Filomat 38:2 (2024), 661–668 https://doi.org/10.2298/FIL2402661O

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Strict fixed point and Ulam-Hyers stability of multivalued asymptotically regular mappings

Dolapo Muhammed Oyetunbi^a, Abdul Rahim Khan^b, Khairul Saleh^{c,*}

^aDepartment of Mathematics and Statistics, University of Ottawa, Canada ^bDepartment of Mathematics and Statistics, Institute of Southern Punjab, Multan, Pakistan ^cDepartment of Mathematics, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

Abstract. In this paper, we establish the existence and uniqueness of strict fixed point for an asymptotically regular multivalued mapping in a metric space. We also study the Ulam-Hyers stability, well-posedness and data dependence of the associated strict fixed point problem. We give an example to illustrate our results. Our work extends and complements important results existing in the literature.

1. Introduction

Let (X, d) be a metric space. We denote by P(X), B(X) and CB(X) the family of nonempty subsets of X, the family of bounded subsets of X and the family of closed and bounded subsets of X, respectively. For $\mathcal{B}, \mathcal{G} \subset X$, we adopt the following notations and definitions:

• The distance from $m \in X$ to \mathcal{B} ;

 $d(m, \mathcal{B}) := \inf\{d(m, w) : w \in \mathcal{B}\}.$

• The diameter of \mathcal{B} and \mathcal{G} ;

 $\delta(\mathcal{B},\mathcal{G}) := \sup\{d(m,w) : m \in \mathcal{B}, w \in \mathcal{G}\}.$

• *The Hausdorff metric on* CB(X);

 $H(\mathcal{B},\mathcal{G}) := \max\{\sup_{m\in\mathcal{B}} d(m,\mathcal{G}), \sup_{q\in\mathcal{G}} d(q,\mathcal{B})\}.$

For a multivalued mapping $F : X \to 2^X$, we say $m \in X$ is (i) a fixed point of F if $m \in Fm$; (ii) a strict fixed point of F if $Fm = \{m\}$. A strict fixed point is also referred to a stationary point [14] or an endpoint [3]. By Fix(F) and SFix(F), we mean the set of fixed points of F and the set of strict fixed points of F, respectively.

²⁰²⁰ Mathematics Subject Classification. Primary 47H 10, 47H 09

Keywords. Asymptotically regular, multivalued mapping, metric space, orbitally continuous, strict fixed point, Ulam-Hyers stability, well-posedness.

Received: 13 December 2022; Revised: 04 June 2023; Accepted: 19 July 2023

Communicated by Vasile Berinde

^{*} Corresponding author: Khairul Saleh

Email addresses: doyet074@uottawa.ca (Dolapo Muhammed Oyetunbi), abdulrahimkhan@isp.edu.pk (Abdul Rahim Khan), khairul@kfupm.edu.sa (Khairul Saleh)

Metric fixed point theory of a multivalued mapping was initiated by Markin [16] and Nadler [17]. Nadler, for example, established the existence of fixed point for a multivalued contraction. The existence of a fixed point does not guarantee the existence of a strict fixed point. Therefore, several authors (see [2], [3], [13], [14]) have studied the existence of strict fixed point for multivalued mappings.

In 1972, Reich proved the following strict fixed point result:

Theorem 1.1 ([23], [13]). Let (X, d) be a complete metric space and $F : X \to B(X)$ be a multivalued mapping. Suppose there exists $M \ge 0$ and $K \ge 0$ such that M + 2K < 1 and for each $m, w \in X$,

$$\delta(Fm, Fw) \le Md(m, w) + K[\delta(m, Fm) + \delta(w, Fw)].$$

Then F has a unique strict fixed point.

Recently, Górnicki[12] generalized the works of Geraghty [11] and Boyd and Wong[6] as follows:

Theorem 1.2. Let (X, d) be complete metric space and $F : X \to X$ be an asymptotically regular mapping. Suppose there exists $\varphi \in \mathcal{J}$ (See Definition 3.1) and $K \in [0, \infty)$ such that for each $m, w \in X$,

$$d(Fm, Fw) \le \varphi(d(m, w)) + K[d(m, Fm) + d(w, Fw)].$$
(2)

If F is orbitally continuous or k-continuous, then F has a unique fixed point $z \in X$. Moreover, for each $w \in X$, $F^n w \to z \text{ as } n \to \infty$.

