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Xinying Huaa

aSchool of Mathematics, Nanjing University of Aeronautics & Astronautics, Nanjing, Jiangsu 210016, PR China

Abstract. The 2-domination number γ2(G) of a graph G is the minimum cardinality of a set S ⊆ V(G) such
that every vertex from V(G) \ S is adjacent to at least two vertices in S. The annihilation number a(G) is the
largest integer k such that the sum of the first k terms of the non-decreasing degree sequence of G is at most
the number of its edges. It was conjectured that γ2(G) ≤ a(G)+1 holds for every non-trivial connected graph
G. The conjecture was earlier confirmed for graphs of minimum degree 3, trees, block graphs and some
bipartite cacti. However, a class of cacti were found as counterexample graphs recently by Yue et al. [9] to
the above conjecture. In this paper, we consider the above conjecture from the positive side and prove that
this conjecture holds for all unicyclic graphs.

1. Introduction

Given a graph G, we denote by V(G) and E(G) the set of its vertices and edges, respectively. Also, we
let n(G) = |V(G)| and m(G) = |E(G)|. The open neighbourhood of a vertex v ∈ V(G) is NG(v) = {u|uv ∈ E(G)}.
We denote the degree of a vertex v by dG(v) = |NG(v)|. For a pair of vertices u, v ∈ V(G), the distance dG(u, v)
between u and v is the length of a shortest (u, v)-path in G. A path P = x1x2 . . . xp (p ≥ 3) in a graph G is said
to be a pendent path if dG(x1) = 1, dG(x2) = · · · = dG(xp−1) = 2 and dG(xp) ≥ 3. In particular, when p = 2, P
is said to be a pendent edge and x1 is said to be a leaf or pendent vertex. The above x2 is said to be a support
vertex. Further, if uvw is a 3-vertex path with dG(u) = 1 = dG(w) and dG(v) ≥ 2, then v is said to be a strong
support vertex. A vertex of degree at least 3 is called a branch vertex. If X ⊆ V(G), then G − X denotes the
graph obtained from G by deleting all vertices in X and all edges incident with them. A connected graph is
unicyclic if it contains exactly one cycle. A unicyclic graph is a sun if each vertex on the cycle is connected
to exactly one leaf.

For a graph G of order n and a positive integer k(≤ n − 1), a vertex set D ⊆ V(G) is called a k-dominating
set if each vertex not in D has at least k neighbors in D. The k-domination number γk(G) is the minimum
cardinality of such a set D. A k-dominating set of cardinality γk(G) is called a γk-set of G. A 1-dominating
set is just the well-studied dominating set. The notion of the k-dominating set was introduced by Fink and
Jacobson [5], and a survey on k-dominating set can be found in [2].
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For a vertex set S ⊆ V(G), we define
∑

(S,G) =
∑
v∈S

dG(v). Then S is an annihilation set of G if
∑

(S,G) ≤ m(G).

Let v1, v2, . . . , vn be an ordering of the vertices of G such that dG(v1) ≤ dG(v2) ≤ · · · ≤ dG(vn). The annihilation

number a(G), firstly introduced by Pepper in [8], is the largest integer k such that
k∑

i=1
dG(vi) ≤ m(G). Further,

S is an optimal annihilation set if |S| = a(G) and max{dG(v)|v ∈ S} ≤ min{d(u)|u ∈ V(G)\S}.
A conjecture relating the 2-domination number and annihilation number of a graph reads as follows.

Conjecture 1.1 ([3, 4]). If G is a non-trivial connected graph, then γ2(G) ≤ a(G) + 1.

From the above definition of annihilation set, every graph satisfies a(G) ≥ ⌊ n
2 ⌋. Also, it was observed

in [1] that γ2(G) ≤ ⌊ n
2 ⌋ for δ(G) ≥ 3. Hence, if δ(G) ≥ 3, then Conjecture 1.1 holds. It remains for us to study

this conjecture for connected graphs with δ(G) = 1 or 2. Inspired by this, Desormeaux et al. [4] studied
Conjecture 1.1 for trees, and their result is stated as follows.

Theorem 1.2 ([4]). If G is a non-trivial tree, then γ2(G) ≤ a(G) + 1.

