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Abstract. Let p be an odd prime. In this paper, analogs of Wilson’s and Wolstenholme’s theorems on the
solution sets

S+ = {n ∈ Z∗p | n ≡ a + b ≡ ab (mod p)}

and

S− = {n ∈ Z∗p | n ≡ a − b ≡ ab (mod p)}

are given, where Z∗p denote a reduced residue system modulo p. We also establish congruences about sum
and product of the quadratic residues in S+ or in S− modulo p. Finally, we raise a problem on how to solve
Hadamard’s conjecture in the last section.

1. Introduction

In 1956, Mnich asked whether the diophantine system of equations

x1 + x2 + x3 = x1x2x3 = 1 (1)

has any solution in Q (see [17]). Cassels[5] knew about this question from Mordell, and in 1960, he gave a
negative answer by using the arithmetic of cubic fields. Two years later, Sansone and Cassels[17] posted an
elementary proof of the non-solvability. In [10], Guy recorded a generalization of Mnich’s question.

In 1996, by considering the positive rational solutions of

x1 + x2 + x3 = x1x2x3 = 6,
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Schinzel[18] proved that for every k, there are infinitely many primitive sets of k triples of positive integers
with the same sum and the same product. Also, many authors have considered the diophantine equation
in other number fields (see [2, 3, 6, 8, 9, 14, 20, 22, 23]). In general, the diophantine equation

x1 + x2 + · · · + xn = x1x2 · · · xn (2)

has infinitely many rational solutions. It is easy to see that equation (2) has only one positive integer solution
(2, 2) if n = 2. For n = 3, equation (2) has only one positive integer solution (1, 2, 3) with x1 ≤ x2 ≤ x3. And
for any n ≥ 3, equation (2) has at least one solution (1, 1, · · · , 1︸     ︷︷     ︸

n−2

, 2,n). Schinzel showed that there are infinitely

many rational solutions of (2) with both sum and product equal to one [19]. Zhang and Cai[24] generalized
Schinzel’s result in [18]. They proved that for every k, there exist infinitely many primitive sets of k n-tuples
of positive integers with the same sum and the same product.

Meanwhile, the well-known Wilson’s and Wolstenholme’s theorems describe the product and sum
properties of residue classes. There are many analogs or generalizations, and it is interesting to find analogs
on subsets of residue classes. Mirimanoff[13] and Lehmer[12] gave a congruence modulo p2 on the sum of
positive integers less than (p − 1)/2. For any prime p ≡ 3 (mod 4), Mordell[15] proved that(

p − 1
2

)
! ≡ (−1)

1
2 [1+h(−p)] (mod p)

if p > 3, where h(−p) is the class number of the imaginary quadratic field Q(
√
−p). Chowla[7] extended

Mordell’s result for p ≡ 1 (mod 4). Lebesgue[1] found a congruence relation on the sum of quadratic
residues and non-residues not exceeding (p− 1)/2, while a similar result on the product was recently found
by Wu and Wang[21]. Wu and Wang proved that if p ≡ 5 (mod 8), then∏

0<x< p
2

x∈R

x ≡ (−1)1+r (mod p),

where R is the set of quadratic residues modulo p and r is the number of 4th power residues modulo p in
the interval (0, p/2). Let N be the set of quadratic non-residues modulo p, define

RR = {a ∈ Z∗p | a ∈ R, a + 1 ∈ R}

and

RN = {a ∈ Z∗p | a ∈ R, a + 1 ∈ N},

where Z∗p denote a reduced residue system modulo p. Then

|RR| =
p − 4 −

(
−1
p

)
4

, |RN| =
p −

(
−1
p

)
4

,

where
(
·

p

)
denotes the Legendre symbol, see [11] and [4]. In this paper, we consider the sum and product

properties of solutions of the following congruent equations

n ≡ a + b ≡ ab (mod p) (3)

and

n ≡ a − b ≡ ab (mod p) (4)

with n ∈ Z∗p. Equations (3) and (4) have their own interesting properties. For example, it is not difficult
to prove that n = 1 is a solution of (3) if and only if prime p can be expressed as x2 + 3y2, while n = 1 is a
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solution of (4) if and only if prime p can be expressed as 5x2
− y2; n = 2 is a solution of (3) if and only if odd

prime p can be expressed as x2 + y2, while n = 2 is a solution of (4) if and only if prime p can be expressed
as 3x2

− y2 or x2
− 3y2.