Motivated by the results of Górnicki [12], Bisht [4], and Reich [23], we study the strict fixed point problem of a multivalued asymptotically regular mapping in a metric space. We also investigate the Ulam-Hyers stability, well-posedness and data dependence for an important consequence of our results.

2. Preliminaries

In this section, we state some needed definitions and lemmas.

Definition 2.1. Let $F : X \to P(X)$ be a multivalued mapping. For any $w_0 \in X$, $\{w_n\}$ is called orbital sequence of F if $w_{n+1} \in Fw_n$ for all n = 0, 1, 2, ...

Browder and Petryshyn [5] introduced the concept of asymptotic regularity for single-valued mappings. This notion is significant since several contractive mappings are asymptotically regular (see [6], [11]). Abbas et al. [1] studied single-valued asymptotically regular mappings in complex-valued metric spaces. The asymptotic regularity of multivalued mappings has been studied in [10], [20], [24] and [27].

Definition 2.2 ([24]). A multivalued mapping $F : X \to CB(X)$ is said to be asymptotically regular at w_0 if for each sequence $\{w_n\}$ such that $w_n \in Fw_{n-1}$, we have $\lim d(w_n, w_{n+1}) = 0$.

F is called asymptotically regular multivalued mapping if it is asymptotically regular at each point of X.

Example 2.3. Every multivalued contraction $F : X \to CB(X)$ with a strict fixed point is asymptotically regular as follows:

Let $p \in X$ *be a strict fixed point of* F*. Then for any orbital sequence* $\{w_n\}$ *,*

 $d(w_{n}, w_{n+1}) \leq d(w_{n}, p) + d(w_{n+1}, p)$ = $d(w_{n}, Fp) + d(w_{n+1}, Fp)$ $\leq H(Fw_{n-1}, Fp) + H(Fw_{n}, Fp)$ $\leq Md(w_{n-1}, p) + Md(w_{n}, p)$ \vdots $\leq M^{n}d(w_{0}, p) + M^{n+1}d(w_{0}, p).$

Taking limit as $n \to \infty$, we get $d(w_n, w_{n+1}) \to 0$. Hence F is asymptotically regular.

(1)

Following Deimling [9] and Ćirić [7], we have the forms of continuity of a multivalued mapping.

Definition 2.4. Let (X, d) be a metric space, $F : X \to CB(X)$ a multivalued mapping and $z \in X$. We say

- 1. F is Hausdorff-continuous(or simply H-continuous) if $H(Fw_n, Fz) \rightarrow 0$ whenever a sequence $\{w_n\}$ in X converges to z.
- 2. *F* is orbital *H*-continuous if $H(Fw_n, Fz) \rightarrow 0$ whenever any orbital sequence $\{w_n\}$ in X converges to *z*. Clearly, *H*-continuity implies orbital *H*-continuity.

Lemma 2.5 ([25]). Let \mathcal{B} be a nonempty bounded subset of X and $0 be given. Then for every <math>x \in X$, there exists $u \in \mathcal{B}$ such that

$$d(x, u) \ge p\delta(x, \mathcal{B}).$$

Lemma 2.6 ([26]). Let $F : X \to CB(X)$ a multivalued mapping. Let $m, w \in X$. If $w' \in Fw$, then we have

 $d(m, w') \le \delta(m, Gm) + H(Fm, Fw).$

3. Main Results

Throughout this section, we assume that *X* is a complete metric space unless stated otherwise. First, we define some classes of mappings.

Definition 3.1.

- 1. Let S be the family of functions $\alpha : [0, \infty) \to [0, 1)$ satisfying the condition $\alpha(t_n) \to 1$ implies $t_n \to 0$.
- 2. Let \mathcal{J} be the family of functions $\varphi : [0, \infty) \to [0, \infty)$ satisfying the conditions: (i) $\varphi(t) < t$ for all t > 0, (ii) φ is upper semi-continuous i.e. $t_n \to t \ge 0$ implies $\limsup \varphi(t_n) \le \varphi(t)$.