It is interesting to note that Theorem 1.2 was re-proven by Lyle [7] by employing a new method in 2017.
Later, the result of Theorem 1.2 was extended to the family of block graphs by Jakovac [6]. More recently,
Yue et al. [9] disproved Conjecture 1.1 by giving a class of counterexample cacti with leaves. Nevertheless,
it still makes sense to consider some special graph family that satisfy Conjecture 1.1. Along this line, Yue et
al. [9] proved Conjecture 1.1 holds for a class of bipartite cacti. In this paper, we investigate Conjecture 1.1
for unicyclic graphs, and we obtain the following result.

Theorem 1.3. Let G be a unicyclic graph. Then γ2(G) ≤ a(G) + 1.

2. Preliminary results

In this section, we introduce two observations and a critical lemma.
We begin with the following two observations, which can be deduced from the definitions of 2-

dominating set and optimal annihilation set immediately.

Observation 1. Any 2-dominating set of a graph G contains all leaves.

Observation 2 ([9]). Any optimal annihilation set of a connected graph G of order n(≥ 3) contains all leaves of G.

For a unicyclic graph G with Cℓ = u1u2 . . . uℓu1 being its unique cycle, we denote by Tu j the component
containing u j in G − {u j−1,u j+1} (If j = 1, we set u j−1 = uℓ and if j = ℓ, then u j+1 = u1). Such a Tu j is also said
to be a subtree of G, rooted at u j.

Definition 2.1. The subdivided star Ss(K1,s+t,u)(s ≥ 1, t ≥ 0) is the graph on 2s+t+1 vertices which is constructed
from the star K1,s+t (with u being the centre) by subdividing any s edges exactly once. In particular, when s = 1
and t = 0, Ss(K1,s+t,u) � P3 with u being one end-vertex. When s = 1 and t = 1, Ss(K1,s+t,u) � P4 with u being a
2-degree vertex. When s = 2 and t = 0, Ss(K1,s+t,u) � P5 with u being the central vertex. When s + t ≥ 3, u is the
maximum degree vertex of Ss(K1,s+t,u).

Lemma 2.2. Let G be a unicyclic graph with the unique cycle being C. If C contains a vertex u such that Tu is a
subdivided star Ss(K1,s+t,u)(s ≥ 2), then γ2(G) ≤ a(G) + 1.

Proof. For each i ∈ [s], let uv′i vi be a pendent path attached to u and for each j ∈ [t], let w j be the leaf adjacent
to u if t ≥ 1, see Figure 1. Let G′ = G−V(Ss(K1,s+t,u)). Then G′ is a non-trivial tree with m(G′) = m(G)−2s−t−2.
By Theorem 1.2, we have γ2(G′) ≤ a(G′) + 1. Let D′ be a γ2-set of G′. From Figure 1 and the definition of
2-dominating set, it can be seen that D = D′∪{u, v1, v2, . . . , vs,w1, . . . ,wt} is a 2-dominating set of G, yielding



X. Hua / Filomat 38:2 (2024), 637–643 639

that γ2(G) ≤ |D| = |D′|+ s+ t+ 1 = γ2(G′)+ s+ t+ 1. Suppose that S′ is an optimal annihilation set of G′ and
let S = S′ ∪ {v′1, v1, . . . , vs,w1, . . . ,wt}. As s ≥ 2,∑

(S,G) =
∑

(S′,G) + dG(v′1) + dG(v1) + · · · + dG(vs) + dG(w1) + · · · + dG(wt)

≤

(∑
(S′,G′) + 2

)
+ 2 + s + t

≤ m(G′) + 4 + s + t
≤ m(G) − s + 2
≤ m(G).

So a(G) ≥ |S| = |S′|+s+t+1 = a(G′)+s+t+1. This gives γ2(G) ≤ γ2(G′)+s+t+1 ≤ a(G′)+s+t+2 ≤ a(G)+1.

Figure 1: The structure of G in Lemma 2.2, where G0 is a unicyclic subgraph of G.

3. Proof of Theorem 1.3

In this section we prove Theorem 1.3.

Proof. We proceed by induction on n = n(G). If n = 3, then G � C3 and γ2(C3) = 2 = a(C3) + 1. So, we let
n ≥ 4 and assume that for every connected unicyclic graph G′ of order n′ < n, we have γ2(G′) ≤ a(G′) + 1.

