Filomat 38:2 (2024), 637–643 https://doi.org/10.2298/FIL2402637H

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Relating the annihilation number and the 2-domination number for unicyclic graphs

Xinying Hua^a

^aSchool of Mathematics, Nanjing University of Aeronautics & Astronautics, Nanjing, Jiangsu 210016, PR China

Abstract. The 2-domination number $\gamma_2(G)$ of a graph *G* is the minimum cardinality of a set $S \subseteq V(G)$ such that every vertex from $V(G) \setminus S$ is adjacent to at least two vertices in *S*. The *annihilation number* a(G) is the largest integer *k* such that the sum of the first *k* terms of the non-decreasing degree sequence of *G* is at most the number of its edges. It was conjectured that $\gamma_2(G) \leq a(G) + 1$ holds for every non-trivial connected graph *G*. The conjecture was earlier confirmed for graphs of minimum degree 3, trees, block graphs and some bipartite cacti. However, a class of cacti were found as counterexample graphs recently by Yue et al. [9] to the above conjecture. In this paper, we consider the above conjecture from the positive side and prove that this conjecture holds for all unicyclic graphs.

1. Introduction

Given a graph *G*, we denote by *V*(*G*) and *E*(*G*) the set of its vertices and edges, respectively. Also, we let n(G) = |V(G)| and m(G) = |E(G)|. The open neighbourhood of a vertex $v \in V(G)$ is $N_G(v) = \{u|uv \in E(G)\}$. We denote the degree of a vertex v by $d_G(v) = |N_G(v)|$. For a pair of vertices $u, v \in V(G)$, the distance $d_G(u, v)$ between u and v is the length of a shortest (u, v)-path in *G*. A path $P = x_1x_2 \dots x_p$ ($p \ge 3$) in a graph *G* is said to be a pendent path if $d_G(x_1) = 1$, $d_G(x_2) = \dots = d_G(x_{p-1}) = 2$ and $d_G(x_p) \ge 3$. In particular, when p = 2, *P* is said to be a pendent edge and x_1 is said to be a leaf or pendent vertex. The above x_2 is said to be a support vertex. Further, if uvw is a 3-vertex path with $d_G(u) = 1 = d_G(w)$ and $d_G(v) \ge 2$, then v is said to be a strong support vertex. A vertex of degree at least 3 is called a branch vertex. If $X \subseteq V(G)$, then G - X denotes the graph obtained from *G* by deleting all vertices in *X* and all edges incident with them. A connected graph is unicyclic if it contains exactly one cycle. A unicyclic graph is a sun if each vertex on the cycle is connected to exactly one leaf.

For a graph *G* of order *n* and a positive integer $k \le n - 1$, a vertex set $D \subseteq V(G)$ is called a *k*-dominating set if each vertex not in *D* has at least *k* neighbors in *D*. The *k*-domination number $\gamma_k(G)$ is the minimum cardinality of such a set *D*. A *k*-dominating set of cardinality $\gamma_k(G)$ is called a γ_k -set of *G*. A 1-dominating set is just the well-studied *dominating set*. The notion of the *k*-dominating set was introduced by Fink and Jacobson [5], and a survey on *k*-dominating set can be found in [2].

Keywords. 2-domination number, annihilation number, unicyclic graph, conjecture

Communicated by Paola Bonacini

²⁰²⁰ Mathematics Subject Classification. 05C69; 05C35

Received: 23 January 2023; Revised: 11 April 2023; Accepted: 03 August 2023

This work was supported by the Postgraduate Research & Practice Innovation Program of Nanjing University of Aeronautics and Astronautics, China (No. xcxjh20220801).

Email address: xyhuamath@163.com (Xinying Hua)

For a vertex set $S \subseteq V(G)$, we define $\sum (S, G) = \sum_{v \in S} d_G(v)$. Then *S* is an *annihilation set* of *G* if $\sum (S, G) \le m(G)$. Let v_1, v_2, \ldots, v_n be an ordering of the vertices of *G* such that $d_G(v_1) \le d_G(v_2) \le \cdots \le d_G(v_n)$. The *annihilation number* a(G), firstly introduced by Pepper in [8], is the largest integer k such that $\sum_{i=1}^k d_G(v_i) \le m(G)$. Further, *S* is an *optimal annihilation set* if |S| = a(G) and $\max\{d_G(v)|v \in S\} \le \min\{d(u)|u \in V(G)\setminus S\}$.

A conjecture relating the 2-domination number and annihilation number of a graph reads as follows.