In this article, we first give some properties of the solutions of equations (3) and (4). Then, analogs of
Wilson’s and Wolstenholme’s theorems on the solution sets

S+ = {n ∈ Z∗p | n ≡ a + b ≡ ab (mod p)}

and

S− = {n ∈ Z∗p | n ≡ a − b ≡ ab (mod p)}

are given. Moreover, we consider the distribution of quadratic residues on the solution sets and give
congruences for the sum and product of quadratic residues in those sets modulo p.

2. Auxiliary Results

Lemma 2.1 ([16]). For any integer k and prime p,

p−1∑
x=1

xk
≡

0 (mod p), p − 1 ∤ k,
−1 (mod p), p − 1 | k.

Lemma 2.2 ([15]). For any odd prime p, we have[(
p − 1

2

)
!
]2

≡ (−1)
p+1

2 (mod p).

Lemma 2.3. For any odd prime p > 3 and integer l, we have

∑
a∈R

al
≡

0 (mod p), if p−1
2 ∤ l,

p−1
2 (mod p), if p−1

2 | l,∑
a∈R

al
≡ 1 (mod 3).

Proof. It is easy to check when p = 3 or p−1
2 | l. For p > 3 and p−1

2 ∤ l, we have

∑
a∈R

al
≡

p−1
2∑

i=1

i2l
≡

1
2

p−1∑
i=1

i2l
≡ 0 (mod p)

by Lemma 2.1.

Lemma 2.4. For any odd prime p, we have∏
a∈R\{1}

(a − 1) ≡
∏

a∈R\{1,2}

(a − 1) ≡
1
2

(
−1
p

)
(mod p),

∑
a∈R\{1}

1
a − 1

≡
3
4

(mod p).
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Proof. It is well-known that
{
12, 22, · · · ,

( p−1
2

)2
}

is the set of quadratic residues modulo p. Therefore, by

Lemma 2.2,

∏
a∈R\{1}

(a − 1) ≡

p−1
2∏

a=2

(
a2
− 1

)
≡

p−1
2∏

a=2

(a − 1)(a + 1)

≡

p−3
2∏

i=1

i

p+1
2∏

j=3

j ≡

p+1
2

p−1
2∏

i=1
i

p−1
2∏

j=1
j

p − 1

≡
1
2

(−1)
p−1

2 ≡
1
2

(
−1
p

)
(mod p)

and

∑
a∈R\{1}

1
a − 1

≡

p−1
2∑

i=2

1
i2 − 1

=
1
2


p−1

2∑
i=2

1
i − 1

−

p−1
2∑

i=2

1
i + 1


=

1
2

(
1 +

1
2
−

2
p − 1

−
2

p + 1

)
≡

3
4

(mod p).

3. On the solutions of equation (3)

For the rest of this article, we say that n (mod p) is a solution of (3) or (4) if there is a pair (a, b) such that
(3) or (4) holds.

Theorem 3.1. Let p be an odd prime. Then
1) For any p > 3, n ≡ 4 is a solution of (3), and (3) has (p − 1)/2 solutions.
2) For each solution n, there is only one (n, a, b) that satisfying (3) apart from the order of (a, b).

Proof. 1) There is only one positive solution of the equation a + b = ab = n. That is n = 2 × 2 = 4. For any
0 < a , 1 ≤ p − 1, congruence

a + x − ax ≡ 0 (mod p) (5)

has exactly one solution x ≡ a/(a − 1). If a = 1, congruence (5) has no solution. Only when a = 2, we have
x ≡ a. Hence, there are p−3

2 + 1 = p−1
2 solutions n ≡ ab of (3) by symmetry.

2) Assume that both (n, a1, b1) , (n, a2, b2) satisfy (3). Then, we have

a1 +
a1

a1 − 1
≡ a2 +

a2

a2 − 1
(mod p)

or

(a1 + a2 − a1a2) (a1 − a2)
(a1 − 1) (a2 − 1)

≡ 0 (mod p),

which means a1 ≡ a2 (mod p) or a1 ≡
a2

a2−1 (mod p).

