Relating the annihilation number and the 2-domination number for unicyclic graphs

Xinying Hua ${ }^{\text {a }}$
${ }^{a}$ School of Mathematics, Nanjing University of Aeronautics \mathcal{E} Astronautics, Nanjing, Jiangsu 210016, PR China

Abstract

The 2-domination number $\gamma_{2}(G)$ of a graph G is the minimum cardinality of a set $S \subseteq V(G)$ such that every vertex from $V(G) \backslash S$ is adjacent to at least two vertices in S. The annihilation number $a(G)$ is the largest integer k such that the sum of the first k terms of the non-decreasing degree sequence of G is at most the number of its edges. It was conjectured that $\gamma_{2}(G) \leq a(G)+1$ holds for every non-trivial connected graph G. The conjecture was earlier confirmed for graphs of minimum degree 3 , trees, block graphs and some bipartite cacti. However, a class of cacti were found as counterexample graphs recently by Yue et al. [9] to the above conjecture. In this paper, we consider the above conjecture from the positive side and prove that this conjecture holds for all unicyclic graphs.

1. Introduction

Given a graph G, we denote by $V(G)$ and $E(G)$ the set of its vertices and edges, respectively. Also, we let $n(G)=|V(G)|$ and $m(G)=|E(G)|$. The open neighbourhood of a vertex $v \in V(G)$ is $N_{G}(v)=\{u \mid u v \in E(G)\}$. We denote the degree of a vertex v by $d_{G}(v)=\left|N_{G}(v)\right|$. For a pair of vertices $u, v \in V(G)$, the distance $d_{G}(u, v)$ between u and v is the length of a shortest (u, v)-path in G. A path $P=x_{1} x_{2} \ldots x_{p}(p \geq 3)$ in a graph G is said to be a pendent path if $d_{G}\left(x_{1}\right)=1, d_{G}\left(x_{2}\right)=\cdots=d_{G}\left(x_{p-1}\right)=2$ and $d_{G}\left(x_{p}\right) \geq 3$. In particular, when $p=2, P$ is said to be a pendent edge and x_{1} is said to be a leaf or pendent vertex. The above x_{2} is said to be a support vertex. Further, if $u v w$ is a 3-vertex path with $d_{G}(u)=1=d_{G}(w)$ and $d_{G}(v) \geq 2$, then v is said to be a strong support vertex. A vertex of degree at least 3 is called a branch vertex. If $X \subseteq V(G)$, then $G-X$ denotes the graph obtained from G by deleting all vertices in X and all edges incident with them. A connected graph is unicyclic if it contains exactly one cycle. A unicyclic graph is a sun if each vertex on the cycle is connected to exactly one leaf.

For a graph G of order n and a positive integer $k(\leq n-1)$, a vertex set $D \subseteq V(G)$ is called a k-dominating set if each vertex not in D has at least k neighbors in D. The k-domination number $\gamma_{k}(G)$ is the minimum cardinality of such a set D. A k-dominating set of cardinality $\gamma_{k}(G)$ is called a γ_{k}-set of G. A 1-dominating set is just the well-studied dominating set. The notion of the k-dominating set was introduced by Fink and Jacobson [5], and a survey on k-dominating set can be found in [2].

[^0]For a vertex set $S \subseteq V(G)$, we define $\sum(S, G)=\sum_{v \in S} d_{G}(v)$. Then S is an annihilation set of G if $\sum(S, G) \leq m(G)$. Let $v_{1}, v_{2}, \ldots, v_{n}$ be an ordering of the vertices of G such that $d_{G}\left(v_{1}\right) \leq d_{G}\left(v_{2}\right) \leq \cdots \leq d_{G}\left(v_{n}\right)$. The annihilation number $a(G)$, firstly introduced by Pepper in [8], is the largest integer k such that $\sum_{i=1}^{k} d_{G}\left(v_{i}\right) \leq m(G)$. Further, S is an optimal annihilation set if $|S|=a(G)$ and $\max \left\{d_{G}(v) \mid v \in S\right\} \leq \min \{d(u) \mid u \in V(G) \backslash S\}$.

A conjecture relating the 2-domination number and annihilation number of a graph reads as follows.
Conjecture 1.1 ([3, 4]). If G is a non-trivial connected graph, then $\gamma_{2}(G) \leq a(G)+1$.
From the above definition of annihilation set, every graph satisfies $a(G) \geq\left\lfloor\frac{n}{2}\right\rfloor$. Also, it was observed in [1] that $\gamma_{2}(G) \leq\left\lfloor\frac{n}{2}\right\rfloor$ for $\delta(G) \geq 3$. Hence, if $\delta(G) \geq 3$, then Conjecture 1.1 holds. It remains for us to study this conjecture for connected graphs with $\delta(G)=1$ or 2. Inspired by this, Desormeaux et al. [4] studied Conjecture 1.1 for trees, and their result is stated as follows.

Theorem 1.2 ([4]). If G is a non-trivial tree, then $\gamma_{2}(G) \leq a(G)+1$.
It is interesting to note that Theorem 1.2 was re-proven by Lyle [7] by employing a new method in 2017. Later, the result of Theorem 1.2 was extended to the family of block graphs by Jakovac [6]. More recently, Yue et al. [9] disproved Conjecture 1.1 by giving a class of counterexample cacti with leaves. Nevertheless, it still makes sense to consider some special graph family that satisfy Conjecture 1.1. Along this line, Yue et al. [9] proved Conjecture 1.1 holds for a class of bipartite cacti. In this paper, we investigate Conjecture 1.1 for unicyclic graphs, and we obtain the following result.

Theorem 1.3. Let G be a unicyclic graph. Then $\gamma_{2}(G) \leq a(G)+1$.

