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Abstract. The present study investigates various characteristics of conformal Ricci solitons with a
Schouten-van Kampen connection. Characterizations are obtained when the potential vector field in-
volves a torse-forming vector field. Moreover, applications related to submanifolds are also provided.
Lastly, we provided an example of conformal Ricci solitons on a three-dimensional f -Kenmotsu manifold to
validate our findings.

1. Introduction

Schouten-van Kampen is one of the most intuitive connections adapted to a pair of complementary
distributions on a differentiable manifold with an affline connection. Solov’ev conducted a study in 1978 on
hyperdistributions in Riemannian manifolds, utilising the Schouten-van Kampen connection [22]. Bejancu
investigated the Schouten-van Kampen connection on Foliated manifolds in 2006 [2]. Olszak [17] researched
the Schouten-van Kampen connection in 2013 to adapt it to a nearly contact metric structure . Using the
Schouten-van Kampen connection, he characterised several classes of nearly contact metric manitolds. The
Schouten-van Kampen connection in Sasakian manifolds, f -Kenmotsu manifolds and Kenmotsu manifolds
has been investigated by G. Ghosh [10], Yildiz [24] and Chakraborty [5] in recent research. Y. S. Perktas
and A. Yildiz [19] done research on f -Kenmotsu 3-manifolds in relation to the Schouten-van Kampen
connection.
In 1982, the notion of Ricci flow was introduced by R. S. Hamilton [11]. The equation for Ricci flow is
expressed as follows:

∂1

∂t
= −2S̄1.

A Riemannian manifold (M, 1) is said to be a Ricci soliton if the metric 1 satisfies the necessary conditions

Lv1 + 2S̄ + 2λ1 = 0,
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the aforementioned equation involves the Lie derivative operator denoted by L, the Ricci tensor denoted
by S̄, a vector field on the manifold M denoted by v, and a real constant denoted by λ. It is a widely
recognised fact in the field that when λ is a smooth function, the soliton is referred to as an almost Ricci
soliton. A Ricci soliton can be classified as expanding, steady, or shrinking based on the value of λ, which
is positive, zero, or negative, respectively. A modification to Hamilton’s Ricci flow equation was proposed
by A. E. Fisher [9], which involved the introduction of a conformal Ricci flow equation

∂1

∂t
+ 2(S̄ +

1

2n + 1
) = −p1, r̄(1) = −1,

the aforementioned equation relates the conformal pressure denoted by p to the scalar curvature of the
manifold represented by r̄(1). Extensive research has been conducted on solitons in the context of manifolds
and their associated connections [12] [13] [14]. Basu and Bhattacharyya have extended the notion of Ricci
soliton by proposing the conformal Ricci soliton, which is defined by an equation [1]

Lv1 + 2S̄ + (p +
2

2n + 1
− 2λ)1 = 0. (1)

where λ is constant and p is conformal pressure.

2. Preliminaries

Let (M̄2n+1, φ,N , ν, 1) be a (2n + 1) dimensional almost contact metric manifold where φ is (1, 1) tensor
field,N is structure vector field, ν is an 1-form and 1 is compatible Riemannian metric such that

φ2(M1) = −M1 + ν(M1)N ,

ν(N) = 1,

φN = 0, νφ = 0, (2)

where M1 is a vector field on M̄.
The fundamental 2-form Φ on the manifold M̄ is defined by

Φ(M1,M2) = 1(M1, φM2), (3)

for all M1, M2 on M̄.
An almost contact metric manifold is normal if [φ,φ](M1,M2) + 2dν(M1,M2)N = 0. An almost contact
metric structure (φ,N , ν, 1) on a manifold M̄ is designated as f -Kenmotsu manifold if the corresponding
condition can be expressed [17]