Theorem 3.2. Let p be an odd prime. Then the product of solutions of (3)∏
n∈S+

n ≡ −2 (mod p).



T. X. Cai et al. / Filomat 38:2 (2024), 621–635 625

Proof. From Theorem 3.1, we know that all a and b except a ≡ b ≡ 2 in triples (n, a, b) satisfying (3), are not
congruent to each other. Hence, a and b traverse the residue class modulo p exactly once except 2, if we
replace n with ab in the product. Therefore

∏
n∈S+

n ≡
∏

ab∈S+
a≤b

ab ≡ 2
p−1∏
j=2

j ≡ −2 (mod p)

by Wilson’s theorem.

Theorem 3.3. Let p be an odd prime and arbitrary integer k ≡ s (mod p − 1) with 0 ≤ s < p − 1. Then the power
sum of the solutions of (3)

∑
n∈S+

nk
≡

22s−1
−

1
2
(2s

s
)

(mod p), if s , 0,
p−1

2 (mod p), if s = 0.

Proof. For each 0 < a , 1 ≤ p − 1, we have

b ≡
a

a − 1
(mod p),

and n can be written as ab or ba with a . b except when n = 4 = 2×2. Hence, for p > 3 and k ≡ s (mod p−1),
by Fermat’s little theorem, we have

∑
n∈S+

nk
≡

∑
n∈S+

ns
≡

1
2

 p−1∑
i=2

i2s

(i − 1)s − 22s

 + 22s

≡
1
2

p−1∑
i=2

(i − 1 + 1)2s

(i − 1)s + 22s−1

≡
1
2

p−1∑
i=2

2s∑
t=0

(
2s
t

)
(i − 1)t−s + 22s−1

≡
1
2

2s∑
t=0

(
2s
t

) p−1∑
i=2

(i − 1)t−s + 22s−1

≡
1
2

2s∑
t=0

(
2s
t

)  p−1∑
i=1

it−s
− (p − 1)t−s

 + 22s−1

≡
1
2

2s∑
t=0

(
2s
t

)  p−1∑
i=1

it−s
− (−1)t−s

 + 22s−1 (mod p).

If s = 0, then
∑

n∈S+ nk
≡

∑
n∈S+ ns

≡
p−1

2 . If 0 < s < p − 1, then∑
n∈S+

nk
≡ 22s−1

−
1
2

(
2s
s

)
(mod p)

by Lemma 2.1.

Remark 3.4. With the help of Theorem 3.3 and Fermat’s little theorem, we have∑
n∈S+

1
n
≡

1
8

(mod p) (p > 3)
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and ∑
n∈S+

1
n2 ≡

1
32

(mod p) (p > 5).

Theorem 3.5. Let p be an odd prime, R be the set of quadratic residues modulo p and N be the set of quadratic
non-residues modulo p. Then

|S+ ∩ R| =
1
4

(
p −

(
−1
p

))
and

|S+ ∩N| =
1
4

(
p − 2 +

(
−1
p

))
.

Proof. Since n ∈ S+, we have n ≡ a + b ≡ ab (mod p), i.e., (a − 1)(b − 1) ≡ 1 (mod p). It is obvious that
a − 1 ≡ b − 1 ≡ 1 (mod p), i.e., a ≡ b ≡ 2 (mod p), n ≡ ab ≡ 4 (mod p) and n ∈ S+. If a − 1 ≡ b − 1 ≡ −1
(mod p), i.e., a ≡ b ≡ 0 (mod p), n ≡ ab ≡ 0 (mod p), but n < S+.

If n ∈ S+ ∩ R, then
(

n
p

)
= 1. Since n ≡ ab ≡ a2

a−1 (mod p), we have
(

a−1
p

)
= 1, likewise,

(
b−1

p

)
= 1. |S+ ∩ R| is

the number of pairs (a − 1, b − 1) (mod p) such that (a − 1)(b − 1) ≡ 1 (mod p) and
(

a−1
p

)
=

(
b−1

p

)
= 1. Except

a − 1 ≡ b − 1 ≡ ±1 (mod p), the remaining residues modulo p from pairs a − 1, b − 1, where a − 1 . b − 1
(mod p) such that (a − 1)(b − 1) ≡ 1 (mod p).