Conjecture 1.1 ([3, 4]). *If G is a non-trivial connected graph, then* $\gamma_2(G) \le a(G) + 1$ *.*

From the above definition of annihilation set, every graph satisfies $a(G) \ge \lfloor \frac{n}{2} \rfloor$. Also, it was observed in [1] that $\gamma_2(G) \le \lfloor \frac{n}{2} \rfloor$ for $\delta(G) \ge 3$. Hence, if $\delta(G) \ge 3$, then Conjecture 1.1 holds. It remains for us to study this conjecture for connected graphs with $\delta(G) = 1$ or 2. Inspired by this, Desormeaux et al. [4] studied Conjecture 1.1 for trees, and their result is stated as follows.

Theorem 1.2 ([4]). If G is a non-trivial tree, then $\gamma_2(G) \le a(G) + 1$.

It is interesting to note that Theorem 1.2 was re-proven by Lyle [7] by employing a new method in 2017. Later, the result of Theorem 1.2 was extended to the family of block graphs by Jakovac [6]. More recently, Yue et al. [9] disproved Conjecture 1.1 by giving a class of counterexample cacti with leaves. Nevertheless, it still makes sense to consider some special graph family that satisfy Conjecture 1.1. Along this line, Yue et al. [9] proved Conjecture 1.1 holds for a class of bipartite cacti. In this paper, we investigate Conjecture 1.1 for unicyclic graphs, and we obtain the following result.

Theorem 1.3. Let G be a unicyclic graph. Then $\gamma_2(G) \le a(G) + 1$.

2. Preliminary results

In this section, we introduce two observations and a critical lemma.

We begin with the following two observations, which can be deduced from the definitions of 2dominating set and optimal annihilation set immediately.

Observation 1. Any 2-dominating set of a graph G contains all leaves.

Observation 2 ([9]). Any optimal annihilation set of a connected graph G of order $n \ge 3$ contains all leaves of G.

For a unicyclic graph *G* with $C_{\ell} = u_1 u_2 \dots u_{\ell} u_1$ being its unique cycle, we denote by T_{u_j} the component containing u_j in $G - \{u_{j-1}, u_{j+1}\}$ (If j = 1, we set $u_{j-1} = u_{\ell}$ and if $j = \ell$, then $u_{j+1} = u_1$). Such a T_{u_j} is also said to be a subtree of *G*, rooted at u_j .

Definition 2.1. The subdivided star $S_s(K_{1,s+t}, u)$ ($s \ge 1, t \ge 0$) is the graph on 2s+t+1 vertices which is constructed from the star $K_{1,s+t}$ (with u being the centre) by subdividing any s edges exactly once. In particular, when s = 1 and t = 0, $S_s(K_{1,s+t}, u) \cong P_3$ with u being one end-vertex. When s = 1 and t = 1, $S_s(K_{1,s+t}, u) \cong P_4$ with u being a 2-degree vertex. When s = 2 and t = 0, $S_s(K_{1,s+t}, u) \cong P_5$ with u being the central vertex. When $s + t \ge 3$, u is the maximum degree vertex of $S_s(K_{1,s+t}, u)$.

Lemma 2.2. Let G be a unicyclic graph with the unique cycle being C. If C contains a vertex u such that T_u is a subdivided star $S_s(K_{1,s+t}, u)(s \ge 2)$, then $\gamma_2(G) \le a(G) + 1$.

Proof. For each $i \in [s]$, let uv'_iv_i be a pendent path attached to u and for each $j \in [t]$, let w_j be the leaf adjacent to u if $t \ge 1$, see Figure 1. Let $G' = G - V(S_s(K_{1,s+t}, u))$. Then G' is a non-trivial tree with m(G') = m(G) - 2s - t - 2. By Theorem 1.2, we have $\gamma_2(G') \le a(G') + 1$. Let D' be a γ_2 -set of G'. From Figure 1 and the definition of 2-dominating set, it can be seen that $D = D' \cup \{u, v_1, v_2, \dots, v_s, w_1, \dots, w_t\}$ is a 2-dominating set of G, yielding

that $\gamma_2(G) \leq |D| = |D'| + s + t + 1 = \gamma_2(G') + s + t + 1$. Suppose that *S*' is an optimal annihilation set of *G*' and let $S = S' \cup \{v'_1, v_1, \dots, v_s, w_1, \dots, w_t\}$. As $s \geq 2$,

$$\sum (S,G) = \sum (S',G) + d_G(v'_1) + d_G(v_1) + \dots + d_G(v_s) + d_G(w_1) + \dots + d_G(w_t)$$

$$\leq \left(\sum (S',G') + 2\right) + 2 + s + t$$

$$\leq m(G') + 4 + s + t$$

$$\leq m(G) - s + 2$$

$$\leq m(G).$$

So $a(G) \ge |S| = |S'| + s + t + 1 = a(G') + s + t + 1$. This gives $\gamma_2(G) \le \gamma_2(G') + s + t + 1 \le a(G') + s + t + 2 \le a(G) + 1$. \Box

Figure 1: The structure of *G* in Lemma 2.2, where G_0 is a unicyclic subgraph of *G*.