2. Preliminary results

In this section, we introduce two observations and a critical lemma.
We begin with the following two observations, which can be deduced from the definitions of 2dominating set and optimal annihilation set immediately.

Observation 1. Any 2-dominating set of a graph G contains all leaves.
Observation 2 ([9]). Any optimal annihilation set of a connected graph G of order $n(\geq 3)$ contains all leaves of G.
For a unicyclic graph G with $C_{\ell}=u_{1} u_{2} \ldots u_{\ell} u_{1}$ being its unique cycle, we denote by $T_{u_{j}}$ the component containing u_{j} in $G-\left\{u_{j-1}, u_{j+1}\right\}$ (If $j=1$, we set $u_{j-1}=u_{\ell}$ and if $j=\ell$, then $u_{j+1}=u_{1}$). Such a $T_{u_{j}}$ is also said to be a subtree of G, rooted at u_{j}.

Definition 2.1. The subdivided $\operatorname{star} S_{s}\left(K_{1, s+t}, u\right)(s \geq 1, t \geq 0)$ is the graph on $2 s+t+1$ vertices which is constructed from the star $K_{1, s+t}$ (with u being the centre) by subdividing any s edges exactly once. In particular, when $s=1$ and $t=0, S_{s}\left(K_{1, s+t}, u\right) \cong P_{3}$ with u being one end-vertex. When $s=1$ and $t=1, S_{s}\left(K_{1, s+t}, u\right) \cong P_{4}$ with u being a 2 -degree vertex. When $s=2$ and $t=0, S_{s}\left(K_{1, s+t}, u\right) \cong P_{5}$ with u being the central vertex. When $s+t \geq 3, u$ is the maximum degree vertex of $S_{s}\left(K_{1, s+t}, u\right)$.

Lemma 2.2. Let G be a unicyclic graph with the unique cycle being C. If C contains a vertex u such that T_{u} is a subdivided star $S_{s}\left(K_{1, s+t}, u\right)(s \geq 2)$, then $\gamma_{2}(G) \leq a(G)+1$.

Proof. For each $i \in[s]$, let $u v_{i}^{\prime} v_{i}$ be a pendent path attached to u and for each $j \in[t]$, let w_{j} be the leaf adjacent to u if $t \geq 1$, see Figure 1. Let $G^{\prime}=G-V\left(S_{s}\left(K_{1, s+t}, u\right)\right.$). Then G^{\prime} is a non-trivial tree with $m\left(G^{\prime}\right)=m(G)-2 s-t-2$. By Theorem 1.2, we have $\gamma_{2}\left(G^{\prime}\right) \leq a\left(G^{\prime}\right)+1$. Let D^{\prime} be a γ_{2}-set of G^{\prime}. From Figure 1 and the definition of 2-dominating set, it can be seen that $D=D^{\prime} \cup\left\{u, v_{1}, v_{2}, \ldots, v_{s}, w_{1}, \ldots, w_{t}\right\}$ is a 2-dominating set of G, yielding
that $\gamma_{2}(G) \leq|D|=\left|D^{\prime}\right|+s+t+1=\gamma_{2}\left(G^{\prime}\right)+s+t+1$. Suppose that S^{\prime} is an optimal annihilation set of G^{\prime} and let $S=S^{\prime} \cup\left\{v_{1}^{\prime}, v_{1}, \ldots, v_{s}, w_{1}, \ldots, w_{t}\right\}$. As $s \geq 2$,

$$
\begin{aligned}
\sum(S, G) & =\sum\left(S^{\prime}, G\right)+d_{G}\left(v_{1}^{\prime}\right)+d_{G}\left(v_{1}\right)+\cdots+d_{G}\left(v_{s}\right)+d_{G}\left(w_{1}\right)+\cdots+d_{G}\left(w_{t}\right) \\
& \leq\left(\sum\left(S^{\prime}, G^{\prime}\right)+2\right)+2+s+t \\
& \leq m\left(G^{\prime}\right)+4+s+t \\
& \leq m(G)-s+2 \\
& \leq m(G) .
\end{aligned}
$$

So $a(G) \geq|S|=\left|S^{\prime}\right|+s+t+1=a\left(G^{\prime}\right)+s+t+1$. This gives $\gamma_{2}(G) \leq \gamma_{2}\left(G^{\prime}\right)+s+t+1 \leq a\left(G^{\prime}\right)+s+t+2 \leq a(G)+1$.

Figure 1: The structure of G in Lemma 2.2, where G_{0} is a unicyclic subgraph of G.

3. Proof of Theorem 1.3

In this section we prove Theorem 1.3.
Proof. We proceed by induction on $n=n(G)$. If $n=3$, then $G \cong C_{3}$ and $\gamma_{2}\left(C_{3}\right)=2=a\left(C_{3}\right)+1$. So, we let $n \geq 4$ and assume that for every connected unicyclic graph G^{\prime} of order $n^{\prime}<n$, we have $\gamma_{2}\left(G^{\prime}\right) \leq a\left(G^{\prime}\right)+1$.

If G is a cycle, it's easy to check that the statement is true. Thus, we may suppose that G contains one cycle as a proper subgraph. Define $\mathcal{L}(G)=\left\{v \in V(G) \mid d_{G}(v)=1\right\}$. Since G is a unicyclic graph not isomorphic to a cycle, $\mathcal{L}(G) \neq \emptyset$. Let C_{ℓ} be the unique cycle in G. For each $u \in V\left(C_{\ell}\right)$ with $d_{G}(u) \geq 3$, we define $h(u)=\max \left\{d_{G}(u, x) \mid x \in \mathcal{L}\left(T_{u}\right)\right\}$ and $h(G)=\max \left\{h(u) \mid u \in V\left(C_{\ell}\right)\right.$ and $\left.d_{G}(u) \geq 3\right\}$.