If p ≡ 1 (mod 4), then ±1 are quadratic residues modulo p. Thus

|S+ ∩ R| =
p−1

2 − 2
2

+ 1 =
p − 1

4
=

1
4

(
p −

(
−1
p

))
.

If p ≡ 3 (mod 4), then 1 is a quadratic residue modulo p, and −1 is a quadratic non-residue modulo p.
Thus

|S+ ∩ R| =
p−1

2 − 1
2

+ 1 =
p + 1

4
=

1
4

(
p −

(
−1
p

))
and

|S+ ∩N| = |S+| − |S+ ∩ R| =
1
4

(
p − 2 +

(
−1
p

))
.

Theorem 3.6. For prime p > 3, and arbitrary integer k ≡ s (mod p − 1) with 0 ≤ s < p − 1, the power sum of
quadratic residues in solutions of (3) satisfies

∑
n∈S+∩R

nk
≡


−

1
4

(
−1
p

)
(mod p), if s = 0,

22s−1
−

1
4
(2s

s
)

(mod p), if 0 < s < p−1
2 ,

22s−1
−

1
4

((2s
s
)
+ 2

( 2s
s− p−1

2

))
(mod p), if p−1

2 ≤ s < p − 1.
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Proof. If s = 0, the result follows from Theorem 3.5. For each 0 < a , 1 ≤ p − 1, we have

b ≡
a

a − 1
(mod p),

and n can be written as ab or ba with a . b (mod p) except when n = 4 = 2 × 2. Hence, for p > 3 and
0 < s < p − 1, we have

∑
n∈S+∩R

nk
≡

∑
n∈S+∩R

ns
≡

1
2

 ∑
a−1∈R

a2s

(a − 1)s − 22s

 + 22s

≡
1
2

∑
a−1∈R

(a − 1 + 1)2s

(a − 1)s + 22s−1

≡
1
2

∑
a−1∈R

2s∑
t=0

(
2s
t

)
(a − 1)t−s + 22s−1

≡
1
2

2s∑
t=0

(
2s
t

) ∑
a−1∈R

(a − 1)t−s + 22s−1 (mod p).

By Lemma 2.3, if 0 < s < p−1
2 , then

∑
n∈S+∩R

nk
≡ 22s−1 +

1
2

(
2s
s

)
p − 1

2
≡ 22s−1

−
1
4

(
2s
s

)
(mod p).

If p−1
2 ≤ s < p− 1, except t− s = 0,± p−1

2 , other terms in the first sum are congruent to 0 modulo p by Lemma
2.3, thus∑

n∈S+∩R

nk
≡ 22s−1 +

p − 1
4

((
2s
s

)
+

(
2s

s − p−1
2

)
+

(
2s

s + p−1
2

))
≡ 22s−1

−
1
4

((
2s
s

)
+ 2

(
2s

s − p−1
2

))
(mod p).

In particular, let k = −1,−2 in Theorem 3.6, we have∑
n∈S+∩R

1
n
≡

1
8
−

1
32

(
−1
p

)
(mod p)

and ∑
n∈S+∩R

1
n2 ≡

1
32
−

3
29

(
−1
p

)
(mod p) (p > 5).

By Theorem 3.3, Theorem 3.6 and∑
n∈S+

(
n
p

)
nk =

∑
n∈S+∩R

nk
−

∑
n∈S+∩N

nk = 2
∑

n∈S+∩R

nk
−

∑
n∈S+

nk,

we obtain the following corollary.
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Corollary 3.7. Let p > 3 be a prime and arbitrary integer k ≡ s (mod p − 1) with 0 ≤ s < p − 1. Then

∑
n∈S+

(
n
p

)
nk
≡


1
2 −

1
2

(
−1
p

)
(mod p), if s = 0,

22s−1 (mod p), if 0 < s < p−1
2 ,

22s−1
−

( 2s
s− p−1

2

)
(mod p), if p−1

2 ≤ s < p − 1.