3. Proof of Theorem 1.3

In this section we prove Theorem 1.3.

Proof. We proceed by induction on n = n(G). If n = 3, then $G \cong C_3$ and $\gamma_2(C_3) = 2 = a(C_3) + 1$. So, we let $n \ge 4$ and assume that for every connected unicyclic graph G' of order n' < n, we have $\gamma_2(G') \le a(G') + 1$.

If *G* is a cycle, it's easy to check that the statement is true. Thus, we may suppose that *G* contains one cycle as a proper subgraph. Define $\mathcal{L}(G) = \{v \in V(G) | d_G(v) = 1\}$. Since *G* is a unicyclic graph not isomorphic to a cycle, $\mathcal{L}(G) \neq \emptyset$. Let C_ℓ be the unique cycle in *G*. For each $u \in V(C_\ell)$ with $d_G(u) \ge 3$, we define $h(u) = \max\{d_G(u, x) | x \in \mathcal{L}(T_u)\}$ and $h(G) = \max\{h(u) | u \in V(C_\ell) \text{ and } d_G(u) \ge 3\}$.

We first prove the following claim.

Claim 3.1. Let u be a branch vertex on $V(C_{\ell})$ such that T_u has a leaf v_1 with $d_G(v_1, u) = h(G)$. Assume that v_2 is the unique neighbour of v_1 and v_2 is a strong support vertex. Then $\gamma_2(G) \le a(G) + 1$.

Proof. As v_2 is a strong support vertex, v_2 has at least two leaf-neighbours. Let v_1, z_1, \ldots, z_t ($t \ge 1$) be leaf-neighbours of v_2 and $G' = G - \{v_1, v_2, z_1, \ldots, z_t\}$. Then $m(G') = m(G) - d_G(v_2)$. Obviously, G' has at least two vertices. Let D' be a γ_2 -set of G'. Then $D = D' \cup \{v_1, z_1, \ldots, z_t\}$ is a 2-dominating set of G, which implies $\gamma_2(G) \le |D| = |D'| + t + 1 = \gamma_2(G') + t + 1$. Let S' be an optimal annihilation set of G' and $S = S' \cup \{v_1, z_1, \ldots, z_t\}$. Then

$$\sum (S,G) = \sum (S',G) + d_G(v_1) + d_G(z_1) + \dots + d_G(z_t)$$

$$\leq \left(\sum (S',G') + d_G(v_2) - t - 1\right) + t + 1$$

$$\leq m(G') + d_G(v_2)$$

$$\leq m(G),$$

yielding that $a(G) \ge |S| = |S'| + t + 1 = a(G') + t + 1$. If *G*' is a non-trivial tree, then by Theorem 1.2, $\gamma_2(G') \le a(G') + 1$. If *G*' is a unicyclic graph, then by the induction hypothesis, $\gamma_2(G') \le a(G') + 1$. Therefore, $\gamma_2(G) \le \gamma_2(G') + t + 1 \le a(G') + t + 2 \le a(G) + 1$. \Box

We will complete the proof by considering the following cases.

Case 1. h(G) = 1.

Since h(G) = 1, every vertex outside of C_{ℓ} is a leaf attached to some vertex of C_{ℓ} . Clearly, each vertex of C_{ℓ} is adjacent to at most one leaf. For otherwise, by Claim 3.1, we have $\gamma_2(G) \le a(G) + 1$, as claimed. So, *G* is a sun or a unicyclic graph obtained from the sun by removing some leaves.

