (x0); x0)
∣∣∣

+
∣∣∣Ln( f (x0); x0) − Ln( f ; x0)

∣∣∣
≤ Ln(| f − f (x0)|; x) + | f (x0)| |Ln(e0; x) − Ln(e0; x0)|
+Ln(| f − f (x0)|; x0)

≤ 2 ε
3M |Ln(e0; x)| + | f (x0)|A1(ε) < ε.

Hence
(
Ln( f )

)
is exhaustive at x0. Thus

(
Ln( f )

)
is exhaustive on X.

Example 3.6. Consider the linear positive operators Ln on C[0, 1] defined by

Ln( f ; x) =

 f (x)/n, x ≤ 1/2
f (x)/2n, x > 1/2.

It is clear that (Ln(e0)) is exhausitive at x = 1/2 and bounded on [0, 1], so for every f ∈ C[0, 1],
(
Ln( f )

)
is

exhaustive at x = 1/2. Indeed, for every ε > 0, we choose δ < 1/2 and an integer n0 > supx∈[0,1] | f (x)|/2ε, then∣∣∣Ln( f ; y) − Ln
(

f ; 1/2
)∣∣∣ < ε hold for all n ≥ n0 and for all y ∈ B (1/2, δ).

Example 3.7. Consider the linear positive operators Ln on C(0, 1) defined by Ln( f ; x) = f (x)+n f (x0). Let x0 ∈ (0, 1)
be fixed. For a function f ∈ C(0, 1) with f (x0) , 0. the sequence (Ln( f )) does not converge uniformly on (0, 1), but it
is exhaustive on (0, 1).

Remark 3.8. The condition about boundedness can not removed from Theorem 3.5.

Example 3.9. Consider the linear positive operators Ln on C[0, 1] defined by Ln( f ; x) = n f (x). Its clear that (Ln(e0))
is not bounded. Although (Ln(e0)) is exhaustive, the sequence (Ln( f )) is not exhaustive on [0, 1] for every f which is
not constant.

Remark 3.10. Korovkin’s theorem is not true for the concept of semi-alpha convergence. However, as we can see in
the next theorem, it can be written for densely semi-alpha convergence. An example is given after the next theorem.
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Theorem 3.11. Let (Ln) be a sequence of positive linear operators on Cb(X) and x0 ∈ X. If the sequence (Ln(e0)) has
densely semi-alpha property with respect to e0 and the sequence Ln(ρr

x0
) has densely semi-alpha property with respect

to 0, for some r > 0, at x0 then Ln( f ) has densely semi-alpha property with respect to f at x0 for all f ∈ Cb(X).

Proof. Let f ∈ Cb(X) and ε > 0 be given. Since the sequence (Ln(e0)) has densely semi-alpha property with
respect to e0 at x0, then there exists a strictly increasing sequence of positive integers (n(1)

k ), with d({n(1)
k }) = 1,

such that (Ln(1)
k

(e0)) is alpha convergent to e0 at x0. Similarly, since the sequence (Ln(ρr
x0

)) has densely semi-
alpha property with respect to 0 at x0 then there exists a strictly increasing sequence of positive integers
(n(2)

k ), with d({n(2)
k }) = 1, such that (Ln(2)

k
(ρr

x0
)) is alpha convergent to 0 at x0. Because of the densely semi-alpha

property implies the semi-alpha property, if we take the strictly increasing sequence of positive integers (nk)
in the set {n(1)

k } ∩ {n
(2)
k } which has natural density 1, we obtain that Lnk (e0) α−→ e0 and Lnk (ρ

r
x) alpha converges

to 0 at x0 by using Proposition 2.2. Now, the desired result follows from Theorem 3.1.

Example 3.12. Let x0 ∈ [0, 1] be fixed and consider the linear positive operators Ln on C[0, 1] defined by

Ln( f ; x) =

 f (x0), x = x0∫ 1

0 f (t)Kn(t, x)dt, x , x0

where

Kn(t, x) = (m + 1)xm +
1
n
|x − x0|, if n ≡ m(mod 3)

for n ∈ N. Its obvious that Ln(ei)
semi−α
−−−−−→ ei at x0 for i = 0, 1, 2, but Ln( f ) does not semi-alpha converge to f at x0 for

f (x) = x3.
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