In particular, let p > 5 be a prime and k = ±1,±2 in Corollary 3.7, we obtain∑
n∈S+

(
n
p

)
n ≡ 2 (mod p),

∑
n∈S+

(
n
p

)
n2
≡ 8 (mod p),

∑
n∈S+

(
n
p

)
1
n
≡

1
8
−

1
16

(
−1
p

)
(mod p)

and ∑
n∈S+

(
n
p

)
1
n2 ≡

1
32
−

3
256

(
−1
p

)
(mod p).

Theorem 3.8. For prime p > 3, the product of quadratic residues in solutions of (3) satisfies∏
n∈S+∩R

n ≡
3
2
−

5
2

(
−1
p

)
(mod p).

Proof. By the proof of Theorem 3.5, we have∏
n∈S+∩R

n ≡
1
4

∏
ab∈S+∩R

ab.4 (mod p)

ab ≡
1
4

∏
a−1∈R

a−1.±1 (mod p)

a. (6)

If p ≡ 1 (mod 4), then ±1 are quadratic residues modulo p, and if a − 1 ranges over R \ {−1}, then also 1 − a
ranges over R \ {1}. Thus∏

a−1∈R
a−1.±1 (mod p)

a ≡
∏
a−1∈R

a−1.±1 (mod p)

[(a − 1) + 1]

≡
1
2

∏
a−1∈R\{−1}

[(a − 1) + 1]

≡
1
2

∏
a−1∈R\{1}

[−(a − 1) + 1]

≡
(−1)

p−3
2

2

∏
a−1∈R\{1}

[(a − 1) − 1] (mod p). (7)

By Lemma 2.4 and combining (6) and (7), we have

∏
n∈S+∩R

n ≡ 4 ·
(−1)

p−3
2

2
·

1
2
≡ −1 ≡

3
2
−

5
2

(
−1
p

)
(mod p).
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If p ≡ 3 (mod 4), then 1 is a quadratic residue modulo p and −1 is a quadratic non-residue modulo p. If a−1
ranges over R, then also 1 − a ranges over N, where N is the set of quadratic non-residues modulo p. Thus∏

a−1∈R
a−1.±1 (mod p)

a ≡
∏

a−1∈R\{1}

[(a − 1) + 1]

≡
1
2

∏
a−1∈R

[(a − 1) + 1]

≡
1
2

∏
a−1∈N

[−(a − 1) + 1]

≡
(−1)

p−1
2

2

∏
a−1∈N

[(a − 1) − 1] (mod p). (8)

By Lemma 2.4 and Wilson’s Theorem, we have

∏
a−1∈N

[(a − 1) − 1] ≡

∏p−1
a−1=2[(a − 1) − 1]∏

a−1∈R\{1}[(a − 1) − 1]
≡

(p − 2)!
1
2

(
−1
p

) ≡ −2 (mod p). (9)

Combining (6),(8) and (9), we have

∏
n∈S+∩R

n ≡ 4 ·
(−1)

p−1
2

2
· (−2) ≡ 4 ≡

3
2
−

5
2

(
−1
p

)
(mod p).

4. On the solutions of equation (4)

Now, we discuss the solutions of equation (4).

Theorem 4.1. Let p be an odd prime. Then
1) For any p > 3, (4) has (p − 1)/2 solutions.
2) For all n, the solutions of (4) come in pairs of the form (n, a, b), (n, p − b, p − a) with (n, a, b) , (n, p − a, p − b)
unless n ≡ 2(p − 2) (mod p).

Proof. 1) For any 0 < a < p − 1, equation

a − x − ax ≡ 0 (mod p) (10)

has unique solution

x ≡
a

a + 1
(mod p).

If a = p − 1, congruence (10) has no solution. If (n, a, b) satisfies equation (4), then (n, p − b, p − a) satisfies
equation (4) too. That is because

p − b − (p − a) − (p − b)(p − a) ≡ a − b − ab (mod p).

If a = p − b, then

a − (p − a) − a(p − a) ≡ a2 + 2a ≡ 0 (mod p).
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Since p ∤ a, we have p = a+ 2 and (a, b) = (p− 2, 2). Thus, n = ab run over the solutions twice except 2(p− 2)
(mod p) when a run over the residue class modulo p. Therefore, equation (4) has p−3

2 + 1 = p−1
2 solutions.