First, we assume that *G* is a sun. Let $V(C_{\ell}) = \{u_1, u_2, \dots, u_{\ell}\}$ and w_i is the leaf adjacent to u_i for each $i \in [\ell]$. Clearly, $m(G) = 2\ell$. Take $D = \{u_1, u_4, \dots, u_{3m+1}, w_1, w_2, \dots, w_{\ell}\}$ ($m \in [\frac{\ell-3}{3}, \frac{\ell-1}{3}]$). Then *D* is a γ_2 -set of *G*, and hence $\gamma_2(G) \leq \lceil \frac{\ell}{3} \rceil + \ell$. Set $S = \{u_1, u_2, \dots, u_{\lceil \frac{\ell}{3} \rceil - 1}, w_1, w_2, \dots, w_{\ell}\}$. Then $\sum (S, G) = (\lceil \frac{\ell}{3} \rceil - 1) \times 3 + \ell \leq 2\ell - 1 < m(G)$, yielding that $a(G) \geq |S| = \lceil \frac{\ell}{3} \rceil + \ell - 1$. So, $\gamma_2(G) \leq a(G) + 1$.

Second, we assume that *G* is not a sun. There exists a 3-degree vertex, say *w*, on C_{ℓ} that has a 2-degree neighbour, say *v*, on C_{ℓ} . Denote the pendent vertex adjacent to *w* with w_1 . Set $G' = G - \{w, w_1\}$. Then m(G') = m(G) - 3. It follows from Theorem 1.2 that $\gamma_2(G') \le a(G') + 1$, since *G'* is a non-trivial tree. Let *D'* be a γ_2 -set of *G'* and *S'* be an optimal annihilation set of *G'*. Since $d_{G'}(v) = 1$, by Observations 1 and 2, we have $v \in D'$ and $v \in S'$. Then $D = D' \cup \{w_1\}$ is a 2-dominating set of *G* and hence $\gamma_2(G) \le |D| = |D'| + 1 = \gamma_2(G') + 1$. Also, we have $\sum (S', G) \le \sum (S', G') + 2$. Take $S = S' \cup \{w_1\}$. Then $\sum (S, G) = \sum (S', G) + d_G(w_1) \le (\sum (S', G') + 2) + 1 \le m(G') + 3 = m(G)$ and hence $a(G) \ge |S| = |S'| + 1 = a(G') + 1$. Thus,

$$\gamma_2(G) \le \gamma_2(G') + 1 \le a(G') + 2 \le a(G) + 1.$$

Case 2. h(G) = 2.

Assume that there exists a branch vertex u on C_{ℓ} such that T_u contains a leaf v_1 satisfying that $d_G(v_1, u) = 2$. Let v_2 be the unique neighbour of v_1 . If $d_G(v_2) \ge 3$, then v_2 is a strong support vertex. By Claim 3.1, we have $\gamma_2(G) \le a(G) + 1$. So, we may assume that $d_G(v_2) = 2$. By the same reason, if $N_G(u) \setminus (V(C_{\ell}) \cup \{v_2\}) \ne \emptyset$, then for each $x \in N_G(u) \setminus (V(C_{\ell}) \cup \{v_2\})$, we have $d_G(x) = 1$ or $d_G(x) = 2$. So, $T_u \cong S_s(K_{1,s+t}, u) (s \ge 1, t \ge 0)$. If $s \ge 2$, then we conclude that $\gamma_2(G) \le a(G) + 1$ by Lemma 2.2. So, we assume that s = 1 and $t \ge 0$. Assume that $V(S_1(K_{1,1+t}, u)) = \{u, v_1, v_2, y_1, \ldots, y_t\}$, where u is the vertex defined as in Definition 2.1, uv_2v_1 is a pendent path and y_1, \cdots, y_t are leaves attached to u if $t \ge 1$.

We consider the following subcases.

Subcase 2.1. There exists at least a vertex of degree 2, say v, adjacent to u on C_{ℓ} .

Figure 2: The local structure of *G* when *u* has a 2-degree neighbour *v* on C_{ℓ} .

Let $N_G(v) \setminus \{u\} = \{w\}$. First, we assume that $d_G(w) = 2$. Then *G* can be viewed as the graph shown in Figure 2(a). If $\ell \ge 4$, we set $G' = G - (V(S_1(K_{1,1+t}, u)) \cup \{v\})$. Then *G'* is a non-trivial tree and m(G') = m(G) - (t + 5). According to Theorem 1.2, we have $\gamma_2(G') \le a(G') + 1$. Let *D'* be a γ_2 -set of *G'* and *S'* be an optimal annihilation set of *G'*. Since $d_{G'}(w) = 1$, we have $w \in D'$ and $w \in S'$ by Observations 1 and 2. Then $D = D' \cup \{u, v_1, y_1, \dots, y_t\}$ is a 2-dominating set of *G*. So $\gamma_2(G) \le |D| = |D'| + t + 2 = \gamma_2(G') + t + 2$. Take $S = S' \cup \{v_1, v_2, y_1, \dots, y_t\}$. Then $\sum (S, G) = \sum (S', G) + d_G(v_1) + d_G(v_2) + d_G(y_1) + \dots + d_G(y_t) \le (\sum (S', G') + 2) + (t + 3) \le m(G') + t + 5 = m(G)$, which implies $a(G) \ge |S| = |S'| + t + 2 = a(G') + t + 2$. Therefore,