(∇̄M1φ)M2 = f
{
1(φM1,M2)N − ν(M2)φM1

}
, (4)

where f ∈ C∞(M̄) such that d f ∧ν = 0 and ∇̄ is Levi-Civita connection on M̄. The manifold is an α-Kenmotsu
manifold [15] if f = α = constant , 0. For α = 1, α-Kenmotsu manifold reduces to Kenmotsu manifold [16].
If f = 0, then α-Kenmotsu manifold become cosymplectic manifold [15]. The condition for f -Kenmotsu
manifold to be regular is f 2 + f ′ , 0, where f ′ =N(f ). The following holds true for an f -Kenmotsu manifold

∇̄M1N = f {M1 − ν(M1)N} (5)

It follows from above

(∇̄M1ν)M2 = f
{
g(M1,M2) − ν(M1)ν(M2)

}
(6)
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The condition df ∧ ν = 0 is satisfied if dim M̄ ≥ 5. This is not true generally if dim M̄ = 3. In a 3-dimensional
f -Kenmotsu manifold M̄, we possess [18]

R̄(M1,M2)M3 =
( r̄

2
+ 2 f 2 + 2 f ′

) {
1(M2,M3)M1 − 1(M1,M3)M2

}
(7)

−

( r̄
2
+ 3 f 2 + 3 f ′

)
{1(M2,M3)ν(M1)N − 1(M1,M3)ν(M2)N

+ ν(M2)ν(M3)M1 − ν(M1)ν(M3)M2},

S̄(M1,M2) =
( r̄

2
+ f 2 + f ′

)
1(M1,M2) −

( r̄
2
+ 3 f 2 + 3 f ′

)
ν(M1)ν(M2), (8)

Q̄M1 =
( r̄

2
+ f 2 + f ′

)
M1 −

( r̄
2
+ 3 f 2 + 3 f ′

)
ν(M1)N , (9)

R̄(M1,M2)N = −

(
f 2 + f ′

)
{ν(M2)M1 − ν(M1)M2} , (10)

R̄(N ,M1)M2 = −

(
f 2 + f ′

) {
1(M1,M2)N − ν(M2)M1

}
, (11)

S̄(M1,N) = −2( f 2 + f ′)ν(M1), (12)
ν(R̄(N ,M1)M2) = −( f 2 + f ′)

{
1(M1,M2) − ν(M2)ν(M1)

}
, (13)

where R̄, S̄, Q̄, r̄ denotes curvature tensor, Ricci tensor, Ricci operator and scalar curvature respectively.

The relationship between the Schouten-van Kampen connection ˜̄∇ and the Levi-Civita connection ∇̄ on
a manifold M̄ is defined as follows [17]:

˜̄∇M1 M2 = ∇̄M1 M2 − ν(M2)∇̄M2N + (∇̄M1ν)(M2)N , (14)

for all the vector field M1,M2 on M̄. Using the aid of (5), (6), we have

˜̄∇M1 M2 = ∇̄M1 M2 + f
{
1(M1,M2)N − ν(M2)M1

}
. (15)

Let R̄ and ˜̄
R be the curvature tensor with respect to Levi-Civita connection ∇̄ and the Schouten-van Kampen

connection ˜̄∇, as a result, R̄ and ˜̄
R are linked by the following formula

˜̄
R(M1,M2)M3 = R̄(M1,M2)M3 + f 2

{1(M2,M3)M1 − 1(M1,M3)M2} (16)
+ f ′{1(M2,M3)ν(M1)N − 1(M1,M3)ν(M2)N
+ ν(M2)ν(M3)M1 − ν(M1)ν(M3)M2}.