If G is a cycle, it’s easy to check that the statement is true. Thus, we may suppose that G contains one
cycle as a proper subgraph. DefineL(G) = {v ∈ V(G)|dG(v) = 1}. Since G is a unicyclic graph not isomorphic
to a cycle, L(G) , ∅. Let Cℓ be the unique cycle in G. For each u ∈ V(Cℓ) with dG(u) ≥ 3, we define
h(u) = max{dG(u, x)|x ∈ L(Tu)} and h(G) = max{h(u)|u ∈ V(Cℓ) and dG(u) ≥ 3}.

We first prove the following claim.

Claim 3.1. Let u be a branch vertex on V(Cℓ) such that Tu has a leaf v1 with dG(v1,u) = h(G). Assume that v2 is the
unique neighbour of v1 and v2 is a strong support vertex. Then γ2(G) ≤ a(G) + 1.

Proof. As v2 is a strong support vertex, v2 has at least two leaf-neighbours. Let v1, z1, . . . , zt (t ≥ 1) be
leaf-neighbours of v2 and G′ = G − {v1, v2, z1, . . . , zt}. Then m(G′) = m(G) − dG(v2). Obviously, G′ has at least
two vertices. Let D′ be a γ2-set of G′. Then D = D′ ∪ {v1, z1, . . . , zt} is a 2-dominating set of G, which implies
γ2(G) ≤ |D| = |D′|+ t+1 = γ2(G′)+ t+1. Let S′ be an optimal annihilation set of G′ and S = S′∪{v1, z1, . . . , zt}.
Then∑

(S,G) =
∑

(S′,G) + dG(v1) + dG(z1) + · · · + dG(zt)

≤

(∑
(S′,G′) + dG(v2) − t − 1

)
+ t + 1

≤ m(G′) + dG(v2)
≤ m(G),
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yielding that a(G) ≥ |S| = |S′| + t + 1 = a(G′) + t + 1. If G′ is a non-trivial tree, then by Theorem 1.2,
γ2(G′) ≤ a(G′)+ 1. If G′ is a unicyclic graph, then by the induction hypothesis, γ2(G′) ≤ a(G′)+ 1. Therefore,
γ2(G) ≤ γ2(G′) + t + 1 ≤ a(G′) + t + 2 ≤ a(G) + 1.

We will complete the proof by considering the following cases.

Case 1. h(G) = 1.

Since h(G) = 1, every vertex outside of Cℓ is a leaf attached to some vertex of Cℓ. Clearly, each vertex of
Cℓ is adjacent to at most one leaf. For otherwise, by Claim 3.1, we have γ2(G) ≤ a(G) + 1, as claimed. So, G
is a sun or a unicyclic graph obtained from the sun by removing some leaves.

First, we assume that G is a sun. Let V(Cℓ) = {u1,u2, . . . ,uℓ} and wi is the leaf adjacent to ui for each i ∈ [ℓ].
Clearly, m(G) = 2ℓ. Take D = {u1,u4, . . . ,u3m+1,w1, w2, . . . ,wℓ} (m ∈ [ ℓ−3

3 ,
ℓ−1

3 ]). Then D is a γ2-set of G, and
henceγ2(G) ≤ ⌈ ℓ3 ⌉+ℓ. Set S = {u1,u2, . . . ,u⌈ ℓ3 ⌉−1, w1,w2, . . . ,wℓ}. Then

∑
(S,G) = (⌈ ℓ3 ⌉−1)×3+ℓ ≤ 2ℓ−1 < m(G),

yielding that a(G) ≥ |S| = ⌈ ℓ3 ⌉ + ℓ − 1. So, γ2(G) ≤ a(G) + 1.
Second, we assume that G is not a sun. There exists a 3-degree vertex, say w, on Cℓ that has a 2-degree

neighbour, say v, on Cℓ. Denote the pendent vertex adjacent to w with w1. Set G′ = G − {w,w1}. Then
m(G′) = m(G)− 3. It follows from Theorem 1.2 that γ2(G′) ≤ a(G′)+ 1, since G′ is a non-trivial tree. Let D′ be
a γ2-set of G′ and S′ be an optimal annihilation set of G′. Since dG′ (v) = 1, by Observations 1 and 2, we have
v ∈ D′ and v ∈ S′. Then D = D′∪{w1} is a 2-dominating set of G and hence γ2(G) ≤ |D| = |D′|+1 = γ2(G′)+1.
Also, we have

∑
(S′,G) ≤

∑
(S′,G′) + 2. Take S = S′ ∪ {w1}. Then

∑
(S,G) =

∑
(S′,G) + dG(w1) ≤

(∑
(S′,G′) +

2
)
+ 1 ≤ m(G′) + 3 = m(G) and hence a(G) ≥ |S| = |S′| + 1 = a(G′) + 1. Thus,

γ2(G) ≤ γ2(G′) + 1 ≤ a(G′) + 2 ≤ a(G) + 1.