$$\gamma_2(G) \le \gamma_2(G') + t + 2 \le a(G') + t + 3 \le a(G) + 1.$$

If $\ell = 3$, then m(G) = t + 5. Take $D = \{u, v, v_1, y_1, \dots, y_t\}$ and hence D is a minimum 2-dominating set of G. Then $\gamma_2(G) \le t + 3$. Take $S = \{v, v_1, v_2, y_1, \dots, y_t\}$. Then $\sum (S, G) = t + 5 = m(G)$ and we have $a(G) \ge |S| = t + 3$. So, $\gamma_2(G) \le t + 3 \le a(G) < a(G) + 1$.

Second, we assume that $d_G(w) \ge 3$ and h(w) = 1. Then *G* can be viewed as the graph shown in Figure 2(b). Let $N_G(w) \setminus V(C_\ell) = \{w_1, \ldots, w_p\} (p \ge 1)$.

Suppose first that p = 1. If $\ell \ge 4$, we set $G' = G - (V(S_1(K_{1,1+t}, u)) \cup \{v, w_1\})$. Obviously, G' is a non-trivial tree and m(G') = m(G) - (t + 6). Let D' be a γ_2 -set of G' and S' be an optimal annihilation set of G'. Since $d_{G'}(w) = 1$, we obtain $w \in D'$ and $w \in S'$ by Observations 1 and 2. Let $D = D' \cup \{u, v_1, y_1, \dots, y_t, w_1\}$ and hence D is a 2-dominating set of G. Then $\gamma_2(G) \le |D| = |D'| + t + 3 = \gamma_2(G') + t + 3$. Set $S = (S' \setminus \{w\}) \cup \{v, v_1, v_2, y_1, \dots, y_t, w_1\}$. Since $\sum (S' \setminus \{w\}, G) \le \sum (S' \setminus \{w\}, G') + 1$, we have $\sum (S, G) = \sum (S' \setminus \{w\}, G) + d_G(v_1) + d_G(v_2) + d_G(y_1) \cdots + d_G(y_t) + d_G(w_1) \le (\sum (S' \setminus \{w\}, G') + 1) + (t + 6) = \sum (S', G') - d_{G'}(w) + t + 7 \le m(G') + t + 6 = m(G)$ and we have $a(G) \ge |S| = |S'| + t + 3 = a(G') + t + 3$. Since G' is a non-trivial tree, by Theorem 1.2, we have $\gamma_2(G') \le a(G') + 1$, and hence

$$\gamma_2(G) \le \gamma_2(G') + t + 3 \le a(G') + t + 4 \le a(G) + 1.$$

If $\ell = 3$, then m(G) = t + 6. Take $D = \{u, v, w_1, v_1, y_1, \dots, y_t\}$ and hence D is a γ_2 -set of G. Then $\gamma_2(G) \le t + 4$. Take $S = \{v, w_1, v_1, v_2, y_1, \dots, y_t\}$. Then $\sum (S, G) = t + 6 = m(G)$ and we have $a(G) \ge |S| = t + 4$. Accordingly, $\gamma_2(G) \le t + 4 \le a(G) < a(G) + 1$.

Now, let $p \ge 2$. Set $G' = G - \{w, w_1, w_2, \dots, w_p\}$. Then G' is a non-trivial tree and m(G') = m(G) - p - 2. Let D' be a γ_2 -set of G' and S' be an optimal annihilation set of G'. Then $D = D' \cup \{w_1, w_2, \dots, w_p\}$ is a 2-dominating set of G, yielding that $\gamma_2(G) \le |D| = |D'| + p = \gamma_2(G') + p$. Take $S = S' \cup \{w_1, w_2, \dots, w_p\}$. Then $\sum(S, G) = \sum(S', G) + d_G(w_1) + d_G(w_2) + \dots + d_G(w_p) \le (\sum(S', G') + 2) + p \le m(G') + p + 2 = m(G)$. So, $a(G) \ge |S| = |S'| + p = a(G') + p$. As G' is a non-trivial tree, we have $\gamma_2(G') \le a(G') + 1$ by Theorem 1.2. Therefore,