We first prove the following claim.
Claim 3.1. Let u be a branch vertex on $V\left(C_{\ell}\right)$ such that T_{u} has a leaf v_{1} with $d_{G}\left(v_{1}, u\right)=h(G)$. Assume that v_{2} is the unique neighbour of v_{1} and v_{2} is a strong support vertex. Then $\gamma_{2}(G) \leq a(G)+1$.

Proof. As v_{2} is a strong support vertex, v_{2} has at least two leaf-neighbours. Let $v_{1}, z_{1}, \ldots, z_{t}(t \geq 1)$ be leaf-neighbours of v_{2} and $G^{\prime}=G-\left\{v_{1}, v_{2}, z_{1}, \ldots, z_{t}\right\}$. Then $m\left(G^{\prime}\right)=m(G)-d_{G}\left(v_{2}\right)$. Obviously, G^{\prime} has at least two vertices. Let D^{\prime} be a γ_{2}-set of G^{\prime}. Then $D=D^{\prime} \cup\left\{v_{1}, z_{1}, \ldots, z_{t}\right\}$ is a 2-dominating set of G, which implies $\gamma_{2}(G) \leq|D|=\left|D^{\prime}\right|+t+1=\gamma_{2}\left(G^{\prime}\right)+t+1$. Let S^{\prime} be an optimal annihilation set of G^{\prime} and $S=S^{\prime} \cup\left\{v_{1}, z_{1}, \ldots, z_{t}\right\}$. Then

$$
\begin{aligned}
\sum(S, G) & =\sum\left(S^{\prime}, G\right)+d_{G}\left(v_{1}\right)+d_{G}\left(z_{1}\right)+\cdots+d_{G}\left(z_{t}\right) \\
& \leq\left(\sum\left(S^{\prime}, G^{\prime}\right)+d_{G}\left(v_{2}\right)-t-1\right)+t+1 \\
& \leq m\left(G^{\prime}\right)+d_{G}\left(v_{2}\right) \\
& \leq m(G)
\end{aligned}
$$

yielding that $a(G) \geq|S|=\left|S^{\prime}\right|+t+1=a\left(G^{\prime}\right)+t+1$. If G^{\prime} is a non-trivial tree, then by Theorem 1.2, $\gamma_{2}\left(G^{\prime}\right) \leq a\left(G^{\prime}\right)+1$. If G^{\prime} is a unicyclic graph, then by the induction hypothesis, $\gamma_{2}\left(G^{\prime}\right) \leq a\left(G^{\prime}\right)+1$. Therefore, $\gamma_{2}(G) \leq \gamma_{2}\left(G^{\prime}\right)+t+1 \leq a\left(G^{\prime}\right)+t+2 \leq a(G)+1$.

We will complete the proof by considering the following cases.
Case 1. $h(G)=1$.
Since $h(G)=1$, every vertex outside of C_{ℓ} is a leaf attached to some vertex of C_{ℓ}. Clearly, each vertex of C_{ℓ} is adjacent to at most one leaf. For otherwise, by Claim 3.1, we have $\gamma_{2}(G) \leq a(G)+1$, as claimed. So, G is a sun or a unicyclic graph obtained from the sun by removing some leaves.

First, we assume that G is a sun. Let $V\left(C_{\ell}\right)=\left\{u_{1}, u_{2}, \ldots, u_{\ell}\right\}$ and w_{i} is the leaf adjacent to u_{i} for each $i \in[\ell]$. Clearly, $m(G)=2 \ell$. Take $D=\left\{u_{1}, u_{4}, \ldots, u_{3 m+1}, w_{1}, w_{2}, \ldots, w_{\ell}\right\}\left(m \in\left[\frac{\ell-3}{3}, \frac{\ell-1}{3}\right]\right)$. Then D is a γ_{2}-set of G, and hence $\gamma_{2}(G) \leq\left\lceil\frac{\ell}{3}\right\rceil+\ell$. Set $S=\left\{u_{1}, u_{2}, \ldots, u_{\left\lceil\frac{\ell}{3}\right\rceil-1}, w_{1}, w_{2}, \ldots, w_{\ell}\right\}$. Then $\sum(S, G)=\left(\left\lceil\frac{\ell}{3}\right\rceil-1\right) \times 3+\ell \leq 2 \ell-1<m(G)$, yielding that $a(G) \geq|S|=\left\lceil\frac{\ell}{3}\right\rceil+\ell-1$. So, $\gamma_{2}(G) \leq a(G)+1$.

Second, we assume that G is not a sun. There exists a 3-degree vertex, say w, on C_{ℓ} that has a 2-degree neighbour, say v, on C_{ℓ}. Denote the pendent vertex adjacent to w with w_{1}. Set $G^{\prime}=G-\left\{w, w_{1}\right\}$. Then $m\left(G^{\prime}\right)=m(G)-3$. It follows from Theorem 1.2 that $\gamma_{2}\left(G^{\prime}\right) \leq a\left(G^{\prime}\right)+1$, since G^{\prime} is a non-trivial tree. Let D^{\prime} be a γ_{2}-set of G^{\prime} and S^{\prime} be an optimal annihilation set of G^{\prime}. Since $d_{G^{\prime}}(v)=1$, by Observations 1 and 2 , we have $v \in D^{\prime}$ and $v \in S^{\prime}$. Then $D=D^{\prime} \cup\left\{w_{1}\right\}$ is a 2-dominating set of G and hence $\gamma_{2}(G) \leq|D|=\left|D^{\prime}\right|+1=\gamma_{2}\left(G^{\prime}\right)+1$. Also, we have $\sum\left(S^{\prime}, G\right) \leq \sum\left(S^{\prime}, G^{\prime}\right)+2$. Take $S=S^{\prime} \cup\left\{w_{1}\right\}$. Then $\sum(S, G)=\sum\left(S^{\prime}, G\right)+d_{G}\left(w_{1}\right) \leq\left(\sum\left(S^{\prime}, G^{\prime}\right)+\right.$ 2) $+1 \leq m\left(G^{\prime}\right)+3=m(G)$ and hence $a(G) \geq|S|=\left|S^{\prime}\right|+1=a\left(G^{\prime}\right)+1$. Thus,

$$
\gamma_{2}(G) \leq \gamma_{2}\left(G^{\prime}\right)+1 \leq a\left(G^{\prime}\right)+2 \leq a(G)+1
$$