Upon computing the inner product of the aforementioned equation with a vector field M4 and subsequently
contracting it, we obtain the following result

˜̄
S(M2,M3) = S̄(M2,M3) + (2 f 2 + f ′)1(M2,M3) + f ′ν(M2)ν(M3), (17)

where ˜̄
S and S̄ denote the Ricci tensor with respect to connection ˜̄∇ and ∇̄, respectively. As an outcome of

the preceding (17), we have the Ricci operator

˜̄
QM2 = Q̄M2 + (2 f 2 + f ′)M2 + f ′ν(M2)N . (18)

Also putting M2 =M3 = ei in (17), we obtain

˜̄r = r̄ + 6 f 2 + 4 f ′, (19)

where ˜̄r and r̄ are scalar curvature tensor with respect to connection ˜̄∇ and ∇̄ respectively. Putting M3=N
in (17) and using (12), we have

˜̄
S(M2,N) = 0. (20)
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In the realm of f -Kenmotsu manifolds (M̄2n+1, g), a non-flat manifold of this type is referred to as a hyper-
generalized quasi-Einstein manifold [21] if its Ricci tensor is not identically zero and satisfies the condition

S̄ = c11 + c2(T1 ⊗ T1) + c3(T1 ⊗ T2 + T2 ⊗ T1) + c4(T1 ⊗ T3 + T3 ⊗ T1),

where c1, c2, c3 and c4 are functions on M̄ called associated functions and T1,T2,T3 are non-zero 1-forms. If
c3 = c4 = 0, then M̄ is called a quasi − Einstein manifold [4]. If c2 = c3 = c4 = 0, then M̄ is an Einstein−manifold
[3].
A vector field defined on an f -Kenmotsu manifold is deemed to be torse − forming [23], if it satisfies

∇̄M1 v = hM1 + ψ(M1)v.

where ψ is a 1-form, h is a smooth function and ∇̄ is a Levi-Civita connection of 1. Specifically, if ψ = 0, v is
referred to as a concircular vector field [8] and if h = 0, v is referred to as a recurrent vector field [20].

3. Conformal Ricci solitons on f -Kenmotsu manifolds with Schouten-van Kampen Connection

This section examines conformal Ricci solitons on an f -Kenmotsu manifold equipped with Schouten-
van Kampen connection. First we state the following proposition which we use further to characterize the
conformal Ricci solitons on an f -Kenmotsu manifold. Consider N to be a parallel unit vector field relative
to the Levi-Civita connection ∇̄. Using (15), we get

˜̄∇M1N = f (ν(M1)N −M1). (21)

So we have:

Proposition 3.1. Let (M̄2n+1, 1, ϕ,N , ν) is a f -Kenmotsu manifold equipped with a Schouten-van Kampen connec-
tion. If N is a parallel unit vector field in relation to the Levi-Civita connection ∇̄ then, N is a torse-forming vector
field with respect to a Schouten-van Kampen connection of the form

˜̄∇M1N = f (ν(M1)N −M1).

Theorem 3.2. Let (M̄2n+1, 1, ϕ,N , ν) be a f -Kenmotsu manifold bearing almost conformal Ricci soliton with
Schouten-van Kampen connection. If N is parallel vector field with Levi-Civita connection then the metric 1 is
quasi-Einstein with respect to Levi-Civita connection as well as Schouten-van Kampen connection. Moreover in this
case the soliton is expanding if p

2 +
1

2n+1 ≥ 0, shrinking if p
2 +

1
2n+1 ≤ 0 and steady if p

2 +
1

2n+1 = 0.

Proof. If (1, λ,N) is conformal Ricci soliton on M̄. Then using equation (1) we have

1( ˜̄∇M1N ,M2) + 1(M1, ˜̄∇M2N) + 2 ˜̄
S(M1,M2) + (p +

2
2n + 1

− 2λ)1(M1,M2) = 0. (22)

Further, if N is parallel vector field with respect to Levi-Civita connection then making use of proposition
(3.1) in (22) we get

˜̄
S(M1,M2) = ( f −

p
2
−

1
2n + 1

+ λ)1(M1,M2) − fν(M1)(νM2). (23)

By virtue of equation (17) and (23) it is easy to see that M̄ is quasi-Einstein with respect to Levi-Civita
connection as well as Schouten-van Kampen connection. Next, using M2 = N in (23) we obtained

˜̄
S(M1,N) = (λ −

p
2
−

1
2n + 1

)ν(M1). (24)