$$\gamma_2(G) \le \gamma_2(G') + p \le a(G') + p + 1 \le a(G) + 1.$$

Finally, let $d_G(w) \ge 3$ and h(w) = 2. By Claim 3.1, it suffices to prove $T_w \cong S_{s_1}(K_{1,s_1+t_1}, w)$ ($s_1 \ge 1, t_1 \ge 0$). If $s_1 \ge 2$, then by Lemma 2.2 we have $\gamma_2(G) \le a(G) + 1$. So, we assume that $s_1 = 1$. Now, G can be viewed as the graph shown in Figure 2(c). First, we assume that $\ell \ge 4$. Let $G' = G - (V(S_1(K_{1,1+t}, u)) \cup V(S_1(K_{1,1+t_1}, w)) \cup \{v\})$. Then $m(G') = m(G) - (t + t_1 + 8)$. If $n' = |G'| \ge 2$, then G' is a non-trivial tree. Let D' be a γ_2 -set of G'. Then $D = D' \cup \{u, w, v_1, v'_1, y_1, \dots, y_t, y'_1, \dots, y'_{t_1}\}$ is a 2-dominating set of G. Therefore, $\gamma_2(G) \le |D| = |D'| + t + t_1 + 4 = \gamma_2(G') + t + t_1 + 4$. Let S' be an optimal annihilation set of G', we have $\sum (S', G) \le \sum (S', G') + 2$. Take $S = S' \cup \{v_1, v'_1, v_2, v'_2, y_1, \dots, y_t, y'_1, \dots, y'_{t_1}\}$. Then $\sum (S, G) \le (\sum (S', G') + 2) + (t + t_1 + 6) \le m(G') + t + t_1 + 8 = m(G)$ and we have $a(G) \ge |S| = |S'| + t + t_1 + 4 = a(G') + t + t_1 + 4$. Since G' is a non-trivial tree, it follows from Theorem 1.2 that $\gamma_2(G') \le a(G') + 1$. Hence,

$$\gamma_2(G) \le \gamma_2(G') + t + t_1 + 4 \le a(G') + t + t_1 + 5 \le a(G) + 1.$$

If n' = |G'| = 1, then $\ell = 4$ and $m(G) = t + t_1 + 8$. If $\ell = 3$, then $m(G) = t + t_1 + 7$. Upon the case when n' = 1 or $\ell = 3$, we take $D = \{u, w, v_1, v'_1, y_1, \dots, y_t, y'_1, \dots, y'_{t_1}\}$ and hence D is a minimum 2-dominating set of G. Then $\gamma_2(G) \le t + t_1 + 4$. Take $S = \{v_1, v'_1, v_2, v'_2, y_1, \dots, y_t, y'_1, \dots, y'_{t_1}\}$. Then $\sum (S, G) = t + t_1 + 6 < m(G)$ and we have $a(G) \ge |S| = t + t_1 + 4$. Therefore, $\gamma_2(G) \le t + t_1 + 4 \le a(G) < a(G) + 1$.

Subcase 2.2. The vertex u has a neighbour v on $V(C_{\ell})$ such that h(v) = 1 and $N_G(v) \setminus V(C_{\ell}) = \{z_1, \dots, z_q\} (q \ge 1)$.

Figure 3: The local structure of *G* in Subcases 2.2 and 2.3, respectively.

In this subcase, *G* can be viewed as the graph shown in the Figure 3(a). First, we assume that q = 1. Take $G' = G - (V(S_1(K_{1,1+t}, u)) \cup \{v, z_1\})$ and m(G') = m(G) - (t + 6). If n' = |G'| = 1, then *G* is identical to the graph as shown in Figure 2(b) for the case of $\ell = 3$ and p = 1. So, $\gamma_2(G) \le a(G) + 1$ by our previous proof in Subcase 2.1. Now, we suppose that $n' \ge 2$. Thus, *G'* is a non-trivial tree. Let *D'* be a γ_2 -set of *G'*. Then $D = D' \cup \{u, v_1, y_1, \dots, y_t, z_1\}$ is a 2-dominating set of *G*, and hence $\gamma_2(G) \le |D| = |D'| + t + 3 = \gamma_2(G') + t + 3$. Let *S'* be an optimal annihilation set of *G'* and $S = S' \cup \{v_1, v_2, y_1, \dots, y_t, z_1\}$. Then $\sum (S, G) = \sum (S', G) + (t + 4) \le (\sum (S', G') + 2) + (t + 4) \le m(G') + t + 6 = m(G)$ and we have $a(G) \ge |S| = |S'| + t + 3 = a(G') + t + 3$. Since *G'* is a non-trivial tree, we obtain $\gamma_2(G') \le a(G') + 1$ according to Theorem 1.2. Thus,