Case 2. $h(G)=2$.
Assume that there exists a branch vertex u on C_{ℓ} such that T_{u} contains a leaf v_{1} satisfying that $d_{G}\left(v_{1}, u\right)=2$. Let v_{2} be the unique neighbour of v_{1}. If $d_{G}\left(v_{2}\right) \geq 3$, then v_{2} is a strong support vertex. By Claim 3.1, we have $\gamma_{2}(G) \leq a(G)+1$. So, we may assume that $d_{G}\left(v_{2}\right)=2$. By the same reason, if $N_{G}(u) \backslash\left(V\left(C_{\ell}\right) \cup\left\{v_{2}\right\}\right) \neq \emptyset$, then for each $x \in N_{G}(u) \backslash\left(V\left(C_{\ell}\right) \cup\left\{v_{2}\right\}\right)$, we have $d_{G}(x)=1$ or $d_{G}(x)=2$. So, $T_{u} \cong S_{s}\left(K_{1, s+t}, u\right)(s \geq 1, t \geq 0)$. If $s \geq 2$, then we conclude that $\gamma_{2}(G) \leq a(G)+1$ by Lemma 2.2. So, we assume that $s=1$ and $t \geq 0$. Assume that $V\left(S_{1}\left(K_{1,1+t}, u\right)\right)=\left\{u, v_{1}, v_{2}, y_{1}, \ldots, y_{t}\right\}$, where u is the vertex defined as in Defintion 2.1, $u v_{2} v_{1}$ is a pendent path and y_{1}, \cdots, y_{t} are leaves attached to u if $t \geq 1$.

We consider the following subcases.
Subcase 2.1. There exists at least a vertex of degree 2, say v, adjacent to u on C_{ℓ}.

Figure 2: The local structure of G when u has a 2-degree neighbour v on C_{ℓ}.

Let $N_{G}(v) \backslash\{u\}=\{w\}$. First, we assume that $d_{G}(w)=2$. Then G can be viewed as the graph shown in Figure 2(a). If $\ell \geq 4$, we set $G^{\prime}=G-\left(V\left(S_{1}\left(K_{1,1+t}, u\right)\right) \cup\{v\}\right)$. Then G^{\prime} is a non-trivial tree and $m\left(G^{\prime}\right)=m(G)-(t+5)$. According to Theorem 1.2, we have $\gamma_{2}\left(G^{\prime}\right) \leq a\left(G^{\prime}\right)+1$. Let D^{\prime} be a γ_{2}-set of G^{\prime} and S^{\prime} be an optimal annihilation set of G^{\prime}. Since $d_{G^{\prime}}(w)=1$, we have $w \in D^{\prime}$ and $w \in S^{\prime}$ by Observations 1 and 2. Then $D=D^{\prime} \cup\left\{u, v_{1}, y_{1}, \ldots, y_{t}\right\}$ is a 2-dominating set of G. So $\gamma_{2}(G) \leq|D|=\left|D^{\prime}\right|+t+2=\gamma_{2}\left(G^{\prime}\right)+t+2$. Take $S=S^{\prime} \cup\left\{v_{1}, v_{2}, y_{1}, \ldots, y_{t}\right\}$. Then $\sum(S, G)=\sum\left(S^{\prime}, G\right)+d_{G}\left(v_{1}\right)+d_{G}\left(v_{2}\right)+d_{G}\left(y_{1}\right)+\cdots+d_{G}\left(y_{t}\right) \leq\left(\sum\left(S^{\prime}, G^{\prime}\right)+2\right)+$ $(t+3) \leq m\left(G^{\prime}\right)+t+5=m(G)$, which implies $a(G) \geq|S|=\left|S^{\prime}\right|+t+2=a\left(G^{\prime}\right)+t+2$. Therefore,

$$
\gamma_{2}(G) \leq \gamma_{2}\left(G^{\prime}\right)+t+2 \leq a\left(G^{\prime}\right)+t+3 \leq a(G)+1 .
$$

If $\ell=3$, then $m(G)=t+5$. Take $D=\left\{u, v, v_{1}, y_{1}, \ldots, y_{t}\right\}$ and hence D is a minimum 2-dominating set of G. Then $\gamma_{2}(G) \leq t+3$. Take $S=\left\{v, v_{1}, v_{2}, y_{1}, \ldots, y_{t}\right\}$. Then $\sum(S, G)=t+5=m(G)$ and we have $a(G) \geq|S|=t+3$. So, $\gamma_{2}(G) \leq t+3 \leq a(G)<a(G)+1$.

Second, we assume that $d_{G}(w) \geq 3$ and $h(w)=1$. Then G can be viewed as the graph shown in Figure 2(b). Let $N_{G}(w) \backslash V\left(C_{\ell}\right)=\left\{w_{1}, \ldots, w_{p}\right\}(p \geq 1)$.