Finally, equation (20) and (24) yields

λ =
p
2
+

1
2n + 1

(25)

which proves our assertion.
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Next we prove,

Theorem 3.3. Let (M̄2n+1, 1) be an f-Kenmotsu manifold that admits a Schouten-van Kampen connection, and let v
be a torse-forming potential vector field with regard to Levi-Civita connection on M̄. Then (M̄2n+1, 1) is a conformal
Ricci soliton (v, λ, g) if and only if ˜̄

S satisfies

˜̄
S(M1,M2) = [λ − (

p
2
+

1
2n + 1

) + fν(v) − h]1(M1,M2) −
1
2

f [ω(M1)ν(M2) (26)

+ ω(M2)ν(M1)] −
1
2

[ω(M2)ψ(M1) + ω(M1)ψ(M2)].

Proof. Let M̄ denote an f -Kenmotsu manifold equipped with a Schouten-van Kampen connection. Then
taking the Lie derivative of torse forming potential vector field v with respect to Schouten-van Kampen
connection and making use of equation (15) gives

(˜̄Lv)(M1,M2) = 1(∇̄M1 v,M2) + 1(M1, ∇̄M2 v) − 2 fν(v)1(M1,M2) + f1(M1,v)ν(M2) + f1(M2,v)ν(M1). (27)

Therefore, using the definition of conformal Ricci soliton, we have

[2λ − (p +
2

2n + 1
) + 2 fν(v)]1(M1,M2) = 1(∇̄M1 v,M2) + 1(M1, ∇̄M2 v) + f1(M1,v)ν(M2) (28)

+ f1(M2,v)ν(M1) − 2 ˜̄
S(M1,M2).

If v be a torse forming potential vector field in relation to a Levi-Civita connection on M̄. then we have

∇̄M1 v = hM1 + ψ(M1)v.

where h is a smooth function. In accordance with equation (28), it is possible to express the given statement

˜̄
S(M1,M2) = [λ − (

p
2
+

1
2n + 1

) + fν(v) − h]1(M1,M2) −
1
2

[1(M2,v)ψ(M1) + 1(M1,v)ψ(M2)]

−
1
2

f [1(M1,v)ν(M2) + 1(M2,v)ν(M1)].

which complete the proof.

If v is a concircular vector field relative to the Schouten-van Kampen connection, then the following corollary
holds:

Corollary 3.4. Let (M̄2n+1, 1) be an f -Kenmotsu manifold that admits a Schouten-van Kampen connection, and let
v be a concircular potential vector field with regard to a Schouten-van Kampen connection on M̄. Consider that ν
is the 1 dual of v. Then (M̄2n+1, 1) is a conformal Ricci soliton (v, λ, 1) if and only if M̄ is quasi-Einstein manifold
with associated functions λ − [ p

2 +
1

2n+1 ] + f ||v||2 − h, −f .

Theorem 3.5. Let (M̄2n+1, 1) be an f -Kenmotsu manifold that admits a Schouten-van Kampen connection, and let
v be a torse-forming potential vector field with regard to a Schouten-van Kampen connection on M̄. Consider that
ω is the 1 dual of v where ω is 1-form. Then (M̄2n+1, 1) is a conformal Ricci soliton (v, λ, 1) if and only if M̄ is a
hyper-generalised quasi-Einstein manifold with associated functions λ − [ p

2 +
1

2n+1 ] + fν(v) − h, 0, f
2 , − 1

2 .

Proof. Now, we have

˜̄
S(M1,M2) = [λ − (

p
2
+

1
2n + 1

) + fν(v) − h]1(M1,M2) −
1
2

[1(M2,v)ψ(M1) + 1(M1,v)ψ(M2)]

−
1
2

f [1(M1,v)ν(M2) + 1(M2,v)ν(M1)].
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Considering that ω is a 1-form is the 1-dual of v, then from above metioned equation, we get

˜̄
S(M1,M2) = [λ − (

p
2
+

1
2n + 1

) + fν(v) − h]1(M1,M2) −
1
2

f [ω(M1)ν(M2) + ω(M2)ν(M1)]

−
1
2

[ω(M2)ψ(M1) + ω(M1)ψ(M2)].

which complete the proof.