Case 2. h(G) = 2.

Assume that there exists a branch vertex u on Cℓ such that Tu contains a leaf v1 satisfying that dG(v1,u) = 2.
Let v2 be the unique neighbour of v1. If dG(v2) ≥ 3, then v2 is a strong support vertex. By Claim 3.1, we have
γ2(G) ≤ a(G) + 1. So, we may assume that dG(v2) = 2. By the same reason, if NG(u)\

(
V(Cℓ) ∪ {v2}

)
, ∅, then

for each x ∈ NG(u)\
(
V(Cℓ) ∪ {v2}

)
, we have dG(x) = 1 or dG(x) = 2. So, Tu � Ss(K1,s+t,u)(s ≥ 1, t ≥ 0). If s ≥ 2,

then we conclude that γ2(G) ≤ a(G) + 1 by Lemma 2.2. So, we assume that s = 1 and t ≥ 0. Assume that
V(S1(K1,1+t,u)) = {u, v1, v2, y1, . . . , yt}, where u is the vertex defined as in Defintion 2.1, uv2v1 is a pendent
path and y1, · · · , yt are leaves attached to u if t ≥ 1.

We consider the following subcases.

Subcase 2.1. There exists at least a vertex of degree 2, say v, adjacent to u on Cℓ.

Figure 2: The local structure of G when u has a 2-degree neighbour v on Cℓ.
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Let NG(v)\{u} = {w}. First, we assume that dG(w) = 2. Then G can be viewed as the graph shown in Figure
2(a). If ℓ ≥ 4, we set G′ = G−

(
V(S1(K1,1+t,u))∪ {v}

)
. Then G′ is a non-trivial tree and m(G′) = m(G)− (t+ 5).

According to Theorem 1.2, we have γ2(G′) ≤ a(G′) + 1. Let D′ be a γ2-set of G′ and S′ be an optimal
annihilation set of G′. Since dG′ (w) = 1, we have w ∈ D′ and w ∈ S′ by Observations 1 and 2. Then
D = D′ ∪ {u, v1, y1, . . . , yt} is a 2-dominating set of G. So γ2(G) ≤ |D| = |D′| + t + 2 = γ2(G′) + t + 2. Take
S = S′ ∪ {v1, v2, y1, . . . , yt}. Then

∑
(S,G) =

∑
(S′,G)+ dG(v1)+ dG(v2)+ dG(y1)+ · · ·+ dG(yt) ≤

(∑
(S′,G′)+ 2

)
+

(t + 3) ≤ m(G′) + t + 5 = m(G), which implies a(G) ≥ |S| = |S′| + t + 2 = a(G′) + t + 2. Therefore,

γ2(G) ≤ γ2(G′) + t + 2 ≤ a(G′) + t + 3 ≤ a(G) + 1.

If ℓ = 3, then m(G) = t + 5. Take D = {u, v, v1, y1, . . . , yt} and hence D is a minimum 2-dominating set of G.
Then γ2(G) ≤ t+ 3. Take S = {v, v1, v2, y1, . . . , yt}. Then

∑
(S,G) = t+ 5 = m(G) and we have a(G) ≥ |S| = t+ 3.

So, γ2(G) ≤ t + 3 ≤ a(G) < a(G) + 1.
Second, we assume that dG(w) ≥ 3 and h(w) = 1. Then G can be viewed as the graph shown in Figure 2(b).

Let NG(w)\V(Cℓ) = {w1, . . . ,wp} (p ≥ 1).
Suppose first that p = 1. If ℓ ≥ 4, we set G′ = G−

(
V(S1(K1,1+t,u))∪ {v,w1}

)
. Obviously, G′ is a non-trivial

tree and m(G′) = m(G) − (t + 6). Let D′ be a γ2-set of G′ and S′ be an optimal annihilation set of G′. Since
dG′ (w) = 1, we obtain w ∈ D′ and w ∈ S′ by Observations 1 and 2. Let D = D′ ∪ {u, v1, y1, . . . , yt,w1}

and hence D is a 2-dominating set of G. Then γ2(G) ≤ |D| = |D′| + t + 3 = γ2(G′) + t + 3. Set S =
(S′\{w}) ∪ {v, v1, v2, y1, . . . , yt,w1}. Since