Suppose first that $p=1$. If $\ell \geq 4$, we set $G^{\prime}=G-\left(V\left(S_{1}\left(K_{1,1+t}, u\right)\right) \cup\left\{v, w_{1}\right\}\right)$. Obviously, G^{\prime} is a non-trivial tree and $m\left(G^{\prime}\right)=m(G)-(t+6)$. Let D^{\prime} be a γ_{2}-set of G^{\prime} and S^{\prime} be an optimal annihilation set of G^{\prime}. Since $d_{G^{\prime}}(w)=1$, we obtain $w \in D^{\prime}$ and $w \in S^{\prime}$ by Observations 1 and 2. Let $D=D^{\prime} \cup\left\{u, v_{1}, y_{1}, \ldots, y_{t}, w_{1}\right\}$ and hence D is a 2-dominating set of G. Then $\gamma_{2}(G) \leq|D|=\left|D^{\prime}\right|+t+3=\gamma_{2}\left(G^{\prime}\right)+t+3$. Set $S=$ $\left(S^{\prime} \backslash\{w\}\right) \cup\left\{v, v_{1}, v_{2}, y_{1}, \ldots, y_{t}, w_{1}\right\}$. Since $\sum\left(S^{\prime} \backslash\{w\}, G\right) \leq \sum\left(S^{\prime} \backslash\{w\}, G^{\prime}\right)+1$, we have $\sum(S, G)=\sum\left(S^{\prime} \backslash\{w\}, G\right)+$ $d_{G}(v)+d_{G}\left(v_{1}\right)+d_{G}\left(v_{2}\right)+d_{G}\left(y_{1}\right) \cdots+d_{G}\left(y_{t}\right)+d_{G}\left(w_{1}\right) \leq\left(\sum\left(S^{\prime} \backslash\{w\}, G^{\prime}\right)+1\right)+(t+6)=\sum\left(S^{\prime}, G^{\prime}\right)-d_{G^{\prime}}(w)+t+7 \leq$ $m\left(G^{\prime}\right)+t+6=m(G)$ and we have $a(G) \geq|S|=\left|S^{\prime}\right|+t+3=a\left(G^{\prime}\right)+t+3$. Since G^{\prime} is a non-trivial tree, by Theorem 1.2, we have $\gamma_{2}\left(G^{\prime}\right) \leq a\left(G^{\prime}\right)+1$, and hence

$$
\gamma_{2}(G) \leq \gamma_{2}\left(G^{\prime}\right)+t+3 \leq a\left(G^{\prime}\right)+t+4 \leq a(G)+1 .
$$

If $\ell=3$, then $m(G)=t+6$. Take $D=\left\{u, v, w_{1}, v_{1}, y_{1}, \ldots, y_{t}\right\}$ and hence D is a γ_{2}-set of G. Then $\gamma_{2}(G) \leq t+4$. Take $S=\left\{v, w_{1}, v_{1}, v_{2}, y_{1}, \ldots, y_{t}\right\}$. Then $\sum(S, G)=t+6=m(G)$ and we have $a(G) \geq|S|=t+4$. Accordingly, $\gamma_{2}(G) \leq t+4 \leq a(G)<a(G)+1$.

Now, let $p \geq 2$. Set $G^{\prime}=G-\left\{w, w_{1}, w_{2}, \ldots, w_{p}\right\}$. Then G^{\prime} is a non-trivial tree and $m\left(G^{\prime}\right)=m(G)-p-2$. Let D^{\prime} be a γ_{2}-set of G^{\prime} and S^{\prime} be an optimal annihilation set of G^{\prime}. Then $D=D^{\prime} \cup\left\{w_{1}, w_{2}, \ldots, w_{p}\right\}$ is a 2-dominating set of G, yielding that $\gamma_{2}(G) \leq|D|=\left|D^{\prime}\right|+p=\gamma_{2}\left(G^{\prime}\right)+p$. Take $S=S^{\prime} \cup\left\{w_{1}, w_{2}, \ldots, w_{p}\right\}$. Then $\sum(S, G)=\sum\left(S^{\prime}, G\right)+d_{G}\left(w_{1}\right)+d_{G}\left(w_{2}\right)+\cdots+d_{G}\left(w_{p}\right) \leq\left(\sum\left(S^{\prime}, G^{\prime}\right)+2\right)+p \leq m\left(G^{\prime}\right)+p+2=m(G)$. So, $a(G) \geq|S|=\left|S^{\prime}\right|+p=a\left(G^{\prime}\right)+p$. As G^{\prime} is a non-trivial tree, we have $\gamma_{2}\left(G^{\prime}\right) \leq a\left(G^{\prime}\right)+1$ by Theorem 1.2. Therefore,

$$
\gamma_{2}(G) \leq \gamma_{2}\left(G^{\prime}\right)+p \leq a\left(G^{\prime}\right)+p+1 \leq a(G)+1 .
$$