From (17), the equation (29) is also possible as

S̄(M1,M2) = [λ − (
p
2
+

1
2n + 1

) + fν(v) − h − (2 f 2 + f ′)]1(M1,M2) − f ′ν(M1)ν(M2)

−
1
2

f [1(M1,v)ν(M2) + 1(M2,v)ν(M1)] −
1
2

[1(M2,v)ψ(M1) + 1(M1,v)ψ(M2)].

Therefore we can state the following corollary:

Corollary 3.6. Let (M̄2n+1, 1) be an f -Kenmotsu manifold that admits a Schouten-van Kampen connection, and let v
be a torse-forming potential vector field with regard to a Levi-Civita connection on M̄. Then (M̄2n+1, 1) is a conformal
Ricci soliton (v, λ, 1) if and only if

S̄(M1,M2) = [λ − (
p
2
+

1
2n + 1

) + fν(v) − h − (2 f 2 + f ′)]1(M1,M2) − f ′ν(M1)ν(M2)

−
1
2

f [1(M1,v)ν(M2) + 1(M2,v)ν(M1)] −
1
2

[1(M2,v)ψ(M1) + 1(M1,v)ψ(M2)].

Moreover, the following theorem holds true:

Theorem 3.7. Let (M̄2n+1, 1) be an f -Kenmotsu manifold that admits a Schouten-van Kampen connection, and
let v be a torse-forming potential vector field and N a parallel unit vector field with regard to a Schouten-van
Kampen connection on M̄. Consider that ω is the g dual of v where ω is 1-form. Then (M̄2n+1, g) is a conformal
Ricci soliton (v, λ, g) if and only if M̄ is a hyper-generalised quasi-Einstein manifold with associated functions
λ − [ p

2 +
1

2n+1 ] + fν(v) − h − (2 f 2 + f ′), − f ′, − f
2 , − 1

2 .

4. Submanifolds

Let (M̄, 1̄) be an (2n+1)-dimensional f-Kenmotsu manifold equipped with Schouten-van Kampen con-
nection ˜̄∇ and Levi-Civita connection ∇̄. Assume that M be an n-dimensional submanifold of (M̄, 1̄). On
the submanifold M, the associated connection is denoted by ∇̃ and the associated Levi-Civita connection is
denoted by ∇.

The Gauss and Weingarten formulations in terms of ∇̄ and ˜̄∇ can be expressed as:

∇̄M1 M2 = ∇M1 M2 + η(M1,M2),

˜̄∇M1 M2 = ∇̃M1 M2 + η̃(M1,M2)

where M1,M2 ∈ TM̄, and

and

∇̄M1 P = −SPM1 + ∇
⊥

M1 P,

˜̄∇M1 P = −S̃PM1 + ∇
⊥

M1 P,
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where M1,M2 ∈ TM̄, SP is the shape operator of M, P is a unit normal vector field and η is the second
fundamental form in (M̄, 1̄) and S̃ is a (1, 1)-tensor field and η̃ is second fundamental form on M [6]. Let us
denote the tangential parts of N by NT and normal parts of N by N⊥. Then, based on the formula [6], we
get

η̃(M1,M2) = η(M1,M2) − 1(M1,M2)N⊥ (29)

and

S̃PM1 = SPM1 − ν(P)M1. (30)

Also from [6] we have that the associated connection ∇̃ on the submanifold of an f -Kenmotsu manifold
possessed with Schouten-van Kampen connection is also a Schouten-van Kampen connection.