Theorem 3.2. Let $F : X \to CB(X)$ be an asymptotically regular mapping. Suppose there exists $\varphi \in \mathcal{J}$ and $K \in [0, \infty)$ such that for each $m, w \in X$,

$$\delta(Fm, Fw) \le \varphi(d(m, w)) + K[\delta(m, Fm) + \delta(w, Fw)].$$
(3)

If F is an orbitally H-continuous multivalued mapping, then F has a unique strict fixed point.

Proof. Let $\theta > 1$. Using Lemma 2.4, we can define a single-valued mapping f of X into itself such that $fm \in Fm$ for all $m \in X$, and

 $\delta(m, Fm) \leq \theta d(m, fm)$ for all $m \in X$.

Then, (3.1) implies

 $\begin{aligned} d(fm, fw) &\leq \delta(Fm, Fw) \\ &\leq \varphi(d(m, w)) + K[\delta(m, Fm) + \delta(w, Fw)] \\ &\leq \varphi(d(m, w)) + K\Theta[d(m, fm) + d(w, fw)] \end{aligned}$

for all $m, w \in X$. For any $w_0 \in X$, define $w_{n+1} = fw_n$. Then $w_{n+1} = fw_n \in Fw_n$, and w_{n+1} is an orbital sequence of F. It follows from the asymptotic regularity of F that

$$\lim_{n \to \infty} d(w_n, w_{n+1}) = 0. \tag{4}$$

Next, we show that $\{w_n\}$ is a Cauchy sequence. Suppose on the contrary that $\{w_n\}$ is not Cauchy. Then there exists an $\epsilon > 0$ and sequences of integers $\{m(k)\}, \{n(k)\}$ with $m(k) > n(k) \ge k$ such that for k = 1, 2, ..., we have

$$d(w_{m(k)}, w_{n(k)}) \geq \epsilon.$$

By choosing m(k) to be the smallest number exceeding n(k) for which (3.3) holds, we may assume that $d(w_{m(k)-1}, w_{n(k)}) < \epsilon$. Now,

$$\epsilon \le d(w_{m(k)}, w_{n(k)}) \le d(w_{m(k)}, w_{m(k)-1}) + d(w_{m(k)-1}, w_{n(k)}) < d(w_{m(k)}, w_{m(k)-1}) + \epsilon$$

Letting $k \to \infty$, it follows by asymptotic regularity of *F* that

$$\lim_{k \to \infty} d(w_{m(k)}, w_{n(k)}) = \epsilon.$$
(6)

Now,

$$\begin{aligned} d(w_n, w_m) &\leq d(w_n, w_{n+1}) + d(w_{n+1}, w_{m+1}) + d(w_{m+1}, w_m) \\ &= d(w_n, w_{n+1}) + d(fw_n, fw_m) + d(w_{m+1}, w_m) \\ &\leq d(w_n, w_{n+1}) + \varphi(d(w_n, w_m)) + d(w_{m+1}, w_m) \\ &+ K\theta[d(w_n, fw_n) + d(w_m, fw_m)] \\ &= \varphi(d(w_n, w_m)) + (K\theta + 1)[d(w_n, w_{n+1}) + d(w_m, w_{m+1})]. \end{aligned}$$

Taking limit as $k \to \infty$, it follows from upper semi-continuity of φ , (3.1) and (3.4) that

$$\epsilon = \lim_{k \to \infty} d(w_{n(k)}, w_{m(k)}) \le \limsup_{k \to \infty} \varphi(d(w_{n(k)}, w_{m(k)})) \le \varphi(\epsilon) < \epsilon.$$

This is a contradiction. Hence $\{w_n\}$ is a Cauchy sequence. Since *X* is a complete metric space, $\{w_n\}$ converges to $c \in X$.