Finally, let $d_{G}(w) \geq 3$ and $h(w)=2$. By Claim 3.1, it suffices to prove $T_{w} \cong S_{s_{1}}\left(K_{1, s_{1}+t_{1}}, w\right)\left(s_{1} \geq 1, t_{1} \geq 0\right)$. If $s_{1} \geq 2$, then by Lemma 2.2 we have $\gamma_{2}(G) \leq a(G)+1$. So, we assume that $s_{1}=1$. Now, G can be viewed as the graph shown in Figure 2(c). First, we assume that $\ell \geq 4$. Let $G^{\prime}=G-\left(V\left(S_{1}\left(K_{1,1+t}, u\right)\right) \cup V\left(S_{1}\left(K_{1,1+t_{1}}, w\right)\right) \cup\{v\}\right)$. Then $m\left(G^{\prime}\right)=m(G)-\left(t+t_{1}+8\right)$. If $n^{\prime}=\left|G^{\prime}\right| \geq 2$, then G^{\prime} is a non-trivial tree. Let D^{\prime} be a γ_{2}-set of G^{\prime}. Then $D=D^{\prime} \cup\left\{u, w, v_{1}, v_{1}^{\prime}, y_{1}, \ldots, y_{t}, y_{1}^{\prime}, \ldots, y_{t_{1}}^{\prime}\right\}$ is a 2-dominating set of G. Therefore, $\gamma_{2}(G) \leq|D|=\left|D^{\prime}\right|+t+t_{1}+4=$ $\gamma_{2}\left(G^{\prime}\right)+t+t_{1}+4$. Let S^{\prime} be an optimal annihilation set of G^{\prime}, we have $\sum\left(S^{\prime}, G\right) \leq \sum\left(S^{\prime}, G^{\prime}\right)+2$. Take $S=S^{\prime} \cup\left\{v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}, y_{1}, \ldots, y_{t}, y_{1}^{\prime}, \ldots, y_{t_{1}}^{\prime}\right\}$. Then $\sum(S, G) \leq\left(\sum\left(S^{\prime}, G^{\prime}\right)+2\right)+\left(t+t_{1}+6\right) \leq m\left(G^{\prime}\right)+t+t_{1}+8=m(G)$ and we have $a(G) \geq|S|=\left|S^{\prime}\right|+t+t_{1}+4=a\left(G^{\prime}\right)+t+t_{1}+4$. Since G^{\prime} is a non-trivial tree, it follows from Theorem 1.2 that $\gamma_{2}\left(G^{\prime}\right) \leq a\left(G^{\prime}\right)+1$. Hence,

$$
\gamma_{2}(G) \leq \gamma_{2}\left(G^{\prime}\right)+t+t_{1}+4 \leq a\left(G^{\prime}\right)+t+t_{1}+5 \leq a(G)+1 .
$$

If $n^{\prime}=\left|G^{\prime}\right|=1$, then $\ell=4$ and $m(G)=t+t_{1}+8$. If $\ell=3$, then $m(G)=t+t_{1}+7$. Upon the case when $n^{\prime}=1$ or $\ell=3$, we take $D=\left\{u, w, v_{1}, v_{1}^{\prime}, y_{1}, \ldots, y_{t}, y_{1}^{\prime}, \ldots, y_{t_{1}}^{\prime}\right\}$ and hence D is a minimum 2 -dominating set of G. Then $\gamma_{2}(G) \leq t+t_{1}+4$. Take $S=\left\{v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}, y_{1}, \ldots, y_{t}, y_{1}^{\prime}, \ldots, y_{t_{1}}^{\prime}\right\}$. Then $\sum(S, G)=t+t_{1}+6<m(G)$ and we have $a(G) \geq|S|=t+t_{1}+4$. Therefore, $\gamma_{2}(G) \leq t+t_{1}+4 \leq a(G)<a(G)+1$.

Subcase 2.2. The vertex u has a neighbour v on $V\left(C_{\ell}\right)$ such that $h(v)=1$ and $N_{G}(v) \backslash V\left(C_{\ell}\right)=\left\{z_{1}, \cdots, z_{q}\right\}(q \geq 1)$.

Figure 3: The local structure of G in Subcases 2.2 and 2.3, respectively.
In this subcase, G can be viewed as the graph shown in the Figure 3(a). First, we assume that $q=1$. Take $G^{\prime}=G-\left(V\left(S_{1}\left(K_{1,1+t}, u\right)\right) \cup\left\{v, z_{1}\right\}\right)$ and $m\left(G^{\prime}\right)=m(G)-(t+6)$. If $n^{\prime}=\left|G^{\prime}\right|=1$, then G is identical to the graph as shown in Figure 2(b) for the case of $\ell=3$ and $p=1$. So, $\gamma_{2}(G) \leq a(G)+1$ by our previous proof in Subcase 2.1. Now, we suppose that $n^{\prime} \geq 2$. Thus, G^{\prime} is a non-trivial tree. Let D^{\prime} be a γ_{2}-set of G^{\prime}. Then $D=D^{\prime} \cup\left\{u, v_{1}, y_{1}, \ldots, y_{t}, z_{1}\right\}$ is a 2-dominating set of G, and hence $\gamma_{2}(G) \leq|D|=\left|D^{\prime}\right|+t+3=\gamma_{2}\left(G^{\prime}\right)+t+3$. Let S^{\prime} be an optimal annihilation set of G^{\prime} and $S=S^{\prime} \cup\left\{v_{1}, v_{2}, y_{1}, \ldots, y_{t}, z_{1}\right\}$. Then $\sum(S, G)=\sum\left(S^{\prime}, G\right)+(t+4) \leq$ $\left(\sum\left(S^{\prime}, G^{\prime}\right)+2\right)+(t+4) \leq m\left(G^{\prime}\right)+t+6=m(G)$ and we have $a(G) \geq|S|=\left|S^{\prime}\right|+t+3=a\left(G^{\prime}\right)+t+3$. Since G^{\prime} is a non-trivial tree, we obtain $\gamma_{2}\left(G^{\prime}\right) \leq a\left(G^{\prime}\right)+1$ according to Theorem 1.2. Thus,

$$
\gamma_{2}(G) \leq \gamma_{2}\left(G^{\prime}\right)+t+3 \leq a\left(G^{\prime}\right)+t+4 \leq a(G)+1
$$