Suppose now that (M̄, 1̄) is a f -Kenmotsu manifold possessed with Schouten-van Kampen connection
and v is a torse-forming vector field with respect to Schouten-van Kampen connection on M̄. Let (M, g)
denotes the submanifold of (M̄, 1̄). Let us denote the tangential parts of v by vT and normal parts of v by
v⊥. Then using (15), we have

˜̄∇M1 v = ˜̄∇M1 (vT + v⊥) = ˜̄∇M1 vT + ˜̄∇M1 v⊥

= ∇̄M1 vT + f {1(M1,vT)N − ν(vT)M1} + ∇̄M1 v⊥ + f {1(M1,v⊥)N − ν(v⊥)M1}

= hM1 + ψ(M1)vT + ψ(M1)v⊥.

Utilising the Gauss and Weingarten formulas, as well as the equality between the tangential and normal
portions, we find

∇M1 vT = (h − fν(vT))M1 − f1(M1,vT)N + Sv⊥M1 + ψ(M1)vT (31)

and

ψ(M1)v⊥ = η(M1,vT) + ∇⊥M1
v⊥ + f {1(M1,v⊥)N − ν(v⊥)M1}.

then, based on the (31) equation, we obtain

(LvT1)(M1,M2) = 1(∇M1 vT,M2) + 1(M1,∇M2 vT)
= 2(h − fν(vT))1(M1,M2) − f [1(M1,vT)ν(M2) + 1(M2,vT)ν(M1)]
+ 1(M1,vT)ψ(M2) + 1(M2,vT)ψ(M1) + 21̄(η(M1,M2),vT).

Therefore, equation (1) provides us

S(M1,M2) = [λ − (
p
2
+

1
2n + 1

) − (h − fν(vT))]1(M1,M2) − 1̄(η(M1,M2),vT) −
f
2

[1(M1,vT)ν(M2)

+ 1(M2,vT)ν(M1)] −
1
2

[1(M1,vT)ψ(M2) + 1(M2,vT)ψ(M1)].

Thus, the following theorem can be stated:

Theorem 4.1. Let M be an n-dimensional submanifold isometrically submerged into a f -Kenmotsu manifold (M̄, 1̄)
equipped with a Schouten-van Kampen connection and let v be a torse-forming potential vector field with regard to a
Schouten-van Kampen connection on M̄. Then M is a conformal Ricci soliton if and only if the Ricci tensor field S of
M satisfies the condition:

S(M1,M2) = [λ − (
p
2
+

1
2n + 1

) − (h − fν(vT))]1(M1,M2) − 1̄(η(M1,M2),vT) −
f
2

[1(M1,vT)ν(M2) (32)

+ 1(M2,vT)ν(M1)] −
1
2

[1(M1,vT)ψ(M2) + 1(M2,vT)ψ(M1)].

for every M1,M2 ∈ TM̄.



V. Sah et al. / Filomat 38:2 (2024), 531–541 538

In the circumstance in which M is v⊥-umbilical, it can be deduced that Sv⊥ is equivalent to JI, where J
represents a function on M and I denotes the identity map [7]. Subsequently, utilising the aforementioned
equation (32), it can be concluded that

S(M1,M2) = [λ − (
p
2
+

1
2n + 1

) − (h − fν(vT)) − J]1(M1,M2) +
f
2

[1(M1,vT)ν(M2) + 1(M2,vT)ν(M1)]

−
1
2

[1(M1,vT)ψ(M2) + 1(M2,vT)ψ(M1)].

Thus, the following theorem can be stated:

Theorem 4.2. Let M be an n-dimensional v⊥-umbilical submanifold isometrically submerged into a f -Kenmotsu
manifold (M̄, 1̄) equipped with a Schouten-van Kampen connection and let v be a torse-forming potential vector field
with regard to a Schouten-van Kampen connection on M̄. Consider that ω is the g dual of vT where ω is 1-form. Then
(Mn, g) is a conformal Ricci soliton (vT, λ, g) if and only if M is a hyper-generalised quasi-Einstein manifold with
associated functions λ − ( p

2 +
1

2n+1 ) − (h − fν(vT)) − J, 0, − f
2 , − 1

2 .