$$\gamma_2(G) \le \gamma_2(G') + t + 3 \le a(G') + t + 4 \le a(G) + 1.$$

Now, let $q \ge 2$. Set $G' = G - \{v, z_1, z_2, \dots, z_q\}$. Then G' is a non-trivial tree and m(G') = m(G) - q - 2. Let D' be a γ_2 -set of G'. Then $D = D' \cup \{z_1, z_2, \dots, z_q\}$ is a 2-dominating set of G, yielding that $\gamma_2(G) \le |D| = |D'| + q = \gamma_2(G') + q$. Let S' be an optimal annihilation set of G' and let $S = S' \cup \{z_1, z_2, \dots, z_q\}$. Then $\sum (S, G) = \sum (S', G) + d_G(z_1) + d_G(z_2) + \dots + d_G(z_q) \le (\sum (S', G') + 2) + q \le m(G') + q + 2 = m(G)$. So, $a(G) \ge |S| = |S'| + q = a(G') + q$. As G' is a non-trivial tree, we have $\gamma_2(G') \le a(G') + 1$ by Theorem 1.2. Thus,

$$\gamma_2(G) \le \gamma_2(G') + q \le a(G') + q + 1 \le a(G) + 1.$$

Subcase 2.3. The vertex u has a neighbour $v \in V(C_{\ell})$ such that h(v) = 2.

By Claim 3.1, it suffices to prove that $T_v \cong S_{s_2}(K_{1,s_2+t_2}, v)$ ($s_2 \ge 1, t_2 \ge 0$). If $s_2 \ge 2$, then by Lemma 2.2, we have $\gamma_2(G) \le a(G) + 1$. So, we assume that $s_2 = 1$. Now, G can be viewed as the graph shown in Figure 3(b). Let $G' = G - (V(S_1(K_{1,1+t}, u)) \cup (V(S_1(K_{1,1+t_2}, v)) \setminus \{v\}))$. Then G' is a tree with at least two vertices and $m(G') = m(G) - (t + t_2 + 6)$. Let D' be a γ_2 -set of G' and S' be an optimal annihilation set of G'. It follows from Observations 1 and 2 that v belongs to any γ_2 -set and optimal annihilation set of G' since it is a leaf in G'. Now we let $D = D' \cup \{u, v_1, v'_1, y_1, \dots, y_t, y'_1, \dots, y'_{t_2}\}$ and hence D is a 2-dominating set of G. Then $\gamma_2(G) \le |D| = |D'| + t + t_2 + 3 = \gamma_2(G') + t + t_2 + 3$. Take $S = (S' \setminus \{v\}) \cup \{v_1, v'_1, v_2, v'_2, y_1, \dots, y_t, y'_1, \dots, y'_{t_2}\}$. As $\sum (S' \setminus \{v\}, G') = \sum (S', G') - d_{G'}(v) = \sum (S', G') - 1, \sum (S' \setminus \{v\}, G) \le \sum (S' \setminus \{v\}, G') + 1 = \sum (S', G') \le m(G')$. So, $\sum (S, G) = \sum (S' \setminus \{v\}, G) + d_G(v_1) + d_G(v'_1) + d_G(v'_2) + d_G(v'_2) + d_G(y_1) + \dots + d_G(y'_t) + d_G(y'_t) + \dots + d_G(y'_{t_2}) \le m(G') + t + t_2 + 6 = m(G)$. Then we have $a(G) \ge |S| = |S'| + t + t_2 + 3 = a(G') + t + t_2 + 3$. By Theorem 1.2, we have $\gamma_2(G') \le a(G') + 1$ since G' is a non-trivial tree. Accordingly,

$$\gamma_2(G) \le \gamma_2(G') + t + t_2 + 3 \le a(G') + t + t_2 + 4 \le a(G) + 1.$$

Case 3. $h(G) \ge 3$.