∑
(S′\{w},G) ≤

∑
(S′\{w},G′) + 1, we have

∑
(S,G) =

∑
(S′\{w},G) +

dG(v)+ dG(v1)+ dG(v2)+ dG(y1) · · ·+ dG(yt)+ dG(w1) ≤
(∑

(S′\{w},G′)+ 1
)
+ (t+ 6) =

∑
(S′,G′)− dG′ (w)+ t+ 7 ≤

m(G′) + t + 6 = m(G) and we have a(G) ≥ |S| = |S′| + t + 3 = a(G′) + t + 3. Since G′ is a non-trivial tree, by
Theorem 1.2, we have γ2(G′) ≤ a(G′) + 1, and hence

γ2(G) ≤ γ2(G′) + t + 3 ≤ a(G′) + t + 4 ≤ a(G) + 1.

If ℓ = 3, then m(G) = t + 6. Take D = {u, v,w1, v1, y1, . . . , yt} and hence D is a γ2-set of G. Then γ2(G) ≤ t + 4.
Take S = {v,w1, v1, v2, y1, . . . , yt}. Then

∑
(S,G) = t + 6 = m(G) and we have a(G) ≥ |S| = t + 4. Accordingly,

γ2(G) ≤ t + 4 ≤ a(G) < a(G) + 1.
Now, let p ≥ 2. Set G′ = G − {w,w1,w2, . . . ,wp}. Then G′ is a non-trivial tree and m(G′) = m(G) − p − 2.

Let D′ be a γ2-set of G′ and S′ be an optimal annihilation set of G′. Then D = D′ ∪ {w1,w2, . . . ,wp} is a
2-dominating set of G, yielding that γ2(G) ≤ |D| = |D′| + p = γ2(G′) + p. Take S = S′ ∪ {w1,w2, . . . ,wp}.
Then

∑
(S,G) =

∑
(S′,G) + dG(w1) + dG(w2) + · · · + dG(wp) ≤

(∑
(S′,G′) + 2

)
+ p ≤ m(G′) + p + 2 = m(G). So,

a(G) ≥ |S| = |S′| + p = a(G′) + p. As G′ is a non-trivial tree, we have γ2(G′) ≤ a(G′) + 1 by Theorem 1.2.
Therefore,

γ2(G) ≤ γ2(G′) + p ≤ a(G′) + p + 1 ≤ a(G) + 1.

Finally, let dG(w) ≥ 3 and h(w) = 2. By Claim 3.1, it suffices to prove Tw � Ss1 (K1,s1+t1 ,w) (s1 ≥ 1, t1 ≥ 0). If
s1 ≥ 2, then by Lemma 2.2 we have γ2(G) ≤ a(G)+1. So, we assume that s1 = 1. Now, G can be viewed as the
graph shown in Figure 2(c). First, we assume that ℓ ≥ 4. Let G′ = G−

(
V(S1(K1,1+t,u))∪V(S1(K1,1+t1 ,w))∪{v}

)
.

Then m(G′) = m(G) − (t + t1 + 8). If n′ = |G′| ≥ 2, then G′ is a non-trivial tree. Let D′ be a γ2-set of G′. Then
D = D′∪{u, w, v1, v′1, y1, . . . , yt, y′1, . . . , y

′

t1
} is a 2-dominating set of G. Therefore, γ2(G) ≤ |D| = |D′|+t+t1+4 =

γ2(G′) + t + t1 + 4. Let S′ be an optimal annihilation set of G′, we have
∑

(S′,G) ≤
∑

(S′,G′) + 2. Take
S = S′∪{v1, v′1, v2, v′2, y1, . . . , yt, y′1, . . . , y

′

t1
}. Then

∑
(S,G) ≤

(∑
(S′,G′)+2

)
+(t+t1+6) ≤ m(G′)+t+t1+8 = m(G)

and we have a(G) ≥ |S| = |S′| + t + t1 + 4 = a(G′) + t + t1 + 4. Since G′ is a non-trivial tree, it follows from
Theorem 1.2 that γ2(G′) ≤ a(G′) + 1. Hence,

γ2(G) ≤ γ2(G′) + t + t1 + 4 ≤ a(G′) + t + t1 + 5 ≤ a(G) + 1.