Now, let $q \geq 2$. Set $G^{\prime}=G-\left\{v, z_{1}, z_{2}, \ldots, z_{q}\right\}$. Then G^{\prime} is a non-trivial tree and $m\left(G^{\prime}\right)=m(G)-q-2$. Let D^{\prime} be a γ_{2}-set of G^{\prime}. Then $D=D^{\prime} \cup\left\{z_{1}, z_{2}, \ldots, z_{q}\right\}$ is a 2-dominating set of G, yielding that $\gamma_{2}(G) \leq$ $|D|=\left|D^{\prime}\right|+q=\gamma_{2}\left(G^{\prime}\right)+q$. Let S^{\prime} be an optimal annihilation set of G^{\prime} and let $S=S^{\prime} \cup\left\{z_{1}, z_{2}, \ldots, z_{q}\right\}$. Then $\sum(S, G)=\sum\left(S^{\prime}, G\right)+d_{G}\left(z_{1}\right)+d_{G}\left(z_{2}\right)+\cdots+d_{G}\left(z_{q}\right) \leq\left(\sum\left(S^{\prime}, G^{\prime}\right)+2\right)+q \leq m\left(G^{\prime}\right)+q+2=m(G)$. So, $a(G) \geq|S|=\left|S^{\prime}\right|+q=a\left(G^{\prime}\right)+q$. As G^{\prime} is a non-trivial tree, we have $\gamma_{2}\left(G^{\prime}\right) \leq a\left(G^{\prime}\right)+1$ by Theorem 1.2. Thus,

$$
\gamma_{2}(G) \leq \gamma_{2}\left(G^{\prime}\right)+q \leq a\left(G^{\prime}\right)+q+1 \leq a(G)+1
$$

Subcase 2.3. The vertex u has a neighbour $v \in V\left(C_{\ell}\right)$ such that $h(v)=2$.
By Claim 3.1, it suffices to prove that $T_{v} \cong S_{s_{2}}\left(K_{1, s_{2}+t_{2}}, v\right)\left(s_{2} \geq 1, t_{2} \geq 0\right)$. If $s_{2} \geq 2$, then by Lemma 2.2, we have $\gamma_{2}(G) \leq a(G)+1$. So, we assume that $s_{2}=1$. Now, G can be viewed as the graph shown in Figure 3(b). Let $G^{\prime}=G-\left(V\left(S_{1}\left(K_{1,1+t}, u\right)\right) \cup\left(V\left(S_{1}\left(K_{1,1+t_{2}}, v\right)\right) \backslash\{v\}\right)\right)$. Then G^{\prime} is a tree with at least two vertices and $m\left(G^{\prime}\right)=m(G)-\left(t+t_{2}+6\right)$. Let D^{\prime} be a γ_{2}-set of G^{\prime} and S^{\prime} be an optimal annihilation set of G^{\prime}. It follows from Observations 1 and 2 that v belongs to any γ_{2}-set and optimal annihilation set of G^{\prime} since it is a leaf in G^{\prime}. Now we let $D=D^{\prime} \cup\left\{u, v_{1}, v_{1}^{\prime}, y_{1}, \ldots, y_{t}, y_{1}^{\prime}, \ldots, y_{t_{2}}^{\prime}\right\}$ and hence D is a 2-dominating set of G. Then $\gamma_{2}(G) \leq|D|=\left|D^{\prime}\right|+t+t_{2}+3=\gamma_{2}\left(G^{\prime}\right)+t+t_{2}+3$. Take $S=\left(S^{\prime} \backslash\{v\}\right) \cup\left\{v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}, y_{1}, \ldots, y_{t}, y_{1}^{\prime}, \ldots, y_{t_{2}}^{\prime}\right\}$. As $\sum\left(S^{\prime} \backslash\{v\}, G^{\prime}\right)=\sum\left(S^{\prime}, G^{\prime}\right)-d_{G^{\prime}}(v)=\sum\left(S^{\prime}, G^{\prime}\right)-1, \sum\left(S^{\prime} \backslash\{v\}, G\right) \leq \sum\left(S^{\prime} \backslash\{v\}, G^{\prime}\right)+1=\sum\left(S^{\prime}, G^{\prime}\right) \leq m\left(G^{\prime}\right)$. So, $\sum(S, G)=\sum\left(S^{\prime} \backslash\{v\}, G\right)+d_{G}\left(v_{1}\right)+d_{G}\left(v_{1}^{\prime}\right)+d_{G}\left(v_{2}\right)+d_{G}\left(v_{2}^{\prime}\right)+d_{G}\left(y_{1}\right)+\cdots+d_{G}\left(y_{t}\right)+d_{G}\left(y_{1}^{\prime}\right)+\cdots+d_{G}\left(y_{t_{2}}^{\prime}\right) \leq$ $m\left(G^{\prime}\right)+t+t_{2}+6=m(G)$. Then we have $a(G) \geq|S|=\left|S^{\prime}\right|+t+t_{2}+3=a\left(G^{\prime}\right)+t+t_{2}+3$. By Theorem 1.2, we have $\gamma_{2}\left(G^{\prime}\right) \leq a\left(G^{\prime}\right)+1$ since G^{\prime} is a non-trivial tree. Accordingly,

$$
\gamma_{2}(G) \leq \gamma_{2}\left(G^{\prime}\right)+t+t_{2}+3 \leq a\left(G^{\prime}\right)+t+t_{2}+4 \leq a(G)+1 .
$$

Case 3. $h(G) \geq 3$.
Assume that there is a branch vertex $u \in V\left(C_{\ell}\right)$ such that T_{u} contains a leaf v_{1} satisfying that $d_{G}\left(u, v_{1}\right)=$ $h(G)$. Let $P=v_{1} v_{2} v_{3} \ldots u$ be the shortest path connecting v_{1} and u. Since $h(G) \geq 3$, we have $u \neq v_{i}$ for each $i \in[3]$. If $d_{G}\left(v_{2}\right) \geq 3$, then v_{2} is a strong support vertex. By Claim 3.1, $\gamma_{2}(G) \leq a(G)+1$. So, we assume that $d_{G}\left(v_{2}\right)=2$. Assume that v_{3} have s leaf-neighbors.