Assume that there is a branch vertex $u \in V(C_{\ell})$ such that T_u contains a leaf v_1 satisfying that $d_G(u, v_1) = h(G)$. Let $P = v_1v_2v_3...u$ be the shortest path connecting v_1 and u. Since $h(G) \ge 3$, we have $u \ne v_i$ for each $i \in [3]$. If $d_G(v_2) \ge 3$, then v_2 is a strong support vertex. By Claim 3.1, $\gamma_2(G) \le a(G) + 1$. So, we assume that $d_G(v_2) = 2$. Assume that v_3 have s leaf-neighbors.

If $s \ge 1$, we denote these leaf-neighbors of v_3 with x_1, x_2, \ldots, x_s . Let $\theta_{v_3} = N_G(v_3) \setminus \{v_4, x_1, x_2, \ldots, x_s\}$. Then $|\theta_{v_3}| \ge 1$, as $v_2 \in \theta_{v_3}$. If $|\theta_{v_3}| \ge 2$, let $\theta_{v_3} \setminus \{v_2\} = \{y_1, \ldots, y_t\}$. Each vertex in θ_{v_3} must be a support vertex since $d_G(u, v_1) = h(G)$. By Claim 3.1, it suffices to prove that $d(y_i) = 2$ for each $i \in [t]$. Let z_i be the only child of y_i for each $i \in [t]$. It is clear that $d_G(v_3) = s + t + 2$, since the subtree T_u is rooted at u and $u \neq v_3$.

Now, let $G' = G - \{v_1, v_2, x_1, x_2, \dots, x_s, y_1, \dots, y_t, z_1, \dots, z_t\}$. So m(G') = m(G) - s - 2t - 2 and $d_{G'}(v_3) = 1$. By Observations 1 and 2, v_3 belongs to any minimum 2-dominating set and optimal annihilation set of G'. Let D' be a γ_2 -set of G' and S' be an optimal annihilation set of G'. Hence, $D = D' \cup \{v_1, x_1, x_2, \dots, x_s, z_1, \dots, z_t\}$ is a 2-dominating set of G, which gives that $\gamma_2(G) \leq |D| = |D'| + s + t + 1 = \gamma_2(G') + s + t + 1$. Let $S = (S' \setminus \{v_3\}) \cup \{v_1, v_2, x_1, x_2, \dots, x_s, z_1, \dots, z_t\}$. Then $\sum (S, G) = \sum (S', G) - d_G(v_3) + d_G(v_1) + d_G(v_2) + d_G(x_1) + \dots + d_G(x_s) + d_G(z_1) + \dots + d_G(z_t) \leq (\sum (S', G') + d_G(v_3) - 1) - d_G(v_3) + s + t + 3 \leq m(G') + s + t + 2 = m(G) - t \leq m(G)$. So $a(G) \geq |S| = |S'| + s + t + 1 = a(G') + s + t + 1$. Obviously, G' is a unicyclic graph of order n' < n. By the induction hypothesis, $\gamma_2(G') \leq a(G') + 1$. Then

$$\gamma_2(G) \le \gamma_2(G') + s + t + 1 \le a(G') + s + t + 2 \le a(G) + 1.$$

This completes the proof. \Box

References

- [1] Y. Caro, Y. Roditty, A note on the k-domination number of a graph, Int. J. Math. Math. Sci. 13 (1990), 205–206.
- M. Chellali, O. Favaron, A. Hansberg, L. Volkmann, k-domination and k-independence in graphs: a survey, Graphs Combin. 28 (2012), 1–55.
- [3] E. DeLaViña, Written on the wall II, (conjectures of Graffiti.pc), http://cms.uhd.edu/faculty/delavinae/research/wowii.
- [4] W. J. Desormeaux, M. A. Henning, D. F. Rall, A. Yeo, Relating the annihilation number and the 2-domination number of a tree, Discrete Math. 319 (2014), 15–23.
- [5] J. F. Fink, M. S. Jacobson, *n-domination in graphs, in: Y. Alavi, A.J. Schwenk (Eds.)*, Graph Theory with Applications to Algorithms and Computer Science, Wiley, New York, pp. (1985), 283–300.
- [6] M. Jakovac, Relating the annihilation number and the 2-domination number of block graphs, Discrete Appl. Math. 260 (2019), 178–187.
- [7] J. Lyle, S. Patterson, A note on the annihilation number and 2-domination number of a tree, J. Comb. Optim. 33 (2017), 968–976.
- [8] R. Pepper, *Binding Independence*, Ph.D. Dissertation, University of Houston, 2004.
- [9] J. Yue, S. Z. Zhang, Y. P. Zhu, S. Klavžar, Y. T. Shi, The annihilation number does not bound the 2-domination number from the above, Discrete Math. 343(6) (2020), 111707.