Due to the fact that the induced connection ∇̃ on the submanifold of a f -Kenmotsu manifold endowed with
a Schouten-van Kampen connection is also a Schouten-van Kampen connection. Then, from (29), (32), we
get

S̃(M1,M2) = [λ − (
p
2
+

1
2n + 1

) + fν(vT) − h + (2 f 2 + f ′)]1(M1,M2) + f ′ν(M1)ν(M2) (33)

− 1̄(η̃(M1,M2),vT) −
1
2

f [1(M1,vT)ν(M2) + 1(M2,vT)ν(M1)] −
1
2

[1(M2,vT)ψ(M1) + 1(M1,vT)ψ(M2)],

where S̃ denotes the Ricci tensor of the induced Schouten-van Kampen connection.
Then the following corollary holds:

Corollary 4.3. Let M be an n-dimensional submanifold isometrically submerged into a f -Kenmotsu manifold (M̄, 1̄)
equipped with a Schouten-van Kampen connection and let v be a torse-forming potential vector field with regard to
a Schouten-van Kampen connection on M̄. Then (Mn, g) is a conformal Ricci soliton (vT, λ, g) if and only if the
induced Ricci tensor S̃ with respect to Schouten-van Kampen connection of M satisfies:

S̃(M1,M2) = [λ − (
p
2
+

1
2n + 1

) + fν(vT) − h + (2 f 2 + f ′)]1(M1,M2) + f ′ν(M1)ν(M2)

−
1
2

f [1(M1,vT)ν(M2) + 1(M2,vT)ν(M1)] −
1
2

[1(M2,vT)ψ(M1) + 1(M1,vT)ψ(M2)] − 1̄(η̃(M1,M2),vT),

for every M1,M2 ∈ TM̄.

If M is v⊥-umbilical, then by (30), we get

S̃vT M1 = (J − ν(vT))M1,

which provides us

(J − ν(vT))1(M1,M2) = 1(S̃vT M1,M2) = 1̄(η̃(M1,M2),vT).

Therefore from (33), we establish

S̃(M1,M2) = [λ − (
p
2
+

1
2n + 1

) + fν(vT) − h + (2 f 2 + f ′) − J + ν(vT)]1(M1,M2) + f ′ν(M1)ν(M2)

−
1
2

f [1(M1,vT)ν(M2) + 1(M2,vT)ν(M1)] −
1
2

[1(M2,vT)ψ(M1) + 1(M1,vT)ψ(M2)].

Thus, the following theorem can be stated:
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Theorem 4.4. Let M be an n-dimensional v⊥-umbilical submanifold isometrically submerged into a f -Kenmotsu
manifold (M̄, 1̄) equipped with a Schouten-van Kampen connection and let v be a torse-forming potential vector
field with regard to a Schouten-van Kampen connection on M̄. Consider that ω is the g dual of vT where ω is
1-form and N is a parallel unit vector with regard to a Levi-Civita connection ∇̄. Then (Mn, g) is a conformal
Ricci soliton (vT, λ, g) if and only if M is a hyper-generalised quasi-Einstein manifold with associated functions
λ − ( p

2 +
1

2n+1 ) − h − (1 − f )ν(vT) − J + (2 f 2 + f ′), f ′, − f
2 , − 1

2 .

5. Example

We considered an 3-dimension manifold M̄2n+1= {(u, v,w)} ∈ R3, where (u, v,w) are the standard co-
ordinates in R3 [19].

We select vector fields that are linearly independent of one another:

e1 = w2 ∂
∂u
, e2 = w2 ∂

∂v
, e3 =

∂
∂w

Let g denote the Riemannian metric defined by the expression: g(e1, e1) = g(e2, e2) = g(e3, e3) = 1 and g(ei, e j)
= 0, for i , j.