If $s \geq 1$, we denote these leaf-neighbors of v_{3} with $x_{1}, x_{2}, \ldots, x_{s}$. Let $\theta_{v_{3}}=N_{G}\left(v_{3}\right) \backslash\left\{v_{4}, x_{1}, x_{2}, \ldots, x_{s}\right\}$. Then $\left|\theta_{v_{3}}\right| \geq 1$, as $v_{2} \in \theta_{v_{3}}$. If $\left|\theta_{v_{3}}\right| \geq 2$, let $\theta_{v_{3}} \backslash\left\{v_{2}\right\}=\left\{y_{1}, \ldots, y_{t}\right\}$. Each vertex in $\theta_{v_{3}}$ must be a support vertex since $d_{G}\left(u, v_{1}\right)=h(G)$. By Claim 3.1, it suffices to prove that $d\left(y_{i}\right)=2$ for each $i \in[t]$. Let z_{i} be the only child of y_{i} for each $i \in[t]$. It is clear that $d_{G}\left(v_{3}\right)=s+t+2$, since the subtree T_{u} is rooted at u and $u \neq v_{3}$.

Now, let $G^{\prime}=G-\left\{v_{1}, v_{2}, x_{1}, x_{2}, \ldots, x_{s}, y_{1}, \ldots, y_{t}, z_{1}, \cdots, z_{t}\right\}$. So $m\left(G^{\prime}\right)=m(G)-s-2 t-2$ and $d_{G^{\prime}}\left(v_{3}\right)=1$. By Observations 1 and $2, v_{3}$ belongs to any minimum 2-dominating set and optimal annihilation set of G^{\prime}. Let D^{\prime} be a γ_{2}-set of G^{\prime} and S^{\prime} be an optimal annihilation set of G^{\prime}. Hence, $D=D^{\prime} \cup\left\{v_{1}, x_{1}, x_{2}, \ldots, x_{s}, z_{1}, \ldots, z_{t}\right\}$ is a 2-dominating set of G, which gives that $\gamma_{2}(G) \leq|D|=\left|D^{\prime}\right|+s+t+1=\gamma_{2}\left(G^{\prime}\right)+s+t+1$. Let $S=\left(S^{\prime} \backslash\left\{v_{3}\right\}\right) \cup\left\{v_{1}, v_{2}, x_{1}, x_{2}, \ldots, x_{s}, z_{1}, \ldots, z_{t}\right\}$. Then $\sum(S, G)=\sum\left(S^{\prime}, G\right)-d_{G}\left(v_{3}\right)+d_{G}\left(v_{1}\right)+d_{G}\left(v_{2}\right)+d_{G}\left(x_{1}\right)+\cdots+$ $d_{G}\left(x_{s}\right)+d_{G}\left(z_{1}\right)+\cdots+d_{G}\left(z_{t}\right) \leq\left(\sum\left(S^{\prime}, G^{\prime}\right)+d_{G}\left(v_{3}\right)-1\right)-d_{G}\left(v_{3}\right)+s+t+3 \leq m\left(G^{\prime}\right)+s+t+2=m(G)-t \leq m(G)$. So $a(G) \geq|S|=\left|S^{\prime}\right|+s+t+1=a\left(G^{\prime}\right)+s+t+1$. Obviously, G^{\prime} is a unicyclic graph of order $n^{\prime}<n$. By the induction hypothesis, $\gamma_{2}\left(G^{\prime}\right) \leq a\left(G^{\prime}\right)+1$. Then

$$
\gamma_{2}(G) \leq \gamma_{2}\left(G^{\prime}\right)+s+t+1 \leq a\left(G^{\prime}\right)+s+t+2 \leq a(G)+1
$$

This completes the proof.

References

[1] Y. Caro, Y. Roditty, A note on the k-domination number of a graph, Int. J. Math. Math. Sci. 13 (1990), 205-206.
[2] M. Chellali, O. Favaron, A. Hansberg, L. Volkmann, k-domination and k-independence in graphs: a survey, Graphs Combin. 28 (2012), 1-55.
[3] E. DeLaViña, Written on the wall II, (conjectures of Graffiti.pc), http://cms.uhd.edu/faculty/delavinae/research/wowii.
[4] W. J. Desormeaux, M. A. Henning, D. F. Rall, A. Yeo, Relating the annihilation number and the 2-domination number of a tree, Discrete Math. 319 (2014), 15-23.
[5] J. F. Fink, M. S. Jacobson, n-domination in graphs, in: Y. Alavi, A.J. Schwenk (Eds.), Graph Theory with Applications to Algorithms and Computer Science, Wiley, New York, pp. (1985), 283-300.
[6] M. Jakovac, Relating the annihilation number and the 2-domination number of block graphs, Discrete Appl. Math. 260 (2019), $178-187$.
[7] J. Lyle, S. Patterson, A note on the annihilation number and 2-domination number of a tree, J. Comb. Optim. 33 (2017), 968-976.
[8] R. Pepper, Binding Independence, Ph.D. Dissertation, University of Houston, 2004.
[9] J. Yue, S. Z. Zhang, Y. P. Zhu, S. Klavžar, Y. T. Shi, The annihilation number does not bound the 2-domination number from the above, Discrete Math. 343(6) (2020), 111707.

[^0]: 2020 Mathematics Subject Classification. 05C69; 05C35
 Keywords. 2-domination number, annihilation number, unicyclic graph, conjecture
 Received: 23 January 2023; Revised: 11 April 2023; Accepted: 03 August 2023
 Communicated by Paola Bonacini
 This work was supported by the Postgraduate Research \& Practice Innovation Program of Nanjing University of Aeronautics and Astronautics, China (No. xcxjh20220801).

 Email address: xyhuamath@163.com (Xinying Hua)