Using Lemma 2.5, we have

$$\delta(c,Fc) \le d(c,w_n) + \delta(w_n,Fw_n) + H(Fw_n,Fc)$$

$$\le d(c,w_n) + \theta d(w_n,w_{n+1}) + H(Fw_n,Fc).$$
(7)

Thus, we get from (3.2), (3.5) and orbital continuity of *F* that $\delta(c, Fc) = 0$. Hence, *c* is a strict fixed point of *F*. Suppose *F* has a strict fixed point *v* other than *c*. Then, we have

$$d(v,c) = \delta(Fv,Fc) \leq \varphi(d(v,c)) + K[\delta(v,Fv) + \delta(c,Fc)]$$

$$< d(v,c).$$

This is a contradiction. Hence *F* has a unique strict fixed point. \Box

Theorem 3.3. Let $F : X \to CB(X)$ be an asymptotically regular mapping. Suppose there exists $\alpha \in S$ and $K \in [0, \infty)$ such that for each $m, w \in X$,

$$\delta(Fm, Fw) \le \alpha(d(m, w))d(m, w) + K[\delta(m, Fm) + \delta(w, Fw)].$$
(8)

If F is an orbitally H-continuous multivalued mapping, then F has a unique strict fixed point.

Proof. Let $\theta > 1$. Using similar reasoning as in the proof of Theorem 3.2, we can define a single-valued mapping *f* and sequence $\{w_n\}$ such that

$$d(fm, fw) \le \alpha(d(m, w))d(m, w) + K\theta[d(m, fm) + d(w, fw)]$$

for all $m, w \in X$ and

$$\lim_{n \to \infty} d(w_n, w_{n+1}) = 0. \tag{9}$$

664

Next, we show that $\{w_n\}$ is a Cauchy sequence. Suppose otherwise. Then, $\limsup_{n,m\to\infty} d(w_n, w_m) > 0$.

Now,

$$\begin{aligned} d(w_n, w_m) &\leq d(w_n, w_{n+1}) + d(w_{n+1}, w_{m+1}) + d(w_{m+1}, w_m) \\ &= d(w_n, w_{n+1}) + d(fw_n, fw_m) + d(w_{m+1}, w_m) \\ &\leq d(w_n, w_{n+1}) + \alpha(d(w_n, w_m))d(w_n, w_m) + d(w_{m+1}, w_m) \\ &+ K\theta[d(w_n, fw_n) + d(w_m, fw_m)] \\ &= \alpha(d(w_n, w_m))d(w_n, w_m) \\ &+ (K\theta + 1)[d(w_n, w_{n+1}) + d(w_m, w_{m+1})]. \end{aligned}$$

Then,

$$\frac{d(w_n, w_m)}{[d(w_n, w_{n+1}) + d(w_m, w_{m+1})]} \le \frac{K\theta + 1}{1 - \alpha(d(w_n, w_m))}.$$
(10)

Using the assumption that

 $\limsup_{n,m\to\infty} d(w_n,w_m)>0,$

(3.7) and (3.8), we have

$$\limsup_{n,m\to\infty}\frac{K\theta+1}{1-\alpha(d(w_n,w_m))}=\infty$$

This implies that

$$\limsup_{n,m\to\infty}\alpha(d(w_n,w_m))=1$$

and consequently, since $\alpha \in S$,

 $\limsup_{n,m\to\infty} d(w_n,w_m)=0.$

This is a contradiction. Hence, $\{w_n\}$ is a Cauchy sequence. Completeness of *X* implies $\{w_n\}$ converges to $c \in X$. Following similar arguments as in the proof of Theorem 3.2, we can show that *c* is a unique strict fixed point of *F*. \Box

As a special case of our Theorems 3.2 and 3.3, we get the following generalization of Theorem 2.1 due to Bisht [4].

Corollary 3.4. Let $F : X \to CB(X)$ be an asymptotically regular and orbitally *H*-continuous multivalued mapping. Suppose there exists $M \in [0, 1)$ and $K \in [0, \infty)$ such that for each $m, w \in X$,

$$\delta(Fm, Fw) \le Md(m, w) + K[\delta(m, Fm) + \delta(w, Fw)].$$

Then, F has a unique strict fixed point.

Next, we discuss the well-posedness of the strict fixed point problem.