If n′ = |G′| = 1, then ℓ = 4 and m(G) = t + t1 + 8. If ℓ = 3, then m(G) = t + t1 + 7. Upon the case when n′ = 1
or ℓ = 3, we take D = {u, w, v1, v′1, y1, . . . , yt, y′1, . . . , y

′

t1
} and hence D is a minimum 2-dominating set of G.

Then γ2(G) ≤ t+ t1 + 4. Take S = {v1, v′1, v2, v′2, y1, . . . , yt, y′1, . . . , y
′

t1
}. Then

∑
(S,G) = t+ t1 + 6 < m(G) and we

have a(G) ≥ |S| = t + t1 + 4. Therefore, γ2(G) ≤ t + t1 + 4 ≤ a(G) < a(G) + 1.
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Subcase 2.2. The vertex u has a neighbour v on V(Cℓ) such that h(v) = 1 and NG(v)\V(Cℓ) = {z1, · · · , zq} (q ≥ 1).

Figure 3: The local structure of G in Subcases 2.2 and 2.3, respectively.

In this subcase, G can be viewed as the graph shown in the Figure 3(a). First, we assume that q = 1.
Take G′ = G −

(
V(S1(K1,1+t,u)) ∪ {v, z1}

)
and m(G′) = m(G) − (t + 6). If n′ = |G′| = 1, then G is identical to the

graph as shown in Figure 2(b) for the case of ℓ = 3 and p = 1. So, γ2(G) ≤ a(G) + 1 by our previous proof
in Subcase 2.1. Now, we suppose that n′ ≥ 2. Thus, G′ is a non-trivial tree. Let D′ be a γ2-set of G′. Then
D = D′∪{u, v1, y1, . . . , yt, z1} is a 2-dominating set of G, and hence γ2(G) ≤ |D| = |D′|+t+3 = γ2(G′)+t+3. Let
S′ be an optimal annihilation set of G′ and S = S′ ∪ {v1, v2, y1, . . . , yt, z1}. Then

∑
(S,G) =

∑
(S′,G) + (t + 4) ≤(∑

(S′,G′)+ 2
)
+ (t+ 4) ≤ m(G′)+ t+ 6 = m(G) and we have a(G) ≥ |S| = |S′|+ t+ 3 = a(G′)+ t+ 3. Since G′ is

a non-trivial tree, we obtain γ2(G′) ≤ a(G′) + 1 according to Theorem 1.2. Thus,

γ2(G) ≤ γ2(G′) + t + 3 ≤ a(G′) + t + 4 ≤ a(G) + 1.

Now, let q ≥ 2. Set G′ = G − {v, z1, z2, . . . , zq}. Then G′ is a non-trivial tree and m(G′) = m(G) − q − 2.
Let D′ be a γ2-set of G′. Then D = D′ ∪ {z1, z2, . . . , zq} is a 2-dominating set of G, yielding that γ2(G) ≤
|D| = |D′| + q = γ2(G′) + q. Let S′ be an optimal annihilation set of G′ and let S = S′ ∪ {z1, z2, . . . , zq}.
Then

∑
(S,G) =

∑
(S′,G) + dG(z1) + dG(z2) + · · · + dG(zq) ≤

(∑
(S′,G′) + 2

)
+ q ≤ m(G′) + q + 2 = m(G). So,

a(G) ≥ |S| = |S′| + q = a(G′) + q. As G′ is a non-trivial tree, we have γ2(G′) ≤ a(G′) + 1 by Theorem 1.2. Thus,

γ2(G) ≤ γ2(G′) + q ≤ a(G′) + q + 1 ≤ a(G) + 1.

Subcase 2.3. The vertex u has a neighbour v ∈ V(Cℓ) such that h(v) = 2.

By Claim 3.1, it suffices to prove that Tv � Ss2 (K1,s2+t2 , v) (s2 ≥ 1, t2 ≥ 0). If s2 ≥ 2, then by Lemma 2.2,
we have γ2(G) ≤ a(G) + 1. So, we assume that s2 = 1. Now, G can be viewed as the graph shown in
Figure 3(b). Let G′ = G−

(
V(S1(K1,1+t,u))∪ (V(S1(K1,1+t2 , v))\{v})

)
. Then G′ is a tree with at least two vertices

and m(G′) = m(G)− (t+ t2 + 6). Let D′ be a γ2-set of G′ and S′ be an optimal annihilation set of G′. It follows
from Observations 1 and 2 that v belongs to any γ2-set and optimal annihilation set of G′ since it is a leaf
in G′. Now we let D = D′ ∪ {u, v1, v′1, y1, . . . , yt, y′1, . . . , y

′

t2
} and hence D is a 2-dominating set of G. Then

γ2(G) ≤ |D| = |D′| + t + t2 + 3 = γ2(G′) + t + t2 + 3. Take S = (S′\{v}) ∪ {v1, v′1, v2, v′2, y1, . . . , yt, y′1, . . . , y
′

t2
}.

