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Generalized solution of Burger equation
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Abstract. In this paper, The existence and uniqueness of the generalized solution of the Burger equation
is studied with initial conditions are distributions (elements of Colombeau algebra). then we look at the
association notion in conjunction with the classic solution.

1. Introduction

The Burgers equation is a partial differential equation (see e.g. [17–19]) derived from fluid mechanics. It
appears in various fields of applied mathematics, such as the modeling of gas dynamics, acoustics or road
traffic. It is named after Johannes Martinus Burgers who discussed it in 1948 [7]. One-dimensional nonlinear
The Burger equation was first introduced by his Bateman H. [8] in 1915, who found it to be stable. A solution
that describes a particular viscous flow. It was later proposed by Burger J.M. (1948). [9] belongs to the class
of equations describing mathematical turbulence models. after that, The Burger equation was studied by
Cole J.D. (1951) [10] and provided a theoretical solution. Moreover, Currò C., Donato A., Povzner A.Ya. they
studied the Perturbation method for a generalized Burgers equation (1992)[20]. Fourier series analysis with
appropriate initial and boundary conditions. Gorgis A. (2005) [11] presents a comparison of the Cole-Hopf
transformation and decomposition. How to solve the Berger equation. Momani S., (2006) [12] published
The unperturbed solution of the partial Burger equation in space and time from Atomic decomposition
method. Inc (2008) [15] solved it using variational iteration. Space-time fractional equations. Wang Qi.
(2008) extending the application of [16] Homotopy Perturbation and Adminian Decomposition Methods
for Building Approximations Solution of the nonlinear fractional KdV-Burger equation. Biother J and
Aminikhah H. (2009) [13] Solve the Burger equation using variational iteration (VIM). Which approximate
solutions are found and which are better than his ADM. (2011), Pandey K. and Verma L. [14] gave a note
on his Crank-Nicolson scheme for the Burger equation. The Hopf-Cole transform solution is obtained by
ignoring nonlinear terms.
The space of distributions noted D∞(R) was formalized by the mathematician Laurent Schwartz, in 1940
whose the goal to extend the notion of the function to the Dirac mass (δ(0) = +∞ and δ(x) = 0 ∀x ∈ R∗) and
formalize solutions for partial differential equations .... In 1951, Laurent Schwartz evoked the problem of
the non-linearity of distributions, namely δ2 which has no meaning in the space of distributions. Moreover
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he asserted that there does not exist an algebra in which the distributions are injected and the product
problem will be solved provided that the product of continuous functions coincides with the product in
this algebra. In 1984, the mathematician Jean François Colombeau constructed an algebra noted, named
algebra of generalized functions in which the space of distributions is linearly injected and the product
remains well defined [1], [2],[6] .
The paper is organized as follows. After the introductory part,we give some basic preliminaries such as
notations and definitions of the objects we shall work with, we also introduce different spaces of Colombeau
algebra of generalized functions. In the third section we proved the existence and uniqueness of solution
of Burger equation with variable speed and initial data in the Colombeau algebra G(R). Finally, in the fifth
section we study the association (Application).

2. Preliminaries

In this section, we list some notations and formulas to be used later. The elements of Colombeau algebras
G are equivalence classes of regularizations, i.e., sequences of smooth functions satisfying asymptotic
conditions in the regularization parameter ε. Therefore, for any set X, the family of sequences (uε)ε∈[0;1] of
elements of a set X will be denoted by X[0;1], such sequences will also be called nets and simply written as
uε.
LetD (R) be the space of all smooth functions φ : R −→ Cwith compact support. For q ∈Nwe denote

Aq (R) =
{
φ ∈ D (R) /

∫
φ(x)dx = 1 and

∫
xαφ(x)dx = 0 for 1 ≤ α ≤ q

}
The elements of the setAq are called test functions.
It is obvious that A1 ⊃ A2 . . .. Colombeau in his books has proved that the sets Ak are non empty for all
k ∈N.
For φ ∈ Aq (R) and ϵ > 0 it is denoted as φϵ(x) = 1