Definition 3.5 ([21]). Let (X, d) be a metric space and $F : X \to CB(X)$ a multivalued mapping. The strict fixed point problem

$$Fm = \{m\}, \ m \in X \tag{12}$$

is well-posed for F if:

(*i*) $SFix(F) = \{c\}$

(*ii*) If $\{w_n\}$ is a sequence in X such that $\lim_{n \to \infty} \delta(w_n, Fw_n) = 0$, then $w_n \to c$ as $n \to \infty$.

(11)

Theorem 3.6. Let $F : X \to CB(X)$ be an asymptotically regular and orbitally *H*-continuous multivalued mapping. Suppose there exists $M \in [0, 1)$ and $K \in [0, \infty)$ such that for each $m, w \in X$,

$$\delta(Fm, Fw) \le Md(m, w) + K[\delta(m, Fm) + \delta(w, Fw)].$$
⁽¹³⁾

Then the strict fixed point problem is well-posed for F.

Proof. By Corollary 3.4, it follows that $SFix(F) = \{c\}$. Let $\{w_n\}$ be such that $\lim \delta(w_n, Fw_n) = 0$. Now,

$$d(w_n, c) \leq \delta(w_n, Fw_n) + \delta(Fw_n, Fc)$$

$$\leq \delta(w_n, Fw_n) + Md(w_n, c) + K[\delta(w_n, Fw_n) + \delta(c, Fc)]$$

$$= Md(w_n, c) + (K+1)\delta(w_n, Fw_n).$$

Thus, $(1 - M)d(w_n, c) \le (K + 1)\delta(w_n, Fw_n)$ and $\lim_{n \to \infty} d(w_n, c) = 0$. \Box

The Ulam-Hyers stability is an important notion in the theory of differential and integral equations (See [18], [15]). The Ulam-Hyers stability for the strict fixed point problem is defined as follows:

Definition 3.7 ([18]). Let (X, d) be a metric space and $F : X \to P(X)$ a multivalued mapping. The strict fixed point problem (3.10) is called Ulam-Hyers stable if there exists $\theta > 0$ such that for each $\epsilon > 0$ and for each ϵ -solution $m \in X$ of the strict fixed point problem i.e.

$$\delta(m, Fm) \le \epsilon,\tag{14}$$

there exists a solution c of the strict fixed point problem (3.10) such that

$$d(m,c) \leq \theta \epsilon.$$

Theorem 3.8. Let $F : X \to CB(X)$ be an asymptotically regular and orbitally *H*-continuous multivalued mapping. Suppose there exists $M \in [0, 1)$ and $K \in [0, \infty)$ such that for each $m, w \in X$,

$$\delta(Fm, Fw) \le Md(m, w) + K[\delta(m, Fm) + \delta(w, Fw)].$$
⁽¹⁵⁾

Then the strict fixed point problem is Ulam-Hyers stable.

Proof. By Corollary 3.4, we have that $SFix(F) = \{c\}$. Let $\epsilon > 0$ and $m \in X$ be such that $\delta(m, Fm) \le \epsilon$. Now, we have

 $d(m,c) \leq \delta(m,Fm) + \delta(Fm,Fc)$ $\leq \delta(y,Fy) + Md(m,w) + K[\delta(m,Fm) + \delta(c,Fc)]$ $= (K+1)\delta(m,Fm) + Md(m,w).$

Hence,

$$d(m,c) \leq \frac{K+1}{1-M}\delta(m,Fm) \leq \frac{K+1}{1-M}\epsilon.$$

Next, we present a data dependence result for the strict fixed point problem.

Theorem 3.9. Let $F : X \to CB(X)$ be an asymptotically regular and orbitally *H*-continuous multivalued mapping. Suppose there exists $M \in [0, 1)$ and $K \in [0, \infty)$ such that for each $m, w \in X$,

$$\delta(Fm, Fw) \le Md(m, w) + K[\delta(m, Fm) + \delta(w, Fw)].$$
(16)

Suppose that $R : X \to CB(X)$ is a multivalued mapping with $SFix(R) \neq \emptyset$ and there exists $\xi > 0$ such that $\delta(Fm, Rm) \leq \xi$, for every $m \in X$. Then,

$$\delta(SFix(F), SFix(R)) \le \frac{K+1}{1-M}\xi.$$

Proof. By Corollary 3.4, we have that $SFix(F) = \{c\}$. For any $m \in SFix(R)$, we have

$$d(m,c) = \delta(Rm,Fc)$$

$$\leq \delta(Rm,Fm) + \delta(Fm,Fc)$$

$$\leq \xi + Md(m,c) + K[\delta(m,Fm) + \delta(c,Fc)]$$

$$= \xi + Md(m,c) + K\delta(Gc,Fc)$$

$$\leq (K+1)\xi + Md(m,c).$$

Hence,

$$d(m,c) \le \frac{K+1}{1-M}\xi$$

and the result follows. \Box

We illustrate the above results with an example.