2) If both (n, a1, b1) , (n, a2, b2) satisfy congruence (4), then

a1 −
a1

a1 + 1
≡ a2 −

a2

a2 + 1
(mod p)

i.e.

(a1 − a2) (a1a2 + a1 + a2)
(a1 + 1) (a2 + 1)

≡ 0 (mod p).

Therefore, we have

a1 ≡ a2 (mod p)

or

a1 ≡ −
a2

a2 + 1
≡ p − b2 (mod p).

Theorem 4.2. Let p be an odd prime, then the product of solutions of (4)∏
m∈S−

m ≡ −2
(
−1
p

)
(mod p).

Proof. For 2 ≤ a ≤ p − 1, equation

x − a − xa ≡ 0 (mod p)

has unique solution

x ≡ −
a

a − 1
(mod p)

We see that (a, a
a−1 ), (− a

a−1 , a) satisfy congruences (3), (4) separately. Therefore,∏
m∈S−

m ≡ (−1)
p−1

2

∏
n∈S+

n (mod p).

Then, by Theorem 3.2, we obtain the theorem.

From the relation between (a, a
a−1 ), (− a

a−1 , a) described in the proof of Theorem 4.2, it is easy to conclude the
following results:

Theorem 4.3. Let p be an odd prime and arbitrary integer k ≡ s (mod p − 1) with 0 ≤ s < p − 1. Then the power
sum of the solutions in (4) satisfies

∑
m∈S−

mk
≡

(−1)s
(
22s−1

−
1
2
(2s

s
))

(mod p), if s , 0,
p−1

2 (mod p), if s = 0.

In particular, when k = −1 or k = −2, by Theorem 4.3, we obtain∑
n∈S−

1
n
≡ −

1
8

(mod p) (p > 3)



T. X. Cai et al. / Filomat 38:2 (2024), 621–635 631

and ∑
n∈S−

1
n2 ≡

1
32

(mod p) (p > 5).

Theorem 4.4. Let p be an odd prime. Then

|S− ∩ R| =
1
4

(
p − 2 +

(
−1
p

))
and

|S− ∩N| =
1
4

(
p −

(
−1
p

))
.

Proof. Since n ∈ S−, we have n ≡ a − b ≡ ab (mod p), i.e., (a + 1)(1 − b) ≡ 1 (mod p). It is obviously that
a + 1 ≡ 1 − b ≡ 1 (mod p), i.e., a ≡ b ≡ 0 (mod p), n ≡ ab ≡ 0 (mod p) and n < S−. But a + 1 ≡ 1 − b ≡ −1
(mod p), i.e., a ≡ −b ≡ −2 (mod p), n ≡ ab ≡ −4 (mod p) and n ∈ S−.
If n ∈ S− ∩ R, then

(
n
p

)
= 1. Since n ≡ ab ≡ b2

1−b (mod p), we have
(

1−b
p

)
= 1, likewise,

(
a+1

p

)
= 1. |S− ∩ R| is

the number of pairs (a + 1, 1 − b) (mod p) such that (a + 1)(1 − b) ≡ 1 (mod p) and
(

a+1
p

)
=

(
1−b

p

)
= 1. Except

a + 1 ≡ 1 − b ≡ ±1 (mod p), the remaining residues modulo p from pairs a + 1, 1 − b, where a + 1 . 1 − b
(mod p) such that (a + 1)(1 − b) ≡ 1 (mod p).

If p ≡ 1 (mod 4), then ±1 are quadratic residues modulo p. Thus

|S− ∩ R| =
p−1

2 − 2
2

+ 1 =
p − 1

4
=

1
4

(
p − 2 +

(
−1
p

))
.

If p ≡ 3 (mod 4), then 1 is a quadratic residue modulo p, and −1 is a quadratic non-residue modulo p. Thus

|S− ∩ R| =
p−1

2 − 1
2

=
p − 3

4
=

1
4

(
p − 2 +

(
−1
p

))
and

|S− ∩N| = |S−| − |S− ∩ R| =
1
4

(
p −

(
−1
p

))
.