εφ
(

x
ε

)
for φ ∈ D (R) and φ̌(x) = φ(−x)

We denote by

E(R) = {u : A1 ×R→ C/ with u(φ, x)is C
∞ to the second variable x}

with ∀φ ∈ A1
u
(
φε, x

)
= uε(x), ∀x ∈ R

EM(R) = {(uε)ε>0 ⊂ E(R)/∀K ⊂⊂ R,∀α ∈N0,∃N ∈N such that sup
x∈K
|∂αuε(x)| = O(ε−N) as ε→ 0}

this set named the set of moderate elements.

N(R) = {(uε)ε>0 ⊂ E(R)/ ∀K ⊂⊂ R,∀α ∈N0,∀p ∈N; sup
x∈K
|∂αuε(x)| = O(εp) as ε→ 0}

this set named the set of negligible elements.
The generalized functions of Colombeau are elements of the quotient algebra

G(R) = EM(R)/N(R)

Any element u of G (R) is called a generalized function, written as:

u = (uε) +N (R) with (uε) ∈ EM (R)

The meaning of the term association in Colombeau’s algebra is given as follows:
Let u, v ∈ G(R), We say that u and v are associated and we note u ≈ v, if

limε→0

∫
R

(uε − vε)(x)ψ(x)dx = 0

For all ψ ∈ D(R).
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3. Existence and uniqueness of the generalized solution

. To show the existence and the uniqueness of the solution of this problem

(1)
{
∂ty(t, x) + y(t, x)∂xy(t, x) = F(t, x, y(t, x)), (t, x) ∈ R+ ×R.
y(0, x) = y0(x), x ∈ R.

where y0(x) is a discontinue function, we need the following definitions and propositions[5]:

Definition 3.1. We say that f generalized function is of logarithmic type, if there exists a representative ( fε) of f
such that

sup
x∈K
| fε(x)| = O

(
ln

(
ε−N

))
when ε −→ 0

Proposition 3.2. If f is of logarithmic type, then for any representative of ( fε)

sup
x∈K
| fε(x)| = O

(
ln

(
ε−N

))
when ε −→ 0

Proof. f is of logarithmic type then there exists a representative of f , such that

sup
x∈K
| fε(x)| = O

(
ln

(
ε−N

))
when ε −→ 0

Let
(
1ε

)
be another representative of f , Then

| fε(x) − 1ε(x)| ≤ c.εq
∀q ∀x ∈ KT

We find
|1ε(x)| ≤ | fε(x)| + c · εq

∀q ∀x ∈ KT, for q −→ +∞

And then
|1ε(x)| ≤ | fε(x)|

sup
x∈K
|1ε(x)| = O

(
ln

(
ε−N

))
when ε −→ 0

Definition 3.3. We say that a generalized function f is globally bounded, if there exists a representative ( fε) of f and
M ≥ 0 such that :

sup
x∈Rn
| fε(x)| ≤M

Example 3.4.
fε(x) = N(0, 1)

Proposition 3.5. If f is globally bounded, then for any representative ( fε) of f we have:

sup
x∈Rn
| fε(x)| < M when ε −→ 0

Proof. f is globally bounded, then there exists a representative of ( fε) of f such that :

sup
x∈K
| fε(x)| ≤M

Let (1ε) be another representative of f , then :

| fε(x) − 1ε(x)| ≤ c.εq
∀q ∈N
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As
| fε(x)| − |1ε(x)| ≤ c.εq

∀q ∈N

So
|1ε(x)| ≤ | fε(x)| + c.εq

∀q ∈N

So
|1ε(x)| ≤M + c · εq

∀q ∈N

For q −→ +∞we find:
|1ε(x)| ≤M ∀x ∈ R

Theorem 3.6. If ∇x f is of logarithmic type, then for the problem (1) has a unique solution in G (R+ ×R).