As
∑

(S′\{v},G′) =
∑

(S′,G′) − dG′ (v) =
∑

(S′,G′) − 1,
∑

(S′\{v},G) ≤
∑

(S′\{v},G′) + 1 =
∑

(S′,G′) ≤ m(G′).
So,
∑

(S,G) =
∑

(S′\{v},G) + dG(v1) + dG(v′1) + dG(v2) + dG(v′2) + dG(y1) + · · · + dG(yt) + dG(y′1) + · · · + dG(y′t2
) ≤

m(G′) + t + t2 + 6 = m(G). Then we have a(G) ≥ |S| = |S′| + t + t2 + 3 = a(G′) + t + t2 + 3. By Theorem 1.2, we
have γ2(G′) ≤ a(G′) + 1 since G′ is a non-trivial tree. Accordingly,

γ2(G) ≤ γ2(G′) + t + t2 + 3 ≤ a(G′) + t + t2 + 4 ≤ a(G) + 1.
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Case 3. h(G) ≥ 3.

Assume that there is a branch vertex u ∈ V(Cℓ) such that Tu contains a leaf v1 satisfying that dG(u, v1) =
h(G). Let P = v1v2v3 . . . u be the shortest path connecting v1 and u. Since h(G) ≥ 3, we have u , vi for each
i ∈ [3]. If dG(v2) ≥ 3, then v2 is a strong support vertex. By Claim 3.1, γ2(G) ≤ a(G) + 1. So, we assume that
dG(v2) = 2. Assume that v3 have s leaf-neighbors.

If s ≥ 1, we denote these leaf-neighbors of v3 with x1, x2, . . . , xs. Let θv3 = NG(v3)\{v4, x1, x2, . . . , xs}. Then
|θv3 | ≥ 1, as v2 ∈ θv3 . If |θv3 | ≥ 2, let θv3\{v2} = {y1, . . . , yt}. Each vertex in θv3 must be a support vertex since
dG(u, v1) = h(G). By Claim 3.1, it suffices to prove that d(yi) = 2 for each i ∈ [t]. Let zi be the only child of yi
for each i ∈ [t]. It is clear that dG(v3) = s + t + 2, since the subtree Tu is rooted at u and u , v3.

Now, let G′ = G−{v1, v2, x1, x2, . . . , xs, y1, . . . , yt, z1, · · · , zt}. So m(G′) = m(G)− s−2t−2 and dG′ (v3) = 1. By
Observations 1 and 2, v3 belongs to any minimum 2-dominating set and optimal annihilation set of G′. Let
D′ be a γ2-set of G′ and S′ be an optimal annihilation set of G′. Hence, D = D′ ∪ {v1, x1, x2, . . . , xs, z1, . . . , zt}

is a 2-dominating set of G, which gives that γ2(G) ≤ |D| = |D′| + s + t + 1 = γ2(G′) + s + t + 1. Let
S = (S′\{v3})∪{v1, v2, x1, x2, . . . , xs, z1, . . . , zt}. Then

∑
(S,G) =

∑
(S′,G)−dG(v3)+dG(v1)+dG(v2)+dG(x1)+ · · ·+

dG(xs)+ dG(z1)+ · · ·+ dG(zt) ≤ (
∑

(S′,G′)+ dG(v3)− 1)− dG(v3)+ s+ t+ 3 ≤ m(G′)+ s+ t+ 2 = m(G)− t ≤ m(G).
So a(G) ≥ |S| = |S′| + s + t + 1 = a(G′) + s + t + 1. Obviously, G′ is a unicyclic graph of order n′ < n. By the
induction hypothesis, γ2(G′) ≤ a(G′) + 1. Then

γ2(G) ≤ γ2(G′) + s + t + 1 ≤ a(G′) + s + t + 2 ≤ a(G) + 1.

This completes the proof.
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