Example 3.10. Let $X = [-1, \frac{1}{2}]$ be endowed with the usual metric. For $m \in X$, define $F : X \to CB(X)$ by

$$Fm = \begin{cases} \frac{1}{2} , m \in [-1, 0) \\ [m^3, m^2], m \in [0, \frac{1}{2}] \end{cases}$$

We notice that if $M, K \ge 0, M + 2K < 1$ and m = 0, then there exists $w \in [-1, 0)$ such that

 $\delta(Fm,Fw) \leq Md(m,w) + K[\delta(m,Fm) + \delta(w,Fw)]$

does not hold. Hence, Reich's Result (Theorem 1.1) is not applicable.

Case 1: $m \in [-1, 0)$ and $w \in [0, \frac{1}{2}]$. We have

$$\delta(Fm,Fw) = \frac{1}{2} - w^3, \quad \delta(w,Fw) = w - w^3$$

and $\delta(m, Fm) = \frac{1}{2} - m$. Clearly, $m \le w$. Thus,

$$m + \frac{1}{2} - w^3 \le w + \frac{1}{2} - w^3 \quad and \quad \delta(Fm, Fw) \le \delta(m, Fm) + \delta(w, Fw).$$

Case 2: $m \in [0, \frac{1}{2}]$ and $w \in [0, \frac{1}{2}]$. Without loss of generality, let $m \le w$. Then

$$\delta(Fm, Fw) = w^2 - m^3, \quad \delta(w, Fw) = w - w^3$$

and $\delta(m, Fm) = m - m^3$. For $w \in [0, \frac{1}{2}]$,

$$y(y^2 + y - 1) \le 0 \le m.$$

Hence,

$$\delta(Fm, Fw) \le \delta(m, Fm) + \delta(w, Fw)$$

We note that F is not H-continuous. Indeed, let $w_n = \frac{-1}{n}$. Then $w_n \to 0$ and $\delta(Fw_n, F0) = H(Fw_n, F0) = \frac{1}{2}$. For $w_0 \in [-1, \frac{1}{2}]$, let $\{w_n\}$ be any orbital sequence of F. Then

$$w_n^3 \le w_{n+1} \le w_n^2 \le w_n \le w_{n-1}^2 \le w_{n-1} \le \dots \le w_0 \le \frac{1}{2}$$

It follows that $\{w_n\}$ is a nonincreasing sequence and thus converges to $\lambda \ge 0$. If $\lambda > 0$, then

$$w_n^3 \le w_{n+1} \le w_n^2 \le \frac{1}{2},$$

which implies that $\lambda^3 \leq \lambda \leq \lambda^2 \leq \frac{1}{2}$ and $1 \leq \lambda \leq \frac{1}{2}$. This is a contradiction. Hence $\{w_n\}$ converges to 0. Now, we can easily show that *F* is asymptotically regular and orbitally continuous. By Theorem 3.8, the associated strict fixed point problem is Ulam-Hyers stable.

Remark 3.11.

- 1. In view of (3.5), orbital H-continuity of F can be replaced by the following condition : $\delta(Fw_n, Fz) \rightarrow 0$ whenever any orbital sequence $\{w_n\}$ in X converges to $z \in X$ (See [8]).
- 2. Theorem 3.2 and Theorem 3.3 extend Theorem 2.2 and Theorem 2.1 in [12], respectively, for multivalued mappings.
- 3. Reich [22], [23] and Petrusel and Petrusel [19] have extensively used the condition M + 2K < 1. Our work (Corollary 3.4, Theorem 3.6 Theorem 3.8) is independent of this condition.