Let ν be 1-form defined by ν(M3) = g(M3, e3) for any M3 ∈ M̄, let φ be the (1, 1) tensor field defined
by:

φ(e1) = −e2, φ(e2) = −e1, φ(e3) = 0.

Using the linearity of g and φ, we have

ν(e3) = 1, φ2M3 = −M3 + ν(M3)e3, 1(φM3, φM4) = 1(M3,M4) − ν(M3)ν(M4),

For Levi-Civita connection ∇̄we have the following:

[e1, e2] = 0, [e2, e3] = −
2
w

e2, [e1, e3] = −
2
w

e1.

Now using the Koszul formula for metric g, we obtain the following:

∇̄e1 e3 = −
2
w

e1, ∇̄e1 e2 = 0, ∇̄e1 e1 =
2
w

e3,

∇̄e2 e3 = −
2
w

e2, ∇̄e2 e2 =
2
w

e3, ∇̄e2 e1 = 0,

∇̄e3 e3 = 0, ∇̄e3 e2 = 0, ∇̄e3 e1 = 0.

From above we finds that manifold satisfies ∇̄M1N = f (M1 − ν(M1)N) forN = e3, where f = − 2
w . Hence the

manifold is f -Kenmotsu manifold. Also f 2 + f ′ , 0. Hence M̄ is a regular f -Kenmotsu manifold.

The components of Riemannian curvature(R̄) in terms of the Levi-Civita connection ∇̄ are as follows:

R̄(e1, e2)e3 = 0, R̄(e2, e3)e3 = −
6

w2 e2, R̄(e1, e3)e3 = −
6

w2 e1,

R̄(e1, e2)e2 = −
4

w2 e1, R̄(e2, e3)e2 = −
6

w2 e3, R̄(e1, e3)e2 = 0,

R̄(e1, e2)e1 =
4

w2 e2, R̄(e2, e3)e1 = 0, R̄(e1, e3)e1 =
6

w2 e3.
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In view of equation (17), we have

˜̄∇e1 e3 = (−
2
w
− f )e1, ˜̄∇e1 e2 = 0, ˜̄∇e1 e1 =

2
w

(e3 −N),

˜̄∇e2 e3 = (−
2
w
− f )e2, ˜̄∇e2 e2 =

2
w

(e3 −N), ˜̄∇e2 e1 = 0,

˜̄∇e3 e3 = − f (e3 −N), ˜̄∇e3 e2 = 0, ˜̄∇e3 e1 = 0.

From above we see that ˜̄∇ei e j = 0, (0 ≤ i, j ≤ 3) for N = e3 and f = - 2
w . Hence the manifold is f -Kenmotsu

manifold with respect to Schouten-van Kampen connection.

From the above expression of the curvature tensor we obtain the Ricci tensor as follows:

S̄(e1, e1) = −
10
w2 , S̄(e2, e2) = −

10
w2 , S̄(e3, e3) = −

12
w2 ,

Therefore, the scalar curvature r̄ =
∑3

i=1 S̄(ei, ei) = - 32
w2 and ˜̄r =

∑3
i=1

˜̄
S(ei, ei) = 0 with respect to Levi-Civita

connection and Schouten-van Kampen connection respectively.
Let us define a vector field by v =N . Then we obtain:

(˜̄Lv)(e1, e1) = −
4
z
− 2 f , (˜̄Lv)(e2, e2) = −

4
z
− 2 f , (˜̄Lv)(e3, e3) = 0.

Contracting (1) and using the value of ˜̄r we have λ= 3p+2
6 . The value of λ satisfies the relation (25). So, g

defines a conformal Ricci solitons on 3-dimension f -Kenmotsu manifold for λ = 3p+2
6 . Also the Conformal

Ricci soliton is expanding if λ ≥ 0 i.e., 3p+2
6 ≥ 0, shrinking if λ ≤ 0 i.e., 3p+2

6 ≤ 0 and steady if λ = 0 i.e., 3p+2
6 =

0.
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