Proof. Existence
We have : {

∂ty(t, x) + y(t, x)∂xy(t, x) = f (t, x, y(t, x)), (t, x) ∈ R+ ×R
y(0, x) = y0(x), t ≥ 0

with y0(x) are discontinuous functions, the solution according to the characteristic curves :

yε(t, x) = y0ε (λε(t, x, 0)) +
∫ t

0
fε

(
t, yε(t, x), τ

)
dτ

yε(t, x) = y0ε (λε(0, x, 0)) +
∫ t

0
fε(t, 0, τ)dτ +

∫ t

0

∫ 1

0
∇x fε

(
t, σyε(t, x), τ

)
yε(t, x)dσdτ

x

t

x0ε

λε

Figure 1

with λε the characteristic curve corresponding to y0,ε.
Let T > t, then we get :
By hypothesis, y0 is globally bounded:

∃M ≥ 0, Such as sup
x∈R
|y0ε(x)| ≤M ∀(t, x) ∈ R+ ×R
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So

|
dλε(t, x, τ)

dτ
| ≤M

With λε(t, x, τ) the characteristic curve corresponding to y0,ε coming from the point (0, x).

x

t

x0εT

KTK0

Figure 2

Let KT be the triangle bounded by:

|yε(t, x)|KT ≤ |y0iε(t)|K0 + T| fiε(t, x)|KT + |∇x fε|KT

∫ t

0
|yε(t, x)|Kτdτ

Apply Gronwall’s inequality to the function

τ 7−→ |yε(t, x)|Kτ

|yε(t, x)|KT ≤
[
|y0ε(t)|K0 + T| fε(t, x)|KT

]
× exp

(∫ T

0
|∇ fε|KT dτ

)
|yε(t, x)|KT ≤

[
|y0ε(t)|K0 + T| fε(t, x)|KT

]
× exp

(
T|∇x fε|KT

)
Such as ∇x fε is of logarithmic type

∃N ∈N |yiε(t, x)|KT = O
(
ε−N

)
Uniqueness

Suppose problem (1) has two solutions x, y ∈ G(R+ ×R).
Then,

xiε(t, x) − yiε(t, x) = x0iε(λiε(t, x, 0)) − y0iε(λiε(t, x, 0))

+

∫ t

0

(
fiε(t, xiε(t, x), τ) − fiε(t, yiε(t, x), τ)

)
dτ

= (x0iε − y0iε)(λiε(t, x, 0)) +
∫ t

0
( fiε(t, xiε(t, x), τ) − fiε(t, yiε(t, x), τ))dτ
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So

|xiε(t, x) − yiε(t, x)|KT ≤ |(x0iε − y0iε)(λiε(t, x, 0))|K0 +

∫ T

0
|∇ fiε||xiε(t, x, τ)) − yiε(t, x, τ)|Kτdτ

Let us apply Granwall’s inequality on the function,

T −→ |xiε(t, x) − yiε(t, x)|KT

We obtain

|xiε(t, x) − yiε(t, x)|KT ≤ |x0iε − y0iε|K0 exp(
∫ T

0
|∇x fiε|dτ)

|xiε(t, x) − yiε(t, x)|KT ≤ |x0iε − y0iε|K0 exp(T|∇x fiε|)

As ∇x fiε is of logarithmic type and ηiε ∈ N(R+)
Then

|xiε(t, x) − yiε(t, x)|KT = O(εq) ∀q ∈N

4. Application

We consider the following problem which presents the propagation in a discontinuous medium.

(2)
{
∂ty(t, x) + y(t, x)∂xy(t, x) = 0, (t, x) ∈ R+ ×R
y(0, x) = y0(x)

With

y0(x) =
{

c1, x ≤ x0
c2, x > x0

c1 , c2 > 0

y0(x) is discontinuous in x0 = 1, The problem (2) admits a classical solution for the domain :

(I) = {x ≤ x0, t ≥ 0} and (II) = {x > x0, t ≥ 0}

and while imposing a passing condition at x0, then we have a solution on {x ≥ x0, and t ≥ 0}.
For this, either ϕ ∈ D (R+) supp(ϕ) ∈

]
1 − ηε; 1 + ηε[.