Theorem 4.5. For prime p > 3, and arbitrary integer k ≡ s (mod p − 1) with 0 ≤ s < p − 1. Then the sum of
quadratic residues in solutions of (4) satisfies

∑
n∈S−∩R

nk
≡


−

1
2 +

1
4

(
−1
p

)
(mod p), if s = 0;

(−1)s
(
1 +

(
−1
p

))
22s−2

−
(−1)s

4
(2s

s
)

(mod p), if 0 < s < p−1
2 ;

(−1)s
(
1 +

(
−1
p

))
22s−2

−
(−1)s

4

((2s
s
)
+ 2

(
−1
p

) ( 2s
s− p−1

2

))
(mod p), otherwise.
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Proof. If s = 0, this is just the result of Theorem 4.4. For each 0 < b , 1 ≤ p − 1, we have

a ≡
b

1 − b
(mod p),

and n can be written as ab or ba with a . −b (mod p) except when n = 2(p − 2). If p ≡ 1 (mod 4), we have
n = 2(p − 2) ∈ S− ∩ R. If p ≡ 3 (mod 4), we have n = 2(p − 2) < S− ∩ R. Hence, for p ≡ 1 (mod 4) and
0 < s < p − 1, we have

∑
n∈S−∩R

nk
≡

∑
n∈S−∩R

ns
≡

1
2

 ∑
1−b∈R

b2s

(1 − b)s − (−4)s

 + (−4)s

≡
1
2

∑
1−b∈R

(b)2s

(1 − b)s + (−1)s22s−1 (mod p).

For p ≡ 3 (mod 4) and 0 < s < p − 1, we have∑
n∈S−∩R

nk
≡

1
2

∑
1−b∈R

b2s

(1 − b)s (mod p).

Hence, for p > 3 and 0 < s < p − 1, we have

∑
n∈S−∩R

nk
≡

1
2

 ∑
1−b∈R

b2s

(1 − b)s

 + (−1)s
(
1 +

(
−1
p

))
22s−2

≡
1
2

∑
1−b∈R

(1 − b − 1)2s

(1 − b)s + (−1)s
(
1 +

(
−1
p

))
22s−2

≡
1
2

∑
1−b∈R

2s∑
t=0

(−1)t
(
2s
t

)
(1 − b)t−s + (−1)s

(
1 +

(
−1
p

))
22s−2

≡
1
2

2s∑
t=0

(−1)t
(
2s
t

) ∑
1−b∈R

(1 − b)t−s + (−1)s
(
1 +

(
−1
p

))
22s−2 (mod p).

By Lemma 2.3, if 0 < s < p−1
2 , then

∑
n∈S−∩R

nk
≡ (−1)s

(
1 +

(
−1
p

))
22s−2 +

(−1)s

2

(
2s
s

)
p − 1

2

≡ (−1)s
(
1 +

(
−1
p

))
22s−2

−
(−1)s

4

(
2s
s

)
(mod p).

If p−1
2 ≤ s < p− 1, except t− s = 0,± p−1

2 , other terms in the first sum are congruent to 0 modulo p by Lemma
2.3, thus∑

n∈S−∩R

nk
≡ (−1)s

(
1 +

(
−1
p

))
22s−2 +

p − 1
4

(
(−1)s

(
2s
s

)
+ 2(−1)s− p−1

2

(
2s

s − p−1
2

))
≡ (−1)s

(
1 +

(
−1
p

))
22s−2

−
(−1)s

4

((
2s
s

)
+ 2

(
−1
p

) (
2s

s − p−1
2

))
(mod p).
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Remark 4.6. Let k = −1,−2 in Theorem 4.5, we have

∑
n∈S−∩R

1
n
≡ −

1
16

(
−1
p

)
−

1
32

(mod p)

and ∑
n∈S−∩R

1
n2 ≡

1
64

(
−1
p

)
+

5
29 (mod p) (p > 5).

By Theorem 4.3, Theorem 4.5 and

∑
n∈S−

(
n
p

)
nk =

∑
n∈S−∩R

nk
−

∑
n∈S−∩N

nk = 2
∑

n∈S−∩R

nk
−

∑
n∈S−

nk,

we obtain the following corollary.