References

- M. Abbas, M. Arshad and A. Azam, Fixed points of asymptotically regular mappings in complex-valued metric spaces, Georgian Math. J., 20(2013), 213-221.
- [2] H. Alikhani and S. Rezapour, Two endpoint results for β-shrinking and β-convergent multifunctions with application to an integral equation, U.P.B. Sci. Bull., Series A, 78(2016), 71-80.
- [3] A. Amini-Harandi, Endpoints of set-valued contractions in metric spaces, Nonlinear Anal., 72(2010), 132-134.
- [4] R. K. Bisht, A note on the fixed point theorem of Górnicki, J. Fixed Point Theory Appl., 21 (2019):54.
- [5] F. E. Browder and W. V. Petryshyn, The solution by iteration of nonlinear functional equations in Banach spaces, Bull. Amer. Math. Soc.,72(1966), 571-575.
- [6] D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc., 20(1969), 458-464.
- [7] L. Ćirić, On contraction type mappings, Math. Balk., 1(1971), 52-57.
- [8] R. Chikkala and A. P. Baisnab, A simultaneous fixed point theorems with application in control theory, Indian J. Pure. Appl. Math., 21(1990), 144-149, .
- [9] K. Deimling, Multivalued Differential Equations, De Gruyter, Berlin, 1992.
- [10] N. V. Dung and V. T. Le Hang, Well-posedness in the generalized sense of the multivalued fixed point problem, Quaestiones Mathematicae, 41(2018), 799-810, DOI: 10.2989/16073606.2017.1402213
- [11] M. A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40(1973), 604-608.
- [12] J. Górnicki, On some mappings with a unique fixed point, J. Fixed Point Theory Appl., 22(2020):8.
- [13] K. Iseki, Multi-valued contractions mappings in complete metric spaces, Rendiconti Sem. Mat. Univ. Padova, 53(1975), 15-19.
- [14] J. Jachymski, A stationary point theorem characterizing metric completeness, Appl. Math. Lett., 24(2011), 169-171.
- [15] D. Marian, S. A. Ciplea and N. Lungu, On the Ulam-Hyers stability of biharmonic equation, U.P.B. Sci. Bull., Series A, 82(2020), 141-148.
- [16] J. T. Markin, A fixed point theorem for set-valued mappings, Bull. Amer. Soc., 74(1968), 639-640.
- [17] S. B. Nadler, Multi-valued contraction mappings, Pac. J. Math., 30(1969), 475-488.
- [18] P. T. Petru, A. Petrusel and J. C. Yao, Ulam-Hyers stability for operatorial equations and inclusions via nonself operators, Taiwanese J. Math., 15(2011), 2195-2212.
- [19] A. Petrusel and G. Petrusel, On Reich's strict fixed point theorem for multivalued operators in complete metric spaces, J. Nonlinear Var. Anal., 2(2018),103-112.
- [20] A. Petrusel and I. A. Rus, Well-posedness of the fixed point problem for multivalued operators, Applied Analysis and Differential Equations, World Scientific, 2007, 295-306.
- [21] A. Petrusel, I. A. Rus and J. C. Yao, Well-posedness in the generalized sense of the fixed point problems, Taiwanese J. Math., 11(2007), 903-914.
- [22] S. Reich, Some remarks concerning contraction mappings, Can. Math. Bull.,14(1971), 121-124.
- [23] S. Reich, Fixed point of contractive functions, Boll. Un. Mat. Ital., 5(1972), 26-42.
- [24] B. E. Rhoades, S. L. Singh and C. Kulshrestha, Coincidence theorems for some multivalued mappings, Internat. J. Math. & Math. Sci., 7(1984), 429-434.
- [25] I. A. Rus, Fixed point theorems for multivalued mappings in complete metric spaces, Math. Japonica, 20(1975), 21-24.
- [26] S. Saejung, *Remarks on endpoints of multivalued mappings on geodesic spaces*, Fixed Point Theory Appl., **52**(2016), 1-12.
- [27] S. L. Singh, S. N. Mishra and R. Pant, New fixed point theorems for asymptotically regular multi-valued maps, Nonlinear Anal., 71(2009), 3299-3304.