We pose

ϕε(x) =
1
ε
ϕ

(x
ε

)
, ηε =

1
|ln(ε)|

yε(x) = y ∗ ϕε(x), yε ∈ C∞ (R+)

let λε be the characteristic curve associated with yε
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x

t

x0

Kε

ε

λε

Figure 3

So the problem (2) admits as solution

y(t, x) =

y (λ1(x, t, 0)) , on the domain (I)
y (λ2(x, t, 0)) , on the domain (II)

λ1 the characteristic curve associated with c1.
λ2 the characteristic curve associated with c2.

Proposition 4.1. With y0(x) is a discontinuous function in x0 the problem (2) has a solution y ∈ G (R+ ×R), as:

Y ≈ y with Y = [(yε)] ∈ G (R+ ×R)

Proof. According to the theorem (3) the problem (2) has a unique solution
y ∈ G (R+ ×R) It remains to show that

Y ≈ y
On the domain (I), we fix:

λ1,ε = λ1 ∗ ϕηε
For example

y0 ∗ ϕε −→ y0,ε when ε −→ 0
So ∫

I

(
yε(t, x) − y(t, x)

)
ψ(t, x)dxdt =

∫
I

(
y0,ε

(
λ1,ε(t, x, 0)

)
− y0 (λ1(t, x, 0))

)
dxdt

=

∫
I

y0,ε
(
λ1,ε(t, x, 0)

)
− y0

(
λ1,ε(t, x, 0)

)
dxdt

+

∫
I

y0
(
λ1,ε(t, x, 0)

)
− y0 (λ1(t, x, 0)) dxdt

=

∫
I
(y0,ε − y0)

(
λ1,ε(t, x, 0)

)
dxdt

+

∫
I
[y0

(
λ1,ε(t, x, 0)

)
− y0 (λ1(t, x, 0))]dxdt
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We know that y0 is globally bounded, So

|

∫
I

y0
(
λ1,ε(t, x, 0)

)
− y0 (λ1(t, x, 0)) dxdt| ≤

∫
I
|y0

(
λ1,ε(t, x, 0)

)
− y0 (λ1(t, x, 0))|dxdt

≤

∫
I
sup
x∈K
|y0||λ1,ε(t, x, 0) − λ1(t, x, 0)|dxdt

≤ sup
x∈K
|y0|

∫
I
|λ1,ε(t, x, 0) − λ1(t, x, 0)|dxdt

So

lim
ε→0

∫
I

y0
(
λ1,ε(t, x, 0)

)
− y0 (λ1(t, x, 0)) dxdt = 0

Moreover

|

∫
I

(
y0,ε

(
λ1,ε(t, x, 0)

))
− y0

(
λ1,ε(t, x, 0)

)
dxdt| ≤

∫
I
|y0,ε

(
λ1,ε(t, x, 0)

)
− y0

(
λ1,ε(t, x, 0)

)
|dxdt

≤ sup
x∈KT

|y0,ε − y0|

∫
I
λ1,ε(t, x, 0)dxdt

≤ sup
x∈KT

|y0 ∗ ϕε − y0|

∫
I
λ1,ε(t, x, 0)dxdt

≤ mes(KT) sup
x∈KT

|y0 ∗ ϕε − y0|

So

lim
ε→0

∫
I

y0,ε
(
λ1,ε(t, x, 0)

)
− y0

(
λ1,ε(t, x, 0)

)
dxdt = 0

So ∫
I

(
yε(t, x) − y(t, x)

)
ψ(t, x)dxdt = 0

The same reasoning for ∫
II

(
yε(t, x) − y(t, x)

)
ψ(t, x)dxdt = 0

So
Y ≈ y
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