Corollary 4.7. Let p > 3 be a prime and integer k ≡ s (mod p − 1) with 0 ≤ s < p − 1. Then

∑
n∈S−

(
n
p

)
nk
≡


1
2

(
−1
p

)
−

1
2 (mod p), if s = 0,

(−1)k
(
−1
p

)
22s−1 (mod p), if 0 < s < p−1

2 ,

(−1)k
(
−1
p

) (
22s−1

−
( 2s

s− p−1
2

))
(mod p), if p−1

2 ≤ s < p − 1.

In particular, let p > 5 be a prime and k = ±1,±2 in Corollary 4.7 , then

∑
n∈S−

(
n
p

)
n ≡ −2

(
−1
p

)
(mod p),

∑
n∈S−

(
n
p

)
n2
≡ 8

(
−1
p

)
(mod p),

∑
n∈S−

(
n
p

)
1
n
≡ −

1
8

(
−1
p

)
(mod p)

and ∑
n∈S−

(
n
p

)
1
n2 ≡

1
32

(
−1
p

)
(mod p).

Theorem 4.8. For prime p > 3, the product of quadratic residues in solutions of (4) satisfies

∏
n∈S−∩R

n = −
1
4

(
2
p

)
−

3
4

(
−2
p

)
(mod p).
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Proof. If p ≡ 1 (mod 4), then ±1 are quadratic residues modulo p. By the proof of Theorem 4.4 and Lemma
2.4, we have∏

n∈S−∩R

n ≡ −4
∏

ab∈S−∩R
ab.−4 (mod p)

ab

≡ (−1)
p−1

2
2 4

∏
1−b∈R\{1,−1}

[(1 − b) − 1]

≡ (−1)
p−5

4 2
∏

1−b∈R\{1}

[(1 − b) − 1]

≡ (−1)
p−5

4 2 ·
1
2

(
−1
p

)
≡ −

1
4

(
2
p

)
−

3
4

(
−2
p

)
(mod p).

If p ≡ 3 (mod 4), then 1 is a quadratic residue modulo p. By the proof of Theorem 4.4 and Lemma 2.4, we
have ∏

n∈S−∩R

n ≡
∏

ab∈S−∩R

ab

≡ (−1)
p−1

2 −1
2

∏
1−b∈R\{1}

[(1 − b) − 1]

≡ (−1)
p−3

4
1
2

(
−1
p

)
≡ −

1
4

(
2
p

)
−

3
4

(
−2
p

)
(mod p).

5. Problem

In this section, we raise a problem for further research. Let A be a real square matrix of order n such
that all its entries ai j = ±1 and the rows (columns) of A are all orthogonal to each other, then we call A an
Hadamard matrix (see [4]). There is a famous conjecture in combinatorics.

Hadamard’s Conjecture For any positive integer n being a multiple of 4, there exits an Hadamard matrix of order
n.

In 1933, Raymond Paley found a beautiful and efficient way to construct Hadamard matrix by using the
theory of quadratic residues.

Theorem(Paely) Let p be a prime of the form 4k + 3, and let R and N denote the set of quadratic residues and
nonresidues modulo p, respectively. Define a square matrix B of order p, with its entries

bi j =

1, j − i ∈ R,
−1, j − i ∈ N or i = j.

Let A be a square matrix of order p + 1 such that all entries in its first row and column are 1, and let its lower right
submatrix of order p be B. Then A is an Hadamard matrix of order p + 1.
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Similarly, Paley constructed Hadamard matrices of order 2(q + 1), where q is a prime of the form 4k + 1.
We can say that Paley made the biggest contribution to the theory of the existence of Hadamard matrices.
So far, there are 13 multiples of 4 less than or equal to 2000 for which no Hadamard matrix of that order is
known. They are: 668, 716, 892, 1004, 1132, 1244, 1388, 1436, 1676, 1772, 1916, 1948 and 1964.

Since for any odd prime p, both (3) and (4) have exactly (p − 1)/2 solutions, i.e., both set S+ and set S−
have the same number of elements as the quadratic residues, we would raise the following problem:

Problem 5.1. How to construct Hadamard matrics and solve Hadamard’s conjecture by using the properties of sets
S+ or S−.
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